EP3612529A1 - Salt of an aminopyridine derivative compound, a crystalline form thereof, and a process for preparing the same - Google Patents
Salt of an aminopyridine derivative compound, a crystalline form thereof, and a process for preparing the sameInfo
- Publication number
- EP3612529A1 EP3612529A1 EP18787260.1A EP18787260A EP3612529A1 EP 3612529 A1 EP3612529 A1 EP 3612529A1 EP 18787260 A EP18787260 A EP 18787260A EP 3612529 A1 EP3612529 A1 EP 3612529A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- mesylate salt
- formula
- crystalline form
- organic solvent
- compound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 14
- 150000001875 compounds Chemical class 0.000 title claims description 96
- 150000003839 salts Chemical class 0.000 title description 13
- 150000003927 aminopyridines Chemical class 0.000 title description 2
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical class CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 claims abstract description 66
- RRMJMHOQSALEJJ-UHFFFAOYSA-N N-[5-[[4-[4-[(dimethylamino)methyl]-3-phenylpyrazol-1-yl]pyrimidin-2-yl]amino]-4-methoxy-2-morpholin-4-ylphenyl]prop-2-enamide Chemical compound CN(C)CC=1C(=NN(C=1)C1=NC(=NC=C1)NC=1C(=CC(=C(C=1)NC(C=C)=O)N1CCOCC1)OC)C1=CC=CC=C1 RRMJMHOQSALEJJ-UHFFFAOYSA-N 0.000 claims abstract description 27
- 239000003814 drug Substances 0.000 claims abstract description 26
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 38
- 102000001301 EGF receptor Human genes 0.000 claims description 33
- 108060006698 EGF receptor Proteins 0.000 claims description 33
- 239000003960 organic solvent Substances 0.000 claims description 25
- 239000000203 mixture Substances 0.000 claims description 23
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 22
- 230000035772 mutation Effects 0.000 claims description 19
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 19
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 claims description 18
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 claims description 18
- 102000001253 Protein Kinase Human genes 0.000 claims description 17
- 230000001404 mediated effect Effects 0.000 claims description 17
- 238000000034 method Methods 0.000 claims description 17
- 108060006633 protein kinase Proteins 0.000 claims description 17
- 239000008194 pharmaceutical composition Substances 0.000 claims description 15
- 238000000634 powder X-ray diffraction Methods 0.000 claims description 12
- 230000008569 process Effects 0.000 claims description 12
- 238000000113 differential scanning calorimetry Methods 0.000 claims description 11
- 208000002154 non-small cell lung carcinoma Diseases 0.000 claims description 11
- 208000029729 tumor suppressor gene on chromosome 11 Diseases 0.000 claims description 11
- 239000012046 mixed solvent Substances 0.000 claims description 9
- 239000000654 additive Substances 0.000 claims description 8
- 230000000996 additive effect Effects 0.000 claims description 8
- 230000000694 effects Effects 0.000 claims description 8
- 230000002401 inhibitory effect Effects 0.000 claims description 8
- 210000004556 brain Anatomy 0.000 claims description 7
- 201000011510 cancer Diseases 0.000 claims description 7
- 206010028980 Neoplasm Diseases 0.000 claims description 5
- 229940098779 methanesulfonic acid Drugs 0.000 claims description 4
- 230000007704 transition Effects 0.000 claims description 4
- 238000002156 mixing Methods 0.000 claims description 3
- 230000001394 metastastic effect Effects 0.000 claims description 2
- 206010061289 metastatic neoplasm Diseases 0.000 claims description 2
- 229940079593 drug Drugs 0.000 abstract description 20
- 230000000052 comparative effect Effects 0.000 description 33
- 241000700159 Rattus Species 0.000 description 22
- 238000012360 testing method Methods 0.000 description 21
- 230000036470 plasma concentration Effects 0.000 description 19
- IAZDPXIOMUYVGZ-WFGJKAKNSA-N Dimethyl sulfoxide Chemical compound [2H]C([2H])([2H])S(=O)C([2H])([2H])[2H] IAZDPXIOMUYVGZ-WFGJKAKNSA-N 0.000 description 16
- 208000035475 disorder Diseases 0.000 description 16
- 239000012458 free base Substances 0.000 description 15
- 238000013112 stability test Methods 0.000 description 13
- 238000005259 measurement Methods 0.000 description 11
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 10
- 229960004770 esomeprazole Drugs 0.000 description 10
- SUBDBMMJDZJVOS-DEOSSOPVSA-N esomeprazole Chemical compound C([S@](=O)C1=NC2=CC=C(C=C2N1)OC)C1=NC=C(C)C(OC)=C1C SUBDBMMJDZJVOS-DEOSSOPVSA-N 0.000 description 10
- 238000005160 1H NMR spectroscopy Methods 0.000 description 8
- 239000012530 fluid Substances 0.000 description 8
- 238000002360 preparation method Methods 0.000 description 8
- 239000011541 reaction mixture Substances 0.000 description 8
- 230000002829 reductive effect Effects 0.000 description 7
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 6
- 241000282472 Canis lupus familiaris Species 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 238000010521 absorption reaction Methods 0.000 description 5
- -1 cimetidine Chemical compound 0.000 description 5
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 4
- 241001465754 Metazoa Species 0.000 description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 210000004211 gastric acid Anatomy 0.000 description 4
- 230000002496 gastric effect Effects 0.000 description 4
- 230000000968 intestinal effect Effects 0.000 description 4
- 201000005202 lung cancer Diseases 0.000 description 4
- 208000020816 lung neoplasm Diseases 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 239000008213 purified water Substances 0.000 description 4
- 230000000638 stimulation Effects 0.000 description 4
- 229940121358 tyrosine kinase inhibitor Drugs 0.000 description 4
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 206010027476 Metastases Diseases 0.000 description 3
- 230000037396 body weight Effects 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 229950007655 esilate Drugs 0.000 description 3
- 230000009401 metastasis Effects 0.000 description 3
- 229920000609 methyl cellulose Polymers 0.000 description 3
- 239000001923 methylcellulose Substances 0.000 description 3
- 235000010981 methylcellulose Nutrition 0.000 description 3
- 230000002265 prevention Effects 0.000 description 3
- 229940126409 proton pump inhibitor Drugs 0.000 description 3
- 239000000612 proton pump inhibitor Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical class [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 229910016860 FaSSIF Inorganic materials 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- CUGHPAVPNZLNPX-UHFFFAOYSA-N OC(CC(=O)O)(CC(=O)O)C(=O)O.C(C=C)(=O)NC1=C(C=C(C(=C1)NC1=NC=CC(=N1)N1N=C(C(=C1)CN(C)C)C1=CC=CC=C1)OC)N1CCOCC1 Chemical compound OC(CC(=O)O)(CC(=O)O)C(=O)O.C(C=C)(=O)NC1=C(C=C(C(=C1)NC1=NC=CC(=N1)N1N=C(C(=C1)CN(C)C)C1=CC=CC=C1)OC)N1CCOCC1 CUGHPAVPNZLNPX-UHFFFAOYSA-N 0.000 description 2
- 102000004022 Protein-Tyrosine Kinases Human genes 0.000 description 2
- 108090000412 Protein-Tyrosine Kinases Proteins 0.000 description 2
- 206010052779 Transplant rejections Diseases 0.000 description 2
- 230000001154 acute effect Effects 0.000 description 2
- 229940069428 antacid Drugs 0.000 description 2
- 239000003159 antacid agent Substances 0.000 description 2
- 230000001458 anti-acid effect Effects 0.000 description 2
- 206010003246 arthritis Diseases 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000001684 chronic effect Effects 0.000 description 2
- 150000001860 citric acid derivatives Chemical class 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 229940000406 drug candidate Drugs 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 229940121647 egfr inhibitor Drugs 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 238000004128 high performance liquid chromatography Methods 0.000 description 2
- 239000003485 histamine H2 receptor antagonist Substances 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 238000007918 intramuscular administration Methods 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 230000000144 pharmacologic effect Effects 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000001144 powder X-ray diffraction data Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 208000017520 skin disease Diseases 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000000454 talc Substances 0.000 description 2
- 229910052623 talc Inorganic materials 0.000 description 2
- 235000012222 talc Nutrition 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- 229940124597 therapeutic agent Drugs 0.000 description 2
- 238000011200 topical administration Methods 0.000 description 2
- QCQCHGYLTSGIGX-GHXANHINSA-N 4-[[(3ar,5ar,5br,7ar,9s,11ar,11br,13as)-5a,5b,8,8,11a-pentamethyl-3a-[(5-methylpyridine-3-carbonyl)amino]-2-oxo-1-propan-2-yl-4,5,6,7,7a,9,10,11,11b,12,13,13a-dodecahydro-3h-cyclopenta[a]chrysen-9-yl]oxy]-2,2-dimethyl-4-oxobutanoic acid Chemical compound N([C@@]12CC[C@@]3(C)[C@]4(C)CC[C@H]5C(C)(C)[C@@H](OC(=O)CC(C)(C)C(O)=O)CC[C@]5(C)[C@H]4CC[C@@H]3C1=C(C(C2)=O)C(C)C)C(=O)C1=CN=CC(C)=C1 QCQCHGYLTSGIGX-GHXANHINSA-N 0.000 description 1
- 244000215068 Acacia senegal Species 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- 208000024827 Alzheimer disease Diseases 0.000 description 1
- USFZMSVCRYTOJT-UHFFFAOYSA-N Ammonium acetate Chemical compound N.CC(O)=O USFZMSVCRYTOJT-UHFFFAOYSA-N 0.000 description 1
- 239000005695 Ammonium acetate Substances 0.000 description 1
- 201000001320 Atherosclerosis Diseases 0.000 description 1
- 208000023275 Autoimmune disease Diseases 0.000 description 1
- 206010005003 Bladder cancer Diseases 0.000 description 1
- 208000020084 Bone disease Diseases 0.000 description 1
- 206010048396 Bone marrow transplant rejection Diseases 0.000 description 1
- 206010006187 Breast cancer Diseases 0.000 description 1
- 208000026310 Breast neoplasm Diseases 0.000 description 1
- 206010006895 Cachexia Diseases 0.000 description 1
- 101100223811 Caenorhabditis elegans dsc-1 gene Proteins 0.000 description 1
- 208000020446 Cardiac disease Diseases 0.000 description 1
- 208000005590 Choroidal Neovascularization Diseases 0.000 description 1
- 206010060823 Choroidal neovascularisation Diseases 0.000 description 1
- 208000000668 Chronic Pancreatitis Diseases 0.000 description 1
- 206010009900 Colitis ulcerative Diseases 0.000 description 1
- 208000011231 Crohn disease Diseases 0.000 description 1
- 206010012689 Diabetic retinopathy Diseases 0.000 description 1
- 208000013600 Diabetic vascular disease Diseases 0.000 description 1
- 206010016654 Fibrosis Diseases 0.000 description 1
- 208000007882 Gastritis Diseases 0.000 description 1
- 208000018522 Gastrointestinal disease Diseases 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 229920000084 Gum arabic Polymers 0.000 description 1
- 206010020751 Hypersensitivity Diseases 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- 239000005411 L01XE02 - Gefitinib Substances 0.000 description 1
- 239000005551 L01XE03 - Erlotinib Substances 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 208000019693 Lung disease Diseases 0.000 description 1
- 208000028389 Nerve injury Diseases 0.000 description 1
- 208000012902 Nervous system disease Diseases 0.000 description 1
- 208000022873 Ocular disease Diseases 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 206010033128 Ovarian cancer Diseases 0.000 description 1
- 206010061535 Ovarian neoplasm Diseases 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 206010061902 Pancreatic neoplasm Diseases 0.000 description 1
- 206010033649 Pancreatitis chronic Diseases 0.000 description 1
- 241001111421 Pannus Species 0.000 description 1
- 208000018737 Parkinson disease Diseases 0.000 description 1
- 235000019483 Peanut oil Nutrition 0.000 description 1
- 206010060862 Prostate cancer Diseases 0.000 description 1
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 1
- 201000004681 Psoriasis Diseases 0.000 description 1
- 206010038933 Retinopathy of prematurity Diseases 0.000 description 1
- 240000000111 Saccharum officinarum Species 0.000 description 1
- 235000007201 Saccharum officinarum Nutrition 0.000 description 1
- 206010040070 Septic Shock Diseases 0.000 description 1
- 229920001800 Shellac Polymers 0.000 description 1
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 208000005718 Stomach Neoplasms Diseases 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical compound OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 description 1
- 208000007536 Thrombosis Diseases 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 201000006704 Ulcerative Colitis Diseases 0.000 description 1
- 208000007097 Urinary Bladder Neoplasms Diseases 0.000 description 1
- 208000036142 Viral infection Diseases 0.000 description 1
- 239000000205 acacia gum Substances 0.000 description 1
- 235000010489 acacia gum Nutrition 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 206010064930 age-related macular degeneration Diseases 0.000 description 1
- 208000026935 allergic disease Diseases 0.000 description 1
- 230000007815 allergy Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 229940043376 ammonium acetate Drugs 0.000 description 1
- 235000019257 ammonium acetate Nutrition 0.000 description 1
- 208000006673 asthma Diseases 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 208000029028 brain injury Diseases 0.000 description 1
- 150000003842 bromide salts Chemical class 0.000 description 1
- 206010006451 bronchitis Diseases 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 208000015114 central nervous system disease Diseases 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- QBWCMBCROVPCKQ-UHFFFAOYSA-N chlorous acid Chemical class OCl=O QBWCMBCROVPCKQ-UHFFFAOYSA-N 0.000 description 1
