EP3586568A1 - Levitation melting process - Google Patents

Levitation melting process

Info

Publication number
EP3586568A1
EP3586568A1 EP19721225.1A EP19721225A EP3586568A1 EP 3586568 A1 EP3586568 A1 EP 3586568A1 EP 19721225 A EP19721225 A EP 19721225A EP 3586568 A1 EP3586568 A1 EP 3586568A1
Authority
EP
European Patent Office
Prior art keywords
batches
starting material
batch
section
areas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP19721225.1A
Other languages
German (de)
French (fr)
Other versions
EP3586568B1 (en
Inventor
Sergejs SPITANS
Henrik Franz
Björn SEHRING
Markus Holz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ALD Vacuum Technologies GmbH
Original Assignee
ALD Vacuum Technologies GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ALD Vacuum Technologies GmbH filed Critical ALD Vacuum Technologies GmbH
Priority to PL19721225T priority Critical patent/PL3586568T3/en
Priority to SI201930022T priority patent/SI3586568T1/en
Publication of EP3586568A1 publication Critical patent/EP3586568A1/en
Application granted granted Critical
Publication of EP3586568B1 publication Critical patent/EP3586568B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/02Use of electric or magnetic effects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D39/00Equipment for supplying molten metal in rations
    • B22D39/003Equipment for supplying molten metal in rations using electromagnetic field
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B14/00Crucible or pot furnaces
    • F27B14/06Crucible or pot furnaces heated electrically, e.g. induction crucible furnaces with or without any other source of heat
    • F27B14/061Induction furnaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B14/00Crucible or pot furnaces
    • F27B14/08Details peculiar to crucible or pot furnaces
    • F27B14/0806Charging or discharging devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/22Furnaces without an endless core
    • H05B6/32Arrangements for simultaneous levitation and heating

Definitions

  • This invention relates to a levitation melting process for producing castings with a multiple batch feedstock.
  • the process employs a feedstock having multiple discrete batches separated by areas of reduced cross-section.
  • a more efficient melting of the batches can be achieved.
  • the melt does not come into contact with the material of a crucible, so that contamination by the crucible material or by reaction of the melt with crucible material is avoided.
  • Such metals include, for example, titanium, zirconium, vanadium, tantalum, tungsten, hafnium, niobium, rhenium and molybdenum. However, this is also important for other metals and alloys such as nickel, iron and aluminum.
  • Heated melting processes are known from the prior art.
  • DE 422 004 A already discloses a melting process in which the conductive melt is heated by inductive currents and at the same time free-floating is obtained by electrodynamic action.
  • a casting process in which the molten material is conveyed by a magnet into a mold (electrodynamic pressure casting). The process can be carried out in vacuo.
  • US 2,686,864 A also describes a method in which a conductive melt z. B. is placed in a vacuum under the influence of one or more coils without the use of a crucible in a floating state. In one embodiment, two coaxial coils are used to stabilize the material in suspension. After the melt, the material is dropped or poured into a mold. With the process described there, a 60 g aluminum portion was suspended.
  • the same coil is used both for heating and for holding the melt, in which the frequency of the applied alternating current for regulating the heating power is varied while the current intensity is kept constant.
  • the particular advantages of levitation melting are that contamination of the melt by a crucible material or other materials that are in contact with the melt in other processes is avoided.
  • the floating melt is only in contact with the surrounding atmosphere, which may be, for. B. can act to vacuum or inert gas.
  • the melt can be heated to very high temperatures.
  • the rejects of contaminated material are reduced. Nevertheless, the floating melting has not prevailed in practice. The reason for this is that in the levitation melting process, only a relatively small amount of molten material can be held in suspension (see DE 696 17 103 T2, page 2, paragraph 1).
  • the batches of starting material are introduced into the induction coil area in the form of individual ingots for all levitation melting processes. This usually takes place by means of a gripper, which picks up the ingots at a feed position, moves them into the induction coil area and then releases them after switching on the magnetic field. This often causes problems with the stability of the ingots in the magnetic field and a splashing during melting.
  • the production of these relatively small ingots is comparatively complicated and expensive.
  • the process should allow a high throughput through improved melting efficiency and allow the use of low cost ingots for the batches.
  • a method for producing cast bodies from an electrically conductive material comprising the following steps:
  • the starting material of an electrically conductive material has a plurality of pre-separated, separated by areas of reduced cross-section batches and the areas are designed so that a separation of the pre-separated batches takes place only when melting in an electromagnetic alternating field,
  • the volume of the molten charge is preferably sufficient to fill the casting mold with sufficient dimensions for the production of a cast body ("filling volume"). After filling the mold, it is allowed to cool or cooled with coolant so that the material solidifies in the mold. Thereafter, the casting can be removed from the mold. Casting may consist in dropping the charge, in particular by switching off the alternating electromagnetic field; or the casting may be slowed down by an alternating electromagnetic field, e.g. B. by the use of a coil.
  • a "conductive material” is understood according to the invention to mean a material which has a suitable conductivity in order to heat the material inductively and to hold it in suspension.
  • a “floating state” is understood according to the invention to mean a state of complete floating, so that the treated batch does not have any contact with a crucible or platform or the like.
  • a "cylindrical" ingot means an ingot in the form of the mathematical definition of a general cylinder, in particular a general straight cylinder, the definition explicitly including the special forms of the prism, in particular the straight prism, and of the cuboid.
  • it is a straight circular cylinder or a straight prism with six- to twenty-four-sided base surfaces.
  • the “lowest” charge means, according to the invention, the charge of a starting material according to the invention which is arranged at the end of the starting material which is distal to the end with which the starting material is held and moved.
  • the supply of batches via a feedstock that combines multiple batches instead of individual batches offers several advantages.
  • the batches can first be introduced deeper into the magnetic field of the coils.
  • the starting material does not need to float, but is mechanically held in position.
  • the remaining starting material can push the lowermost batch to be melted into the magnetic field. This increases the efficiency of the melting of the charge. Only when the batch begins to melt, the molten parts go into suspension.
  • the holding power of the remaining starting material also ensures that the charge is stable in the magnetic field. is lome. When the batch has melted, the remaining starting material is pulled upwards and the free-flowing melt is overheated.
  • the charge is introduced so far into the alternating electromagnetic field that the induced eddy current is maximum. In this way, the batch can be optimally heated, which leads to an acceleration of the entire casting process.
  • the starting material for a plurality of batches consists of a cylindrical rod having along its longitudinal axis regions which have a reduced cross-section, the individual regions having the unreduced cross-section corresponding in each case to the quantity of material in a batch.
  • the effect according to the invention of stabilization and improved utilization of the generated magnetic field is achieved in any desired form of the batches.
  • rods in the form of a circular cylinder or a prism with an approximately circular base surface can be produced in a particularly simple and cost-effective manner, for example in continuous casting. It then only have to be introduced by turning, sawing or cutting the batches separating areas in the raw rod.
  • the areas of reduced cross-section, which separate the individual batches, on the one hand ensure lower heat conduction and, on the other hand, a restriction of the induced eddy currents on the charge to be melted in the magnetic field.
  • the cross section between the batches is reduced so much and / or the regions of reduced cross section are so long that there is such extensive confinement of the eddy current induced in an alternating electromagnetic field in a batch adjacent batch is not melted down with.
  • this must be taken into account accordingly in order to achieve an optimum ratio of space-saving arrangement and the risk of melting off the adjacent batch.
  • the heat conduction of the areas with the reduced cross-section is correspondingly preferably so low in the starting material for a plurality of batches that the adjacent batch is not melted when a batch is melted.
  • the regions with the reduced cross section are dimensioned at least such that they have a mechanical load capacity which is sufficient for the weight of the respective starting material to be supported. Since the starting materials are used in a suspended arrangement, it is advantageous if the areas connecting the charges, which have the lowest mechanical strength due to the reduced cross-section, are able to support the entire area below them. This can be avoided that a feed mechanism must be used, which ensures stabilization of the starting material. If the minimum possible cross sections are used, they decrease from top to bottom. It is not necessary to make all cross-sections the same, therefore, to be based on the connection of the top charge.
  • the electrically conductive material used according to the invention has at least one refractory metal from the following group: titanium, zirconium, vanadium, tantalum, tungsten, hafnium, niobium, rhenium, molybdenum.
  • a less high-melting metal such as nickel, iron or aluminum can be used.
  • a conductive material a mixture or alloy with one or more of the aforementioned metals can be used.
  • the metal has a content of at least 50% by weight, in particular at least 60% by weight or at least 70% by weight, of the conductive material. It has been found that these metals benefit particularly from the advantages of the present invention.
  • the conductive material is titanium or a titanium alloy, in particular TiAl or TiAIV.
  • These metals or alloys can be processed particularly advantageously, since they have a pronounced dependence of the viscosity on the temperature and moreover are particularly reactive, in particular with regard to the materials of the casting mold. Since the method according to the invention combines contactless melting in suspension with extremely rapid filling of the casting mold, a particular advantage can be realized precisely for such metals. With the method according to the invention castings can be produced which have a particularly thin or even no oxide layer from the reaction of the melt with the material of the casting mold. And especially in the case of refractory metals, the achieved improved utilization of the induced eddy current and the associated faster heating in the cycle times are noticeable.
  • An advantageous embodiment of the method uses the electrically conductive material in powder form. If the batches are to be designed, for example, in spherical form, then a lot of material would have to be removed when turning from a solid metal rod. An assembly of individual balls, which are screwed together with rods, would cause considerable additional work during production and assembly. If one deviates from powder, however, one can produce the form more easily. Most preferably, this is done by compression with a binder and / or sintering. Conceivable binders are, for example, paraffins, waxes or polymers, which in each case allow a low working temperature.
  • the conductive material is overheated during melting to a temperature which is at least 10 ° C, at least 20 ° C or at least 30 ° C above the melting point of the material.
  • the overheating prevents the material from immediately solidifying on contact with the mold, whose temperature is below the melting temperature. It is achieved that the charge can spread in the mold before the viscosity of the material becomes too high. It is an advantage of levitation smelting that no crucible in contact with the melt needs to be used. Thus, the high loss of material of the cold crucible method is avoided as well as a contamination of the melt by crucible components.
  • the melt can be heated relatively high, since operation in a vacuum or under protective gas is possible and no contact with reactive materials takes place. However, most materials can not be overheated arbitrarily, otherwise a violent reaction with the mold is to be feared. Therefore, the overheating is preferably limited to at most 300 ° C, especially at most 200 ° C, and more preferably at most 100 ° C above the melting point of the conductive material.
  • At least one ferromagnetic element is arranged horizontally around the region in which the charge is melted.
  • the ferromagnetic element may be arranged annularly around the melting region, whereby "annular" not only circular elements, but also square, in particular four- or polygonal ring elements are understood.
  • the element may have a plurality of rod sections which protrude in particular hori zontally in the direction of the melting region.
  • the ferromagnetic element consists of a ferromagnetic material, preferably with an amplitude permeability m 3 > 10, more preferably m 3 > 50 and particularly preferably m 3 > 100.
  • the amplitude permeability relates in particular to the permeability in a temperature range between 25 ° C and 100 ° C and at a magnetic flux density between 0 and 400 mT.
  • the amplitude permeability is in particular at least one hundredth, in particular at least 10 dogs. or 25ths of the amplitude permeability of soft magnetic ferrite (eg 3C92).
  • soft magnetic ferrite eg 3C92
  • an electrically conductive material as the starting material for a Schwe manmelz compiler in which the starting material has a plurality of pre-separated, separated by areas of reduced cross-section batches, wherein a separation of the pre-separated batches until melting in an electromagnetic Alternating field.
  • FIG. 1 is a side view of three embodiments of a starting material according to the invention.
  • Fig. 2 is a side view showing the structure of a fusion region with ferromagnetic element, coils and the lower portion of a multiple charge source material.
  • FIG. 1 shows a side view of three embodiments of an inventive starting material of electrically conductive material. All three are vertical circular cylindrical shapes. At the upper end, an area is arranged, which is suitable for mounting in a feeder. Depending on the method of attachment, this area can be made smooth as shown in the figure or provided with holes or a three-dimensional surface structure, in particular a peripheral circumferential widening, which makes it possible to detect with a hook or gripper.
  • the left starting material has six, the middle five and the right eight batches (1).
  • the individual batches (1) are separated by notches in triangular form. These indentations can be produced, for example, without material loss via a punch.
  • the intermediate starting material the individual charges (1) are spaced by wider areas of reduced cross-section.
  • Such an embodiment can be produced in a simple and cost-effective manner by twisting off a cylindrical rod.
  • the right-hand starting material has narrow circumferential cuts for the division of the individual batches (1).
  • the structure is thus as in the middle starting material, the distances are only reduced and the cross-section of the reduced cross-sectional areas is further reduced. By the further reduced Cross-section, a better restriction of the induced eddy currents and lower heat conduction can be achieved to compensate for the shorter distance.
  • FIG. 2 shows the section of the lowest three charges (1) of the middle starting material from FIG. 1.
  • the lowest charge (1) is within the influence of electromagnetic alternating fields (melting range) which are generated with the aid of the coils (2).
  • Below the batch (1) is an empty mold, which is held by a holder in the filling area (not shown).
  • a ferromagnetic element (3) is arranged below the batch (1).
  • the batch (1) is melted and levitated in the process of the invention. After melting the batch (1), the remaining starting material is pulled up and the melt overheated. Thereafter, the melt is poured into the mold and finally removed the solidified cast body from the mold.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Continuous Casting (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • General Induction Heating (AREA)

