EP3597993B1 - Dispositif émetteur de lumière et lampe chirurgicale - Google Patents

Dispositif émetteur de lumière et lampe chirurgicale Download PDF

Info

Publication number
EP3597993B1
EP3597993B1 EP17900462.7A EP17900462A EP3597993B1 EP 3597993 B1 EP3597993 B1 EP 3597993B1 EP 17900462 A EP17900462 A EP 17900462A EP 3597993 B1 EP3597993 B1 EP 3597993B1
Authority
EP
European Patent Office
Prior art keywords
light
lateral
deflection element
curved surface
lamp head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17900462.7A
Other languages
German (de)
English (en)
Other versions
EP3597993A1 (fr
EP3597993A4 (fr
Inventor
Lei Wang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Mindray Bio Medical Electronics Co Ltd
Original Assignee
Nanjing Mindray Bio Medical Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Mindray Bio Medical Electronics Co Ltd filed Critical Nanjing Mindray Bio Medical Electronics Co Ltd
Publication of EP3597993A1 publication Critical patent/EP3597993A1/fr
Publication of EP3597993A4 publication Critical patent/EP3597993A4/fr
Application granted granted Critical
Publication of EP3597993B1 publication Critical patent/EP3597993B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/0091Reflectors for light sources using total internal reflection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V13/00Producing particular characteristics or distribution of the light emitted by means of a combination of elements specified in two or more of main groups F21V1/00 - F21V11/00
    • F21V13/02Combinations of only two kinds of elements
    • F21V13/04Combinations of only two kinds of elements the elements being reflectors and refractors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/0008Reflectors for light sources providing for indirect lighting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2131/00Use or application of lighting devices or systems not provided for in codes F21W2102/00-F21W2121/00
    • F21W2131/20Lighting for medical use
    • F21W2131/205Lighting for medical use for operating theatres
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the present invention relates to the field of lighting, and in particular to a light-emitting device and a surgical lamp using the light-emitting device.
  • Surgical lamps as special lamps used in an operating room, need to achieve a shadowless effect in addition to meeting the requirements of brightness. Therefore, the surgical lamp is generally large in size, and the size of a lamp head may reach 600-700 mm, and a plurality of light beams converge into a desired light spot to illuminate a surgical fields of surgical operation.
  • a commonly used surgical lamp generally adopts the technical solution of Gypsophila.
  • an LED light source is placed in a reflective shade or lens to form a separate lighting unit.
  • a plurality of lighting units are distributed inside the lamp head and their irradiation directions are directed to a surgical region, and finally an area light source with a certain direction and converging light rays is formed to achieve a shadowless effect.
  • the method of changing the irradiation angle of the lighting unit to change the light intensity distribution of the surgical region or the method of changing the relative intensity of light rays output by the lighting unit that are irradiated at different positions in the surgical region to change the light intensity distribution of the surgical region, is generally used.
  • Gypsophila Another variant of the solution of Gypsophila is to distribute the plurality of above-mentioned lighting units composed of LED light sources and lenses to the periphery of the lamp head, a large reflective shade is placed in the middle of the lamp head, and the light rays emitted by these lighting units are directly or indirectly directed towards the center of the lamp head and are irradiated on the reflective shade, which in turn reflects the light rays to the surgical region.
  • the method of changing the size of the light spot in the surgical region is to use two groups (or more groups) of lighting units, and the positions and irradiation angles of multiple groups of lighting units in the lamp head are different, so that the directions of the light rays after reflected by the reflective shade are also different, forming different light intensity distributions in the surgical region, and the light intensity distribution of the surgical region is changed by changing the relative intensity of output of the two groups of lighting units.
  • US 2012/051063 A1 discloses an apparatus that includes a light source, a first reflector, a lens and a second reflector.
  • the first reflector is positioned to reflect a first portion of light from the light source, wherein the first portion of light is radiated from the light source in a central forward solid angle as defined by an outer edge of the first reflector.
  • the main technical problem to be solved by the present invention is to provide a technical solution different from that of Gypsophila, which method does not require multiple lighting units, and may make full use of light emitted by the light source.
  • the invention provides a light-emitting device, comprising:
  • an embodiment further provides a surgical lamp using the light-emitting device described above.
  • a lateral light beam emitted by the light source is collected by a profiled optical element that causes light rays to deflect in varying degrees, thereby changing an exit direction of the light beam to cause the light beam to be directed towards the reflective shade disposed on the periphery, then the reflective shade mixes and reflects the light beam, and finally the light rays at different positions of the reflective shade are superimposed at a desired position (e.g. the surgical region) and form a desired light spot.
  • the surgical lamp made by using the light-emitting device of the present invention may increase the light-emitting area of the entire surgical lamp by making larger the transverse dimension of the reflective shade, thereby avoiding a shadow zone caused by obstruction of an object (such as a doctor's head) under the surgical lamp, and thus achieving a good shadowless effect.
  • connection or “couple”, unless otherwise specified, includes both direct and indirect connections (coupling).
  • the light-emitting device disclosed in an example of the present invention no longer adopts the solution of Gypsophila composed of a plurality of small lighting units, but one or more light sources share an optical system, which collects light emitted by the light source, and after reflection, the light will converge into a desired light spot.
  • an example in which the light-emitting device is applied to a surgical lamp will be described.
  • Fig. 1 is a sectional diagram of a surgical lamp in an axial direction.
  • the surgical lamp comprises a lamp head, and the lamp head further comprises a light-emitting device 100, a lamp head rear shade 200 and a lamp head front shade 300, wherein the light-emitting device 100 is mounted on the lamp head rear shade 200, the lamp head rear shade 200 and the lamp head front shade 300 enclose an accommodating chamber, and the light-emitting device 100 is enclosed in the accommodating chamber.
  • the light-emitting device 100 comprises a light source 1, a light deflection element 2 and a reflective shade 3, wherein the reflective shade 3 comprises a top end 301, a bottom end 302 and a reflector body 303, the reflector body gradually expands from the top end to the bottom end, the bottom end is provided with an annular opening, the top end may also be provided with a small annular opening, and a shape of the annular opening may be circular, elliptic or polygonal. In other particular examples, the top end may also be enclosed, for example as a tip or a platform. As a whole, the reflective shade 3 is umbrella-shaped, and is fixed to the lamp head rear shade.
  • the light source 1 is located in a top area of the reflective shade, and a light exit surface faces the bottom end of the reflective shade, the light source 1 is preferably mounted on a circuit board (not shown in the figures), and the circuit board is fixed on the lamp head rear shade, which is equivalent to the case where the light source 1 is placed near the top of the center of the surgical lamp, so that heat generated by the light source may be quickly transmitted to the lamp head rear shade through a large area heat conduction pathway.
  • the light deflection element 2 is located between the light source 1 and the reflective shade 3, and the light deflection element 2 is mounted on the lamp head rear shade or at the top end of the reflective shade 3 or on the circuit board.
  • the light source 1 uses a forward light-emitting light source, the forward light-emitting light source is characterized in that light rays are emitted substantially in the range of 0-180 degrees, and therefore, light emitted by the light source 1 includes forward light and lateral light.
  • the light source 1 may also be a light source that shines around.
  • the included angle between a light beam and an optical axis is defined herein as the angle of divergence