- CCGSUNCLSOWKJO-UHFFFAOYSA-N cimetidine Chemical compound N#CNC(=N/C)\NCCSCC1=NC=N[C]1C CCGSUNCLSOWKJO-UHFFFAOYSA-N 0.000 description 1
- 229960001380 cimetidine Drugs 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007850 degeneration Effects 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- 201000009101 diabetic angiopathy Diseases 0.000 description 1
- 201000002249 diabetic peripheral angiopathy Diseases 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 239000007884 disintegrant Substances 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 201000006549 dyspepsia Diseases 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 229960001433 erlotinib Drugs 0.000 description 1
- AAKJLRGGTJKAMG-UHFFFAOYSA-N erlotinib Chemical compound C=12C=C(OCCOC)C(OCCOC)=CC2=NC=NC=1NC1=CC=CC(C#C)=C1 AAKJLRGGTJKAMG-UHFFFAOYSA-N 0.000 description 1
- 229960000914 esomeprazole magnesium dihydrate Drugs 0.000 description 1
- CCIVGXIOQKPBKL-UHFFFAOYSA-M ethanesulfonate Chemical compound CCS([O-])(=O)=O CCIVGXIOQKPBKL-UHFFFAOYSA-M 0.000 description 1
- 230000000893 fibroproliferative effect Effects 0.000 description 1
- 230000004761 fibrosis Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 206010017758 gastric cancer Diseases 0.000 description 1
- 208000021302 gastroesophageal reflux disease Diseases 0.000 description 1
- 229960002584 gefitinib Drugs 0.000 description 1
- XGALLCVXEZPNRQ-UHFFFAOYSA-N gefitinib Chemical compound C=12C=C(OCCCN3CCOCC3)C(OC)=CC2=NC=NC=1NC1=CC=C(F)C(Cl)=C1 XGALLCVXEZPNRQ-UHFFFAOYSA-N 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 201000010536 head and neck cancer Diseases 0.000 description 1
- 208000014829 head and neck neoplasm Diseases 0.000 description 1
- 208000019622 heart disease Diseases 0.000 description 1
- 201000011066 hemangioma Diseases 0.000 description 1
- 150000003840 hydrochlorides Chemical class 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000002757 inflammatory effect Effects 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 208000017169 kidney disease Diseases 0.000 description 1
- 201000006370 kidney failure Diseases 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 229920005610 lignin Polymers 0.000 description 1
- 235000020094 liqueur Nutrition 0.000 description 1
- 239000006210 lotion Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 206010025135 lupus erythematosus Diseases 0.000 description 1
- 208000002780 macular degeneration Diseases 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- DBOUSUONOXEWHU-VCKZSRROSA-N magnesium;5-methoxy-2-[(s)-(4-methoxy-3,5-dimethylpyridin-2-yl)methylsulfinyl]benzimidazol-1-ide;dihydrate Chemical compound O.O.[Mg+2].C([S@](=O)C=1[N-]C2=CC=C(C=C2N=1)OC)C1=NC=C(C)C(OC)=C1C.C([S@](=O)C=1[N-]C2=CC=C(C=C2N=1)OC)C1=NC=C(C)C(OC)=C1C DBOUSUONOXEWHU-VCKZSRROSA-N 0.000 description 1
- 150000004701 malic acid derivatives Chemical class 0.000 description 1
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 description 1
- 208000037819 metastatic cancer Diseases 0.000 description 1
- 208000011575 metastatic malignant neoplasm Diseases 0.000 description 1
- 201000006417 multiple sclerosis Diseases 0.000 description 1
- 206010028417 myasthenia gravis Diseases 0.000 description 1
- 230000008764 nerve damage Effects 0.000 description 1
- 208000015122 neurodegenerative disease Diseases 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 239000002674 ointment Substances 0.000 description 1
- 210000001328 optic nerve Anatomy 0.000 description 1
- 201000008482 osteoarthritis Diseases 0.000 description 1
- 201000002528 pancreatic cancer Diseases 0.000 description 1
- 208000008443 pancreatic carcinoma Diseases 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 239000000312 peanut oil Substances 0.000 description 1
- 208000000689 peptic esophagitis Diseases 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 229920000191 poly(N-vinyl pyrrolidone) Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 208000023504 respiratory system disease Diseases 0.000 description 1
- 208000037803 restenosis Diseases 0.000 description 1
- 210000001210 retinal vessel Anatomy 0.000 description 1
- 206010039073 rheumatoid arthritis Diseases 0.000 description 1
- 230000036303 septic shock Effects 0.000 description 1
- 239000008159 sesame oil Substances 0.000 description 1
- 235000011803 sesame oil Nutrition 0.000 description 1
- 235000013874 shellac Nutrition 0.000 description 1
- 239000004208 shellac Substances 0.000 description 1
- ZLGIYFNHBLSMPS-ATJNOEHPSA-N shellac Chemical compound OCCCCCC(O)C(O)CCCCCCCC(O)=O.C1C23[C@H](C(O)=O)CCC2[C@](C)(CO)[C@@H]1C(C(O)=O)=C[C@@H]3O ZLGIYFNHBLSMPS-ATJNOEHPSA-N 0.000 description 1
- 229940113147 shellac Drugs 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 208000020431 spinal cord injury Diseases 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 239000008174 sterile solution Substances 0.000 description 1
- 201000011549 stomach cancer Diseases 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 150000003892 tartrate salts Chemical class 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 239000005483 tyrosine kinase inhibitor Substances 0.000 description 1
- 150000004917 tyrosine kinase inhibitor derivatives Chemical class 0.000 description 1
- 201000005112 urinary bladder cancer Diseases 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 230000009385 viral infection Effects 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D413/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
- C07D413/14—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D403/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
- C07D403/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
- C07D403/04—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/535—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
- A61K31/5375—1,4-Oxazines, e.g. morpholine
- A61K31/5377—1,4-Oxazines, e.g. morpholine not condensed and containing further heterocyclic rings, e.g. timolol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C303/00—Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides
- C07C303/02—Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of sulfonic acids or halides thereof
- C07C303/22—Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of sulfonic acids or halides thereof from sulfonic acids, by reactions not involving the formation of sulfo or halosulfonyl groups; from sulfonic halides by reactions not involving the formation of halosulfonyl groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C309/00—Sulfonic acids; Halides, esters, or anhydrides thereof
- C07C309/01—Sulfonic acids
- C07C309/02—Sulfonic acids having sulfo groups bound to acyclic carbon atoms
- C07C309/03—Sulfonic acids having sulfo groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
- C07C309/04—Sulfonic acids having sulfo groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton containing only one sulfo group
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B2200/00—Indexing scheme relating to specific properties of organic compounds
- C07B2200/13—Crystalline forms, e.g. polymorphs
Definitions
- the present invention relates to mesylate(methanesulfonate) salt of the compound of N-(5-(4-(4-((dimethylamino)methyl)-3-phenyl-1H-pyrazol-1-yl)pyrimidine-2-ylamino)-4-methoxy-2-morpholinophenyl)acrylamide in the form of a free base represented by the following Formula 2, a crystalline form thereof, and a process for preparing the same. More specifically, the present invention relates to the mesylate salt of the compound represented by the following Formula 2, which is excellent in stability, solubility, and bioavailability and has a high purity, a crystalline form thereof, and a process for preparing the same.
- lung cancer accounts for about one-third of the causes of cancer death, and non-small cell lung cancer accounts for about 80% of the entire lung cancer. Only some of the patients suffering from non-small cell lung cancer are expected to be cured by surgery, and most patients are diagnosed to have locally advanced cancer or metastatic cancer. Treatment of advanced non-small cell lung cancer hinges on the presence or absence of molecular markers of specific mutations. If an epidermal growth factor receptor (EGFR) mutation is positive, the first-line treatment is an EGFR tyrosine kinase inhibitor (TKI). Patients with these mutations are susceptible to EGFR TKIs.
- EGFR epidermal growth factor receptor
- TKI EGFR tyrosine kinase inhibitor
- T790M which is a point mutation in the gatekeeper residue of the tyrosine kinase (TK) domain, accounts for about 50 to 60% of the acquired resistance.
- TK tyrosine kinase
- the compound of N-(5-(4-(4-((dimethylamino)methyl)-3-phenyl-1H-pyrazol-1-yl)pyrimidine-2-ylamino)-4-methoxy-2-morpholinophenyl)acrylamide in the form of a free base as mentioned above is known to have few impacts on wild-type EGFR and to be a highly selective and irreversible EGFR TKI with a strong inhibitory activity against single mutation of T790M and dual mutations (EGFRm).
- the compound is expected to have a therapeutically effective efficacy in the treatment of patients with advanced non-small cell lung cancer as primary cancer and advanced non-small cell lung cancer with brain metastasis.
- International Patent Publication WO 2016-060443 discloses the compound represented by the above Formula 2 and a process for preparing it, wherein the compound can be used as a drug to inhibit the activity of protein kinase-mediated disorders, especially EGFR having one or more mutations, as compared with the wild-type EGFR.
- this compound has a potential as a candidate for the development of drugs for the treatment of protein kinase-mediated disorders.
- a good drug candidate must have few amounts of impurities, be physically and chemically stable, and show an allowable level of bioavailability.
- the compound of N-(5-(4-(4-((dimethylamino)methyl)-3-phenyl-1H-pyrazol-1-yl)pyrimidine-2-ylamino)-4-methoxy-2-morpholinophenyl)acrylamide in the form of a free base has not only a low solubility in water but also a low solubility in an acidic environment, this compound has a disadvantage in that the solubility and the bioavailability thereof is not excellent when it is used as a drug. Thus, there has been a challenge to prepare a formulation of this compound, which is excellent in solubility and bioavailability as compared with the free base form.
- a drug for example, a proton pump inhibitor such as esomeprazole or an H2-receptor antagonist such as cimetidine, is frequently prescribed in combination with a drug for the treatment of protein kinase-mediated disorders.
- a drug for example, a proton pump inhibitor or an H2 receptor antagonist
- mesylate salt of N-(5-(4-(4-((dimethylamino)methyl)-3-phenyl-1H-pyrazol-1-yl)pyrimidine-2-ylamino)-4-methoxy-2-morpholinophenyl)acrylamide as represented by the following Formula 1:
- a process for preparing the mesylate salt represented by the following Formula 1 which comprises: (1) mixing the compound represented by the following Formula 2 and a single organic solvent or a mixed solvent, followed by adding methanesulfonic acid thereto, to prepare a mixture of the mesylate salt represented by the Formula 1; and
- a pharmaceutical composition for treating a protein kinase-mediated disorder which comprises the mesylate salt and a pharmaceutically acceptable additive.
- a pharmaceutical composition for inhibiting the activity of epidermal growth factor receptor (EGFR) having one or more mutations as compared with wild-type EGFR which comprises the mesylate salt and a pharmaceutically acceptable additive.
- EGFR epidermal growth factor receptor
- the mesylate salt compound and a crystalline form thereof provided by the present invention have advantages in that they are excellent in stability, solubility, and bioavailability as compared with other pharmaceutically acceptable salts, have a high purity, and produce the excellent bioavailability as mentioned above when they are administered not only alone but also in combination with an antacid.
- the preparation process provided by the present invention has an advantage in that it is possible to produce the mesylate salt compound having the above advantages on a large scale.
- Fig. 1 is a powder X-ray diffraction (PXRD) graph of the compound prepared in Example 1 of the present invention.
- Fig. 2 is a differential scanning calorimetry (DSC) graph of the compound prepared in Example 1 of the present invention.
- Fig. 3 is a graph showing the results of solubility tests of the compound prepared in Comparative Example 1 (left) and those of the compound prepared in Example 1 (right) (FaSSGF: artificial gastric fluid, FaSSIF: artificial intestinal fluid).
- FIG. 4 is a photograph showing the results of stability tests carried out under stress conditions for the compound prepared in Example 1 (Initial: at start, 2 weeks: after 2 weeks, 4 weeks: after 4 weeks).
- Fig. 5 is a photograph showing the results of stability tests carried out under stress conditions for the compound prepared in Comparative Example 2 (Initial: at start, 2 weeks: after 2 weeks, 4 weeks: after 4 weeks).
- Fig. 6 is a photograph showing the results of stability tests carried out under stress conditions for the compound prepared in Comparative Example 3 (Initial: at start, 2 weeks: after 2 weeks, 4 weeks: after 4 weeks).
- Fig. 7 is a photograph showing the results of stability tests carried out under stress conditions for the compound prepared in Comparative Example 4 (Initial: at start, 2 weeks: after 2 weeks, 4 weeks: after 4 weeks).
