EP3586328B1 - Instrument de musique acoustique augmenté avec actionneurs de rétroaction et d'injection . - Google Patents

Instrument de musique acoustique augmenté avec actionneurs de rétroaction et d'injection . Download PDF

Info

Publication number
EP3586328B1
EP3586328B1 EP17793990.7A EP17793990A EP3586328B1 EP 3586328 B1 EP3586328 B1 EP 3586328B1 EP 17793990 A EP17793990 A EP 17793990A EP 3586328 B1 EP3586328 B1 EP 3586328B1
Authority
EP
European Patent Office
Prior art keywords
radiating structure
transfer function
sound
feedback
actuator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17793990.7A
Other languages
German (de)
English (en)
Other versions
EP3586328A1 (fr
Inventor
Adrien Mamou-Mani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hyvibe
Original Assignee
Hyvibe
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hyvibe filed Critical Hyvibe
Publication of EP3586328A1 publication Critical patent/EP3586328A1/fr
Application granted granted Critical
Publication of EP3586328B1 publication Critical patent/EP3586328B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H1/00Details of electrophonic musical instruments
    • G10H1/02Means for controlling the tone frequencies, e.g. attack or decay; Means for producing special musical effects, e.g. vibratos or glissandos
    • G10H1/04Means for controlling the tone frequencies, e.g. attack or decay; Means for producing special musical effects, e.g. vibratos or glissandos by additional modulation
    • G10H1/043Continuous modulation
    • G10H1/045Continuous modulation by electromechanical means
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H1/00Details of electrophonic musical instruments
    • G10H1/46Volume control
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H3/00Instruments in which the tones are generated by electromechanical means
    • G10H3/12Instruments in which the tones are generated by electromechanical means using mechanical resonant generators, e.g. strings or percussive instruments, the tones of which are picked up by electromechanical transducers, the electrical signals being further manipulated or amplified and subsequently converted to sound by a loudspeaker or equivalent instrument
    • G10H3/22Instruments in which the tones are generated by electromechanical means using mechanical resonant generators, e.g. strings or percussive instruments, the tones of which are picked up by electromechanical transducers, the electrical signals being further manipulated or amplified and subsequently converted to sound by a loudspeaker or equivalent instrument using electromechanically actuated vibrators with pick-up means
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10DSTRINGED MUSICAL INSTRUMENTS; WIND MUSICAL INSTRUMENTS; ACCORDIONS OR CONCERTINAS; PERCUSSION MUSICAL INSTRUMENTS; AEOLIAN HARPS; SINGING-FLAME MUSICAL INSTRUMENTS; MUSICAL INSTRUMENTS NOT OTHERWISE PROVIDED FOR
    • G10D1/00General design of stringed musical instruments
    • G10D1/04Plucked or strummed string instruments, e.g. harps or lyres
    • G10D1/05Plucked or strummed string instruments, e.g. harps or lyres with fret boards or fingerboards
    • G10D1/08Guitars
    • G10D1/085Mechanical design of electric guitars
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H2210/00Aspects or methods of musical processing having intrinsic musical character, i.e. involving musical theory or musical parameters or relying on musical knowledge, as applied in electrophonic musical tools or instruments
    • G10H2210/155Musical effects
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H2210/00Aspects or methods of musical processing having intrinsic musical character, i.e. involving musical theory or musical parameters or relying on musical knowledge, as applied in electrophonic musical tools or instruments
    • G10H2210/155Musical effects
    • G10H2210/265Acoustic effect simulation, i.e. volume, spatial, resonance or reverberation effects added to a musical sound, usually by appropriate filtering or delays
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H2220/00Input/output interfacing specifically adapted for electrophonic musical tools or instruments
    • G10H2220/461Transducers, i.e. details, positioning or use of assemblies to detect and convert mechanical vibrations or mechanical strains into an electrical signal, e.g. audio, trigger or control signal
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H2220/00Input/output interfacing specifically adapted for electrophonic musical tools or instruments
    • G10H2220/461Transducers, i.e. details, positioning or use of assemblies to detect and convert mechanical vibrations or mechanical strains into an electrical signal, e.g. audio, trigger or control signal