  • the forward light refers to a light beam with the angle of divergence being less than or being less than or equal to a certain value
  • the lateral light refers to a light beam with the angle of divergence being greater than or equal to or being greater than a certain value and being less than the maximum divergence.
  • a light beam with the angle of divergence being less than or being less than or equal to 40 degrees, 45 degrees or 50 degrees is referred to as forward light
  • a light beam with the angle of divergence being greater than or equal to or being greater than 40 degrees, 45 degrees or 50 degrees and being less than 90 degrees is referred to as lateral light
  • a light beam with the angle of divergence being less than or equal to 30 degrees or 35 degrees is referred to as forward light
  • a light beam with the angle of divergence being greater than 30 degrees or 35 degrees and being less than 45 degrees is referred to as lateral light. It may be seen that no matter what kind of light source, the angle of divergence of the lateral light is greater than the angle of divergence of the forward light.
  • the light source 1 may be one light source or a combination of a plurality of light sources, and types of light source include but are not limited to an LED, an OLED, a laser, an optical fiber, an optical fiber bundle, fluorescent powder, a light guide tube, etc.
  • the optical fiber, the optical fiber bundle, the light guide tube, etc. may be collectively referred to herein as a light guide for introducing light rays from a light source outside the lamp head that would otherwise be energy to the position of the light source of the light-emitting device for use as a light source within the light-emitting device.
  • the combination of different types of light sources may be used to change the spatial distribution characteristics, spectral characteristics, strength characteristics and other parameters of the entire light source to meet different clinical needs.
  • the degree of mixing of different light sources after reflection may be changed by controlling the size of the light-emitting area of the light source and the parameters of the reflective shade, thereby achieving uniform mixing of light.
  • an LED light source 101 is used as the light source 1; in Fig. 2B, two light sources, i.e.
  • a high color temperature LED 102 and a low color temperature LED 103 are combined to form the light source 1 to realize a color temperature adjustment function of the surgical lamp by adjusting their relative brightness;
  • an OLED area light source 104 is used as the light source 1;
  • an optical fiber, an optical fiber bundle or a light conduit 105 is used to introduce light rays from the light source 106 outside the lamp head of the surgical lamp into the position of the light source of the lamp head of the surgical lamp to form the light source 1; in Fig.
  • a lens 107 is used to cooperate with the optical fiber (bundle) 108 to form the light source 1, to further expand the angle of divergence of the light rays emitted by the optical fiber (bundle); in Fig. 2F, the light emitted from the head end of the optical fiber (bundle) further excites the fluorescent powder 109 to form the light source 1, which may realize the conversion of the wavelength of the light rays; in Fig. 2G, various fluorescent powder or optical fibers (bundles) of light sources are combined to form the light source 1, for example, high color temperature fluorescent powder and low color temperature fluorescent powder are used to achieve a color temperature adjustment function; and Fig. 2H is an example of the combination of different types of light sources.
  • the lateral light emitted by the light source 1 has a large angle of divergence, and thus part, most or all of the lateral light may be emitted to the inside of the reflective shade.
  • the forward light emitted by the light source 1 has a small angle of divergence, and the reflective shade is restricted by the longitudinal dimension and cannot be made too large in the longitudinal direction, the forward light cannot be irradiated to the inside of the reflective shade, causing that the light emitted by the light source cannot be fully utilized.
  • a light deflection element 2 is used to collect light rays in the range of 0° to 180° (i.e., the range in which the angle of divergence is greater than or equal to 0° and less than 90°).
  • the light deflection element 2 is located between the light source 1 and the reflective shade 3, specifically on light paths of the forward light and the lateral light, to collect the forward light and the lateral light, and adjust deflection directions of the forward light and the lateral light, such that both the forward light and the lateral light exited after the adjustment may be projected to the inside of the reflector body of the reflective shade.
  • the light deflection element 2 may adjust the light propagation directions of the forward light and the lateral light by the combination of one or more of refraction, reflection and total reflection, such that both the forward light and the lateral light exited from the light deflection element are propagated towards the direction of the reflective shade.
  • the light propagation directions of the forward light and the lateral light exited from the light deflection element are adjusted to be close to or consistent with each other, as shown in Fig. 3 .
  • a small deflection of the lateral light may be performed, and a large deflection of the forward light may be performed.
  • the light deflection element 2 performs at most twice reflections and/or total reflections on the lateral light, that is, the total number of reflections and/or total reflections of the lateral light by the light deflection element 2 is at most two.
  • the energy of the light rays will be lost, and multiple reflections will cause cascaded loss, resulting in ineffective use of light energy.
  • the reflection or total reflection of the light rays is limited by the manufacturing process and assembly and other factors of an optical element.
  • the reflected or totally reflected light ray has a certain angle deviation from a theoretical reflection angle.
  • the deviation of the reflection angle will affect the size or location of the light spot formed by the convergence of the reflection shade, and multiple reflections or total reflections further magnify the reflection angle deviation.
  • the light deflection element 2 of the solution of the present application performs at most two reflections and/or total reflections of the lateral light.
  • the total number of reflections and/or total reflections of the forward light may also be set to be at most two.
  • the specific structure of the light deflection element 2 is exemplified in Figs. 3A-3C , the light deflection elements 2 in these examples are symmetrical about their central axes, the light source 1 emits light rays in the range of 180°, and the direction indicated by 90° is an optical axis (i.e. the center), 0° and 180° indicate edges.
  • the light deflection element 2 collects lateral light near the edge by refraction (e.g. light rays with the angle of divergence being between 60 degrees and 90 degrees, 60° ⁇ the angle of divergence ⁇ 90°), and collects forward light near the center by total reflection (e.g. light rays with the angle of divergence being between 0 degrees and 60 degrees, 0° ⁇ the angle of divergence ⁇ 60°).
  • refraction e.g. light rays with the angle of divergence being between 60 degrees and 90 degrees, 60° ⁇ the angle of divergence ⁇ 90°
  • forward light near the center by total reflection e.g. light rays with the angle of divergence being between 0 degrees and 60 degrees, 0° ⁇ the angle of divergence ⁇ 60°.
  • the light deflection element 2 comprises a refraction 201 and a total reflection portion 202, the refraction portion 201 and the total reflection portion 202 are transparent medium, the refraction portion 201 is disposed on a light path of lateral light to collect the lateral light, and the total reflection portion 202 is disposed on a light path of the forward light to collect the forward light.
  • Fig. 3A shows a sectional diagram of the light deflection element 2 along a central axis, and the light deflection element 2 is shown by the figure shown in Fig. 3A to rotate around the central axis.
  • the refraction portion 201 is in a shape of a bowl with a bowl opening facing upwards and is fixed to the rear of the lamp head, the refraction portion 201 comprises an outer surface 2011 and an inner surface 2012, the inner surface 2012 encloses a square groove with an upper opening forming the bowl opening, and the light source 1 is disposed at a bowl opening area of the refraction portion 201.
  • the lateral light emitted by the light source 1 is incident to the inner surface 2012, and the lateral light is refracted and then exited from the outer surface 2011.
  • the outer surface 2011 is a convex surface, which is referred to as a first convex surface for the convenience of description.
  • the curvature of the first convex surface 2011 changes with the angle of divergence of the lateral light, such that the light propagation direction of the lateral light refracted by the first convex surface is close or consistent.