- Fig. 8 is a photograph showing the results of stability tests carried out under accelerated conditions for the compound prepared in Example 1 (Initial: at start, 1 month: after 1 month, 3 months: after 3 months, 6 months: after 6 months).
- Fig. 9 is a photograph showing the results of stability tests carried out under accelerated conditions for the compound prepared in Comparative Example 2 (Initial: at start, 1 month: after 1 month, 3 months: after 3 months, 6 months: after 6 months).
- Fig. 10 is a photograph showing the results of stability tests carried out under accelerated conditions for the compound prepared in Comparative Example 3 (Initial: at start, 1 month: after 1 month, 3 months: after 3 months, 6 months: after 6 months).
- Fig. 11 is a photograph showing the results of stability tests carried out under accelerated conditions for the compound prepared in Comparative Example 4 (Initial: at start, 1 month: after 1 month, 3 months: after 3 months, 6 months: after 6 months).
- Fig. 12 is a graph showing the results of pharmacokinetic comparison tests carried out on normal rats in Test Example 4.
- Fig. 13 is a graph showing the results of pharmacokinetic comparison tests carried out on rats treated with esomeprazole in Test Example 4.
- Fig. 14 is a graph showing the results of pharmacokinetic comparison tests carried out on beagle dogs in Test Example 5.
- the present invention relates to mesylate salt of N-(5-(4-(4-((dimethylamino)methyl)-3-phenyl-1H-pyrazol-1-yl)pyrimidine-2-ylamino)-4-methoxy-2-morpholinophenyl)acrylamide, as represented by the following Formula 1.
- the present inventors have newly synthesized mesylate salt of the compound of N-(5-(4-(4-((dimethylamino)methyl)-3-phenyl-1H-pyrazol-1-yl)pyrimidine-2-ylamino)-4-methoxy-2-morpholinophenyl)acrylamide, which is excellent in solubility and bioavailability as compared with the compound of N-(5-(4-(4-((dimethylamino)methyl)-3-phenyl-1H-pyrazol-1-yl)pyrimidine-2-ylamino)-4-methoxy-2-morpholinophenyl)acrylamide in the form of a free base, which is excellent in stability, solubility, and bioavailability as compared with other pharmaceutically acceptable salts of the compound, and which has a high purity, thereby completing the present invention.
- hydrochloride salts account for the largest proportion of the salts of commercially available compounds approved by the FDA. Then, sulfates, bromides, chlorites, tartrates, phosphates, citrates, and malates account for large proportions in their order. Mesylate salts account for only about 2%. That is, a mesylate salt of a particular compound is not generally a selectable salt.
- mesylate salt of N-(5-(4-(4-((dimethylamino)methyl)-3-phenyl-1H-pyrazol-1-yl)pyrimidine-2-ylamino)-4-methoxy-2-morpholinophenyl)acrylamide is excellent in stability, solubility, and bioavailability as compared with other pharmaceutically acceptable salts and has a high purity.
- the present inventors have carried out a lot of researches for the preparation thereof on a large scale. As a result, the present inventors have completed the present invention.
- the mesylate salt represented by the above Formula 1 is characterized in that it is in a crystalline form, and the crystalline form falls within the scope of the present invention.
- Crystalline forms of a pharmaceutical compound may be important in the development of suitable formulations. Certain crystalline forms may be improved in solubility, stability, and bioavailability, and have a high purity as compared with other crystalline forms. Thus, they can be selected as good drug candidates. Certain crystalline forms have an advantage in that it is improved in thermodynamic stability.
- the crystalline form of the mesylate salt represented by the above Formula 1 may be a crystalline form (I). It is preferable that the diffraction peaks in a PXRD graph are present at 2 ⁇ (theta) angles of 5.614 ⁇ 0.2, 12.394 ⁇ 0.2, 14.086 ⁇ 0.2, 17.143 ⁇ 0.2, 18.020 ⁇ 0.2, 19.104 ⁇ 0.2, 21.585 ⁇ 0.2, 22.131 ⁇ 0.2, and 22.487 ⁇ 0.2 degrees; and it is more preferable that the diffraction peaks in a PXRD graph are present at 2 ⁇ angles of 5.614, 12.394, 14.086, 17.143, 18.020, 19.104, 21.585, 22.131, and 22.487 degrees. But the present invention is not limited thereto.
- the crystalline form (I) of the mesylate salt represented by the above Formula 1 may have an endothermic transition peak value at 210 to 230 °C, preferably 217 ⁇ 2 °C, in a DSC (differential scanning calorimetry) graph; and it is preferable that the onset is 214 ⁇ 2 °C.
- DSC differential scanning calorimetry
- the present invention relates to a process for preparing the mesylate salt represented by the following Formula 1, which comprises: (1) mixing the compound represented by the following Formula 2 and a single organic solvent or a mixed solvent, followed by adding methanesulfonic acid thereto, to prepare a mixture of the mesylate salt represented by the Formula 1; and
- the crystalline form (I) of the mesylate salt represented by the above Formula 1 may be prepared by this preparation process. But the present invention is not limited thereto.
- the single organic solvent of the step (1) is not particularly limited as long as it is suitable for the present invention. And it is preferably one selected from the group consisting of acetone, methyl ethyl ketone, and ethyl acetate. If this single organic solvent is used, it is advantageous in that the crystalline form (I) of the mesylate salt represented by the above Formula 1 can be stably produced.
- the mixed solvent of the step (1) may be a mixed solvent of water and at least one suitable organic solvent. Specifically, it is preferably a mixed solvent of water and at least one organic solvent selected from acetone and methyl ethyl ketone. But the present invention is not limited thereto. If this mixed solvent is used, it is advantageous in that the crystalline form (I) of the mesylate salt represented by the above Formula 1 can be stably produced.
- the mixed ratio of water and the organic solvent may be 1:1 to 1:10, specifically 1:4 to 1:6, by volume. But the present invention is not limited thereto.
- the step (1) may be carried out at a temperature of 20 to 70 °C, preferably at a temperature of 45 to 60 °C. Within the above temperature range, it is advantageous in the improvement of the quality of the crystalline form (I) of the mesylate salt represented by the above Formula 1.
- the step (2) is a step to crystallize the mesylate salt represented by the Formula 1 by adding an organic solvent to the mixture thereof.
- the mesylate salt represented by the Formula 1 may be crystallized by adding an organic solvent to the mixture thereof, stirring the resulting mixture, cooling and filtering the mixture, and drying the resulting solid.
- the organic solvent used in the step (2) may be same as and different from the single organic solvent used in the step (1).
- the organic solvent used in the step (2) may be at least one selected from the group consisting of acetone, methyl ethyl ketone, and ethyl acetate. But the present invention is not limited thereto.
- the organic solvent may be added in a volume ranging from 3 mL to 20 mL based on 1 g of the compound represented by the Formula 2.
- the organic solvent may be added in a volume ranging from 5 mL to 20 mL, more specifically, in a volume ranging from 5 mL to 10 mL based on 1 g of the compound represented by the Formula 2.
- the present invention is not limited thereto.
- the mixture may be cooled to a temperature of 0 to 30 °C, preferably to a temperature of 0 to 10 °C, in the step (2). If the mixture is cooled to the above temperature range, it is advantageous in that the reduction of the yield of the crystalline form (I) of the mesylate salt represented by the above Formula 1 can be minimized.
- the residual mixture may be dried at a temperature of 30 to 70 °C after the cooling in the step (2). If the residual mixture is dried at the above temperature range, it is advantageous in that the solvent residue can be effectively removed.
- the present invention provides a pharmaceutical composition for treating a protein kinase-mediated disorder, which comprises the mesylate salt represented by the above Formula 1 and a pharmaceutically acceptable additive.
- the present invention provides a pharmaceutical composition for inhibiting epidermal growth factor receptor (EGFR) having one or more mutations as compared with wild-type EGFR, which comprises the mesylate salt represented by the above Formula 1 and a pharmaceutically acceptable additive.
- EGFR epidermal growth factor receptor
- the mutation may be Del E746-A750, L858R, or T790M, and it may be dual mutations selected from Del E746-A750/T790M or L858R/T790M.
- the pharmaceutical composition may be used for the prevention or treatment of allograft rejection, a graft versus host disorder, diabetic retinopathy, choroidal neovascularization due to age-related age-related macular degeneration, psoriasis, arthritis, osteoarthritis, rheumatoid arthritis, synovial pannus formation in arthritis, multiple sclerosis, myasthenia gravis, diabetes mellitus, a diabetic vascular disorder, retinopathy of prematurity, infant hemangioma, non-small cell lung cancer, bladder cancer, head and neck cancer, prostate cancer, breast cancer, ovarian cancer, stomach cancer, pancreatic cancer, fibrosis, atherosclerosis, restenosis, an autoimmune disorder, allergy, a respiratory disorder, asthma, transplant rejection, inflammation, thrombosis, retinal vessel proliferation, an inflammatory bowel disorder, Crohn's disease, ulcerative colitis, a bone disorder, graft or bone marrow transplant
- the pharmaceutical composition can inhibit the epidermal growth factor receptor (EGFR) having at least one mutation as compared to a wild-type EGFR, and thus can be used for the prevention or treatment of the disease.
- EGFR epidermal growth factor receptor
- a compound of the present invention may be administered alone or as a part of a pharmaceutical composition in a therapeutically effective amount, and the pharmaceutical composition facilitates administration of the compound into an organism.
- the compound and the composition may be administered alone or in combination with one or more additional therapeutic agents.
- techniques for administering the compound and composition which include intravenous administration, inhalation, oral administration, rectal administration, parenteral, intravitreal administration, subcutaneous administration, intramuscular administration, intranasal administration, transdermal administration, topical administration, ocular administration, buccal administration, tracheal administration, bronchial administration, sublingual administration or optic nerve administration, but are not limited thereto.
- the compound provided herein is administered as a pharmaceutical dosage form publicly known, for example, a tablet, a capsule or an elixir for oral administration, a suppository for rectal administration, a sterile solution or a suspension for parenteral or intramuscular administration, a lotion, a gel, an ointment or a cream for topical administration, etc.
- a preferred dosage of the mesylate salt represented by the Formula (1) contained in the pharmaceutical composition of the present invention varies depending on the condition and the weight of a patient, the degree of a disease, the type of a drug, the route and duration of administration, but the dosage may be appropriately selected by a person of ordinary skill in the art.
- the preferred dosage of the mesylate salt represented by Formula (I) may range from about 10 mg/day to about 1000 mg/day.
- At least one diluent or excipient commonly used such as a wetting agent, a disintegrant, a lubricant, a binder, a surfactant, and the like may be used.
- the pharmaceutically acceptable additive may include Kollidon, shellac, gum arabic, talc, titanium oxide, sugar (e.g., sugar cane), gelatin, water, a polysaccharide such as lactose or glucose, paraffin (e.g., a petroleum fraction), a vegetable oil (e.g., peanut oil or sesame oil), and a pharmaceutically acceptable organic solvent such as an alcohol (e.g., ethanol or glycerol), a natural mineral powder (e.g., kaolin, clay, talc, and chalk), a synthetic mineral powder (e.g., highly dispersed silicic acid and silicate), an emulsifier (e.g., lignin, sulfite liqueur, methylcellulose, starch, and polyvinylpyrrolidone), magnesium stearate, stearic acid, sodium lauryl sulfate, and the like, but is not limited thereto.
- a polysaccharide such as lactos
- the present invention provides a use of the mesylate salt reperesented by the above Formula 1 for the manufacture of a medicament for treating a protein kinase-mediated disorder.
- the present invention provides a use of the mesylate salt reperesented by the above Formula 1 for the manufacture of a medicament for inhibiting the activity of epidermal growth factor receptor (EGFR) having at least one mutation as compared with wild-type EGFR.
- EGFR epidermal growth factor receptor
- the present invention provides a method for treating a protein kinase-mediated disorder, which comprises the step of administering the mesylate salt reperesented by the above Formula 1 to a subject.
- the present invention provides a method for inhibiting the activity of epidermal growth factor receptor (EGFR) having at least one mutation as compared with wild-type EGFR, which comprises the step of administering the mesylate salt reperesented by the above Formula 1 to a subject.
- EGFR epidermal growth factor receptor
- a reactor was charged with N-(5-(4-(4-((dimethylamino)methyl)-3-phenyl-1H-pyrazol-1-yl)pyrimidine-2-ylamino)-4-methoxy-2-morpholinophenyl)acrylamide (1,100.0 g, 1,983.2 mmol) prepared by the same process as disclosed in WO 2016-060443, acetone (4.4 L), and purified water (1.1 L), which were stirred while heated to 45 to 55 °C. Methanesulfonic acid (186.8 g, 1,943.6 mmol) was diluted in purified water (0.55 L), which was added dropwise thereto while kept at 45 °C or higher.
- the title compound was measured by differential scanning calorimetry (DSC). As a result, the DSC graph had an endothermic transition peak at about 217 °C.
- the DSC measurement was performed using a Mettler Toledo DSC 1 STAR (sample vessel: a sealed aluminum pan under the conditions of 99% nitrogen and a temperature elevation from 30 °C to 300 °C at a rate of 10 °C/min).