    • G10H2220/525Piezoelectric transducers for vibration sensing or vibration excitation in the audio range; Piezoelectric strain sensing, e.g. as key velocity sensor; Piezoelectric actuators, e.g. key actuation in response to a control voltage
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H3/00Instruments in which the tones are generated by electromechanical means
    • G10H3/12Instruments in which the tones are generated by electromechanical means using mechanical resonant generators, e.g. strings or percussive instruments, the tones of which are picked up by electromechanical transducers, the electrical signals being further manipulated or amplified and subsequently converted to sound by a loudspeaker or equivalent instrument
    • G10H3/24Instruments in which the tones are generated by electromechanical means using mechanical resonant generators, e.g. strings or percussive instruments, the tones of which are picked up by electromechanical transducers, the electrical signals being further manipulated or amplified and subsequently converted to sound by a loudspeaker or equivalent instrument incorporating feedback means, e.g. acoustic
    • G10H3/26Instruments in which the tones are generated by electromechanical means using mechanical resonant generators, e.g. strings or percussive instruments, the tones of which are picked up by electromechanical transducers, the electrical signals being further manipulated or amplified and subsequently converted to sound by a loudspeaker or equivalent instrument incorporating feedback means, e.g. acoustic using electric feedback

Definitions

  • the present invention relates to a processing of acoustic data picked up on a musical instrument having an acoustically radiating structure. More specifically, provision is made to supply one or more actuators of the radiating structure of the instrument with a signal generated from the acoustic data captured and processed, with a view to enriching the vibratory properties and in particular the sound resulting from the instrument with desired sound effects (echo, reverb, distortion, equalization, etc.).
  • desired sound effects echo, reverb, distortion, equalization, etc.
  • string musical instruments have a radiating structure (soundboard and possibly sound box) coupled to a bridge carrying the strings. It is then proposed in the context of the present invention to cause the radiating structure to resonate with a particular effect, in addition to the playing of the musician. For example in the case of an echo (or "delay" in English), the musician plays a note which the radiating structure amplifies and diffuses, but in addition, one or more actuators acting on the radiating structure then apply a vibration to the structure to replay this note at regular time intervals with a decrease in amplitude to simulate the echo effect.
  • a radiating structure soundboard and possibly sound box
  • WO 2016/209143 A1 describes a method and process for determining the parameters of a control algorithm to synthesize and generate a variety of sounds and vibrations not normally available on a stringed instrument.
  • WO 97/12359 A1 describes a hybrid active vibration attenuation technique for noise canceling headphones.
  • WO 2016/209143 A1 And WO 97/12359 A1 do not, however, describe the aforementioned transformations of the signal.
  • the radiating structure of the instrument itself (typically the CAI resonance box of a guitar for example), is used as a "diffuser” or "high- speaker” of the sound signal transformed by a device DEV of the “effects pedalboard” type.
  • one or more MIC sensors are mounted on the sound box of the guitar (for example at the soundhole). This (these) sensor(s) capture(s) the acoustic vibrations of the radiating structure.
  • the digital signal corresponding to this acoustic signal is transmitted to the input E of a device DEV applying the desired effect(s) and controlling, via its output S, actuators ACT applied against the resonance box CAI to make the box vibrate according to the effects chosen by the user of the device DEV.
  • the sound radiated by the instrument is thus the sum of the acoustic sound played by the musician and its transformations by the DEV device (without the need to pass the captured signal through an amplification chain, as done conventionally and illustrated on the figure 1 ).
  • the transformations thus applied are generally digital audio effects (reverberation (or “reverb”), chorus, distortion, equalization) injected in “feedforward", that is to say that the processing does not take into account the feedback emitted by the actuators on the sensors.
  • the sound radiated has a poor quality, for example compared to another instrument or to that obtained by a conventional amplification chain of the type illustrated in the figure 1 .
  • the physical latency of processing does not exceed a few microseconds.