  • the total reflection portion 202 is located below the refraction portion 201, specifically on the light path of the forward light.
  • the total reflection portion 202 comprises a light incident surface 2021, a total reflection surface 2022 and a light exit surface 2023, wherein the incident surface 2021 and the light exit surface 2023 may be planes, the total reflection surface 2022 is a convex surface which is referred to herein as a second convex surface, and the second convex surface extends downwards obliquely from the central axis.
  • the forward light emitted by the light source 1 is incident from the incident surface 2021 and then irradiated to the second convex surface 2022, the curvature of the second convex surface 2022 changes with the angle of divergence of the forward light, such that the angle of incidence of the forward light on an inner side face of the second convex surface is greater than or equal to a critical angle, and thus the forward light is totally reflected on the second convex surface 2022; and such that the light propagation direction of the forward light after reflected by the second convex surface is close or consistent, and the forward light after total reflection is exited from the light exit surface 2023.
  • propagation directions of light rays of the lateral light and the forward light after passing through the light deflection element 2 are substantially parallel, and the light rays are irradiated to the reflective shade 3 in a horizontal direction.
  • the refraction portion 201 and the total reflection portion 202 of the light deflection element 2 may be integrated together and integrally formed using a mold during fabrication.
  • the light deflection element 2 collects light rays of all angles by two total reflections.
  • the light deflection element is a transparent medium, and comprises a third convex surface 203, a fourth convex surface 204 and a light exit surface 205, wherein the third convex surface 203 and the fourth convex surface 204 are opposite each other, the third convex surface 203 extends downwards obliquely from the plane of the light source and is located on a light path of the lateral light to collect the lateral light, and the curvature of the third convex surface 203 changes with the angle of incidence of the lateral light, such that the lateral light is totally reflected on an inner side face of the third convex surface 203 and is reflected to an inner side of the fourth convex surface 204.
  • the fourth convex surface 204 extends downwards obliquely from the central axis and is located on a light path of the forward light to collect totally reflected light of the forward light and the lateral light, and the curvature of the fourth convex surface changes with the angle of incidence of the totally reflected light of the forward light and the lateral light, such that the angle of incidence of the totally reflected light of the forward light and the lateral light on an inner side face of the fourth convex surface is greater than or equal to the critical angle of total reflection, and the light propagation directions of the totally reflected light of the forward light and the lateral light after reflected by the fourth convex surface are close to or consistent with each other.
  • FIG. 3B shows a sectional diagram of the light deflection element 2 along the central axis
  • the light exit surface 205 is a plane connecting edges of the third convex surface 203 and the fourth convex surface 204
  • the solid of the light deflection element 2 is formed by the figure shown in Fig. 3B to rotate around the central axis.
  • propagation directions of light rays of the lateral light and the forward light after passing through the light deflection element 2 are substantially parallel, and the light rays are irradiated to the reflective shade 3 in the horizontal direction.
  • the light deflection element 2 collects edge light rays by refraction of a separate element, and collects light rays near the center by reflection of another element.
  • the deflection element 2 comprises a refraction portion 206 and a reflection portion 207.
  • the refraction portion 206 is a transparent medium, the refraction portion 206 is disposed on a light path of the lateral light to collect the lateral light, and the refraction portion 206 is composed of a light incident surface 2061, a fifth convex surface 2062 as a light exit surface, and a top face 2063.
  • the top face 2063 is fixed to the rear of the lamp head, the light incident surface 2061 may be formed into a plane and is located on the side face of the refraction portion 206, and the curvature of the fifth convex surface 2062 changes with the angle of divergence of the lateral light, such that the light propagation direction of the lateral light refracted by the fifth convex surface is close or consistent.
  • the reflection portion 207 is a concave mirror located below the refraction portion 206, and the concave mirror extends downwards obliquely from the central axis and the concave mirror is symmetrical mirror about the central axis.
  • FIG. 3C shows a sectional diagram of the light deflection element 2 along the central axis, and the solid of the light deflection element 2 is formed by the figure shown in Fig. 3C to rotate around the central axis.
  • light rays of the lateral light and the forward light after passing through the light deflection element 2 are irradiated to the reflective shade 3 in the horizontal direction, and propagation directions of the light rays are substantially parallel, and the light rays.
  • the refraction portion 206 and the reflection portion 207 use independent elements, the refraction portion 206 is fixed to the rear of the lamp head, and the reflection portion 207 may be fixed to a supporting frame which is fixed to the interior of the lamp head.
  • Figs. 3A-3C mentioned above are merely exemplary examples of the light deflection element 2.
  • other shapes of the light deflection element 2 may also be designed to adjust the light propagation directions of the lateral light and the forward light.
  • an optical element may be added, which is located on a light path between the light deflection element 2 and the reflective shade.
  • the optical element is used for further shaping the lateral light and the forward light that are adjusted via the light deflection element 2, for example, being able to perform further refraction such that the light propagation directions of the lateral light and the forward light are close to or consistent with each other.
  • the light deflection element 2 comprises a refraction portion, which is made of a transparent material and comprises a first curved surface located on the light path of the lateral light, and the curvature of the first curved surface changes with the angle of divergence of the lateral light.
  • the first curved surface refracts the lateral light projected on the first curved surface, and the refracted lateral light is exited from the light deflection element onto the reflector body of the reflective shade.
  • the light deflection element 2 comprises a first non-transmission portion, which refers to that incident light will not penetrate and exit, but does not limit whether it is transparent.
  • the first non-transmission portion may be a total reflection portion made of a transparent material, or a non-transparent reflection portion coated with a reflective coating.
  • the first non-transmission portion comprises a second curved surface located on the light path of the lateral light, and the curvature of the second curved surface changes with the angle of incidence of the lateral light.
  • the second curved surface When the first non-transmission portion is the total reflection portion, the second curved surface totally reflects the lateral light projected on the second curved surface, and the totally reflected lateral light is exited from the light deflection element onto the reflector body of the reflective shade.
  • the first non-transmission portion is the reflection portion, the second curved surface reflects the lateral light projected on the second curved surface, and the reflected lateral light is exited from the light deflection element onto the reflector body of the reflective shade.
  • the light deflection element 2 may further comprise a second non-transmission portion, which is similar to the first non-transmission portion, and may be a total reflection portion made of a transparent material or a non-transparent reflection portion coated with a reflective coating.
  • the second non-transmission portion comprises a third curved surface located on the light path of the lateral light, and the curvature of the third curved surface changes with the angle of incidence of the lateral light.
  • the third curved surface totally reflects the lateral light projected on the third curved surface, the totally reflected lateral light is projected onto the first non-transmission portion, and the first non-transmission portion performs a secondary total reflection on the totally reflected light of the lateral light; and