Abstract

The invention relates to a method for producing cast bodies in a levitation melting process, wherein a charge of an electrically conductive material is brought, by means of a starting material which has multiple preseparated charges separated by regions with a reduced cross-section, into the reach of at least one alternating electromagnetic field so that the charge is held in a state of levitation. The regions are designed in such a way that the preseparated charges are not detached until during the melting process in an alternating electromagnetic field. The molten metal is then cast into casting molds.

Description

Schwebeschmelzverfahren  Flash smelting process
Diese Erfindung betrifft ein Schwebeschmelzverfahren zur Herstellung von Gusskörpern mit einem Ausgangsmaterial für mehrere Chargen. Bei dem Verfahren wird ein Ausgangsmaterial eingesetzt, das mehrere durch Bereiche mit verringertem Querschnitt abgeteilte einzelne Char- gen aufweist. Durch die Chargenzufuhr über einen einzelnen Ingot kann neben einer günstige- ren Herstellung der Chargenmaterialien auch ein effizienteres Aufschmelzen der Chargen er- reicht werden. Während des Schmelzvorgangs kommt die Schmelze nicht mit dem Material eines Tiegels in Berührung, so dass Verunreinigungen durch das Tiegelmaterial oder durch Reaktion der Schmelze mit Tiegelmaterial vermieden werden. This invention relates to a levitation melting process for producing castings with a multiple batch feedstock. The process employs a feedstock having multiple discrete batches separated by areas of reduced cross-section. By supplying the batch with a single ingot, in addition to a more favorable production of the batch materials, a more efficient melting of the batches can be achieved. During the melting process, the melt does not come into contact with the material of a crucible, so that contamination by the crucible material or by reaction of the melt with crucible material is avoided.
Die Vermeidung solcher Verunreinigungen ist gerade bei Metallen und Legierungen mit hohen Schmelzpunkten von Bedeutung. Solche Metalle sind beispielsweise Titan, Zirkonium, Vanadi- um, Tantal, Wolfram, Hafnium, Niob, Rhenium und Molybdän. Doch auch bei anderen Metallen und Legierungen wie Nickel, Eisen und Aluminium ist dies von Bedeutung. The avoidance of such impurities is especially important for metals and alloys with high melting points. Such metals include, for example, titanium, zirconium, vanadium, tantalum, tungsten, hafnium, niobium, rhenium and molybdenum. However, this is also important for other metals and alloys such as nickel, iron and aluminum.
Stand der Technik State of the art
Schwebeschmelzverfahren sind aus dem Stand der Technik bekannt. So offenbart bereits DE 422 004 A ein Schmelzverfahren, bei dem das leitfähige Schmelzgut durch induktive Ströme erhitzt und gleichzeitig durch elektrodynamische Wirkung frei schwebend erhalten wird. Dort wird auch ein Gießverfahren beschrieben, bei dem das geschmolzene Gut vermittelt durch ei- nen Magneten in eine Form gedrückt wird (elektrodynamischer Pressguss). Das Verfahren kann im Vakuum durchgeführt werden. Heated melting processes are known from the prior art. For example, DE 422 004 A already discloses a melting process in which the conductive melt is heated by inductive currents and at the same time free-floating is obtained by electrodynamic action. There is also described a casting process in which the molten material is conveyed by a magnet into a mold (electrodynamic pressure casting). The process can be carried out in vacuo.
US 2,686,864 A beschreibt ebenfalls ein Verfahren, bei dem ein leitfähiges Schmelzgut z. B. in einem Vakuum unter dem Einfluss von einer oder mehreren Spulen ohne die Verwendung ei- nes Tiegels in einen Schwebezustand versetzt wird. In einer Ausführungsform werden zwei ko- axiale Spulen verwendet, um das Material in der Schwebe zu stabilisieren. Nach erfolgter Schmelze wird das Material in eine Form fallen gelassen bzw. abgegossen. Mit dem dort be- schriebenen Verfahren ließ sich eine 60 g schwere Aluminiumportion in der Schwebe halten.US 2,686,864 A also describes a method in which a conductive melt z. B. is placed in a vacuum under the influence of one or more coils without the use of a crucible in a floating state. In one embodiment, two coaxial coils are used to stabilize the material in suspension. After the melt, the material is dropped or poured into a mold. With the process described there, a 60 g aluminum portion was suspended.
Die Entnahme des geschmolzenen Metalls erfolgt durch Reduktion der Feldstärke, so dass die Schmelze nach unten durch die konisch zulaufende Spule entweicht. Wird die Feldstärke sehr schnell reduziert, fällt das Metall in geschmolzenem Zustand aus der Vorrichtung. Es wurde bereits erkannt, dass der„weak spot“ solcher Spulenanordnungen in der Mitte der Spulen liegt, so dass die Menge an Material, die so geschmolzen werden kann, begrenzt ist. Auch US 4,578,552 A offenbart eine Vorrichtung und ein Verfahren zum Schwebeschmelzen.The removal of the molten metal is carried out by reducing the field strength, so that the melt escapes down through the tapered coil. If the field strength is reduced very rapidly, the metal drops out of the device in a molten state. It has already been recognized that the "weak spot" of such coil arrangements lies in the middle of the coils, so that the amount of material that can be so melted is limited. Also, US 4,578,552 A discloses a device and a method for levitation melting.
Es wird dieselbe Spule sowohl zum Heizen als auch zum Halten der Schmelze verwendet, da- bei wird die Frequenz des angelegten Wechselstroms zur Regelung der Heizleistung variiert, während die Stromstärke konstant gehalten wird. The same coil is used both for heating and for holding the melt, in which the frequency of the applied alternating current for regulating the heating power is varied while the current intensity is kept constant.
Die besonderen Vorteile des Schwebeschmelzens bestehen darin, dass eine Verunreinigung der Schmelze durch ein Tiegelmaterial oder andere Materialien, die bei anderen Verfahren in Kontakt mit der Schmelze stehen, vermieden wird. Die schwebende Schmelze steht nur in Kon- takt zu der sie umgebenden Atmosphäre, bei der es sich z. B. um Vakuum oder Schutzgas handeln kann. Dadurch, dass eine chemische Reaktion mit einem Tiegelmaterial nicht zu be- fürchten ist, kann die Schmelze auf sehr hohe Temperaturen erhitzt werden. Darüber hinaus wird, insbesondere im Vergleich zur Schmelze im Kalttiegel, der Ausschuss an kontaminiertem Material verringert. Dennoch hat sich das Schwebeschmelzen in der Praxis nicht durchgesetzt. Der Grund dafür ist, dass beim Schwebeschmelzverfahren nur eine verhältnismäßig kleine Menge an geschmolzenem Material in der Schwebe gehalten werden kann (vgl. DE 696 17 103 T2, Seite 2, Absatz 1 ). The particular advantages of levitation melting are that contamination of the melt by a crucible material or other materials that are in contact with the melt in other processes is avoided. The floating melt is only in contact with the surrounding atmosphere, which may be, for. B. can act to vacuum or inert gas. The fact that a chemical reaction with a crucible material is not to be feared, the melt can be heated to very high temperatures. In addition, especially in comparison with the melt in the cold crucible, the rejects of contaminated material are reduced. Nevertheless, the floating melting has not prevailed in practice. The reason for this is that in the levitation melting process, only a relatively small amount of molten material can be held in suspension (see DE 696 17 103 T2, page 2, paragraph 1).
Die Chargen an Ausgangsmaterial werden bei allen Schwebeschmelzverfahren in Form von einzelnen Ingots in den Induktionsspulenbereich eingebracht. Dies geschieht üblicherweise mit- tels eines Greifers, der die Ingots an einer Zufuhrposition aufnimmt, in den Induktionsspulenbe- reich bewegt und nach Einschalten des Magnetfeldes dann loslässt. Hierbei treten oftmals Probleme mit der Stabilität der Ingots im Magnetfeld und einem Verspritzen beim Aufschmelzen auf. Die Herstellung dieser relativ kleinen Ingots ist vergleichsweise aufwändig und teuer. The batches of starting material are introduced into the induction coil area in the form of individual ingots for all levitation melting processes. This usually takes place by means of a gripper, which picks up the ingots at a feed position, moves them into the induction coil area and then releases them after switching on the magnetic field. This often causes problems with the stability of the ingots in the magnetic field and a splashing during melting. The production of these relatively small ingots is comparatively complicated and expensive.