  • the vibroacoustic transfer function H2 between the actuators and one or more acoustic microphones positioned at any point in space can be estimated in real time.
  • the aforementioned preselection of a particular processing for a sound effect chosen by the user can be carried out statically by an application on a smartphone, typically via a wireless connection (bluetooth for example), or dynamically directly on the instrument (for example with potentiometers like on electric guitars but to directly adjust effects and not volumes).
  • the acoustic pressure p presented on the figures 3 to 6 can be measured by a microphone (that of the smartphone used as a user interface for example). This measurement can then be used (in addition to the transfer function H1) in the determination of the gains of the feedforward, or even for the determination of the gains coupled in feedback/feedforward, for an enrichment of the final rendering, to the ear of the musician.
  • the feedback control mode is not represented on the picture 3 simply illustrating "acoustic paths", but rather on the figure 6 illustrating an implementation of the invention.
  • the transfer function H1 between the sensor and the actuators is measured initially with muted strings (without the musician playing on the strings).
  • This transfer function presents a series of peaks in the frequency space, as well as a average amplitude per frequency band (nine bands for example). It is thus a measurement of the transfer function between actuators and sensors, in open loop, the vibratory properties of the radiating structure then being estimated (frequencies, resonance quality factors, amplitudes at the sensors and at the actuators, and /or other properties). Then, from these measurements, it is deduced from the characteristics of vibration to the CAP sensor which make it possible to refine the control of the feedback to be applied (thanks to methods of automatic estimation of parameters described later). The feedback controller is then programmed from these measurements and estimates. As will be seen below, it is also reprogrammed automatically for each new feedforward processing.
  • the feedforward type gains are adjusted.
  • the values of these gains update the transfer function as explained above (since the characteristics of the sound at the pickup will be influenced by the type of effect chosen, such as for example an echo causing the structure to vibrate after the musician's attack ), which also updates the gains of the controller by feedback.
  • the controller adjusts the feedback type gains (linked to the 6dB increase of each control gain for example) to obtain stable control. Indeed, if this feedback was not taken into account, the control would generally be unstable. If the musician further changes his sound level by transforming the feedforward gain, the feedback gain is recalculated and applied to the system (device and actuators/sensor).
  • the transfer function is estimated dynamically, in particular as a function of the effect or the combination of effects chosen by the user.
  • the amplitudes by bands of this better guitar are targeted by the feedforward gains, these gains updating by elsewhere the characteristics to the sensor.
  • the frequencies and dampings of the best guitar are then targeted by the feedback type controller on the device integrating these gains, by placing the pole of the closed loop system for example. Without the feedback/feedforward combination, the frequencies and dampings are accessible but not the amplitudes per band and instabilities can be generated.
  • the instrument can "sound to the ear" of the user as a chosen target instrument.
  • This system depends on each radiating structure, the position and quantity of sensors and actuators, and the disturbance.
  • the capture is carried out using a single piezoelectric sensor (ceramic PZT or PVDF or even MFC for example) under the saddle of the bridge of a guitar or at the interface between the strings and the bridge of a violin.
  • a single piezoelectric sensor ceramic PZT or PVDF or even MFC for example
  • Another embodiment may provide multiple separate pickups on the bridge, one at the interface with each string.
  • actuation is such that it produces radiated sound of the quality of a good loudspeaker while allowing the vibration characteristics of the body to be measured.
  • the position and the quantity of actuators can be determined by optimization on a numerical simulation by multi-physics finite elements for example.
  • actuation is at the bridge, using two ACT inertial electrodynamic actuators mounted in parallel on either side of the bridge with controllable phase shift or mounted to accommodate a stereo signal.
  • the parameters A, B, C and G are estimated for example from numerical calculation on the simulation of the complete electromechanical system with the finite element method.
  • Another approach consists in estimating them experimentally, from the transfer function in open loop between sensor(s) and actuator(s) for A, B and C and an admittance measurement at the easel with an impact hammer or “ vibrating pot” and accelerometer for G. The estimation is then done for example with the Rational Fractional Polynomial (RFP) method.