  • the lateral light projected onto the reflector body is the lateral light after the secondary total reflection.
  • the third curved surface reflects the lateral light projected on the third curved surface, the reflected lateral light is projected onto the first non-transmission portion, and the first non-transmission portion performs a secondary reflection on the reflected light of the lateral light; and
  • the lateral light projected onto the reflector body is the lateral light after the secondary reflection.
  • the light propagation direction of the lateral light may be adjusted to be projected onto the reflector body, for example, for the light source disposed on the optical axis, the light propagation direction of the lateral light may be adjusted to be projected in an approximately parallel manner to different positions on the reflector body.
  • the first curved surface may be, for example, the first convex surface or the fourth convex surface in Figs.
  • the second curved surface may be, for example, the third convex surface of a total reflection type, the fourth convex surface of a total reflection type or the concave mirror of a reflection type in Figs. 3A-3C ;
  • the third curved surface may be, for example, the second convex surface of a total reflection type or a composite curved surface in Figs. 3A-3C ; and alternatively, the first curved surface, the second curved surface and the third curved surface may be a composite curved surface fitted in a concave and convex manner.
  • the reflective shade 3 may be composed of a reflective mirror using the principle of reflection, and light rays irradiated on the reflective mirror are reflected, superimposed and then converged in a surgical region 5.
  • the cross section of the reflective shade may be in the form similar to a fold line. Referring to Fig. 1 , the cross section of the reflective mirror along the central axis is a fold line.
  • each bend on the reflector body forms an annular reflector band 304, and the radius of the reflector band increases along the direction from the top end to the bottom end in a stepwise manner.
  • the reflector band may be enclosed by a plurality of planes, which is referred to herein as scalewise of the reflector band in an example, and the planes may be trapezoidal planes, triangular planes, etc. As shown in Fig. 4 , the trapezoidal planes 305 are connected end to end to form the annular reflector band, and with this structure, the cross section of the reflector band in a radial direction is polygonal.
  • the reflective shade may also be composed of a total reflection transparent element 6 using the principle of total reflection.
  • Light rays pass through a first surface of the reflective shade and are transmitted into its interior, and when the light rays reach a reflection surface, if the angle of incidence of the light rays is greater than a total reflection angle, a total reflection is formed, and the reflected light rays are refracted by a lower surface and then are exited, superimposed and converged in the surgical region 5.
  • the cross section of the transparent element 6 in Fig. 5 may also be in the form similar to the fold line in the figure in order to reduce the weight and the height.
  • the production process of the reflective shade determines that the reflective surface of the reflective shade is susceptible to environment, wiping and other factors; and therefore, in the surgical lamp using the reflective shade, the lamp head of the surgical lamp further comprises a lamp head rear shade, a light-transmitting lamp head front shade and other elements, and the reflective shade is protected between the lamp head rear shade and the lamp head front shade.
  • the transparent element in the solution of total reflection is generally processed by an injection molding or mold pressing process and does not require a reflective film layer, the surface of the transparent element has good weather resistance and wiping resistance, so the transparent element may be directly presented to a user without the protection of the lamp head rear shade and/or the lamp head front shade. Therefore, the use of the solution of total reflection may reduce the elements of the surgical lamp, and makes the surgical lamp more beautiful, have more design sense and high-end.
  • the light rays 4 emitted by the light source 1 are collected through the light deflection element 2, the transmission, reflection or total reflection are utilized and exit directions of the light rays are deflected, and the light rays, after deflected by a large angle, are directed to the periphery of the lamp head in a nearly horizontal direction.
  • the light rays that are directed towards the periphery are then collected by the reflective shade 3 and reflected to the surgical region 5, and the reflected light rays 4 are superimposed to each other in the surgical region 5, finally forming a surgical lamp which has a certain lamp head area and a good shadowless effect.
  • the light deflection element and the reflective shade by the cooperation of the light deflection element and the reflective shade, light rays of various angles that are emitted by the light source may be effectively utilized, and when the surgical lamp is installed, the size of the formed light spot may be changed by changing the distance from the surgical lamp to the surgical region.
  • the geometry of the reflective shade in this solution is much larger than the size of a combined light source, for example, when the surgical lamp uses only one large reflective shade, the diameter of the circular large reflective shade is generally 400-750 mm, and the size of the LED light source, the optical fiber, the optical fiber bundle, etc. is generally 0.01-20 mm, these combined light sources may be regarded as an approximate small light source with respect to the reflective shade; and sub-light sources of this small light source are reflected by the reflective shade and then form superimposed diffusion spots in the surgical region, so the large reflective shade in this solution is very beneficial for uniform mixing of light from the combined light sources.
  • the uniformity of mixing of light will be further enhanced, so that the light rays emitted by all the different types of light sources may be uniformly irradiated to the surgical region after reflected, mixed and superimposed by the reflective shade, thus non-uniformity in spectral spatial distribution of the light spot in the surgical region may be avoided or reduced.
  • the distance from the surgical lamp to the surgical region during operation is adjusted according to the height of the doctor and then keeps constant, however, during the use of the surgical lamp, different surgical procedures and types may require different surgical fields of surgical operation, and at this time, it is necessary to adjust the size of the light spot of the surgical lamp.
  • the size of the light spot may be changed by adjusting the lighting of different light sources.
  • the light source 1 is located in the center of the surgical lamp, that is, the optical axis of the light source 1 coincides with the central axis of the surgical lamp, and after the light rays 4 are collected and deflected by the light deflection element 2 and reflected by the reflective shade, the converging light spot is located in the central axis of the surgical lamp.
  • the solution of a plurality of light sources is used, and the plurality of light sources may be arranged in a square array or may be arranged in a plurality of concentric circles.
  • a peripheral light source of a central light source or a combined light source of the central light source and the peripheral light source may be employed.
  • the light rays emitted by the peripheral light source or the combined light source are collected by the reflective shade and reflected to the surgical region. Since the optical axis of the light source deviates from the central axis, at this time the light rays cannot be completely converged by the reflective shade, a large light spot is formed in the surgical region. As shown in Fig. 6 , the light rays emitted by the peripheral light source 7 that is off-center are deflected by the light deflection element 2 and then produce light rays in different directions, said light rays are no longer horizontal with respect to the light rays in Fig.
  • the surgical lamp of the example of the present disclosure when used, if the size of the illumination light spot in the surgical region needs to be adjusted to adapt to the operation of different incision sizes, it may be achieved by adjusting the light-emitting area of the combination of light sources; when a small light spot is required, only the light source near the center is used to emit light; and When a large light spot is required, the intensity of the light source away from the center may be increased. In this way, the size of the light spot may be adjusted quickly and quietly, which is beneficial to the user's clinical experience.
  • the size of the light spot is adjusted by means of a light spot adjustment assembly
  • Figs. 7-9 show examples of the light spot adjustment assembly, according to the invention.