Ein weiterer Nachteil hinsichtlich der maximal erzielbaren Effizienz bei der Ausnutzung der in- duzierten Wirbelströme zum Aufheizen der Ingots ist prinzipbedingt. Die Lorentz Kraft der Spu- lenfelds muss die Gewichtskraft der Charge kompensieren, um diese in der Schwebe halten zu können. Sie drückt die Charge dabei nach oben aus dem Spulenfeld. Dadurch sinkt die Charge nicht so tief in das Magnetfeld ein, wie es für eine optimale Ausnutzung des Magnetfelds für das Aufheizen der Charge notwendig wäre. Sie schwebt vielmehr oberhalb dieses optimalen Ni- veaus. Another disadvantage with regard to the maximum achievable efficiency in the utilization of the induced eddy currents for heating the ingots is due to the principle. The Lorentz force of the coil field must compensate for the weight of the charge in order to keep it in suspension. It pushes the batch upwards out of the coil field. As a result, the charge does not sink as deeply into the magnetic field as would be necessary for optimum utilization of the magnetic field for heating the charge. It floats above this optimal level.
Schließlich ist der Zeitaufwand bei der Zufuhr einzelner Ingots ein limitierender Faktor den bei erzielbaren Zykluszeiten. Finally, the time required for the supply of individual ingots is a limiting factor in the achievable cycle times.
Die Nachteile der aus dem Stand der Technik bekannten Verfahren lassen sich wie folgt zu- sammenfassen. Vollschwebeschmelzverfahren lassen sich nur mit kleinen Materialmengen durchführen, so dass eine industrielle Anwendung bisher noch nicht erfolgt ist. Ferner gestaltet sich das Abgießen in Gussformen schwierig. Durch das Levitationsprinzip ist das für die Erwär- mung der Charge nutzbare Magnetfeld bzw. dessen Effizienz bei der Erzeugung von Wirbel- strömen limitiert. Probleme mit der Stabilität der Ingots im Magnetfeld und einem Verspritzen beim Aufschmelzen können auftreten. Die Herstellung der Ingots ist vergleichsweise aufwändig und teuer. The disadvantages of the processes known from the prior art can be summarized as follows. Vollschweerbmelzverfahren can be carried out only with small amounts of material, so that an industrial application has not yet been done. Further designed pouring into molds is difficult. The levitation principle limits the magnetic field that can be used to heat the charge or its efficiency in generating eddy currents. Problems with the stability of the ingots in the magnetic field and splashing during melting can occur. The production of the ingots is comparatively complicated and expensive.
Aufgabe task
Es ist somit eine Aufgabe der vorliegenden Erfindung, ein Verfahren bereit zu stellen, das einen wirtschaftlichen Einsatz des Schwebeschmelzens ermöglicht. Insbesondere sollte das Verfah- ren durch eine verbesserte Effektivität des Aufschmelzvorgangs einen hohen Durchsatz ermög- lichen und den Einsatz kostengünstiger Ingots für die Chargen erlauben. It is thus an object of the present invention to provide a method which allows economical use of levitation melting. In particular, the process should allow a high throughput through improved melting efficiency and allow the use of low cost ingots for the batches.
Beschreibung der Erfindung Description of the invention
Die Aufgabe wird durch das erfindungsgemäße Verfahren gelöst. Ferner löst die Aufgabe auch die Verwendung eines erfindungsgemäßen Ausgangsmaterials in einem Schwebeschmelzver- fahren. Erfindungsgemäß ist ein Verfahren zur Herstellung von Gusskörpern aus einem elektrisch leitfähigen Material, umfassend die folgenden Schritte: The object is achieved by the method according to the invention. Furthermore, the object also solves the use of a starting material according to the invention in a levitation melting process. According to the invention, a method for producing cast bodies from an electrically conductive material, comprising the following steps:
- Einbringen der untersten Charge eines Ausgangsmaterials für mehrere Chargen in den Einflussbereich wenigstens eines elektromagnetischen Wechselfelds (Schmelzbereich), wobei das Ausgangsmaterial aus einem elektrisch leitfähigen Material mehrere vorsepa- rierte, durch Bereiche mit verringertem Querschnitt getrennte Chargen aufweist und die Bereiche so ausgeführt sind, dass eine Abtrennung der vorseparierten Chargen erst beim Aufschmelzen in einem elektromagnetischen Wechselfeld erfolgt, - Introducing the lowest batch of a starting material for several batches in the influence of at least one alternating electromagnetic field (melting range), wherein the starting material of an electrically conductive material has a plurality of pre-separated, separated by areas of reduced cross-section batches and the areas are designed so that a separation of the pre-separated batches takes place only when melting in an electromagnetic alternating field,
- Schmelzen der Charge, - melting the batch,
- Anheben des verbliebenen ungeschmolzenen Ausgangsmaterials von der in einem - Lifting the remaining unmelted starting material from that in one
Schwebezustand befindlichen geschmolzenen Charge,  Suspended molten batch,
- Überhitzen der schwebenden Charge, - overheating the suspended batch,
- Positionieren einer Gussform in einem Füllbereich unterhalb der schwebenden Charge, Positioning a mold in a filling area below the suspended batch,
- Abguss der gesamten Charge in die Gussform, Casting the entire batch into the mold,
Entnahme des erstarrten Gusskörpers aus der Gussform. Das Volumen der geschmolzenen Charge ist dabei vorzugsweise ausreichend, um die Guss- form in einem für die Herstellung eines Gusskörpers ausreichenden Maße zu füllen („Füllvolu men“). Nach dem Befüllen der Gussform wird diese abkühlen gelassen oder mit Kühlmittel ab- gekühlt, so dass das Material in der Form erstarrt. Danach kann der Gusskörper aus der Form entnommen werden. Der Abguss kann in einem Fallenlassen der Charge bestehen, insbeson- dere durch Abschaltung des elektromagnetischen Wechselfeldes; oder der Abguss kann durch ein elektromagnetisches Wechselfeld verlangsamt werden, z. B. durch die Verwendung einer Spule. Removal of the solidified cast body from the mold. The volume of the molten charge is preferably sufficient to fill the casting mold with sufficient dimensions for the production of a cast body ("filling volume"). After filling the mold, it is allowed to cool or cooled with coolant so that the material solidifies in the mold. Thereafter, the casting can be removed from the mold. Casting may consist in dropping the charge, in particular by switching off the alternating electromagnetic field; or the casting may be slowed down by an alternating electromagnetic field, e.g. B. by the use of a coil.
Unter einem„leitfähigen Material“ wird erfindungsgemäß ein Material verstanden, das eine ge- eignete Leitfähigkeit aufweist, um das Material induktiv zu erhitzen und in der Schwebe zu hal- ten. A "conductive material" is understood according to the invention to mean a material which has a suitable conductivity in order to heat the material inductively and to hold it in suspension.
Unter einem„Schwebezustand“ wird erfindungsgemäß ein Zustand des vollständigen Schwe- bens verstanden, so dass die behandelte Charge keinerlei Kontakt zu einem Tiegel oder einer Plattform oder dergleichen hat. A "floating state" is understood according to the invention to mean a state of complete floating, so that the treated batch does not have any contact with a crucible or platform or the like.
Unter einem "zylindrischen" Ingot ist im Rahmen dieser Anmeldung ein Ingot in Form der ma- thematischen Definition eines allgemeinen Zylinders, insbesondere eines allgemeinen geraden Zylinders, zu verstehen, wobei die Definition explizit die Sonderformen des Prismas, insbeson- dere des geraden Prismas, und des Quaders einschließt. Vorzugsweise handelt es sich um einen geraden Kreiszylinder oder ein gerades Prisma mit sechs- bis vierundzwanzigeckigen Grundflächen. For the purposes of this application, a "cylindrical" ingot means an ingot in the form of the mathematical definition of a general cylinder, in particular a general straight cylinder, the definition explicitly including the special forms of the prism, in particular the straight prism, and of the cuboid. Preferably, it is a straight circular cylinder or a straight prism with six- to twenty-four-sided base surfaces.