  • RFP Rational Fractional Polynomial
  • x(t) not being directly accessible (since the measurement gives only y(t)), it is estimated at any time, for example using state observers, like the Luenberger observer.
  • / w VS id ⁇ HAS ⁇ BK G ⁇ 1
  • Id represents the identity function
  • the controlled vibration of the radiating structure thus has the dynamics of (A - BK) and no longer that of A alone.
  • the K vector is calculated to reach a certain vibrational target, such as resonance frequencies and dampings.
  • the proposed controller introduces, in addition in the command, the characteristics of the vibration taken into account at the sensor (allowing to inject a gain in feedforward transforming the radiated acoustic pressure p but generating feedback).
  • an average per frequency band of the transfer function H1 (and potentially of the transfer function H2 illustrated in the drawings) is carried out.
  • nine bands (Hz) can be chosen: [20, 100]; [100, 200]; [200, 400]; [400, 800]; [800, 1600]; [1600, 3200]; [3200, 6400]; [6400, 12800]; [12800, 20000].
  • the modification of each of these bands thus constitutes the target of the feedforward command. Once this command has been determined, the vector C is calculated.
  • the feedback command is calculated differently compared to the aforementioned first approach, called “classic” (in the sense that it could appear immediately).
  • this is an exemplary embodiment to illustrate the characteristics taken into account at the CAP sensor, as illustrated in the figure 6 , directly for the CTL FF feedforward control, but indirectly also for the CTL FB feedback control and vice versa.
  • the feedforward control is considered here as applying a modification of the vibration characteristics to the sensor.
  • step S1 aiming for example at the connection of the device DIS to the instrument/sensor/actuators system, it is measured, in practice, the transfer function H1 in open loop feedforward at step S2, which makes it possible to deduce at step S3 the parameters vibrations of the radiating structure and in particular the shape of the transfer function H1 and, from there, in step S4 the parameters of the feedback control.
  • step S5 the musician can program a particular sound and/or effect setting, in which case the parameters of the feedforward control are updated at step S6, as well as the other parameters estimated at steps S3 and S4.
  • the sound adjustment can be carried out automatically, for example according to the particular attack of the musician, or other.
  • the effect may not be chosen directly and restrictively by the musician, but may be programmed dynamically according to the playing of the musician.
  • the device DIS can perform real-time processing in step S7 to apply the sound and/or effect setting programmed by the user, for playback at step S8 by the instrument itself.
  • the method above takes particular account of the feedforward control parameters in the estimation of the vibration parameters and the calculation of the feedback control gains.
  • the present invention then makes it possible to drastically reduce the instabilities and to obtain the sound level and more generally the targeted acoustic qualities, thanks to a hybrid feedback/feedforward controller, that is to say that the conventional digital audio effects and the processing of the intrinsic feedback to the instrument are calculated together to feed back the vibration signal to one or more ACT actuators of the radiating structure of the instrument.
  • a radiating structure has been described above, of the resonance box type of a stringed instrument (guitar type, or even violin or piano).
  • the invention can also be applied to other musical instruments such as, for example, drum skins and drums, or even wind instruments.
  • the invention can be applied to any radiating structure (having a radiating plate or table coupled possibly but not necessarily to a sound box), or more generally to any electroacoustic system. It can be for example a loudspeaker, a computer case (or even a mobile device (smartphone or portable speaker) broadcasting sounds and music) conventionally having a sensor and a driven actuator within the meaning of the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Electrophonic Musical Instruments (AREA)

Description

  • La présente invention concerne un traitement de données acoustiques captées sur un instrument de musique disposant d'une structure rayonnante acoustiquement. Plus particulièrement, il est prévu d'alimenter un ou plusieurs actionneurs de la structure rayonnante de l'instrument avec un signal élaboré à partir des données acoustiques captées et traitées, et ce en vue d'enrichir les propriétés vibratoires et notamment le son issu de l'instrument avec des effets sonores souhaités (écho, réverbération, distorsion, égalisation, etc.).