  • the light spot adjustment assembly comprises a first column cylinder 9 and a second column cylinder 10, wherein the column cylinder may be a cylindrical cylinder or a prismatic cylinder, the first column cylinder 9 is nested inside the second column cylinder 10, the first column cylinder 9 and the second column cylinder 10 surround the outside of the light deflection element 2 and are disposed on light paths between the light deflection element 2 and the reflective shade 3, an interval is provided between the first column cylinder 9 and the second column cylinder 10 to form an air gap, and when the shape of at least one of the first column cylinder and the second column cylinder is changed, the shape of the air gap is changed, and the size of the light spot is adjusted by changing the shape of the air gap.
  • the shape of the first column cylinder and the second column cylinder referred to herein includes the shape and state, and the state includes change of position.
  • the change of form of the first column cylinder and the second column cylinder may be adjusted by an adjusting device, which will be described in detail below; and the change of form of the first column cylinder and the second column cylinder may also be achieved by the structural or material characteristics of the first column cylinder and the second column cylinder.
  • an outer surface of the first column cylinder and an inner surface of the second column cylinder may be deformed by contraction and/or expansion, to thus change the shape of the air gap between the first column cylinder and the second column cylinder.
  • the outer surface of the first column cylinder 9 is provided with a first concave-convex surface structure 9a
  • the inner surface of the second column cylinder 10 is provided with a second concave-convex surface structure 10a
  • the first concave-convex surface structure and the second concave-convex surface structure may be directly shaped on the outer surface of the first column cylinder and the inner surface of the second column cylinder, respectively, or a layer of concave-convex structure may be attached to the outer surface of the first column cylinder and the inner surface of the second column cylinder.
  • An air gap 12 is provided between the first concave-convex surface structure and the second concave-convex surface structure, the first column cylinder 9 and the second column cylinder 10 can move relative to each other, and the shape of the air gap 12 is changed by movement.
  • the first concave-convex surface structure 9a has a first wavy surface structure
  • the second concave-convex surface structure 10a has a second wavy surface structure.
  • the first concave-convex surface structure and the second concave-convex surface structure may also be a pit or bump structure, or a groove or rib structure.
  • the first wavy surface structure and the second wavy surface structure fluctuate in a circumferential direction
  • the first column cylinder and the second column cylinder may be controlled by the adjusting device to move relative to each other in the circumferential direction, thus changing the shape of the air gap 12, and the adjustment principle is as follows: the light source is placed in the center, a certain interval of air gap is formed between two cylinder waves, and the two waves are similar in shape. Fig.
  • FIG. 8A shows a horizontal cross-sectional diagram of relative positions of the two cylinders in the state of a small light spot, a peak point of the first column cylinder 9 corresponds to a valley point of the second column cylinder 10 on an outer ring, and an approximately parallel air gap 12 is formed between the first column cylinder 9 and the second column cylinder 10, as shown in Fig. 8D.
  • Fig. 8A shows a horizontal cross-sectional diagram of relative positions of the two cylinders in the state of a small light spot
  • a peak point of the first column cylinder 9 corresponds to a valley point of the second column cylinder 10 on an outer ring
  • an approximately parallel air gap 12 is formed between the first column cylinder 9 and the second column cylinder 10, as shown in Fig. 8D.
  • wedged air gaps 12 of different sizes are formed between the first column cylinder 9 and the second column cylinder 10, as shown in Fig. 8E ; and the included angle between the two edges of the air gap 12 is not zero, which is equivalent to the air gap 12 gradually becoming an air convex lens, the refractive index of the cylinder material is higher than the refractive index of air, and then the air convex lens has a diverging effect, so the light rays pass through the wedged air gap 12 and then diverge outwards, making the size of the light spot become large.
  • part of the air gap has a small wedge angle 15, through which the light rays 16 are deflected at a small angle; part of the air gap has a large wedge angle 17, through which the light rays 18 are deflected at a large angle; therefore, after the light rays pass through the first and second column cylinders, some of the light rays are deflected less and some are deflected more, some of the light rays after reflected by the reflective shade are closer to the central axis and some are far away, and finally the light rays are superimposed and combined to form a light field having a certain light intensity distribution; when there are more light lays that are closer to the central axis, the light intensity is more concentrated on the optical axis, and the user will see and feel a small light spot; and when there are more light rays that are far away from the central axis, the light intensity increases around, and the user will see
  • Fig. 8C is a horizontal cross-sectional diagram of relative positions of the two cylinders in the state of the maximum light spot, and a complete wedged air gap 12 is formed between the first column cylinder 9 and the second column cylinder 10.
  • the deflection angle 20 of the light rays is the maximum deflection angle, and therefore, the light rays after reflected by the reflective shade form the maximum light spot.
  • the first wavy surface structure and the second wavy surface structure fluctuate in the axial direction, and the first column cylinder 21 and the second column cylinder 22 may move relative to each other in the axial direction.
  • the first column cylinder 21 and the second column cylinder 22 move relative to each other in the axial direction, the corresponding positions of the peak points and the valley points of the first wavy surface structure and the second wavy surface structure are changed, thereby changing the wedge angle of the air gap, and similarly being able to change the size of the light spot.
  • the light spot adjustment assembly comprises a first light-transmitting plate 24 and a second light-transmitting plate 25, the first light-transmitting plate 24 and the second light-transmitting plate 25 are disposed opposite each other, for example, the first light-transmitting plate 24 and the second light-transmitting plate 25 are disposed parallel to each other, and the first light-transmitting plate 24 and the second light-transmitting plate 25 are located on a light path of the light rays after reflected by the reflective shade; and the first light-transmitting plate 24 and the second light-transmitting plate 25 may move relative to each other, a third concave-convex surface structure is provided on the surface of the first light-transmitting plate 24 that faces the second light-transmitting plate, a fourth concave-convex surface structure is provided on the surface of the second light-transmitting plate 25 that faces the first light-trans
  • the shape of the air gap 26 may be changed, and based on the same principle as in the third example, the size of the light spot may be changed.
  • an optical filter 23 may be added between the light source 1 and the light deflection element 2 for filtering or reducing unwanted wavelength energy to modulate the light source spectrum.
  • an infrared cut optical filter is added for reducing near-infrared light to improve the cold light performance of the surgical lamp; in another example, an optical filter modulated for a visible light band is added to improve the color temperature or color rendering index of the light source; and in still another example, a blue light cut optical filter is added to improve the blue light characteristics of a white LED light source and reduce the blue light hazard of the surgical lamp, etc.
  • the surface of the light deflection element may also be directly coated with an optical thin film to filter or reduce the unwanted wavelength energy.
  • the lamp head of the surgical lamp includes a plurality of light-emitting modules, each light-emitting module comprises one light-emitting device described above, the plurality of light-emitting modules may be separately or integrally mounted and tilted at a predetermined angle, such that the respective light-emitting devices are tilted at a predetermined angle, and central axes of light-emitting devices intersect at one point.
  • the light emitted by the plurality of light sources is reflected by the respective reflective shade, and then the light rays may be concentrated on a light spot.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Claims (12)