- the title compound was measured by PXRD, which revealed that the diffraction peaks in the PXRD graph were present at 2 ⁇ angles of 5.614, 12.394, 14.086, 17.143, 18.020, 19.104, 21.585, 22.131, and 22.487 degrees (see Fig. 1).
- the PXRD spectrum of the compound was obtained using a Bruker D8 advance (X-ray source: CuK ⁇ , tube voltage: 40 kV / tube current: 40 mA, divergent slit: 0.3, and scattering slit: 0.3).
- N-(5-(4-(4-((dimethylamino)methyl)-3-phenyl-1H-pyrazol-1-yl)pyrimidine-2-ylamino)-4-methoxy-2-morpholinophenyl)acrylamide in the form of a free base was prepared by the same process as disclosed in WO 2016-060443.
- a reactor was charged with N-(5-(4-(4-((dimethylamino)methyl)-3-phenyl-1H-pyrazol-1-yl)pyrimidine-2-ylamino)-4-methoxy-2-morpholinophenyl)acrylamide (50.00 g, 90.1 mmol) prepared by the same process as disclosed in WO 2016-060443, acetone (450 mL), and purified water (50 mL), which were cooled to 0 to 5 °C. Hydrochloric acid (9.39 g, 90.1 mmol) was diluted in acetone (50 mL), which was added dropwise thereto while kept at 0 to 5 °C.
- a reactor was charged with N-(5-(4-(4-((dimethylamino)methyl)-3-phenyl-1H-pyrazol-1-yl)pyrimidine-2-ylamino)-4-methoxy-2-morpholinophenyl)acrylamide (15.00 g, 27.0 mmol) prepared by the same process as disclosed in WO 2016-060443 and ethyl acetate (600 mL), which were stirred with reflux to dissolve the reaction mixture.
- Citric acid (5.68 g, 29.6 mmol) was dissolved in acetone (25 mL), which was added dropwise thereto at 50 to 70 °C. Then, the reaction mixture was cooled to 20 to 30 °C and stirred for 2 hours or more.
- a reactor was charged with N-(5-(4-(4-((dimethylamino)methyl)-3-phenyl-1H-pyrazol-1-yl)pyrimidine-2-ylamino)-4-methoxy-2-morpholinophenyl)acrylamide (15.00 g, 27.0 mmol) prepared by the same process as disclosed in WO 2016-060443 and tetrahydrofuran (300 mL), which were stirred. Ethanesulfonic acid (2.98 g, 27.1 mmol) was diluted in tetrahydrofuran (45 mL), which was added dropwise thereto while kept at 20 to 25 °C. Then, the reaction mixture was stirred at room temperature for 11 hours or more.
- Example 1 The compounds prepared in Example 1 and Comparative Example 1 were tested for solubility depending on pH, and the solubilities in artificial gastric fluid, artificial intestinal fluid, water, and ethanol were compared.
- Example 1 120 mg of the compound (corresponding to 100 mg as the compound of the Formula 2) prepared in Example 1 was added to 5 mL of a buffer solution having each of pHs described in Table 1 below, artificial gastric fluid, artificial intestinal fluid, water, or ethanol, which was stirred in a 37°C water bath under a condition of 50 rpm for 12 hours.
- 100 mg of the compound prepared in Comparative Example 1 was tested in the same condition as in the above. After the stirring, a concentration of the dissolved compound represented by the Formula 2 was measured, and solubilities of the compounds prepared in Example 1 and Comparative Example 1 were relatively compared. The results are shown in Fig. 3 and Table 1 below.
- the compound in the mesylate salt form prepared in Example 1 had a solubility of at least 20,000 times higher in water, a solubility of about 10 times higher in artificial gastric fluid (FaSSGF), and a solubility of about 25 times higher in artificial intestinal fluid (FaSSIF) than that of the compound in the free base form prepared in Comparative Example 1.
- FaSSGF artificial gastric fluid
- FaSSIF artificial intestinal fluid
- Example 1 The compounds prepared in Example 1 and Comparative Examples 2 to 4 were each tested for stability. The five compounds were tested for stability under stress conditions and accelerated conditions. The two conditions are specifically shown in Table 2 below.
- Test Example 2 Stability test of the compounds prepared in Example 1 and Comparative Examples 2 to 4 under stress conditions
- Example 1 The compounds prepared in Example 1 and Comparative Examples 2 to 4 were each tested for stability under the stressed conditions as given in Table 2 above. The results are shown in Figs. 4 to 7 and Tables 3 and 4 below. The conditions for the PXRD and DSC measurements are the same as described in Example 1.
- Moving phase buffer 250 mM of ammonium acetate in water (moving phase A: buffer/water/acetonitrile, moving phase B: acetonitrile, column: Xbridge BEH C18 XP).
- Test Example 3 Stability test of the compounds prepared in Example 1 and Comparative Examples 2 to 4 under accelerated conditions
- Example 1 The compounds prepared in Example 1 and Comparative Examples 2 to 4 were each tested for stability under the accelerated conditions as given in Table 2 above. The results are shown in Figs. 8 to 11 and Tables 5 and 6 below. The conditions for the PXRD and DSC measurements are the same as described in Example 1.
- W white
- Y yellow
- LY light yellow
- V violet
- LV light violet
- the compound prepared in Example 1 was excellent in stability since it showed few changes in purity and water content at the start and at the end of the stability test, no change in PXRD patterns, and no change in appearance observed in color.
- the compounds of Comparative Examples 2 to 4 were poor in stability since they showed greater changes in purity and water content than the compound prepared in Example 1, and some changes in PXRD patterns and in appearance were observed.
- Test Example 4 Pharmacokinetic comparison test for the compounds prepared in Example 1 and Comparative Example 1 in normal rats and rats treated with esomeprazole
- Example 1 The compounds prepared in Example 1 and Comparative Example 1 were each tested for pharmacokinetic in normal rats and rats treated with esomeprazole, which is a proton pump inhibitor. Specifically, the maximum plasma concentration (C max ) and the area under the plasma concentration curve (AUC last ) in the normal rats and the rats treated with esomeprazole were compared to evaluate the absorption of the drugs in the actual animals.
- C max maximum plasma concentration
- AUC last area under the plasma concentration curve
- Example 1 8-week old male rats (SD rats) with a body weight of about 250 g were used as test animals. And the compounds prepared in Example 1 and Comparative Example 1 were each suspended in 0.5% methylcellulose and orally administered to normal rats at a dose of 30 mg/5 mL/kg.
- esomeprazole (esomeprazole magnesium dihydrate, Sigma-Aldrich) was intravenously administered to 8-week old male rats with a body weight of about 250 g at a dose of 5 mg/2 mL/kg for 3 days, and the compounds prepared in Example 1 and Comparative Example 1 were each orally administered to the rats at the same dose as that administered to the normal rats (i.e., 30 mg/5 mL/kg).
- a comparison of the pharmacokinetic parameters i.e., the maximum plasma concentration and the area under the plasma concentration curve
- the maximum plasma concentration and the area under the plasma concentration curve of the compound prepared in Example 1 were reduced in the esomeprazole-treated rats by 47.6% and 36.0%, respectively, as compared with the normal rats.
- the maximum plasma concentration and the area under the plasma concentration curve of the compound prepared in Comparative Example 1 were reduced in the esomeprazole-treated rats by 69.3% and 63.8%, respectively, as compared with the normal rats. It was confirmed from these results that the compound prepared in Example 1 has fewer changes in pharmacokinetic due to the esomeprazole administration than those of the compound prepared in Comparative Example 1; therefore, the former maintains a high plasma concentration in rats.
- Test Example 5 Pharmacokinetic comparison test for the compounds prepared in Example 1 and Comparative Example 1 in beagle dogs
- the mesylate salt compound of N-(5-(4-(4-((dimethylamino)methyl)-3-phenyl-1H-pyrazol-1-yl)pyrimidine-2-ylamino)-4-methoxy-2-morpholinophenyl)acrylamide produces excellent effects in that it is excellent in solubility and bioavailability as compared with the free base compound of N-(5-(4-(4-((dimethylamino)methyl)-3-phenyl-1H-pyrazol-1-yl)pyrimidine-2-ylamino)-4-methoxy-2-morpholinophenyl)acrylamide, that it is improved in stability, solubility, and bioavailability as compared with other pharmaceutically acceptable salts thereof, and that it has a high purity.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Epidemiology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Plural Heterocyclic Compounds (AREA)
- Pyridine Compounds (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Abstract
Description
- The present invention relates to mesylate(methanesulfonate) salt of the compound of N-(5-(4-(4-((dimethylamino)methyl)-3-phenyl-1H-pyrazol-1-yl)pyrimidine-2-ylamino)-4-methoxy-2-morpholinophenyl)acrylamide in the form of a free base represented by the following Formula 2, a crystalline form thereof, and a process for preparing the same. More specifically, the present invention relates to the mesylate salt of the compound represented by the following Formula 2, which is excellent in stability, solubility, and bioavailability and has a high purity, a crystalline form thereof, and a process for preparing the same.
- [Formula 2]
-
- Globally, lung cancer accounts for about one-third of the causes of cancer death, and non-small cell lung cancer accounts for about 80% of the entire lung cancer. Only some of the patients suffering from non-small cell lung cancer are expected to be cured by surgery, and most patients are diagnosed to have locally advanced cancer or metastatic cancer. Treatment of advanced non-small cell lung cancer hinges on the presence or absence of molecular markers of specific mutations. If an epidermal growth factor receptor (EGFR) mutation is positive, the first-line treatment is an EGFR tyrosine kinase inhibitor (TKI). Patients with these mutations are susceptible to EGFR TKIs. However, most patients responding to EGFR TKIs (e.g., erlotinib and gefitinib) eventually become resistant thereto and are exacerbated to advanced lung cancer. Among these causes, T790M, which is a point mutation in the gatekeeper residue of the tyrosine kinase (TK) domain, accounts for about 50 to 60% of the acquired resistance. Thus, a molecular targeted therapeutic agent for this mutation is under development. In addition, although about 50% of the patients suffering from non-small cell lung cancer with an EGFR mutation develop brain metastasis within 3 years from the diagnosis, the EGFR TKIs developed up to the present have a low permeability in the brain, so that the treatment for brain metastasis lesions is limited.
- The compound of N-(5-(4-(4-((dimethylamino)methyl)-3-phenyl-1H-pyrazol-1-yl)pyrimidine-2-ylamino)-4-methoxy-2-morpholinophenyl)acrylamide in the form of a free base as mentioned above is known to have few impacts on wild-type EGFR and to be a highly selective and irreversible EGFR TKI with a strong inhibitory activity against single mutation of T790M and dual mutations (EGFRm). The compound is expected to have a therapeutically effective efficacy in the treatment of patients with advanced non-small cell lung cancer as primary cancer and advanced non-small cell lung cancer with brain metastasis.
- In this regard, International Patent Publication WO 2016-060443 discloses the compound represented by the above Formula 2 and a process for preparing it, wherein the compound can be used as a drug to inhibit the activity of protein kinase-mediated disorders, especially EGFR having one or more mutations, as compared with the wild-type EGFR. Thus, this compound has a potential as a candidate for the development of drugs for the treatment of protein kinase-mediated disorders.
- When the potential for a compound to be developed as a drug is determined, a high pharmacological activity and a good pharmacological profile are not the sole factors to be taken into account. A good drug candidate must have few amounts of impurities, be physically and chemically stable, and show an allowable level of bioavailability. Since the compound of N-(5-(4-(4-((dimethylamino)methyl)-3-phenyl-1H-pyrazol-1-yl)pyrimidine-2-ylamino)-4-methoxy-2-morpholinophenyl)acrylamide in the form of a free base has not only a low solubility in water but also a low solubility in an acidic environment, this compound has a disadvantage in that the solubility and the bioavailability thereof is not excellent when it is used as a drug. Thus, there has been a challenge to prepare a formulation of this compound, which is excellent in solubility and bioavailability as compared with the free base form.
- Accordingly, it is an object of the present invention to provide a pharmaceutically acceptable salt of the compound of N-(5-(4-(4-((dimethylamino)methyl)-3-phenyl-1H-pyrazol-1-yl)pyrimidine-2-ylamino)-4-methoxy-2-morpholinophenyl)acrylamide, in which various physicochemical problems such as solubility and hygroscopicity are improved, in order to increase the solubility and the bioavailability of the compound in the form of a free base. That is, as a result of animal testing of the compound in the form of a free base having a low solubility, there has been a problem that a low absorption rate of the drug and variations in the absorption rate between individuals were observed. Accordingly, in order to solve this problem, it is an object of the present invention to provide a pharmaceutically acceptable salt of the compound in the form of a free base and a crystalline form thereof, whose solubility and bioavailability are improved.
- Meanwhile, the majority of patients suffering from protein kinase-mediated disorders are accompanied by such gastrointestinal diseases as reflux esophagitis, dyspepsia, and gastritis. In such event, in order to prevent gastric acid stimulation, a drug, for example, a proton pump inhibitor such as esomeprazole or an H2-receptor antagonist such as cimetidine, is frequently prescribed in combination with a drug for the treatment of protein kinase-mediated disorders.