  • Par exemple, les instruments de musique à cordes comportent une structure rayonnante (table d'harmonie et éventuellement caisse de résonance) couplée à un chevalet portant les cordes. Il est alors proposé dans le cadre de la présente invention de faire résonner la structure rayonnante avec un effet particulier, outre le jeu du musicien. Par exemple dans le cas d'un écho (ou « delay » en anglais), le musicien joue une note que la structure rayonnante amplifie et diffuse, mais en outre, un ou plusieurs actionneurs agissant sur la structure rayonnante appliquent ensuite une vibration à la structure pour rejouer cette note à intervalles de temps réguliers avec une diminution d'amplitude pour simuler l'effet d'écho.
  • Cette approche se distingue du cas des effets appliqués classiquement en jouant typiquement sur une guitare électrique connectée à un amplificateur via un câble (ou « jack »). En référence à la figure 1 illustrant ce cas, un ou plusieurs capteur(s) MIC monté(s) sur la guitare GUI capte(nt) le signal de vibration des cordes et ce dernier alimente un dispositif EF appliquant une transformation choisie du signal (écho, réverbération, distorsion, égalisation, changement de phase de type « phaser » ou plus lent de type « flanger », un léger changement de fréquence avec mixage de type « chorus » ou plus marqué de type « octaver », une modulation d'amplitude de type « trémolo », un changement d'amplitude sonore : en dynamique (type « sustain » ou « compression » ou non, ou autres). Ce dispositif EF (appelé communément « pédale d'effet » ou « pédalier d'effets ») est classiquement connecté à un amplificateur AMP qui amplifie électroniquement et fait rayonner le signal acoustique transformé par le pédalier d'effets EF.
  • WO 2016/209143 A1 décrit une méthode et un procédé pour déterminer les paramètres d'un algorithme de contrôle pour synthétiser et générer une variété de sons et de vibrations qui ne sont normalement pas disponibles sur un instrument à cordes. WO 97/12359 A1 décrit une technique d'atténuation active hybride de vibrations pour casque antibruit. WO 2016/209143 A1 et WO 97/12359 A1 ne décrivent cependant pas les transformations précitées du signal.
  • Dans le cas de l'approche au sens de la présente invention, la structure rayonnante de l'instrument, elle-même (typiquement la caisse de résonance CAI d'une guitare par exemple), est utilisée comme « diffuseur » ou « haut-parleur » du signal sonore transformé par un dispositif DEV de type « pédalier d'effets ».
  • Plus particulièrement dans l'exemple de la figure 2, un ou plusieurs capteurs MIC sont montés sur la caisse de résonance la guitare (par exemple au niveau de la rosace). Ce(s) capteur(s) capte(nt) les vibrations acoustiques de la structure rayonnante. Le signal numérique correspondant à ce signal acoustique est transmis en entrée E d'un dispositif DEV appliquant le ou les effets désirés et pilotant, par sa sortie S, des actionneurs ACT appliqués contre la caisse de résonance CAI pour faire vibrer la caisse selon les effets choisis par l'utilisateur du dispositif DEV.
  • De façon générale, dans le contexte de la figure 2, la transformation électronique du son rayonné par un instrument à cordes a consisté jusqu'à présent à :
    • Intégrer des capteurs et actionneurs à ces instruments
    • Appliquer des traitements sur les signaux captés
    • et renvoyer ces signaux captés aux actionneurs.
  • Le son rayonné par l'instrument est ainsi la somme du son acoustique joué par le musicien et de ses transformations par le dispositif DEV (sans nécessité de passer le signal capté dans une chaîne d'amplification, comme effectué classiquement et illustré sur la figure 1).
  • Les transformations ainsi appliquées sont généralement des effets audionumériques (réverbération (ou « reverb »), chorus, distorsion, égalisation) injectés en « feedforward », c'est-à-dire que les traitements ne prennent pas en compte la rétroaction émise par les actionneurs sur les capteurs.
  • Les transformations appliquées avec ces techniques n'obtiennent pas les effets désirés.
  • Les effets audionumériques induisent des instabilités (effet Larsen). On entend ainsi une fréquence non souhaitée se superposant au signal souhaité.