  1. Dispositif émetteur de lumière, comprenant :
    un abat-jour réfléchissant (3), lequel comprend une extrémité supérieure (301), une extrémité inférieure (302), et un corps de réflecteur (303) s'étendant depuis l'extrémité supérieure (301) jusqu'à l'extrémité inférieure (302) ;
    une source de lumière (1), laquelle est située au niveau de l'extrémité supérieure (301) de l'abat-jour réfléchissant (3) et fait face à l'extrémité inférieure (302) de l'abat-jour réfléchissant (3) et émet au moins de la lumière latérale ; et
    un élément de déviation de lumière (2), lequel est situé sur un trajet de lumière de la lumière latérale pour collecter la lumière latérale ;
    où l'élément de déviation de lumière (2) ajuste la direction de propagation de lumière de la lumière latérale projetée sur l'élément de déviation de lumière (2), de telle sorte que la lumière latérale sortant de l'élément de déviation de lumière (2) est projetée sur le corps de réflecteur (303), le corps de réflecteur (303) réfléchit la lumière latérale projetée sur le corps de réflecteur (303), et la lumière latérale sortant du corps de réflecteur (303) converge en un point lumineux d'une taille prédéterminée ;
    caractérisé en ce que le dispositif émetteur de lumière comprend en outre un premier cylindre de colonne (9) et un second cylindre de colonne (10) qui permettent une transmission de lumière, où le premier cylindre de colonne (9) est logé à l'intérieur du second cylindre de colonne (10), le premier cylindre de colonne (9) et le second cylindre de colonne (10) sont disposés sur les trajets de lumière entre l'élément de déviation de lumière (2) et l'abat-jour réfléchissant (3), un intervalle est prévu entre le premier cylindre de colonne (9) et le second cylindre de colonne (10) pour former un espace d'air (12) ;
    et en ce qu'une surface extérieure du premier cylindre de colonne (9) est dotée d'une première structure de surface concave-convexe (9a), une surface intérieure du second cylindre de colonne (10) est dotée d'une seconde structure de surface concave-convexe (10a), un espace d'air (12) est prévu entre la première structure de surface concave-convexe (9a) et la seconde structure de surface concave-convexe (10a), et le premier cylindre de colonne (9) est en mesure de se déplacer par rapport au second cylindre de colonne (10), modifiant ainsi la forme de l'espace d'air (12).
  2. Dispositif émetteur de lumière selon la revendication 1, dans lequel l'élément de déviation de lumière (2) ajuste la direction de propagation de lumière de la lumière latérale par un ou plusieurs phénomènes parmi une réfraction, une réflexion et une réflexion totale, et l'élément de déviation de lumière (2) réalise au plus deux réflexions et/ou réflexions totales sur la lumière latérale.
  3. Dispositif émetteur de lumière selon la revendication 1, dans lequel l'élément de déviation de lumière (2) comprend une partie de réfraction (201), laquelle comprend une première surface incurvée (2011) située sur le trajet de lumière de la lumière latérale, et une courbure de la première surface incurvée (2011) change avec un angle de divergence de la lumière latérale ; et la première surface incurvée (2011) réfracte la lumière latérale projetée sur la première surface incurvée (2011), et la lumière latérale réfractée sort de l'élément de déviation de lumière (2) vers le corps de réflecteur (303) de l'abat-jour réfléchissant (3).
  4. Dispositif émetteur de lumière selon la revendication 1, dans lequel l'élément de déviation de lumière (2) comprend une première partie de non-transmission, laquelle comprend une sixième surface incurvée située sur le trajet de lumière de la lumière latérale, et une courbure de la sixième surface incurvée change avec un angle d'incidence de la lumière latérale ; et la sixième surface incurvée réfléchit totalement ou réfléchit la lumière latérale projetée sur la sixième surface incurvée, et la lumière latérale totalement réfléchie ou réfléchie sort de l'élément de déviation de lumière (2) vers le corps de réflecteur (303) de l'abat-jour réfléchissant (3), ou
    dans lequel l'élément de déviation de lumière (2) comprend une première partie de non-transmission (204), laquelle comprend une sixième surface incurvée située sur le trajet de lumière de la lumière latérale, et une courbure de la sixième surface incurvée change avec un angle d'incidence de la lumière latérale ; et la sixième surface incurvée réfléchit totalement ou réfléchit la lumière latérale projetée sur la sixième surface incurvée, et la lumière latérale totalement réfléchie ou réfléchie sort de l'élément de déviation de lumière (2) vers le corps de réflecteur (303) de l'abat-jour réfléchissant (3), où l'élément de déviation de lumière (2) comprend en outre une seconde partie de non-transmission (203), laquelle comprend une septième surface incurvée située sur le trajet de lumière de la lumière latérale, et une courbure de la septième surface incurvée change avec un angle d'incidence de la lumière latérale ; et la septième surface incurvée réfléchit totalement ou réfléchit la lumière latérale projetée sur la septième surface incurvée, et la lumière latérale totalement réfléchie ou réfléchie est projetée sur la première partie de non-transmission (204) et est en outre totalement réfléchie ou réfléchie par la première partie de non-transmission (204).
  5. Dispositif émetteur de lumière selon l'une quelconque des revendications 1 à 4, dans lequel la source de lumière (1) émet en outre une lumière avant, et l'élément de déviation de lumière (2) est en outre situé sur un trajet de lumière de la lumière avant pour collecter la lumière avant; l'élément de déviation de lumière (2) ajuste la direction de propagation de lumière de la lumière avant projetée sur l'élément de déviation de lumière (2), de telle sorte que la lumière avant sortant de l'élément de déviation de lumière (2) est projetée sur le corps de réflecteur (303), le corps de réflecteur (303) réfléchit la lumière avant projetée sur le corps de réflecteur (303), et la lumière avant et la lumière latérale sortant du corps de réflecteur (303) convergent en un point lumineux d'une taille prédéterminée ; et les directions de propagation de lumière de la lumière avant et de la lumière latérale sortant de l'élément de déviation de lumière (2) sont proches ou cohérentes.
  6. Dispositif émetteur de lumière selon la revendication 5, dans lequel l'élément de déviation de lumière (2) ajuste la direction de propagation de lumière de la lumière avant par un ou plusieurs phénomènes parmi une réfraction, une réflexion et une réflexion totale, et l'élément de déviation de lumière (2) réalise au plus deux réflexions et/ou réflexions totales sur la lumière avant.