Unter der "untersten" Charge ist erfindungsgemäß die Charge an einem erfindungsgemäßen Ausgangsmaterial zu verstehen, die an dem Ende des Ausgangsmaterials angeordnet ist, das distal zu dem Ende ist, mit dem das Ausgangsmaterial gehalten und bewegt wird. The "lowest" charge means, according to the invention, the charge of a starting material according to the invention which is arranged at the end of the starting material which is distal to the end with which the starting material is held and moved.
Die Zufuhr der Chargen über ein Ausgangsmaterial, das mehrere Chargen vereinigt, anstelle der einzelnen Chargen bietet mehrere Vorteile. Durch die Aufreihung der Chargen in der Art eines im Wesentlichen stabförmigen Gebildes kann man diese zunächst einmal tiefer in das Magnetfeld der Spulen einführen. Im Gegensatz zu einer einzelnen Charge braucht das Aus- gangsmaterial nicht zu schweben, sondern wird mechanisch in Position gehalten. Das restliche Ausgangsmaterial kann die aufzuschmelzende unterste Charge in das Magnetfeld drücken. Dadurch wird die Effizienz des Aufschmelzens der Charge erhöht. Erst wenn die Charge zu schmelzen beginnt, gehen die geschmolzenen Anteile in den Schwebezustand über. Die Halte- kraft des restlichen Ausgangsmaterials sorgt ferner dafür, dass die Charge im Magnetfeld stabi- lisiert wird. Wenn die Charge aufgeschmolzen ist, wird das restliche Ausgangsmaterial nach oben gezogen und die frei schwebende Schmelze überhitzt. The supply of batches via a feedstock that combines multiple batches instead of individual batches offers several advantages. By arranging the batches in the manner of a substantially rod-shaped structure, they can first be introduced deeper into the magnetic field of the coils. In contrast to a single batch, the starting material does not need to float, but is mechanically held in position. The remaining starting material can push the lowermost batch to be melted into the magnetic field. This increases the efficiency of the melting of the charge. Only when the batch begins to melt, the molten parts go into suspension. The holding power of the remaining starting material also ensures that the charge is stable in the magnetic field. is lisiert. When the batch has melted, the remaining starting material is pulled upwards and the free-flowing melt is overheated.
Höchst bevorzugt wird die Charge so weit in das elektromagnetische Wechselfeld eingeführt, dass der induzierte Wirbelstrom maximal ist. Auf diese Weise kann die Charge optimal erwärmt werden, was zu einer Beschleunigung des gesamten Gießvorgangs führt. Most preferably, the charge is introduced so far into the alternating electromagnetic field that the induced eddy current is maximum. In this way, the batch can be optimally heated, which leads to an acceleration of the entire casting process.
In einer höchst bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens besteht das Ausgangsmaterial für mehrere Chargen aus einem zylindrischen Stab, der entlang seiner Längsachse über Bereiche verfügt, die einen verringerten Querschnitt aufweisen, wobei die einzelnen Bereiche mit dem nicht verringerten Querschnitt jeweils der Materialmenge einer Charge entsprechen. Prinzipiell wird der erfindungsgemäße Effekt der Stabilisierung und der verbesserten Ausnutzung des erzeugten Magnetfeldes bei jeder beliebigen Form der Chargen erzielt. Stäbe in Form eines Kreiszylinders oder eines Prismas mit annähernd kreisförmiger Ba- sisfläche lassen sich jedoch besonders einfach und kostengünstig hersteilen, beispielsweise im Strangguss. Es müssen dann lediglich noch durch Drehen, Sägen oder Trennschleifen die die Chargen abtrennenden Bereiche in den Rohstab eingebracht werden. In a most preferred embodiment of the method according to the invention, the starting material for a plurality of batches consists of a cylindrical rod having along its longitudinal axis regions which have a reduced cross-section, the individual regions having the unreduced cross-section corresponding in each case to the quantity of material in a batch. In principle, the effect according to the invention of stabilization and improved utilization of the generated magnetic field is achieved in any desired form of the batches. However, rods in the form of a circular cylinder or a prism with an approximately circular base surface can be produced in a particularly simple and cost-effective manner, for example in continuous casting. It then only have to be introduced by turning, sawing or cutting the batches separating areas in the raw rod.
Bei keiner Gestaltungsform des erfindungsgemäßen Ausgangsmaterials ist es notwendig, dass die Chargen gleich groß sind. In der Regel werden für eine Serienproduktion gleichartiger Teile zwar gleich große Chargen benötigt. Es ist jedoch auch denkbar, Formen mit mehreren Kavitä- ten im Einsatz zu haben, die unterschiedliche Füllmengen benötigen. Hierauf angepasste Aus- gangsmaterialien mit unterschiedlichen Chargen werden daher von der vorliegenden Erfindung umfasst. With no design form of the starting material according to the invention, it is necessary that the batches are the same size. As a rule, although large batches are required for a series production of similar parts. However, it is also conceivable to use molds with several cavities which require different filling quantities. Customized starting materials with different batches are therefore encompassed by the present invention.
Die Bereiche mit verringertem Querschnitt, die die einzelnen Chargen abteilen, sorgen einer- seits für eine geringere Wärmeleitung und andererseits für eine Beschränkung der induzierten Wirbelströme auf die aufzuschmelzende Charge im Magnetfeld. The areas of reduced cross-section, which separate the individual batches, on the one hand ensure lower heat conduction and, on the other hand, a restriction of the induced eddy currents on the charge to be melted in the magnetic field.
Vorzugsweise ist daher bei dem Ausgangsmaterial für mehrere Chargen der Querschnitt zwi- schen den Chargen so weit verringert und/oder die Bereiche mit verringertem Querschnitt sind so lang, dass eine so weitgehende Eingrenzung des in einem elektromagnetischen Wechselfeld in einer Charge induzierten Wirbelstroms erfolgt, dass die benachbarte Charge nicht mit aufge- schmolzen wird. Bei der Auslegung der die Chargen verbindenden Bereiche ist dies entspre- chend zu berücksichtigen, um ein optimales Verhältnis aus platzsparender Anordnung und der Gefahr des Abschmelzens der benachbarten Charge zu erzielen. Ebenso ist entsprechend vorzugsweise bei dem Ausgangsmaterial für mehrere Chargen die Wärmeleitung der Bereiche mit dem verringerten Querschnitt so niedrig, dass beim Aufschmel- zen einer Charge die benachbarte Charge nicht mit aufgeschmolzen wird. Preferably, therefore, in the case of the starting material for a plurality of batches, the cross section between the batches is reduced so much and / or the regions of reduced cross section are so long that there is such extensive confinement of the eddy current induced in an alternating electromagnetic field in a batch adjacent batch is not melted down with. When designing the areas connecting the batches, this must be taken into account accordingly in order to achieve an optimum ratio of space-saving arrangement and the risk of melting off the adjacent batch. Likewise, the heat conduction of the areas with the reduced cross-section is correspondingly preferably so low in the starting material for a plurality of batches that the adjacent batch is not melted when a batch is melted.