- However, in the case where a drug for treating protein kinase-mediated disorders is administered in combination with the drug for preventing gastric acid stimulation, there is a problem that the absorption rate of the drug for treating protein kinase-mediated disorders may be changed by the interaction between the drugs.
- Specifically, in the case where a drug for treating protein kinase-mediated disorders is administered in combination with the drug for preventing gastric acid stimulation, there has been a problem that the plasma concentration of the drug for treating protein kinase-mediated disorders is decreased, so that its plasma concentration is lower than the effective therapeutic range thereof.
- Accordingly, it is another object of the present invention to provide a pharmaceutically acceptable salt of the compound in the form of a free base and a crystalline form thereof, which are excellent in bioavailability, even when they are administered together with a drug that is likely to be administered in combination with the drug for treating protein kinase-mediated disorders in clinical practice and prevents gastric acid stimulation (for example, a proton pump inhibitor or an H2 receptor antagonist).
- As a result of achieving the above object, it is possible to reduce the impacts of food or an antacid to be taken by a patient on the drug absorption, which otherwise may be a problem in clinical practice.
- According to one aspect of the present invention, there is provided mesylate salt of N-(5-(4-(4-((dimethylamino)methyl)-3-phenyl-1H-pyrazol-1-yl)pyrimidine-2-ylamino)-4-methoxy-2-morpholinophenyl)acrylamide, as represented by the following Formula 1:
- [Formula 1]
-
- In addition, according to another aspect of the present invention, there is provided a process for preparing the mesylate salt represented by the following Formula 1, which comprises: (1) mixing the compound represented by the following Formula 2 and a single organic solvent or a mixed solvent, followed by adding methanesulfonic acid thereto, to prepare a mixture of the mesylate salt represented by the Formula 1; and
- (2) adding an organic solvent to the mixture to crystallize the mesylate salt represented by the Formula 1:
- [Formula 1]
-
- [Formula 2]
-
- According to another aspect of the present invention, there is provided a pharmaceutical composition for treating a protein kinase-mediated disorder, which comprises the mesylate salt and a pharmaceutically acceptable additive.
- In addition, according to another aspect of the present invention, there is provided a pharmaceutical composition for inhibiting the activity of epidermal growth factor receptor (EGFR) having one or more mutations as compared with wild-type EGFR, which comprises the mesylate salt and a pharmaceutically acceptable additive.
- The mesylate salt compound and a crystalline form thereof provided by the present invention have advantages in that they are excellent in stability, solubility, and bioavailability as compared with other pharmaceutically acceptable salts, have a high purity, and produce the excellent bioavailability as mentioned above when they are administered not only alone but also in combination with an antacid. In addition, the preparation process provided by the present invention has an advantage in that it is possible to produce the mesylate salt compound having the above advantages on a large scale.
- Fig. 1 is a powder X-ray diffraction (PXRD) graph of the compound prepared in Example 1 of the present invention.
- Fig. 2 is a differential scanning calorimetry (DSC) graph of the compound prepared in Example 1 of the present invention.
- Fig. 3 is a graph showing the results of solubility tests of the compound prepared in Comparative Example 1 (left) and those of the compound prepared in Example 1 (right) (FaSSGF: artificial gastric fluid, FaSSIF: artificial intestinal fluid).
- FIG. 4 is a photograph showing the results of stability tests carried out under stress conditions for the compound prepared in Example 1 (Initial: at start, 2 weeks: after 2 weeks, 4 weeks: after 4 weeks).
- Fig. 5 is a photograph showing the results of stability tests carried out under stress conditions for the compound prepared in Comparative Example 2 (Initial: at start, 2 weeks: after 2 weeks, 4 weeks: after 4 weeks).
- Fig. 6 is a photograph showing the results of stability tests carried out under stress conditions for the compound prepared in Comparative Example 3 (Initial: at start, 2 weeks: after 2 weeks, 4 weeks: after 4 weeks).
- Fig. 7 is a photograph showing the results of stability tests carried out under stress conditions for the compound prepared in Comparative Example 4 (Initial: at start, 2 weeks: after 2 weeks, 4 weeks: after 4 weeks).
- Fig. 8 is a photograph showing the results of stability tests carried out under accelerated conditions for the compound prepared in Example 1 (Initial: at start, 1 month: after 1 month, 3 months: after 3 months, 6 months: after 6 months).
- Fig. 9 is a photograph showing the results of stability tests carried out under accelerated conditions for the compound prepared in Comparative Example 2 (Initial: at start, 1 month: after 1 month, 3 months: after 3 months, 6 months: after 6 months).
- Fig. 10 is a photograph showing the results of stability tests carried out under accelerated conditions for the compound prepared in Comparative Example 3 (Initial: at start, 1 month: after 1 month, 3 months: after 3 months, 6 months: after 6 months).
- Fig. 11 is a photograph showing the results of stability tests carried out under accelerated conditions for the compound prepared in Comparative Example 4 (Initial: at start, 1 month: after 1 month, 3 months: after 3 months, 6 months: after 6 months).
- Fig. 12 is a graph showing the results of pharmacokinetic comparison tests carried out on normal rats in Test Example 4.
- Fig. 13 is a graph showing the results of pharmacokinetic comparison tests carried out on rats treated with esomeprazole in Test Example 4.
- Fig. 14 is a graph showing the results of pharmacokinetic comparison tests carried out on beagle dogs in Test Example 5.
- Term description
- Unless otherwise stated or defined, all technical and scientific terms used herein have the meaning commonly understood by one of ordinary skill in the art to which this invention pertains.
- Unless otherwise stated, all percentages, parts, and ratios are by weight.
- In this specification, when a part is referred to as "comprising" an element, it is to be understood that the part may comprise other elements as well, rather than exclude the other elements, unless specifically stated otherwise.
- All numbers expressing quantities in connection with components, properties such as molecular weights, reaction conditions, and the like used herein are to be understood as being modified in all instances by the term "about."
- Hereinafter, the present invention will be described in detail.
- The present invention relates to mesylate salt of N-(5-(4-(4-((dimethylamino)methyl)-3-phenyl-1H-pyrazol-1-yl)pyrimidine-2-ylamino)-4-methoxy-2-morpholinophenyl)acrylamide, as represented by the following Formula 1.
- [Formula 1]
-
- The present inventors have newly synthesized mesylate salt of the compound of N-(5-(4-(4-((dimethylamino)methyl)-3-phenyl-1H-pyrazol-1-yl)pyrimidine-2-ylamino)-4-methoxy-2-morpholinophenyl)acrylamide, which is excellent in solubility and bioavailability as compared with the compound of N-(5-(4-(4-((dimethylamino)methyl)-3-phenyl-1H-pyrazol-1-yl)pyrimidine-2-ylamino)-4-methoxy-2-morpholinophenyl)acrylamide in the form of a free base, which is excellent in stability, solubility, and bioavailability as compared with other pharmaceutically acceptable salts of the compound, and which has a high purity, thereby completing the present invention.
- In general, hydrochloride salts account for the largest proportion of the salts of commercially available compounds approved by the FDA. Then, sulfates, bromides, chlorites, tartrates, phosphates, citrates, and malates account for large proportions in their order. Mesylate salts account for only about 2%. That is, a mesylate salt of a particular compound is not generally a selectable salt. But, the present inventors have found through repeated researches that mesylate salt of N-(5-(4-(4-((dimethylamino)methyl)-3-phenyl-1H-pyrazol-1-yl)pyrimidine-2-ylamino)-4-methoxy-2-morpholinophenyl)acrylamide is excellent in stability, solubility, and bioavailability as compared with other pharmaceutically acceptable salts and has a high purity. In addition, the present inventors have carried out a lot of researches for the preparation thereof on a large scale. As a result, the present inventors have completed the present invention.
- In one aspect of the present invention, the mesylate salt represented by the above Formula 1 is characterized in that it is in a crystalline form, and the crystalline form falls within the scope of the present invention. Crystalline forms of a pharmaceutical compound may be important in the development of suitable formulations. Certain crystalline forms may be improved in solubility, stability, and bioavailability, and have a high purity as compared with other crystalline forms. Thus, they can be selected as good drug candidates. Certain crystalline forms have an advantage in that it is improved in thermodynamic stability.
- In one aspect of the present invention, the crystalline form of the mesylate salt represented by the above Formula 1 may be a crystalline form (I). It is preferable that the diffraction peaks in a PXRD graph are present at 2θ (theta) angles of 5.614 ± 0.2, 12.394 ± 0.2, 14.086 ± 0.2, 17.143 ± 0.2, 18.020 ± 0.2, 19.104 ± 0.2, 21.585 ± 0.2, 22.131 ± 0.2, and 22.487 ± 0.2 degrees; and it is more preferable that the diffraction peaks in a PXRD graph are present at 2θ angles of 5.614, 12.394, 14.086, 17.143, 18.020, 19.104, 21.585, 22.131, and 22.487 degrees. But the present invention is not limited thereto.
- In another aspect of the present invention, the crystalline form (I) of the mesylate salt represented by the above Formula 1 may have an endothermic transition peak value at 210 to 230 ℃, preferably 217 ± 2 ℃, in a DSC (differential scanning calorimetry) graph; and it is preferable that the onset is 214 ± 2 ℃. But the present invention is not limited thereto.
- In addition, the present invention relates to a process for preparing the mesylate salt represented by the following Formula 1, which comprises: (1) mixing the compound represented by the following Formula 2 and a single organic solvent or a mixed solvent, followed by adding methanesulfonic acid thereto, to prepare a mixture of the mesylate salt represented by the Formula 1; and
- (2) adding an organic solvent to the mixture to crystallize the mesylate salt represented by the Formula 1:
- [Formula 1]
-
- [Formula 2]
-
- The crystalline form (I) of the mesylate salt represented by the above Formula 1 may be prepared by this preparation process. But the present invention is not limited thereto.
- In one aspect of the present invention, the single organic solvent of the step (1) is not particularly limited as long as it is suitable for the present invention. And it is preferably one selected from the group consisting of acetone, methyl ethyl ketone, and ethyl acetate. If this single organic solvent is used, it is advantageous in that the crystalline form (I) of the mesylate salt represented by the above Formula 1 can be stably produced.
- In another aspect of the present invention, the mixed solvent of the step (1) may be a mixed solvent of water and at least one suitable organic solvent. Specifically, it is preferably a mixed solvent of water and at least one organic solvent selected from acetone and methyl ethyl ketone. But the present invention is not limited thereto. If this mixed solvent is used, it is advantageous in that the crystalline form (I) of the mesylate salt represented by the above Formula 1 can be stably produced.
- In another aspect of the present invention, the mixed ratio of water and the organic solvent may be 1:1 to 1:10, specifically 1:4 to 1:6, by volume. But the present invention is not limited thereto.
- In one aspect of the present invention, the step (1) may be carried out at a temperature of 20 to 70 ℃, preferably at a temperature of 45 to 60 ℃. Within the above temperature range, it is advantageous in the improvement of the quality of the crystalline form (I) of the mesylate salt represented by the above Formula 1.
- Meanwhile, the step (2) is a step to crystallize the mesylate salt represented by the Formula 1 by adding an organic solvent to the mixture thereof. Specifically, in the step (2), the mesylate salt represented by the Formula 1 may be crystallized by adding an organic solvent to the mixture thereof, stirring the resulting mixture, cooling and filtering the mixture, and drying the resulting solid.
- In one aspect of the present invention, the organic solvent used in the step (2) may be same as and different from the single organic solvent used in the step (1). Specifically, the organic solvent used in the step (2) may be at least one selected from the group consisting of acetone, methyl ethyl ketone, and ethyl acetate. But the present invention is not limited thereto.
- In addition, in the step (2), the organic solvent may be added in a volume ranging from 3 mL to 20 mL based on 1 g of the compound represented by the Formula 2. Specifically, in the step (2), the organic solvent may be added in a volume ranging from 5 mL to 20 mL, more specifically, in a volume ranging from 5 mL to 10 mL based on 1 g of the compound represented by the Formula 2. But the present invention is not limited thereto. When the organic solvent is added in the above volume, it is advantageous in that the reduction of the yield of the crystalline form (I) of the mesylate salt represented by the above Formula 1 can be minimized.
- In another aspect of the present invention, the mixture may be cooled to a temperature of 0 to 30 ℃, preferably to a temperature of 0 to 10 ℃, in the step (2). If the mixture is cooled to the above temperature range, it is advantageous in that the reduction of the yield of the crystalline form (I) of the mesylate salt represented by the above Formula 1 can be minimized.
- In another aspect of the present invention, the residual mixture may be dried at a temperature of 30 to 70 ℃ after the cooling in the step (2). If the residual mixture is dried at the above temperature range, it is advantageous in that the solvent residue can be effectively removed.
- In addition, the present invention provides a pharmaceutical composition for treating a protein kinase-mediated disorder, which comprises the mesylate salt represented by the above Formula 1 and a pharmaceutically acceptable additive.
- Further, the present invention provides a pharmaceutical composition for inhibiting epidermal growth factor receptor (EGFR) having one or more mutations as compared with wild-type EGFR, which comprises the mesylate salt represented by the above Formula 1 and a pharmaceutically acceptable additive.