  • Le son rayonné a une mauvaise qualité, par exemple comparée à un autre instrument ou à celle obtenue par une chaîne d'amplification classique du type illustré sur la figure 1.
  • Ces deux défauts proviennent du fait que des caractéristiques de la structure rayonnante et/ou de son couplage avec l'excitation par les cordes ne sont pas prises en compte. En effet, les caractéristiques vibratoires de la structure rayonnante transforment les signaux émis par les actionneurs de manière inégale selon les fréquences. Ceci est dû notamment aux régions de la caisse où les modes de résonance induisent des modifications d'amplitude d'une fréquence à une autre. Cette caractéristique inégale est imposée par le fabricant de l'instrument et est indicatrice de la qualité de l'instrument lorsqu'il est joué en pinçant les cordes. En revanche, lorsque l'excitation se fait par les actionneurs, cela induit une qualité sonore inégale selon les notes jouées. De plus, le couplage important entre les cordes et la caisse à certaines fréquences induit une rétroaction forte sur les capteurs après émission par les actionneurs. Cette rétroaction change les fréquences et amortissements des résonances de la caisse. Le fait de ne pas prendre en compte cette rétroaction est ainsi une source d'erreur et d'instabilité des sons ciblés.
  • La présente invention telle que définie par les revendications vient améliorer la situation.
  • D'autres avantages et caractéristiques de l'invention apparaitront à la lecture de la description détaillée ci-après d'exemples de réalisation de l'invention, et à l'examen des dessins annexés sur lesquels :
    • la figure 1 illustre le montage classique d'un instrument connecté à un pédalier d'effets, lui-même connecté à un amplificateur,
    • la figure 2 illustre un montage au sens de l'invention d'un capteur et d'un ou plusieurs actionneurs sur un instrument connecté à un dispositif gérant les actionneurs notamment en fonction d'une consigne d'un utilisateur du dispositif,
    • la figure 3 illustre la transformation du timbre d'un instrument, ici par simple contrôle de type feedforward modifiant la pression acoustique rayonnée p (chemin primaire depuis l'excitation de la corde), et montre en particulier que le chemin secondaire (de l'actionneur au capteur) peut induire une instabilité, en l'absence de contrôle de la rétroaction ;
    • la figure 4 illustre un ajustement d'un contrôle de rétroaction type « feedback » (FB) suite à la mesure de la fonction de transfert entre capteur et actionneur en boucle ouverte ;
    • la figure 5 illustre un ajustement de contrôle de type feedforward (FF), en fonction de l'effet choisi par le musicien ;
    • la figure 6 illustre un ajustement en parallèle du contrôle de rétroaction, actualisé pour prendre en compte les nouvelles valeurs du contrôle feedforward imposées par la consigne de l'effet choisi par le musicien ;
    • la figure 7 illustre un ordinogramme représentant les étapes d'un exemple de procédé au sens de la présente invention ;
    • la figure 8 illustre un exemple de dispositif pour la mise en oeuvre de l'invention ;
    • la figure 9 illustre un exemple de réalisation avantageux d'un équipement pour une guitare, connecté à un dispositif au sens de l'invention ;
    • les figures 10A, 10B et 10C illustrent des traitements opérés dans un exemple de réalisation pour obtenir des paramètres déterminés à partir de la fonction de transfert H1 précitée, en vue du contrôle feedforward.
  • Comme illustré sur la figure 9, une guitare acoustique équipée d'un dispositif au sens de l'invention est munie :
    • d'un capteur piézoélectrique CAP sous le sillet (partie sous le chevalet portant les cordes),
    • d'un ou plusieurs (par exemple deux) actionneurs ACT électrodynamiques montés ici en parallèle sur chaque côté du chevalet, et
    • d'un dispositif DIS (connecté par son entrée E au capteur, et sa sortie S aux actionneurs).