Für das erfindungsgemäße Verfahren ist es höchst bevorzugt, wenn sind bei dem Ausgangs- material für mehrere Chargen die Bereiche mit dem verringerten Querschnitt mindestens so dimensioniert, dass sie eine mechanische Tragkraft aufweisen, die für das Gewicht des jeweils zu tragenden Ausgangsmaterials ausreichend ist. Da die Ausgangsmaterialien in hängender Anordnung verwendet werden, ist es vorteilhaft, wenn die die Chargen verbindenden Bereiche, die wegen des verringerten Querschnitts die geringste mechanische Festigkeit aufweisen, in der Lage sind, jeweils den gesamten Bereich unterhalb von ihnen zu tragen. Hierdurch kann vermieden werden, dass ein Zufuhrmechanismus eingesetzt werden muss, der für eine Stabili sierung des Ausgangsmaterials sorgt. Werden jeweils die minimal möglichen Querschnitte ein- gesetzt, so nehmen diese von oben nach unten ab. Es ist nicht erforderlich, alle Querschnitte gleich zu gestalten, mithin sich an der Verbindung der obersten Charge zu orientieren. For the method according to the invention, it is highly preferred if, in the case of the starting material for a plurality of batches, the regions with the reduced cross section are dimensioned at least such that they have a mechanical load capacity which is sufficient for the weight of the respective starting material to be supported. Since the starting materials are used in a suspended arrangement, it is advantageous if the areas connecting the charges, which have the lowest mechanical strength due to the reduced cross-section, are able to support the entire area below them. This can be avoided that a feed mechanism must be used, which ensures stabilization of the starting material. If the minimum possible cross sections are used, they decrease from top to bottom. It is not necessary to make all cross-sections the same, therefore, to be based on the connection of the top charge.
Das erfindungsgemäß eingesetzte elektrisch leitfähige Material weist in einer bevorzugten Aus- führungsform wenigstens ein hochschmelzendes Metall aus der folgenden Gruppe auf: Titan, Zirkonium, Vanadium, Tantal, Wolfram, Hafnium, Niob, Rhenium, Molybdän. Alternativ kann auch ein weniger hoch schmelzendes Metall wie Nickel, Eisen oder Aluminium eingesetzt wer- den. Als leitfähiges Material kann auch eine Mischung bzw. Legierung mit einem oder mehreren der vorgenannten Metalle eingesetzt werden. Vorzugsweise hat das Metall einen Anteil von wenigstens 50 Gew.-%, insbesondere wenigstens 60 Gew.-% oder wenigstens 70 Gew.-%, an dem leitfähigen Material. Es hat sich gezeigt, dass diese Metalle besonders von den Vorteilen der vorliegenden Erfindung profitieren. In einer besonders bevorzugten Ausführungsform ist das leitfähige Material Titan oder eine Titanlegierung, insbesondere TiAl oder TiAIV. Diese Metalle bzw. Legierungen können besonders vorteilhaft verarbeitet werden, da sie eine ausgeprägte Abhängigkeit der Viskosität von der Temperatur aufweisen und darüber hinaus besonders reak- tiv, insbesondere im Hinblick auf die Materialien der Gussform, sind. Da das erfindungsgemäße Verfahren ein kontaktloses Schmelzen in der Schwebe mit einem extrem schnellen Befüllen der Gussform kombiniert, kann gerade für solche Metalle ein besonderer Vorteil realisiert werden. Mit dem erfindungsgemäßen Verfahren lassen sich Gusskörper hersteilen, die eine besonders dünne oder sogar keinerlei Oxidschicht aus der Reaktion der Schmelze mit dem Material der Gussform aufweisen. Und gerade bei den hochschmelzenden Metallen macht sich die erzielte verbesserte Ausnutzung des induzierten Wirbelstroms und damit verbundene schnellere Erhit- zung bei den Zykluszeiten erheblich bemerkbar. Eine vorteilhafte Ausführungsform des Verfahrens setzt das elektrisch leitfähige Material in Pul- verform ein. Sollen die Chargen beispielsweise in Kugelform gestaltet werden, so müsste beim Drehen aus einem Vollmetallstab sehr viel Material abgetragen werden. Ein Aufbau aus einzel- nen Kugeln, die mit Stäben verschraubt werden, würde erhebliche Mehrarbeit verursachen bei Herstellung und Zusammenbau. Weicht man auf Pulver aus, kann man die Form jedoch einfa- cher hersteilen. Höchst bevorzugt erfolgt dies durch Verpressen mit einem Bindemittel und/oder Sintern. Denkbare Bindemittel sind beispielsweise Paraffine, Wachse oder Polymere, die je- weils eine niedrige Arbeitstemperatur erlauben. In a preferred embodiment, the electrically conductive material used according to the invention has at least one refractory metal from the following group: titanium, zirconium, vanadium, tantalum, tungsten, hafnium, niobium, rhenium, molybdenum. Alternatively, a less high-melting metal such as nickel, iron or aluminum can be used. As a conductive material, a mixture or alloy with one or more of the aforementioned metals can be used. Preferably, the metal has a content of at least 50% by weight, in particular at least 60% by weight or at least 70% by weight, of the conductive material. It has been found that these metals benefit particularly from the advantages of the present invention. In a particularly preferred embodiment, the conductive material is titanium or a titanium alloy, in particular TiAl or TiAIV. These metals or alloys can be processed particularly advantageously, since they have a pronounced dependence of the viscosity on the temperature and moreover are particularly reactive, in particular with regard to the materials of the casting mold. Since the method according to the invention combines contactless melting in suspension with extremely rapid filling of the casting mold, a particular advantage can be realized precisely for such metals. With the method according to the invention castings can be produced which have a particularly thin or even no oxide layer from the reaction of the melt with the material of the casting mold. And especially in the case of refractory metals, the achieved improved utilization of the induced eddy current and the associated faster heating in the cycle times are noticeable. An advantageous embodiment of the method uses the electrically conductive material in powder form. If the batches are to be designed, for example, in spherical form, then a lot of material would have to be removed when turning from a solid metal rod. An assembly of individual balls, which are screwed together with rods, would cause considerable additional work during production and assembly. If one deviates from powder, however, one can produce the form more easily. Most preferably, this is done by compression with a binder and / or sintering. Conceivable binders are, for example, paraffins, waxes or polymers, which in each case allow a low working temperature.
In einer vorteilhaften Ausführungsform der Erfindung wird das leitfähige Material beim Schmel- zen auf eine Temperatur überhitzt, die wenigstens 10 °C, wenigstens 20 °C oder wenigstens 30 °C über dem Schmelzpunkt des Materials liegt. Durch die Überhitzung wird vermieden, dass das Material beim Kontakt mit der Gussform, deren Temperatur unterhalb der Schmelztempera- tur liegt, augenblicklich erstarrt. Es wird erreicht, dass sich die Charge in der Gussform verteilen kann, bevor die Viskosität des Materials zu hoch wird. Es ist ein Vorteil des Schwebeschmel- zens, dass kein Tiegel verwendet werden muss, der im Kontakt mit der Schmelze ist. So wird der hohe Materialverlust des Kalttiegelverfahrens genauso vermieden wie eine Kontamination der Schmelze durch Tiegelbestandteile. Ein weiterer Vorteil ist, dass die Schmelze verhältnis- mäßig hoch erhitzt werden kann, da ein Betrieb im Vakuum oder unter Schutzgas möglich ist und kein Kontakt zu reaktionsfähigen Materialien stattfindet. Dennoch können die meisten Ma- terialien nicht beliebig überhitzt werden, da andernfalls eine heftige Reaktion mit der Gussform zu befürchten ist. Daher ist die Überhitzung vorzugsweise auf höchstens 300 °C, insbesondere höchstens 200 °C und besonders bevorzugt höchstens 100 °C über den Schmelzpunkt des leitfähigen Materials begrenzt. In an advantageous embodiment of the invention, the conductive material is overheated during melting to a temperature which is at least 10 ° C, at least 20 ° C or at least 30 ° C above the melting point of the material. The overheating prevents the material from immediately solidifying on contact with the mold, whose temperature is below the melting temperature. It is achieved that the charge can spread in the mold before the viscosity of the material becomes too high. It is an advantage of levitation smelting that no crucible in contact with the melt needs to be used. Thus, the high loss of material of the cold crucible method is avoided as well as a contamination of the melt by crucible components. Another advantage is that the melt can be heated relatively high, since operation in a vacuum or under protective gas is possible and no contact with reactive materials takes place. However, most materials can not be overheated arbitrarily, otherwise a violent reaction with the mold is to be feared. Therefore, the overheating is preferably limited to at most 300 ° C, especially at most 200 ° C, and more preferably at most 100 ° C above the melting point of the conductive material.