- In one aspect of the invention, the mutation may be Del E746-A750, L858R, or T790M, and it may be dual mutations selected from Del E746-A750/T790M or L858R/T790M.
- In one aspect of the present invention, the pharmaceutical composition may be used for the prevention or treatment of allograft rejection, a graft versus host disorder, diabetic retinopathy, choroidal neovascularization due to age-related age-related macular degeneration, psoriasis, arthritis, osteoarthritis, rheumatoid arthritis, synovial pannus formation in arthritis, multiple sclerosis, myasthenia gravis, diabetes mellitus, a diabetic vascular disorder, retinopathy of prematurity, infant hemangioma, non-small cell lung cancer, bladder cancer, head and neck cancer, prostate cancer, breast cancer, ovarian cancer, stomach cancer, pancreatic cancer, fibrosis, atherosclerosis, restenosis, an autoimmune disorder, allergy, a respiratory disorder, asthma, transplant rejection, inflammation, thrombosis, retinal vessel proliferation, an inflammatory bowel disorder, Crohn's disease, ulcerative colitis, a bone disorder, graft or bone marrow transplant rejection, lupus, chronic pancreatitis, cachexia, septic shock, a fibroproliferative and differentiating skin disease or disorder, a central nervous system disorder, a neurodegenerative disorder, Alzheimer's disease, Parkinson's disease, a disorder or condition associated with nerve damage following brain or spinal cord injury or exon degeneration, acute or chronic cancer, an ocular disorder, viral infection, a heart disorder, a pulmonary disorder or a kidney disorder, and bronchitis. Preferably, the pharmaceutical composition may be used for the prevention or treatment of acute or chronic cancer, more preferably lung cancer, most preferably non-small cell lung cancer or brain metastatic non-small cell lung cancer, but is not limited thereto.
- In one aspect of the invention, the pharmaceutical composition can inhibit the epidermal growth factor receptor (EGFR) having at least one mutation as compared to a wild-type EGFR, and thus can be used for the prevention or treatment of the disease.
- A compound of the present invention may be administered alone or as a part of a pharmaceutical composition in a therapeutically effective amount, and the pharmaceutical composition facilitates administration of the compound into an organism. In addition, the compound and the composition may be administered alone or in combination with one or more additional therapeutic agents. There are a variety of techniques for administering the compound and composition, which include intravenous administration, inhalation, oral administration, rectal administration, parenteral, intravitreal administration, subcutaneous administration, intramuscular administration, intranasal administration, transdermal administration, topical administration, ocular administration, buccal administration, tracheal administration, bronchial administration, sublingual administration or optic nerve administration, but are not limited thereto. The compound provided herein is administered as a pharmaceutical dosage form publicly known, for example, a tablet, a capsule or an elixir for oral administration, a suppository for rectal administration, a sterile solution or a suspension for parenteral or intramuscular administration, a lotion, a gel, an ointment or a cream for topical administration, etc.
- A preferred dosage of the mesylate salt represented by the Formula (1) contained in the pharmaceutical composition of the present invention varies depending on the condition and the weight of a patient, the degree of a disease, the type of a drug, the route and duration of administration, but the dosage may be appropriately selected by a person of ordinary skill in the art. Generally, the preferred dosage of the mesylate salt represented by Formula (I) may range from about 10 mg/day to about 1000 mg/day.
- As the pharmaceutically acceptable additive to be employed in the pharmaceutical composition of the present invention, at least one diluent or excipient commonly used such as a wetting agent, a disintegrant, a lubricant, a binder, a surfactant, and the like may be used.
- The pharmaceutically acceptable additive may include Kollidon, shellac, gum arabic, talc, titanium oxide, sugar (e.g., sugar cane), gelatin, water, a polysaccharide such as lactose or glucose, paraffin (e.g., a petroleum fraction), a vegetable oil (e.g., peanut oil or sesame oil), and a pharmaceutically acceptable organic solvent such as an alcohol (e.g., ethanol or glycerol), a natural mineral powder (e.g., kaolin, clay, talc, and chalk), a synthetic mineral powder (e.g., highly dispersed silicic acid and silicate), an emulsifier (e.g., lignin, sulfite liqueur, methylcellulose, starch, and polyvinylpyrrolidone), magnesium stearate, stearic acid, sodium lauryl sulfate, and the like, but is not limited thereto.
- The present invention provides a use of the mesylate salt reperesented by the above Formula 1 for the manufacture of a medicament for treating a protein kinase-mediated disorder.
- Also, the present invention provides a use of the mesylate salt reperesented by the above Formula 1 for the manufacture of a medicament for inhibiting the activity of epidermal growth factor receptor (EGFR) having at least one mutation as compared with wild-type EGFR.
- The present invention provides a method for treating a protein kinase-mediated disorder, which comprises the step of administering the mesylate salt reperesented by the above Formula 1 to a subject.
- Also, the present invention provides a method for inhibiting the activity of epidermal growth factor receptor (EGFR) having at least one mutation as compared with wild-type EGFR, which comprises the step of administering the mesylate salt reperesented by the above Formula 1 to a subject.
- Hereinafter, preferred examples of the present invention will be provided in order to facilitate understanding of the present invention. However, these examples merely illustrate the present invention, and it will be apparent to one skilled in the art that various changes and modifications may be made within the scope of the present invention and the technical idea thereof and that such variations and modifications are within the scope of the appended claims.
- Example
- Example 1: Preparation of mesylate salt of N-(5-(4-(4-((dimethylamino)methyl)-3-phenyl-1H-pyrazol-1-yl)pyrimidine-2-ylamino)-4-methoxy-2-morpholinophenyl)acrylamide
- A reactor was charged with N-(5-(4-(4-((dimethylamino)methyl)-3-phenyl-1H-pyrazol-1-yl)pyrimidine-2-ylamino)-4-methoxy-2-morpholinophenyl)acrylamide (1,100.0 g, 1,983.2 mmol) prepared by the same process as disclosed in WO 2016-060443, acetone (4.4 L), and purified water (1.1 L), which were stirred while heated to 45 to 55 ℃. Methanesulfonic acid (186.8 g, 1,943.6 mmol) was diluted in purified water (0.55 L), which was added dropwise thereto while kept at 45 ℃ or higher. Then, the mixture was stirred for 30 minutes or longer to prepare the mixture of mesylate salt of N-(5-(4-(4-((dimethylamino)methyl)-3-phenyl-1H-pyrazol-1-yl)pyrimidine-2-ylamino)-4-methoxy-2-morpholinophenyl)acrylamide.
- Then, in order to crystallize the mesylate salt in the mixture, acetone (8.8 L) was added dropwise at 40 to 50 ℃, stirred for 30 minutes or more, cooled to 0 to 5 ℃ and stirred for 3 hours or more. Acetone (8.8 L) was added dropwise thereto while kept at 40 to 50 ℃, and the mixture was stirred for 30 minutes or more, cooled to 0 to 5 ℃, and stirred for 3 hours or more. The reaction mixture was filtered under a reduced pressure, and the wet cake was then washed with acetone (5.5 L). The solid thus obtained was vacuum dried at 55 ℃ to obtain 1,095.8 g of the title compound (yield: 84.9%).
- The results of measurement of the title compound with 1H-NMR (400 MHz, DMSO-d6) are as follows:
- 1H-NMR (400 MHz, DMSO-d6) δ 9.79(s, 1H), 9.35(s, 1H), 9.21(s, 1H), 8.78(s, 1H), 8.59(d, 1H), 8.33(s, 1H), 7.77(d, 2H), 7.55(m, 3H), 7.34(d, 1H), 6.94(s, 1H), 6.71-6.76(q, 1H), 6.28-6.31(d, 1H), 5.81-5.83(d, 1H), 4.48(s, 2H), 3.90(s, 3H), 3.81-3.83(t, 4H), 2.86-2.88(t, 4H), 2.66(s, 6H), 2.35(s, 3H).
- The title compound was measured by differential scanning calorimetry (DSC). As a result, the DSC graph had an endothermic transition peak at about 217 ℃. The DSC measurement was performed using a Mettler Toledo DSC 1 STAR (sample vessel: a sealed aluminum pan under the conditions of 99% nitrogen and a temperature elevation from 30 ℃ to 300 ℃ at a rate of 10 ℃/min).
- The title compound was measured by PXRD, which revealed that the diffraction peaks in the PXRD graph were present at 2θ angles of 5.614, 12.394, 14.086, 17.143, 18.020, 19.104, 21.585, 22.131, and 22.487 degrees (see Fig. 1). The PXRD spectrum of the compound was obtained using a Bruker D8 advance (X-ray source: CuKα, tube voltage: 40 kV / tube current: 40 mA, divergent slit: 0.3, and scattering slit: 0.3).
- Comparative Example 1: Preparation of N-(5-(4-(4-((dimethylamino)methyl)-3-phenyl-1H-pyrazol-1-yl)pyrimidine-2-ylamino)-4-methoxy-2-morpholinophenyl)acrylamide in the form of a free base
- N-(5-(4-(4-((dimethylamino)methyl)-3-phenyl-1H-pyrazol-1-yl)pyrimidine-2-ylamino)-4-methoxy-2-morpholinophenyl)acrylamide in the form of a free base was prepared by the same process as disclosed in WO 2016-060443.
- Comparative Example 2: Preparation of hydrochloride salt of N-(5-(4-(4-((dimethylamino)methyl)-3-phenyl-1H-pyrazol-1-yl)pyrimidine-2-ylamino)-4-methoxy-2-morpholinophenyl)acrylamide
- A reactor was charged with N-(5-(4-(4-((dimethylamino)methyl)-3-phenyl-1H-pyrazol-1-yl)pyrimidine-2-ylamino)-4-methoxy-2-morpholinophenyl)acrylamide (50.00 g, 90.1 mmol) prepared by the same process as disclosed in WO 2016-060443, acetone (450 mL), and purified water (50 mL), which were cooled to 0 to 5 ℃. Hydrochloric acid (9.39 g, 90.1 mmol) was diluted in acetone (50 mL), which was added dropwise thereto while kept at 0 to 5 ℃. Then, the mixture was adjusted to 20 to 25 ℃ and stirred for 2 hours or more. The reaction mixture was filtered under a reduced pressure, and the solid thus obtained was vacuum dried to obtain 49.91 g of the title compound (yield: 93.7%).
- The title compound was measured under the same conditions as in Example 1. The results of measurement with 1H-NMR (400 MHz, DMSO-d6) are as follows:
- 1H-NMR (400 MHz, DMSO-d6) δ 10.82(s, 1H), 9.36(s, 1H), 9.26(s, 1H), 8.69(s, 1H), 8.57(d, 1H), 8.39(s, 1H), 7.77(d, 2H), 7.49-7.57(m, 3H), 7.33(d, 1H), 6.94(s, 1H), 6.69-6.76(q, 1H), 6.28(d, 1H), 5.78(d, 1H), 4.42(d, 2H), 3.89(s, 3H), 3.81(s, 4H), 2.88(s, 4H), 2.58(d, 6H)
- Comparative Example 3: Preparation of citrate salt of N-(5-(4-(4-((dimethylamino)methyl)-3-phenyl-1H-pyrazol-1-yl)pyrimidine-2-ylamino)-4-methoxy-2-morpholinophenyl)acrylamide
- A reactor was charged with N-(5-(4-(4-((dimethylamino)methyl)-3-phenyl-1H-pyrazol-1-yl)pyrimidine-2-ylamino)-4-methoxy-2-morpholinophenyl)acrylamide (15.00 g, 27.0 mmol) prepared by the same process as disclosed in WO 2016-060443 and ethyl acetate (600 mL), which were stirred with reflux to dissolve the reaction mixture. Citric acid (5.68 g, 29.6 mmol) was dissolved in acetone (25 mL), which was added dropwise thereto at 50 to 70 ℃. Then, the reaction mixture was cooled to 20 to 30 ℃ and stirred for 2 hours or more. The reaction mixture was filtered under a reduced pressure, and the wet cake was then washed with ethyl acetate (300 mL). The solid thus obtained was vacuum dried to obtain 20.15 g of N-(5-(4-(4-((dimethylamino)methyl)-3-phenyl-1H-pyrazol-1-yl)pyrimidine-2-ylamino)-4-methoxy-2-morpholinophenyl)acrylamide 2-hydroxypropane-1,2,3-tricarboxylate salt as a crude compound (yield: 99.8%).
- A reactor was charged with the crude compound of N-(5-(4-(4-((dimethylamino)methyl)-3-phenyl-1H-pyrazol-1-yl)pyrimidine-2-ylamino)-4-methoxy-2-morpholinophenyl)acrylamide 2-hydroxypropane-1,2,3-tricarboxylate salt (18.70 g) and purified water (187 mL), which were stirred at 20 to 30 ℃ for 2 hours or more. The reaction mixture was filtered under a reduced pressure, and the solid thus obtained was vacuum dried to obtain 15.67 g of the title compound (yield: 83.8%).