  • En référence à la figure 8 montrant en détail le dispositif DIS dans un exemple de réalisation, le dispositif comprend :
    • un préamplificateur PRA pour le capteur (via l'entrée E du dispositif),
    • un convertisseur analogique-numérique rapide CAN,
    • un microcontrôleur CTL,
    • un convertisseur numérique-analogique rapide CNA et un amplificateur de puissance AP excitant les actionneurs ACT (via la sortie S du dispositif).
  • La latence physique des traitements n'excède pas quelques microsecondes.
  • Ainsi, le dispositif DIS opère pratiquement en temps-réel (à latence très faible comme par exemple quelques microsecondes entre l'entrée E et la sortie S). Le dispositif DIS comporte un microcontrôleur ou plus généralement un circuit de traitement CTL incluant typiquement :
    • une mémoire MEM stockant des données d'instructions d'un programme informatique au sens de l'invention (et éventuellement d'autres données non permanentes, de calcul), et
    • un processeur PROC lisant le contenu de la mémoire MEM pour exécuter le programme informatique, en mettant ainsi en oeuvre des algorithmes de traitements audionumériques effectués par échantillon, ces algorithmes étant informés par une estimation des propriétés de la structure rayonnante, obtenues comme détaillé ci-après.
  • La présente invention propose un traitement de type feedback/feedforward (FB/FF), dans lequel :
    • une fonction de transfert H1 entre le capteur CAP et les actionneurs ACT est estimée initialement en boucle ouverte comme illustré sur la figure 4,
    • un traitement acoustique (par exemple un effet ou une combinaison d'effets) est présélectionné par un utilisateur via une interface homme/machine (IHM) que comporte le dispositif DIS,
    • le contrôleur CTL ajuste éventuellement la fonction de transfert estimée, en fonction de l'effet programmé,
    • lorsque l'utilisateur joue de l'instrument, l'effet programmé est appliqué pour mettre en oeuvre les actionneurs, en mode feedforward (flèche F1 de la figure 3),
    • ensuite, la vibration que fait opérer les actionneurs sur l'instrument et notamment sur les cordes est prise en compte (flèche F2 de la figure 3) en tenant compte de la fonction de transfert ajustée, et en contrôlant en particulier le signal que capte le capteur CAP (par exemple en prévoyant un contrôle au niveau de la pré-amplification PRA par le processeur PROC comme illustré sur la figure 8),
    • le son ou la vibration capté par le capteur CAP est ainsi ajusté et analysé en mode feedback pour appliquer l'effet désiré (CTL FF) avec la prise en compte de l'activation des actionneurs sur la vibration des cordes et plus généralement de la structure rayonnante, cette vibration venant s'ajouter au jeu naturel du musicien et à l'effet acoustique désiré.
  • Il est possible en outre d'estimer en temps réel la fonction de transfert vibroacoustique H2 entre les actionneurs et un ou plusieurs microphones acoustiques positionnés en des points quelconques de l'espace pour mesurer la pression p (proche des oreilles du musicien, de l'auditeur, ou encore d'une prise de son par exemple d'un smartphone intégrant les moyens informatiques d'un dispositif au sens de l'invention). Ainsi par exemple, la présélection précitée d'un traitement particulier pour un effet sonore choisi par l'utilisateur peut s'effectuer statiquement par une application sur smartphone, typiquement via une connexion sans fil (bluetooth par exemple), ou dynamiquement directement sur l'instrument (par exemple avec des potentiomètres comme sur des guitares électriques mais pour régler directement des effets et non pas des volumes).
  • Ainsi, la pression acoustique p présentée sur les figures 3 à 6 peut être mesurée par un microphone (celui du smartphone utilisé comme interface utilisateur par exemple). Cette mesure peut alors être utilisée (outre la fonction de transfert H1) dans la détermination des gains du feedforward, ou encore pour la détermination des gains couplés en feedback/feedforward, pour un enrichissement du rendu final, à l'oreille du musicien.
  • Il convient de noter que le mode de contrôle en feedback n'est pas représenté sur la figure 3 illustrant simplement des « chemins acoustiques », mais plutôt sur la figure 6 illustrant une mise en oeuvre de l'invention.