In einer vorteilhaften Ausführungsform des Verfahrens wird zur Konzentration des Magnetfeldes und Stabilisierung der Charge wenigstens ein ferromagnetisches Element horizontal um den Bereich angeordnet, in dem die Charge geschmolzen wird. Das ferromagnetische Element kann ringförmig um den Schmelzbereich angeordnet sein, wobei unter„ringförmig“ nicht nur kreis- runde Elemente, sondern auch eckige, insbesondere vier- oder mehreckige Ringelemente ver- standen werden. Das Element kann mehrere Stababschnitte aufweisen, die insbesondere hori zontal in Richtung des Schmelzbereiches ragen. Das ferromagnetische Element besteht aus einem ferromagnetischen Material, vorzugsweise mit einer Amplitudenpermeabilität m3 > 10, mehr bevorzugt m3 > 50 und besonders bevorzugt m3 > 100. Die Amplitudenpermeabilität be- zieht sich insbesondere auf die Permeabilität in einem Temperaturbereich zwischen 25 °C und 100 °C und bei einer magnetischen Flussdichte zwischen 0 und 400 mT. Die Amplitudenper- meabilität beträgt insbesondere wenigstens ein Hundertstel, insbesondere wenigstens 10 Hun- dertstel oder 25 Hundertstel der Amplitudenpermeabilität von weichmagnetischem Ferrit (z.B. 3C92). Dem Fachmann sind geeignete Materialien bekannt. In an advantageous embodiment of the method, in order to concentrate the magnetic field and stabilize the charge, at least one ferromagnetic element is arranged horizontally around the region in which the charge is melted. The ferromagnetic element may be arranged annularly around the melting region, whereby "annular" not only circular elements, but also square, in particular four- or polygonal ring elements are understood. The element may have a plurality of rod sections which protrude in particular hori zontally in the direction of the melting region. The ferromagnetic element consists of a ferromagnetic material, preferably with an amplitude permeability m 3 > 10, more preferably m 3 > 50 and particularly preferably m 3 > 100. The amplitude permeability relates in particular to the permeability in a temperature range between 25 ° C and 100 ° C and at a magnetic flux density between 0 and 400 mT. The amplitude permeability is in particular at least one hundredth, in particular at least 10 dogs. or 25ths of the amplitude permeability of soft magnetic ferrite (eg 3C92). The person skilled in suitable materials are known.
Erfindungsgemäß ist ferner auch die Verwendung eines elektrisch leitfähigen Materials als Aus- gangsmaterial für ein Schwebeschmelzverfahren, bei dem das Ausgangsmaterial mehrere vor- separierte, durch Bereiche mit verringertem Querschnitt getrennte Chargen aufweist, wobei eine Abtrennung der vorseparierten Chargen erst beim Aufschmelzen in einem elektromagneti- schen Wechselfeld erfolgt. According to the invention is also the use of an electrically conductive material as the starting material for a Schweießmelzverfahren in which the starting material has a plurality of pre-separated, separated by areas of reduced cross-section batches, wherein a separation of the pre-separated batches until melting in an electromagnetic Alternating field.
Kurzbeschreibunq der Figuren Brief description of the figures
Figur 1 ist eine Seitenansicht von drei Ausführungsformen eines erfindungsgemäßen Aus- gangsmaterials. FIG. 1 is a side view of three embodiments of a starting material according to the invention.
Figur 2 ist eine Seitenansicht des Aufbaus eines Schmelzbereiches mit ferromagnetischem Element, Spulen und dem unteren Teilabschnitt eines Ausgangsmaterials für mehrere Chargen. Fig. 2 is a side view showing the structure of a fusion region with ferromagnetic element, coils and the lower portion of a multiple charge source material.
Fiqurenbeschreibunq Fiqurenbeschreibunq
Die Figuren zeigen bevorzugte Ausführungsformen. Sie dienen allein der Veranschaulichung. The figures show preferred embodiments. They are for illustration only.
Figur 1 zeigt eine Seitenansicht von drei Ausführungsformen eines erfindungsgemäßen Aus- gangsmaterials aus elektrisch leitfähigem Material. Bei allen dreien handelt es sich um senk- rechte kreiszylindrische Formen. Am oberen Ende ist ein Bereich angeordnet, der zur Befesti- gung in einer Zuführeinrichtung geeignet ist. Je nach Befestigungsart kann dieser Bereich glatt gestaltet sein wie in der Abbildung oder mit Löchern oder einer dreidimensionalen Oberflächen- struktur versehen sein, insbesondere einer endständigen Umfangsverbreiterung, die ein Erfas- sen mit einem Haken oder Greifer ermöglicht. FIG. 1 shows a side view of three embodiments of an inventive starting material of electrically conductive material. All three are vertical circular cylindrical shapes. At the upper end, an area is arranged, which is suitable for mounting in a feeder. Depending on the method of attachment, this area can be made smooth as shown in the figure or provided with holes or a three-dimensional surface structure, in particular a peripheral circumferential widening, which makes it possible to detect with a hook or gripper.
Das linke Ausgangsmaterial weist sechs, das mittlere fünf und das rechte acht Chargen (1 ) auf. Bei dem linken Ausgangsmaterial werden die einzelnen Chargen (1 ) durch Einkerbungen in Dreiecksform separiert. Diese Einkerbungen lassen sich beispielsweise ohne Materialverlust über eine Stanze erzeugen. Bei dem mittleren Ausgangsmaterial werden die einzelnen Chargen (1 ) durch breitere Bereiche mit verringertem Querschnitt beabstandet. Eine solche Ausfüh- rungsform lässt sich auf einfache und kostengünstige Weise durch Abdrehen aus einem zylind rischen Stab hersteilen. Das rechte Ausgangsmaterial weist demgegenüber zur Abteilung der einzelnen Chargen (1 ) schmale umlaufende Einschnitte auf. Prinzipiell ist der Aufbau damit wie bei dem mittleren Ausgangsmaterial, die Distanzen sind nur verringert und der Querschnitt der im Querschnitt verringerten Bereiche ist noch weiter verringert. Durch den weiter verringerten Querschnitt kann eine bessere Beschränkung der induzierten Wirbelströme und geringere Wärmeleitung erreicht werden, um die kürzere Distanz zu kompensieren. The left starting material has six, the middle five and the right eight batches (1). In the left starting material, the individual batches (1) are separated by notches in triangular form. These indentations can be produced, for example, without material loss via a punch. In the intermediate starting material, the individual charges (1) are spaced by wider areas of reduced cross-section. Such an embodiment can be produced in a simple and cost-effective manner by twisting off a cylindrical rod. In contrast, the right-hand starting material has narrow circumferential cuts for the division of the individual batches (1). In principle, the structure is thus as in the middle starting material, the distances are only reduced and the cross-section of the reduced cross-sectional areas is further reduced. By the further reduced Cross-section, a better restriction of the induced eddy currents and lower heat conduction can be achieved to compensate for the shorter distance.
Figur 2 zeigt den Abschnitt der untersten drei Chargen (1 ) des mittleren Ausgangsmaterials aus Figur 1. Die unterste Charge (1 ) befindet sich im Einflussbereich von elektromagnetischen Wechselfeldern (Schmelzbereich), die mit Hilfe der Spulen (2) erzeugt werden. Unterhalb der Charge (1 ) befindet sich eine leere Gussform, die von einem Halter im Füllbereich gehalten wird (nicht dargestellt). Um den Einflussbereich der Spulen (2) ist ein ferromagnetisches Element (3) angeordnet. Die Charge (1 ) wird in dem erfindungsgemäßen Verfahren geschmolzen und in Schwebe gebracht. Nach dem Schmelzen der Charge (1 ) wird das restliche Ausgangsmaterial nach oben gezogen und die Schmelze überhitzt. Danach wird die Schmelze in die Gussform abgegossen und der erstarrte Gusskörper schließlich aus der Gussform entnommen. FIG. 2 shows the section of the lowest three charges (1) of the middle starting material from FIG. 1. The lowest charge (1) is within the influence of electromagnetic alternating fields (melting range) which are generated with the aid of the coils (2). Below the batch (1) is an empty mold, which is held by a holder in the filling area (not shown). To the sphere of influence of the coils (2) a ferromagnetic element (3) is arranged. The batch (1) is melted and levitated in the process of the invention. After melting the batch (1), the remaining starting material is pulled up and the melt overheated. Thereafter, the melt is poured into the mold and finally removed the solidified cast body from the mold.
Bezuaszeichenliste Bezuaszeichenliste
1 Charge  1 batch
2 Spule  2 coil
3 ferromagnetisches Element  3 ferromagnetic element