- The title compound was measured under the same conditions as in Example 1. The results of measurement with 1H-NMR (400 MHz, DMSO-d6) are as follows:
- 1H-NMR (400 MHz, DMSO-d6) δ 9.22(s, 1H), 9.17(s, 1H), 8.97(s, 1H), 8.54(d, 1H), 8.24(s, 1H), 7.93(d, 2H), 7.43-7.53(m, 3H), 7.33(d, 1H), 6.95(s, 1H), 6.71-6.78(q, 1H), 6.36(d, 1H), 5.82(d, 1H), 3.90(s, 3H), 3.82(s, 6H), 2.86(s, 4H), 2.50-2.71(d, 4H), 2.37(s, 6H)
- Comparative Example 4: Preparation of esilate salt of N-(5-(4-(4-((dimethylamino)methyl)-3-phenyl-1H-pyrazol-1-yl)pyrimidine-2-ylamino)-4-methoxy-2-morpholinophenyl)acrylamide
- A reactor was charged with N-(5-(4-(4-((dimethylamino)methyl)-3-phenyl-1H-pyrazol-1-yl)pyrimidine-2-ylamino)-4-methoxy-2-morpholinophenyl)acrylamide (15.00 g, 27.0 mmol) prepared by the same process as disclosed in WO 2016-060443 and tetrahydrofuran (300 mL), which were stirred. Ethanesulfonic acid (2.98 g, 27.1 mmol) was diluted in tetrahydrofuran (45 mL), which was added dropwise thereto while kept at 20 to 25 ℃. Then, the reaction mixture was stirred at room temperature for 11 hours or more. The reaction mixture was filtered under a reduced pressure, and the solid thus obtained was vacuum dried to obtain 16.20 g of esilate salt of N-(5-(4-(4-((dimethylamino)methyl)-3-phenyl-1H-pyrazol-1-yl)pyrimidine-2-ylamino)-4-methoxy-2-morpholinophenyl)acrylamide (yield: 90.1%) as the title compound.
- The title compound of N-(5-(4-(4-((dimethylamino)methyl)-3-phenyl-1H-pyrazol-1-yl)pyrimidine-2-ylamino)-4-methoxy-2-morpholinophenyl)acrylamide esilate was measured under the same conditions as in Example 1. The results of measurement with 1H-NMR (400 MHz, DMSO-d6) are as follows:
- 1H-NMR (400 MHz, DMSO-d6) δ 9.69(s, 1H), 9.34(s, 1H), 9.22(s, 1H), 8.75(s, 1H), 8.58(d, 1H), 8.36(s, 1H), 7.77(d, 2H), 7.52-7.58(q, 3H), 7.33(d, 1H), 6.94(s, 1H), 6.69-6.76(q, 1H), 6.26(d, 1H), 5.80(d, 1H), 4.46(s, 2H), 3.89(s, 3H), 3.82(s, 4H), 2.87(s, 4H), 2.65(s, 6H), 2.34-2.39(q, 2H), 1.03-1.06(t, 3H)
- Test Example
- Test Example 1: Solubility test
- The compounds prepared in Example 1 and Comparative Example 1 were tested for solubility depending on pH, and the solubilities in artificial gastric fluid, artificial intestinal fluid, water, and ethanol were compared.
- 120 mg of the compound (corresponding to 100 mg as the compound of the Formula 2) prepared in Example 1 was added to 5 mL of a buffer solution having each of pHs described in Table 1 below, artificial gastric fluid, artificial intestinal fluid, water, or ethanol, which was stirred in a 37℃ water bath under a condition of 50 rpm for 12 hours. In addition, 100 mg of the compound prepared in Comparative Example 1 was tested in the same condition as in the above. After the stirring, a concentration of the dissolved compound represented by the Formula 2 was measured, and solubilities of the compounds prepared in Example 1 and Comparative Example 1 were relatively compared. The results are shown in Fig. 3 and Table 1 below.
- [Table 1]
-
- As shown in Fig. 3 and Table 1 above, the compound in the mesylate salt form prepared in Example 1 had a solubility of at least 20,000 times higher in water, a solubility of about 10 times higher in artificial gastric fluid (FaSSGF), and a solubility of about 25 times higher in artificial intestinal fluid (FaSSIF) than that of the compound in the free base form prepared in Comparative Example 1.
- Test Examples 2 and 3: Stability test
- The compounds prepared in Example 1 and Comparative Examples 2 to 4 were each tested for stability. The five compounds were tested for stability under stress conditions and accelerated conditions. The two conditions are specifically shown in Table 2 below.
- [Table 2]
-
- Test Example 2: Stability test of the compounds prepared in Example 1 and Comparative Examples 2 to 4 under stress conditions
- The compounds prepared in Example 1 and Comparative Examples 2 to 4 were each tested for stability under the stressed conditions as given in Table 2 above. The results are shown in Figs. 4 to 7 and Tables 3 and 4 below. The conditions for the PXRD and DSC measurements are the same as described in Example 1.
- [Table 3]
-
- In addition, the results of high-performance liquid chromatography (HPLC) measurement are shown in Table 4 below, and the measurement conditions are as follows:
- Moving phase buffer: 250 mM of ammonium acetate in water (moving phase A: buffer/water/acetonitrile, moving phase B: acetonitrile, column: Xbridge BEH C18 XP).
- [Table 4]
-
- Test Example 3: Stability test of the compounds prepared in Example 1 and Comparative Examples 2 to 4 under accelerated conditions
- The compounds prepared in Example 1 and Comparative Examples 2 to 4 were each tested for stability under the accelerated conditions as given in Table 2 above. The results are shown in Figs. 8 to 11 and Tables 5 and 6 below. The conditions for the PXRD and DSC measurements are the same as described in Example 1.
- [Table 5]
-
- W: white, Y: yellow, LY: light yellow, V: violet, LV: light violet
- In addition, the results of high-performance liquid chromatography (HPLC) measurement are shown in Table 6 below, and the measurement conditions are as described in Test Example 2:
- [Table 6]
-
- From the results of the above stability test, the compound prepared in Example 1 was excellent in stability since it showed few changes in purity and water content at the start and at the end of the stability test, no change in PXRD patterns, and no change in appearance observed in color. In contrast, the compounds of Comparative Examples 2 to 4 were poor in stability since they showed greater changes in purity and water content than the compound prepared in Example 1, and some changes in PXRD patterns and in appearance were observed.
- Test Example 4: Pharmacokinetic comparison test for the compounds prepared in Example 1 and Comparative Example 1 in normal rats and rats treated with esomeprazole
- The compounds prepared in Example 1 and Comparative Example 1 were each tested for pharmacokinetic in normal rats and rats treated with esomeprazole, which is a proton pump inhibitor. Specifically, the maximum plasma concentration (Cmax) and the area under the plasma concentration curve (AUClast) in the normal rats and the rats treated with esomeprazole were compared to evaluate the absorption of the drugs in the actual animals.
- In order to compare the pharmacokinetic parameters, 8-week old male rats (SD rats) with a body weight of about 250 g were used as test animals. And the compounds prepared in Example 1 and Comparative Example 1 were each suspended in 0.5% methylcellulose and orally administered to normal rats at a dose of 30 mg/5 mL/kg.
- Meanwhile, esomeprazole(esomeprazole magnesium dihydrate, Sigma-Aldrich) was intravenously administered to 8-week old male rats with a body weight of about 250 g at a dose of 5 mg/2 mL/kg for 3 days, and the compounds prepared in Example 1 and Comparative Example 1 were each orally administered to the rats at the same dose as that administered to the normal rats (i.e., 30 mg/5 mL/kg). A comparison of the pharmacokinetic parameters (i.e., the maximum plasma concentration and the area under the plasma concentration curve) calculated therefrom are shown in Table 7 and Figs. 12 and 13.
- [Table 7]
-
- As shown in the above results, a maximum plasma concentration and an area under the plasma concentration curve of the compound in the free base form (Comparative Example 1) in normal rats were lower than those of the compound in the mesylate salt form (Example 1) by 11.0% and 10.4%, respectively. A maximum plasma concentration and an area under the plasma concentration curve of the former in the rats treated with esomeprazole were lower than those of the latter by 47.8% and 49.4%, respectively. That is, it was confirmed that the compound prepared in Comparative Example 1 has a lower exposure to the rats than that of the compound prepared in Example 1.
- In addition, the maximum plasma concentration and the area under the plasma concentration curve of the compound prepared in Example 1 were reduced in the esomeprazole-treated rats by 47.6% and 36.0%, respectively, as compared with the normal rats. In contrast, the maximum plasma concentration and the area under the plasma concentration curve of the compound prepared in Comparative Example 1 were reduced in the esomeprazole-treated rats by 69.3% and 63.8%, respectively, as compared with the normal rats. It was confirmed from these results that the compound prepared in Example 1 has fewer changes in pharmacokinetic due to the esomeprazole administration than those of the compound prepared in Comparative Example 1; therefore, the former maintains a high plasma concentration in rats.
- Test Example 5: Pharmacokinetic comparison test for the compounds prepared in Example 1 and Comparative Example 1 in beagle dogs
- In order to compare the pharmacokinetic parameters, 15 to 17-month old male beagle dog with a body weight of about 10 kg were used as test animals, and the compounds prepared in Example 1 and Comparative Example 1 were each suspended in 0.5% methylcellulose and orally administered to beagle dogs at a dose of 5 mg/2 mL/kg. A comparison of the pharmacokinetic parameters (i.e., the maximum plasma concentration and the area under the plasma concentration curve) calculated therefrom are shown in Table 8 and Fig. 14.
- [Table 8]
-
- As shown in the above results, a maximum plasma concentration and an area under the plasma concentration curve of the compound in the free base form (Comparative Example 1) in beagle dogs were lower than those of the compound in the mesylate salt form (Example 1) by 40.1% and 50.4%, respectively. It was confirmed from these results that the compound prepared in Example 1 showed a higher exposure than the compound prepared in Comparative Example 1 in beagle dogs.
- As described above, the mesylate salt compound of N-(5-(4-(4-((dimethylamino)methyl)-3-phenyl-1H-pyrazol-1-yl)pyrimidine-2-ylamino)-4-methoxy-2-morpholinophenyl)acrylamide according to the present invention produces excellent effects in that it is excellent in solubility and bioavailability as compared with the free base compound of N-(5-(4-(4-((dimethylamino)methyl)-3-phenyl-1H-pyrazol-1-yl)pyrimidine-2-ylamino)-4-methoxy-2-morpholinophenyl)acrylamide, that it is improved in stability, solubility, and bioavailability as compared with other pharmaceutically acceptable salts thereof, and that it has a high purity.
- Hereinbefore, the present invention has been explained based on the preferred example. However, it will be apparent to one skilled in the art that various changes and modifications may be made without departing from the technical idea of the present invention as described in the claims by adding, modifying, and deleting the constitutional elements and that such variations and modifications are within the scope of the present invention.
Claims (22)
- Mesylate salt of N-(5-(4-(4-((dimethylamino)methyl)-3-phenyl-1H-pyrazol-1-yl)pyrimidine-2-ylamino)-4-methoxy-2-morpholinophenyl)acrylamide, as represented by the following Formula 1:[Formula 1]
- The mesylate salt of claim 1, which is in a crystalline form.
- The mesylate salt of claim 2, wherein the crystalline form is crystalline form (I) that has diffraction peaks in a PXRD (powder X-ray diffraction) graph present at 2θ (theta) angles of 5.614 ± 0.2, 12.394 ± 0.2, 14.086 ± 0.2, 17.143 ± 0.2, 18.020 ± 0.2, 19.104 ± 0.2, 21.585 ± 0.2, 22.131 ± 0.2, and 22.487 ± 0.2 degrees.
- The mesylate salt of claim 2, wherein the crystalline form has diffraction peaks in a PXRD graph present at 2θ angles of 5.614, 12.394, 14.086, 17.143, 18.020, 19.104, 21.585, 22.131, and 22.487 degrees.
- The mesylate salt of claim 2, wherein the crystalline form has an endothermic transition peak value at 210 to 230 ℃ in a DSC (differential scanning calorimetry) graph.
- The mesylate salt of claim 2, wherein the crystalline form has an endothermic transition peak value at 217 ± 2 ℃ in a DSC graph.
- A process for preparing the mesylate salt of any one of claims 1 to 6, as represented by the following Formula 1, which comprises:(1) mixing the compound represented by the following Formula 2 and a single organic solvent or a mixed solvent, followed by adding methanesulfonic acid thereto, to prepare a mixture of the mesylate salt represented by the Formula 1; and(2) adding an organic solvent to the mixture to crystallize the mesylate salt represented by the Formula 1:[Formula 1][Formula 2]
- The process of claim 7, wherein the single organic solvent used in the step (1) is one selected from the group consisting of acetone, methyl ethyl ketone, and ethyl acetate.
- The process of claim 7, wherein the mixed solvent used in the step (1) is a mixed solvent of water and at least one organic solvent selected from acetone and methyl ethyl ketone.
- The process of claim 9, wherein the mixed ratio of water and the organic solvent is 1:1 to 1:10 by volume.
- The process of claim 7, wherein the step (1) is carried out at a temperature of 20 to 70 ℃.