  7. Dispositif émetteur de lumière selon la revendication 5, dans lequel l'élément de déviation de lumière (2) comprend en outre une partie de réflexion totale (202), laquelle comprend une deuxième surface incurvée (2022) située sur le trajet de lumière de la lumière avant, et une courbure de la deuxième surface incurvée (2022) change avec un angle d'incidence de la lumière avant ; et la deuxième surface incurvée (2022) réfléchit totalement la lumière avant projetée sur la deuxième surface incurvée (2022), et la lumière avant totalement réfléchie est projetée sur le corps de réflecteur (303) de l'abat-jour réfléchissant (3) ; et/ou l'élément de déviation de lumière (2) comprend en outre une partie de réflexion, laquelle comprend une cinquième surface incurvée située sur le trajet de lumière de la lumière avant ; et la cinquième surface incurvée réfléchit la lumière avant projetée sur la cinquième surface incurvée, et la lumière avant réfléchie est projetée sur le corps de réflecteur (303) de l'abat-jour réfléchissant (3).
  8. Dispositif émetteur de lumière selon la revendication 1, dans lequel le corps de réflecteur (303) est un miroir réfléchissant ou un élément transparent à réflexion totale, une section transversale du corps de réflecteur (303) le long d'un axe central se présente sous la forme d'une ligne brisée, chaque coude sur le corps de réflecteur forme une bande de réflecteur annulaire (304), et un rayon de la bande de réflecteur (304) augmente dans la direction allant de l'extrémité supérieure (301) vers l'extrémité inférieure (302) par paliers ; ou
    dans lequel le corps de réflecteur (303) est un miroir réfléchissant ou un élément transparent à réflexion totale, une section transversale du corps de réflecteur (303) le long d'un axe central se présente sous la forme d'une ligne brisée, chaque coude sur le corps de réflecteur (303) forme une bande de réflecteur annulaire (304), et un rayon de la bande de réflecteur (304) augmente dans la direction allant de l'extrémité supérieure (301) vers l'extrémité inférieure (302) par paliers, où la bande de réflecteur (304) est délimitée par une pluralité de plans.
  9. Dispositif émetteur de lumière selon la revendication 1, dans lequel une ou plusieurs sources de lumière sont prévues, et les sources de lumière sont agencées sur un axe central ou réparties à proximité de l'axe central, ou
    dans lequel une ou plusieurs sources de lumière sont prévues, et les sources de lumière sont agencées sur un axe central ou réparties à proximité de l'axe central, lorsqu'une pluralité de sources de lumière sont prévues, la pluralité de sources de lumière incluent une source de lumière centrale disposée sur l'axe central, et une source de lumière périphérique disposée autour de la source de lumière centrale ; la lumière émise par la source de lumière centrale forme un premier point lumineux, et la lumière émise par la source de lumière périphérique forme un second point lumineux ; et un centre du premier point lumineux est situé sur l'axe central, et le second point lumineux est disposé de manière excentrée par rapport à l'axe central ; ou
    dans lequel une ou plusieurs sources de lumière sont prévues, et les sources de lumière sont agencées sur un axe central ou réparties à proximité de l'axe central, lorsqu'une pluralité de sources de lumière sont prévues, la pluralité de sources de lumière comprennent une combinaison d'un ou plusieurs éléments parmi le groupe constitué d'une source de lumière à LED, d'une source de lumière à OLED, d'une source de lumière laser, d'une source de lumière fluorescente et d'un guide de lumière ; et/ou, la pluralité de sources de lumière incluent une première source de lumière émettant une lumière à une première température de couleur et une seconde source de lumière émettant une lumière à une seconde température de couleur.
  10. Dispositif émetteur de lumière selon la revendication 1, dans lequel la première structure de surface concave-convexe (9a) est une première structure de surface ondulée, et la seconde structure de surface concave-convexe (10a) est une seconde structure de surface ondulée ; ou
    dans lequel la première structure de surface concave-convexe (9a) est une première structure de surface ondulée, et la seconde structure de surface concave-convexe (10a) est une seconde structure de surface ondulée, où la première structure de surface ondulée et la seconde structure de surface ondulée fluctuent dans une direction axiale, et le premier cylindre de colonne (21) et le second cylindre de colonne (22) sont en mesure de se déplacer l'un par rapport à l'autre dans la direction axiale ; ou la première structure de surface ondulée et la seconde structure de surface ondulée fluctuent dans une direction circonférentielle, et le premier cylindre de colonne (9) et le second cylindre de colonne (10) sont en mesure de se déplacer l'un par rapport à l'autre dans la direction circonférentielle.
  11. Lampe chirurgicale, comprenant une tête de lampe, où la tête de lampe comprend le dispositif émetteur de lumière (100) selon l'une quelconque des revendications 1 à 10.
  12. Lampe chirurgicale selon la revendication 11, dans laquelle la tête de lampe comprend en outre un abat-jour arrière de tête de lampe (200), et le dispositif émetteur de lumière (100) est fixé sur l'abat-jour arrière de tête de lampe (200) ; ou
    dans laquelle la tête de lampe comprend en outre un abat-jour arrière de tête de lampe (200), et le dispositif émetteur de lumière (100) est fixé sur l'abat-jour arrière de tête de lampe (200), où la tête de lampe comprend en outre un abat-jour avant de tête de lampe transparent (300), l'abat-jour arrière de tête de lampe (200) et l'abat-jour avant de tête de lampe (300) délimitent une chambre de réception, et le dispositif émetteur de lumière (100) est monté au sein de la chambre de réception ; ou
    dans laquelle une pluralité de dispositifs émetteurs de lumière sont prévus, et la pluralité de dispositifs émetteurs de lumière sont prévus selon une inclinaison d'un angle prédéterminé, de telle sorte que des axes centraux des dispositifs émetteurs de lumière se coupent en un seul point ; ou
    dans laquelle la tête de lampe comprend en outre un abat-jour arrière de tête de lampe (200), et le dispositif émetteur de lumière (100) est fixé sur l'abat-jour arrière de tête de lampe (200), où une pluralité de dispositifs émetteurs de lumière sont prévus, et la pluralité de dispositifs émetteurs de lumière sont prévus selon une inclinaison d'un angle prédéterminé, de telle sorte que des axes centraux des dispositifs émetteurs de lumière se coupent en un seul point ; ou
    dans laquelle la tête de lampe comprend en outre un abat-jour arrière de tête de lampe (200), et le dispositif émetteur de lumière (100) est fixé sur l'abat-jour arrière de tête de lampe (200), où la tête de lampe comprend en outre un abat-jour avant de tête de lampe transparent (300), l'abat-jour arrière de tête de lampe (200) et l'abat-jour avant de tête de lampe (300) délimitent une chambre de réception, et le dispositif émetteur de lumière (100) est monté au sein de la chambre de réception, où une pluralité de dispositifs émetteurs de lumière sont prévus, et la pluralité de dispositifs émetteurs de lumière sont prévus selon une inclinaison d'un angle prédéterminé, de telle sorte que des axes centraux des dispositifs émetteurs de lumière se coupent en un seul point.
EP17900462.7A 2017-03-15 2017-03-15 Dispositif émetteur de lumière et lampe chirurgicale Active EP3597993B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/076685 WO2018165880A1 (fr) 2017-03-15 2017-03-15 Dispositif émetteur de lumière et lampe chirurgicale