Claims

Ansprüche claims
1. Verfahren zur Herstellung von Gusskörpern aus einem elektrisch leitfähigen Material im Schwebeschmelzverfahren, umfassend die folgenden Schritte: 1. A process for the production of castings from an electrically conductive material in the Schweekmelzverfahren, comprising the following steps:
- Einbringen der untersten Charge (1 ) eines Ausgangsmaterials für mehrere Chargen (1 ) in den Einflussbereich wenigstens eines elektromagnetischen Wechselfelds, wobei das Ausgangsmaterial aus einem elektrisch leitfähigen Material mehrere vorseparierte, durch Bereiche mit verringertem Querschnitt getrennte Chargen (1 ) aufweist und die Bereiche so ausgeführt sind, dass eine Abtrennung der vorseparierten Chargen (1 ) erst beim Auf- schmelzen in einem elektromagnetischen Wechselfeld erfolgt, - Introducing the bottom batch (1) of a starting material for several batches (1) in the influence of at least one alternating electromagnetic field, wherein the starting material of an electrically conductive material has a plurality of pre-separated, separated by areas of reduced cross section batches (1) and the areas so that a separation of the pre-separated batches (1) takes place only when they are melted in an electromagnetic alternating field,
- Schmelzen der Charge (1 ), Melting the charge (1),
- Anheben des verbliebenen ungeschmolzenen Ausgangsmaterials von der in einem - Lifting the remaining unmelted starting material from that in one
Schwebezustand befindlichen geschmolzenen Charge (1 ),  Suspended molten charge (1),
- Überhitzen der schwebenden Charge (1 ), - overheating the suspended charge (1),
- Positionieren einer Gussform in einem Füllbereich unterhalb der schwebenden Charge- Positioning a mold in a filling area below the suspended batch
(1 ), (1 ),
- Abguss der gesamten Charge (1 ) in die Gussform, Casting the entire batch (1) into the mold,
- Entnahme des erstarrten Gusskörpers aus der Gussform. - Removal of the solidified cast body from the mold.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Charge (1 ) so weit in das elektromagnetische Wechselfeld eingeführt wird, dass der induzierte Wirbelstrom maximal ist. 2. The method according to claim 1, characterized in that the charge (1) is inserted so far into the electromagnetic alternating field that the induced eddy current is maximum.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Ausgangsmaterial für mehrere Chargen (1 ) aus einem zylindrischen Stab besteht, der entlang seiner Längs- achse über Bereiche verfügt, die einen verringerten Querschnitt aufweisen, wobei die ein- zelnen Bereiche mit dem nicht verringerten Querschnitt jeweils der Materialmenge einer Charge (1 ) entsprechen. 3. The method according to claim 1 or 2, characterized in that the starting material for a plurality of batches (1) consists of a cylindrical rod, which has along its longitudinal axis on areas which have a reduced cross-section, wherein the individual areas with the unreduced cross section in each case correspond to the amount of material of a batch (1).
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass bei dem Ausgangsmaterial für mehrere Chargen (1 ) der Querschnitt zwischen den Chargen (1 ) so weit verringert ist und/oder die Bereiche mit verringertem Querschnitt so lang sind, dass eine so weitgehende Eingrenzung des in einem elektromagnetischen Wechselfeld in einer Charge (1 ) induzierten Wirbelstroms erfolgt, dass die benachbarte Charge (1 ) nicht mit aufgeschmolzen wird. 4. The method according to any one of the preceding claims, characterized in that in the starting material for a plurality of batches (1) the cross section between the batches (1) is so far reduced and / or the areas with reduced cross section are so long that such a far reaching Limitation of the in an electromagnetic alternating field in a batch (1) induced eddy current occurs that the adjacent batch (1) is not melted with.
5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass bei dem Ausgangsmaterial für mehrere Chargen (1 ) die Bereiche mit dem verringerten Querschnitt mindestens so dimensioniert sind, dass sie eine mechanische Tragkraft auf- weisen, die für das Gewicht des jeweils zu tragenden Ausgangsmaterials ausreichend ist. 5. The method according to any one of the preceding claims, characterized in that in the starting material for a plurality of batches (1) the areas with the reduced cross-section are at least dimensioned so that they have a mechanical load capacity, the weight to be supported in each case Starting material is sufficient.
6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass bei dem Ausgangsmaterial für mehrere Chargen (1 ) die Wärmeleitung der Bereiche mit dem verringerten Querschnitt so niedrig ist, dass beim Aufschmelzen einer Charge (1 ) die benachbarte Charge (1 ) nicht mit aufgeschmolzen wird. 6. The method according to any one of the preceding claims, characterized in that in the starting material for a plurality of batches (1), the heat conduction of the areas with the reduced cross section is so low that when melting a batch (1) the adjacent batch (1) not is melted.
7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das elektrisch leitfähige Material wenigstens ein Metall aus der folgenden Gruppe enthält: Titan, Zirkonium, Vanadium, Tantal, Wolfram, Hafnium, Niob, Rhenium, Molybdän, Nickel, Eisen, Aluminium. 7. The method according to any one of the preceding claims, characterized in that the electrically conductive material contains at least one metal from the following group: titanium, zirconium, vanadium, tantalum, tungsten, hafnium, niobium, rhenium, molybdenum, nickel, iron, aluminum.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass das Metall einen Anteil von wenigstens 50 Gew.-%, insbesondere wenigstens 60 Gew.-% oder wenigstens 70 Gew.-%, an dem leitfähigen Material hat. 8. The method according to claim 7, characterized in that the metal has a content of at least 50 wt .-%, in particular at least 60 wt .-% or at least 70 wt .-%, of the conductive material.
9. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das elektrisch leitfähige Material Titan oder eine Titanlegierung, insbesondere TiAl oder TiAIV, ist. 9. The method according to any one of the preceding claims, characterized in that the electrically conductive material is titanium or a titanium alloy, in particular TiAl or TiAIV.
10. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das elektrisch leitfähige Material in Pulverform eingesetzt wird. 10. The method according to any one of the preceding claims, characterized in that the electrically conductive material is used in powder form.
1 1. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass das Ausgangsmaterial für mehrere Chargen (1 ) aus dem elektrisch leitfähigen Material durch Verpressen mit einem Bindemittel und/oder Sintern hergestellt wird. 1 1. A method according to claim 10, characterized in that the starting material for a plurality of batches (1) from the electrically conductive material is produced by pressing with a binder and / or sintering.
12. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das leitfähige Material beim Schmelzen auf eine Temperatur überhitzt wird, die wenigstens 10 °C, wenigstens 20 °C oder wenigstens 30 °C über dem Schmelzpunkt des Materials liegt. 12. The method according to any one of the preceding claims, characterized in that the conductive material is overheated during melting to a temperature which is at least 10 ° C, at least 20 ° C or at least 30 ° C above the melting point of the material.
13. Verwendung eines elektrisch leitfähigen Materials als Ausgangsmaterial für ein Schwebe- schmelzverfahren, dadurch gekennzeichnet, dass das Ausgangsmaterial mehrere vorse- parierte, durch Bereiche mit verringertem Querschnitt getrennte Chargen (1 ) aufweist, wo bei eine Abtrennung der vorseparierten Chargen (1 ) erst beim Aufschmelzen in einem elektromagnetischen Wechselfeld erfolgt. 13. Use of an electrically conductive material as a starting material for a floating melting process, characterized in that the starting material has several advantages parried, separated by areas of reduced cross section batches (1), where in a separation of the pre-separated batches (1) only takes place during melting in an electromagnetic alternating field.
EP19721225.1A 2018-04-20 2019-04-18 Levitation melting Active EP3586568B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PL19721225T PL3586568T3 (en) 2018-04-20 2019-04-18 Levitation melting
SI201930022T SI3586568T1 (en) 2018-04-20 2019-04-18 Levitation melting