- The process of claim 7, wherein the step (1) is carried out at a temperature of 45 to 60 ℃.
- The process of claim 7, wherein the organic solvent used in the step (2) is at least one selected from the group consisting of acetone, methyl ethyl ketone, and ethyl acetate.
- The process of claim 7, wherein in the step (2), the organic solvent is added in a volume ranging from 3 mL to 20 mL based on 1 g of the compound represented by the Formula 2.
- A pharmaceutical composition for treating a protein kinase-mediated disorder, which comprises the mesylate salt of any one of claims 1 to 6 and a pharmaceutically acceptable additive.
- A pharmaceutical composition for inhibiting the activity of epidermal growth factor receptor (EGFR) having at least one mutation as compared with wild-type EGFR, which comprises the mesylate salt of any one of claims 1 to 6 and a pharmaceutically acceptable additive.
- The pharmaceutical composition of claim 15, wherein the protein kinase-mediated disorder is cancer.
- The pharmaceutical composition of claim 17, wherein the cancer is non-small cell lung cancer or brain metastatic non-small cell lung cancer.
- A use of the mesylate salt of any one of claims 1 to 6 for the manufacture of a medicament for treating a protein kinase-mediated disorder.
- A use of the mesylate salt of any one of claims 1 to 6 for the manufacture of a medicament for inhibiting the activity of epidermal growth factor receptor (EGFR) having at least one mutation as compared with wild-type EGFR.
- A method for treating a protein kinase-mediated disorder, which comprises the step of administering the mesylate salt of any one of claims 1 to 6 to a subject.
- A method for inhibiting the activity of epidermal growth factor receptor (EGFR) having at least one mutation as compared with wild-type EGFR, which comprises the step of administering the mesylate salt of any one of claims 1 to 6 to a subject.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20170051687 | 2017-04-21 | ||
PCT/KR2018/004473 WO2018194356A1 (en) | 2017-04-21 | 2018-04-18 | Salt of an aminopyridine derivative compound, a crystalline form thereof, and a process for preparing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3612529A1 true EP3612529A1 (en) | 2020-02-26 |
EP3612529A4 EP3612529A4 (en) | 2020-11-18 |
Family
ID=63857137
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP18787260.1A Pending EP3612529A4 (en) | 2017-04-21 | 2018-04-18 | Salt of an aminopyridine derivative compound, a crystalline form thereof, and a process for preparing the same |
Country Status (23)
Country | Link |
---|---|
US (3) | US11453656B2 (en) |
EP (1) | EP3612529A4 (en) |
JP (2) | JP7126514B2 (en) |
KR (2) | KR102629654B1 (en) |
CN (1) | CN110869367B (en) |
AR (1) | AR111469A1 (en) |
AU (2) | AU2018256227B2 (en) |
BR (1) | BR112019021868A2 (en) |
CA (1) | CA3059543A1 (en) |
CO (1) | CO2019011578A2 (en) |
EA (1) | EA201992501A1 (en) |
IL (2) | IL294666B2 (en) |
MA (1) | MA49696A (en) |
MX (1) | MX2022006357A (en) |
MY (1) | MY201919A (en) |
NZ (1) | NZ758443A (en) |
PH (1) | PH12019502370A1 (en) |
SA (1) | SA519410342B1 (en) |
SG (1) | SG11201909615YA (en) |
TW (1) | TWI776882B (en) |
UA (1) | UA124364C2 (en) |
WO (1) | WO2018194356A1 (en) |
ZA (1) | ZA201907687B (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AR111469A1 (en) | 2017-04-21 | 2019-07-17 | Yuhan Corp | COME OUT OF AN AMINOPIRIDINE DERIVATIVE COMPOUND, A CRYSTAL FORM OF THE SAME, AND A PROCESS TO PREPARE THE SAME |
KR20200043618A (en) * | 2018-10-18 | 2020-04-28 | 주식회사유한양행 | Pharmaceutical composition for oral administration comprising an aminopyrimidine derivative or its salt |
CN111349084B (en) * | 2018-12-21 | 2022-11-25 | 深圳市塔吉瑞生物医药有限公司 | Aminopyrimidines useful for inhibiting protein kinase activity |
BR112021016149A2 (en) | 2019-02-26 | 2021-10-13 | Janssen Biotech, Inc. | COMBINATION THERAPIES AND STRATIFICATION OF PATIENTS WITH B-SPECIFIC ANTI-EGFR/C-MET ANTIBODIES |
WO2020230091A1 (en) * | 2019-05-14 | 2020-11-19 | Janssen Biotech, Inc. | Combination therapies with bispecific anti-egfr/c-met antibodies and third generation egfr tyrosine kinase inhibitors |
US11850248B2 (en) * | 2019-05-14 | 2023-12-26 | Yuhan Corporation | Therapies with 3rd generation EGFR tyrosine kinase inhibitors |
BR112021022828A2 (en) * | 2019-05-14 | 2022-04-12 | Janssen Biotech Inc | Combination therapies with bispecific anti-egfr/c-met antibodies and third-generation egfr tyrosine kinase inhibitors |
TW202207940A (en) * | 2020-04-14 | 2022-03-01 | 美商健生生物科技公司 | Pharmaceutical composition for oral administration comprising aminopyrimidine derivative or pharmaceutically acceptable salt, hydrate, or solvate thereof |
EP4349835A1 (en) | 2021-06-01 | 2024-04-10 | Hangzhou Solipharma Co., Ltd. | Hydrate crystal form of lazertinib methanesulfonate, preparation method therefor and use thereof |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RS54033B1 (en) | 2003-12-25 | 2015-10-30 | Eisai R&D Management Co. Ltd. | Crystal of salt of 4-(3-chloro-4-(cyclopropylaminocarbonyl)amino-phenoxy)-7-methoxy-6-quinolinecarboxamide or of solvate thereof and processes for producing these |
DK1720853T3 (en) | 2004-02-11 | 2016-03-29 | Natco Pharma Ltd | HIS UNKNOWN POLYMORPH FORM OF IMATINIBMYLYLATE AND PROCEDURE FOR PREPARING IT |
SG10201510696RA (en) | 2008-06-27 | 2016-01-28 | Celgene Avilomics Res Inc | Heteroaryl compounds and uses thereof |
CZ2009570A3 (en) | 2009-08-26 | 2011-03-09 | Zentiva, K. S. | Preparation, stabilization and use of imatinib mesylate polymorphs for development of medicinal forms |
KR101663637B1 (en) | 2009-11-13 | 2016-10-07 | 제노스코 | Kinase inhibitors |
EP2649060B1 (en) * | 2010-12-06 | 2017-04-05 | MSN Laboratories Limited | Process for the preparation of benzimidazole derivatives and its salts |
RS60190B1 (en) | 2011-07-27 | 2020-06-30 | Astrazeneca Ab | 2-(2,4,5-substituted-anilino)pyrimidine derivatives as egfr modulators useful for treating cancer |
CN104540822B (en) | 2013-07-08 | 2016-08-31 | 杭州普晒医药科技有限公司 | Crystal formation of dabrafenib mesylate and preparation method thereof |
JP6468611B2 (en) | 2014-05-13 | 2019-02-13 | アリアド ファーマシューティカルズ, インコーポレイテッド | Heteroaryl compounds for kinase inhibition |
BR112017007769B1 (en) * | 2014-10-13 | 2023-10-10 | Yuhan Corporation | COMPOUNDS DERIVED FROM AMINOPYRIMIDINE, PHARMACEUTICAL COMPOSITION COMPRISING SAID COMPOUNDS AND THERAPEUTIC USE THEREOF |
CN104788427B (en) * | 2015-02-05 | 2017-05-31 | 上海泓博智源医药股份有限公司 | 3 (2 pyrimdinyl-amino) phenylacryloyl amine compounds and its application |
AR111469A1 (en) | 2017-04-21 | 2019-07-17 | Yuhan Corp | COME OUT OF AN AMINOPIRIDINE DERIVATIVE COMPOUND, A CRYSTAL FORM OF THE SAME, AND A PROCESS TO PREPARE THE SAME |
-
2018
- 2018-04-13 AR ARP180100945A patent/AR111469A1/en unknown
- 2018-04-18 NZ NZ758443A patent/NZ758443A/en unknown
- 2018-04-18 UA UAA201911263A patent/UA124364C2/en unknown
- 2018-04-18 EA EA201992501A patent/EA201992501A1/en unknown
- 2018-04-18 IL IL294666A patent/IL294666B2/en unknown
- 2018-04-18 EP EP18787260.1A patent/EP3612529A4/en active Pending
- 2018-04-18 CN CN201880026342.7A patent/CN110869367B/en active Active
- 2018-04-18 WO PCT/KR2018/004473 patent/WO2018194356A1/en active Application Filing
- 2018-04-18 IL IL270018A patent/IL270018B/en unknown
- 2018-04-18 CA CA3059543A patent/CA3059543A1/en active Pending
- 2018-04-18 BR BR112019021868-8A patent/BR112019021868A2/en active Search and Examination
- 2018-04-18 SG SG11201909615Y patent/SG11201909615YA/en unknown
- 2018-04-18 TW TW107113234A patent/TWI776882B/en active
- 2018-04-18 KR KR1020180044850A patent/KR102629654B1/en active IP Right Grant
- 2018-04-18 MY MYPI2019006145A patent/MY201919A/en unknown
- 2018-04-18 AU AU2018256227A patent/AU2018256227B2/en active Active
- 2018-04-18 JP JP2019556610A patent/JP7126514B2/en active Active
- 2018-04-18 US US16/605,944 patent/US11453656B2/en active Active
- 2018-04-18 MA MA049696A patent/MA49696A/en unknown
-
2019
- 2019-10-18 PH PH12019502370A patent/PH12019502370A1/en unknown
- 2019-10-18 CO CONC2019/0011578A patent/CO2019011578A2/en unknown
- 2019-10-20 SA SA519410342A patent/SA519410342B1/en unknown
- 2019-10-21 MX MX2022006357A patent/MX2022006357A/en unknown
- 2019-11-20 ZA ZA2019/07687A patent/ZA201907687B/en unknown
-
2022
- 2022-03-17 US US17/697,655 patent/US11981659B2/en active Active
- 2022-05-23 AU AU2022203486A patent/AU2022203486B2/en active Active
- 2022-08-16 JP JP2022129468A patent/JP7390444B2/en active Active
-
2023
- 2023-12-18 KR KR1020230184208A patent/KR20230175161A/en not_active Application Discontinuation
-
2024
- 2024-03-27 US US18/618,379 patent/US20240279203A1/en active Pending
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2018256227B2 (en) | Salt of an aminopyridine derivative compound, a crystalline form thereof, and a process for preparing the same | |
CA2922077C (en) | Quinoline-substituted compound | |
JPH09291034A (en) | Condensed pyridine compound and its use as medicine | |
EP2167470B1 (en) | Triazolo [1, 5-a]quinolines as adenosine a3 receptor ligands | |
CN107074816B (en) | Heterocyclic derivative, preparation method and medical application thereof | |
JP2974529B2 (en) | Amphoteric tricyclic compounds | |
EP2291383B1 (en) | New classes of gabaa/bzr ligands | |
SK10912001A3 (en) | Benzamide derivatives and drugs containing the same | |
JPH06116273A (en) | Tricyclic compound | |
KR102613509B1 (en) | Macrocyclic pyrimidine derivatives, preparation method thereof, and pharmaceutical composition for the prevention or treatment of neurodegenerative disease containing the same as an active ingredient | |
WO2024101763A1 (en) | Isoindolinone derivative having arylcycloalkylamide structure, and use thereof | |
EA041089B1 (en) | SALT OF AMINOPYRIDINE DERIVATIVE COMPOUND, ITS CRYSTAL FORM AND METHOD OF OBTAINING | |
EA040294B1 (en) | Fluoropiperidine Compounds as Pure 5-HT6 Receptor Antagonists | |
AU687414B2 (en) | Piperidinyl substituted methanoanthracenes as D1/D2-antagonists and 5HT2-serotanin-antagonists | |
CN115867277A (en) | Novel fused heterocyclyl-carbohydrazone acyldinitrile compounds and use thereof | |
JP2002519346A (en) | 1- (benzothiazol-2-yl) -4- (1-phenylmethyl) piperazine: a dopamine receptor subtype specific ligand |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20191106 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: KANG, JEONG KI Inventor name: PARK, SU MIN Inventor name: KIM, DONG KYUN Inventor name: JU, HYUN Inventor name: KIM, JONG GYUN Inventor name: SHIN, WOO SEOB Inventor name: CHUNG, SOO YONG Inventor name: KIM, KYEONG BAE Inventor name: OH, SE-WOONG Inventor name: HAN, TAE DONG Inventor name: LEE, SEONG RAN Inventor name: OH, SANG HO Inventor name: LEE, YOUNG SUNG |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Free format text: PREVIOUS MAIN CLASS: C07D0413140000 Ipc: C07D0403040000 |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 20201019 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C07D 403/04 20060101AFI20201013BHEP Ipc: A61P 35/00 20060101ALI20201013BHEP Ipc: A61K 31/5377 20060101ALI20201013BHEP |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20230207 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230531 |