Publications (3)

Publication Number Publication Date
EP3597993A1 EP3597993A1 (fr) 2020-01-22
EP3597993A4 EP3597993A4 (fr) 2020-11-11
EP3597993B1 true EP3597993B1 (fr) 2022-06-01

Family

ID=63523683

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17900462.7A Active EP3597993B1 (fr) 2017-03-15 2017-03-15 Dispositif émetteur de lumière et lampe chirurgicale

Country Status (4)

Country Link
EP (1) EP3597993B1 (fr)
CN (2) CN112664909B (fr)
ES (1) ES2926223T3 (fr)
WO (1) WO2018165880A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110159977A (zh) * 2019-06-05 2019-08-23 上海医疗器械股份有限公司 具有可换式无影灯模组的照明灯系统
CN113464904B (zh) * 2021-07-05 2023-07-04 西安交通大学第二附属医院 一种可调节式的手术室护理用采光灯

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB531185A (en) * 1939-06-29 1940-12-31 George William Rawlings Improvements in electric lamps
FR1228846A (fr) * 1959-01-30 1960-09-02 Anciens Ets Barbier Perfectionnements aux appareils d'éclairage chirurgical sans ombres
JP4011221B2 (ja) * 1999-01-21 2007-11-21 株式会社小糸製作所 車両用標識灯
DE19956337B4 (de) * 1999-11-23 2004-11-25 Heraeus Med Gmbh Leuchte, insbesondere Operationsleuchte, mit wenigstens zwei elektrischen Lampen
JP2002203406A (ja) * 2000-11-06 2002-07-19 Koito Mfg Co Ltd 無影灯
JP4153370B2 (ja) * 2002-07-04 2008-09-24 株式会社小糸製作所 車両用灯具
JP2004047220A (ja) * 2002-07-10 2004-02-12 Koito Mfg Co Ltd 車両用灯具
CN201129663Y (zh) * 2007-11-26 2008-10-08 杰森医疗设备(上海)有限公司 用于无影灯的反光器
US8388198B2 (en) * 2010-09-01 2013-03-05 Illumination Management Solutions, Inc. Device and apparatus for efficient collection and re-direction of emitted radiation
CN103062641B (zh) * 2011-10-20 2016-10-19 欧司朗股份有限公司 光源单元、配有这种光源单元的照明装置以及医疗设备
CN103292247B (zh) * 2012-02-29 2015-05-20 惠州元晖光电股份有限公司 一种多面体的二次光学透镜
CN202629823U (zh) * 2012-06-16 2012-12-26 南昌迈柯尔医疗器械有限公司 一种led整体反射式无影灯
DE202013006570U1 (de) * 2013-07-22 2013-08-07 Cival Medical Gmbh Operationsleuchte
CN204164948U (zh) * 2014-11-11 2015-02-18 曾林永 无影灯
CN105333318A (zh) * 2015-12-01 2016-02-17 漳州立达信光电子科技有限公司 大角度led照明装置

Also Published As

Publication number Publication date
WO2018165880A1 (fr) 2018-09-20
EP3597993A1 (fr) 2020-01-22
CN112664909A (zh) 2021-04-16
CN109073206B (zh) 2021-01-15
CN109073206A (zh) 2018-12-21
ES2926223T3 (es) 2022-10-24
CN112664909B (zh) 2023-05-30
EP3597993A4 (fr) 2020-11-11

Similar Documents

Publication Publication Date Title
US9164268B2 (en) Light mixing optics and systems
EP2425178B1 (fr) Lentille à réfraction optique commandée
US10254474B2 (en) Light mixing systems with a glass light pipe
US20170351101A1 (en) Light Mixing Lenses And Systems
EP3273144B1 (fr) Projecteur à del
EP3597993B1 (fr) Dispositif émetteur de lumière et lampe chirurgicale
US9169996B2 (en) Luminaire having a set of lamellae
US10663652B2 (en) Light mixing systems with a glass light pipe
CA3227068A1 (fr) Lentille a reflexion totale interne pour diminuer les eblouissements et maintenir le melange des couleurs et le controle des faisceaux
EP3311216B1 (fr) Systèmes de mélange de lumières à conduit de lumière en verre
CA2994832C (fr) Systemes et procedes pour diviseur de faisceau en etoile
CN110177973A (zh) 固态发光器照明组件和灯具

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20191010

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20201013

RIC1 Information provided on ipc code assigned before grant

Ipc: F21V 5/00 20180101ALI20201007BHEP

Ipc: F21Y 115/10 20160101ALN20201007BHEP

Ipc: F21V 13/04 20060101ALI20201007BHEP

Ipc: F21W 131/205 20060101ALI20201007BHEP

Ipc: F21V 7/00 20060101ALI20201007BHEP

Ipc: F21V 13/00 20060101AFI20201007BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F21V 13/00 20060101AFI20210610BHEP

Ipc: F21V 7/00 20060101ALI20210610BHEP

Ipc: F21V 5/00 20180101ALI20210610BHEP

Ipc: F21W 131/205 20060101ALI20210610BHEP

Ipc: F21V 13/04 20060101ALI20210610BHEP

Ipc: F21Y 115/10 20160101ALN20210610BHEP

RIC1 Information provided on ipc code assigned before grant

Ipc: F21V 13/00 20060101AFI20210611BHEP

Ipc: F21V 7/00 20060101ALI20210611BHEP

Ipc: F21V 5/00 20180101ALI20210611BHEP

Ipc: F21W 131/205 20060101ALI20210611BHEP

Ipc: F21V 13/04 20060101ALI20210611BHEP

Ipc: F21Y 115/10 20160101ALN20210611BHEP

INTG Intention to grant announced

Effective date: 20210708

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTC Intention to grant announced (deleted)
RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: NANJING MINDRAY BIO-MEDICAL ELECTRONICS CO., LTD.

RIC1 Information provided on ipc code assigned before grant

Ipc: F21Y 115/10 20160101ALN20211119BHEP

Ipc: F21V 13/04 20060101ALI20211119BHEP

Ipc: F21W 131/205 20060101ALI20211119BHEP

Ipc: F21V 5/00 20180101ALI20211119BHEP

Ipc: F21V 7/00 20060101ALI20211119BHEP

Ipc: F21V 13/00 20060101AFI20211119BHEP

RIN1 Information on inventor provided before grant (corrected)

Inventor name: WANG, LEI

INTG Intention to grant announced

Effective date: 20211214

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1495599

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220615

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017058170

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220601

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2926223

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20221024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220901

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220601

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220601

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220902

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220601

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220901

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1495599

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220601

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220601

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220601

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220601

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220601

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221003

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220601

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220601

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221001

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602017058170

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220601

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220601

26N No opposition filed

Effective date: 20230302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220601

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20230529

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220601

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230315

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230315

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240320

Year of fee payment: 8

Ref country code: GB

Payment date: 20240320

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20240320

Year of fee payment: 8

Ref country code: IT

Payment date: 20240329

Year of fee payment: 8

Ref country code: FR

Payment date: 20240328

Year of fee payment: 8