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018109592.9A DE102018109592A1 (en) 2018-04-20 2018-04-20 Flash smelting process
PCT/EP2019/060168 WO2019202111A1 (en) 2018-04-20 2019-04-18 Levitation melting process

Publications (2)

Publication Number Publication Date
EP3586568A1 true EP3586568A1 (en) 2020-01-01
EP3586568B1 EP3586568B1 (en) 2020-12-16

Family

ID=66379883

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19721225.1A Active EP3586568B1 (en) 2018-04-20 2019-04-18 Levitation melting

Country Status (13)

Country Link
US (1) US11370020B2 (en)
EP (1) EP3586568B1 (en)
JP (1) JP6883152B1 (en)
KR (1) KR102226483B1 (en)
CN (1) CN111742615B (en)
DE (1) DE102018109592A1 (en)
ES (1) ES2845253T3 (en)
PL (1) PL3586568T3 (en)
PT (1) PT3586568T (en)
RU (1) RU2736273C1 (en)
SI (1) SI3586568T1 (en)
TW (1) TWI727304B (en)
WO (1) WO2019202111A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021125159A1 (en) 2021-09-28 2023-03-30 Ald Vacuum Technologies Gmbh Device and a method for producing an investment cast component

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE422004C (en) 1925-11-23 Otto Muck Dipl Ing Method and device for melting, in particular of conductors and. Like. By electrical induction currents
US1399769A (en) * 1917-11-24 1921-12-13 Westinghouse Electric & Mfg Co Soldering-strip
US2686864A (en) 1951-01-17 1954-08-17 Westinghouse Electric Corp Magnetic levitation and heating of conductive materials
GB1013851A (en) * 1963-01-31 1965-12-22 Ass Elect Ind Improvements in and relating to the production of metal castings
US4578552A (en) 1985-08-01 1986-03-25 Inductotherm Corporation Levitation heating using single variable frequency power supply
JP3041080B2 (en) * 1991-04-19 2000-05-15 電気興業株式会社 Precision casting equipment
TW297050B (en) 1995-05-19 1997-02-01 Daido Steel Co Ltd
JP2783193B2 (en) * 1995-06-26 1998-08-06 大同特殊鋼株式会社 Levitation melting method and levitating melting and casting equipment
US6004368A (en) * 1998-02-09 1999-12-21 Hitchiner Manufacturing Co., Inc. Melting of reactive metallic materials
JP3992376B2 (en) 1998-09-24 2007-10-17 インターメタリックス株式会社 Powder molding method
US20020170696A1 (en) * 2001-05-18 2002-11-21 Ron Akers Apparatus for molding metals
US8532158B2 (en) * 2007-11-17 2013-09-10 Inductotherm Corp. Melting and mixing of materials in a crucible by electric induction heel process
DE102010024883A1 (en) * 2010-06-24 2011-12-29 Zenergy Power Gmbh Device for melting metal pieces
DE102013114811B3 (en) * 2013-12-23 2014-12-31 Ald Vacuum Technologies Gmbh Apparatus and method for treating metallic material
CN103862046B (en) * 2014-03-14 2016-01-20 曹炜喜 A kind of electromagnetism modulation melting emitter
DE102015107258B3 (en) * 2015-05-08 2016-08-04 Ald Vacuum Technologies Gmbh Apparatus and method for producing ingots
DE102017100836B4 (en) * 2017-01-17 2020-06-18 Ald Vacuum Technologies Gmbh Casting process
CN107012290B (en) * 2017-03-09 2019-02-19 昆明理工大学 A kind of preparation method of high-nitrogen austenitic stainless steel

Also Published As

Publication number Publication date
PL3586568T3 (en) 2021-06-28
RU2736273C1 (en) 2020-11-13
EP3586568B1 (en) 2020-12-16
WO2019202111A1 (en) 2019-10-24
US20210146431A1 (en) 2021-05-20
KR20200116154A (en) 2020-10-08
ES2845253T3 (en) 2021-07-26
DE102018109592A1 (en) 2019-10-24
CN111742615A (en) 2020-10-02
SI3586568T1 (en) 2021-07-30
JP6883152B1 (en) 2021-06-09
CN111742615B (en) 2021-06-29
JP2021515374A (en) 2021-06-17
TW201944434A (en) 2019-11-16
US11370020B2 (en) 2022-06-28
TWI727304B (en) 2021-05-11
KR102226483B1 (en) 2021-03-11
PT3586568T (en) 2021-01-21

Similar Documents

Publication Publication Date Title
EP3570993B1 (en) Casting method
DE10296848T9 (en) Device for forming metals
DE69931141T2 (en) Melting process in an induction cold-melt crucible
DE60024142T2 (en) CASTING SYSTEM AND CASTING METHOD FOR HIGH-PURITY AND FINE-CARBURETED METAL CASTING
DE3300205A1 (en) METHOD AND DEVICE FOR THE PRODUCTION OF CARTRIDGE SLEEVES FROM A COPPER BASED ALLOY MOLDED IN THE THIXOTROPICAL CONDITION, AND PRODUCT PRODUCED THEREOF
EP1444065B1 (en) Method for producing alloy ingots
AT409233B (en) METHOD AND ARRANGEMENT FOR PRODUCING CAST BODIES FROM METALS
EP3586568B1 (en) Levitation melting
DE2609949C3 (en) Method and device for producing a casting from a metal alloy solidified in one direction
DE3618531C2 (en)
DE102018117300B3 (en) Levitation melting process with mobile induction units
EP3622782B1 (en) Device and method for levitation melting using induction units which are arranged in a tilted manner
EP3622781B1 (en) Levitation melting method using an annular element
US9598747B2 (en) System and method of melting raw materials
DE69912105T2 (en) DEVICE FOR FOUNDING METAL
EP1450974B1 (en) Device consisting of a heatable casting vessel and a ladle furnace
EP3147918B1 (en) Device and method of manufacturing annular permanent magnets
DE60029835T2 (en) SYSTEM FOR CONTINUOUS FEEDING OF SELF-DRIVEN ELECTRODES IN AN ELECTRIC SLIP TRANSPORT SYSTEM
EP3427863A1 (en) Method and system for the production of cast blocks from metal
AT328634B (en) METHOD FOR MANUFACTURING LARGE STEEL SLABS
DE2360883C3 (en) Method and device for the production of metal alloys
DE102021125159A1 (en) Device and a method for producing an investment cast component
DD208701A1 (en) PROCESS FOR PRODUCING SWITCHES
DE7728790U1 (en) DEVICE FOR THE PRODUCTION OF BLOCKS
DE2319982A1 (en) Electro-slag furnaces for prodn of hollow blocks - molybdenum used for upper part of mandrel gives longer working life

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190925

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
INTG Intention to grant announced

Effective date: 20200916

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALD VACUUM TECHNOLOGIES GMBH

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019000549

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1346761

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210115

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 3586568

Country of ref document: PT

Date of ref document: 20210121

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20210115

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: VALIPAT S.A. C/O BOVARD SA NEUCHATEL, CH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210316

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20201216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2845253

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20210726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019000549

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210416

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

26N No opposition filed

Effective date: 20210917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210418

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210416

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20220412

Year of fee payment: 4

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20190418

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20230417

Year of fee payment: 5

Ref country code: IT

Payment date: 20230428

Year of fee payment: 5

Ref country code: IE

Payment date: 20230425

Year of fee payment: 5

Ref country code: FR

Payment date: 20230413

Year of fee payment: 5

Ref country code: ES

Payment date: 20230517

Year of fee payment: 5

Ref country code: DE

Payment date: 20230418

Year of fee payment: 5

Ref country code: CZ

Payment date: 20230405

Year of fee payment: 5

Ref country code: CH

Payment date: 20230502

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SI

Payment date: 20230407

Year of fee payment: 5

Ref country code: PL

Payment date: 20230411

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230413

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216