  • Dans une réalisation particulière illustrée sur la figure 4, la fonction de transfert H1 entre le capteur et les actionneurs est mesurée initialement cordes étouffées (sans que le musicien ne joue sur les cordes). Cette fonction de transfert présente une série de pics dans l'espace fréquentiel, ainsi qu'une amplitude moyenne par bande fréquentielle (neuf bandes par exemple). Il s'agit ainsi d'une mesure de la fonction de transfert entre actionneurs et capteurs, en boucle ouverte, les propriétés vibratoires de la structure rayonnante étant alors estimées (fréquences, facteurs de qualité des résonances, amplitudes aux capteurs et aux actionneurs, et/ou autres propriétés). Ensuite, à partir de ces mesures, il est déduit des caractéristiques de vibration au capteur CAP qui permettent d'affiner le contrôle du feedback à appliquer (grâce à des méthodes d'estimation automatique de paramètres décrits plus loin). Le contrôleur par feedback est alors programmé à partir de ces mesures et estimations. Comme on le verra plus loin, il est reprogrammé en outre automatiquement pour chaque nouveau traitement feedforward.
  • Par ailleurs, en référence maintenant à la figure 5, lorsque l'utilisateur commence à choisir les modifications du son acoustique qu'il souhaite (effets précités), les gains de type feedforward sont ajustés. Les valeurs de ces gains mettent à jour la fonction de transfert comme expliqué ci-dessus (puisque les caractéristiques du son au capteur seront influencées par le type d'effet choisi, comme par exemple un écho faisant vibrer la structure après l'attaque du musicien), ce qui réactualise aussi les gains du contrôleur par feedback. On obtient ainsi une parfaite prise en compte des modifications choisies par le musicien pour une restitution optimale de l'instrument (en prenant en compte l'influence de ces modifications sur la rétroaction qui est intrinsèque à l'instrument).
  • Si le guitariste choisit par exemple d'augmenter le niveau sonore de 6dB (niveau sonore doublé), le dispositif mesure les modifications de la fonction de transfert H1 en boucle ouverte feedforward avec le signal au capteur augmenté de 6dB. Il estime ainsi les nouvelles valeurs d'amplitudes en fréquence, ainsi que leur écart aux valeurs initiales. On comprendra ainsi que la fonction de transfert est estimée préférentiellement:
    • pour plusieurs bandes de fréquences (une dizaine typiquement), et
    • en fonction de plusieurs niveaux d'amplitude sonore (caractérisant par exemple le niveau d'excitation à l'attaque du musicien).
  • Le contrôleur ajuste les gains de type feedback (liés à l'augmentation de 6dB de chaque gain de contrôle par exemple) pour obtenir un contrôle stable. En effet, si la prise en compte de cette rétroaction n'était pas effectuée, le contrôle serait généralement instable. Si le musicien change encore son niveau sonore en transformant le gain feedforward, le gain du feedback est recalculé et appliqué au système (dispositif et actionneurs/capteur).
  • On comprendra ainsi que la fonction de transfert est estimée dynamiquement, notamment en fonction de l'effet ou de la combinaison d'effets choisie par l'utilisateur.
  • Si le musicien souhaite que son instrument ait le même timbre qu'un autre instrument, comme par exemple une guitare de meilleure qualité qui a été préalablement analysée, les amplitudes par bandes de cette meilleure guitare sont ciblées par les gains feedfoward, ces gains réactualisant par ailleurs les caractéristiques au capteur. Les fréquences et amortissements de la meilleure guitare sont alors ciblés par le contrôleur type feedback sur le dispositif intégrant ces gains, par placement de pôle du système en boucle fermée par exemple. Sans la combinaison feedback/feedforward, les fréquences et amortissements sont accessibles mais pas les amplitudes par bande et des instabilités peuvent être générées.
  • Dans ce cas notamment, il peut être utile d'estimer la seconde fonction de transfert précitée H2 afin d'affiner les paramètres de calcul de la rétroaction (vibratoires mais aussi sonores), en utilisant alors au moins un microphone pour capter la pression acoustique p dans l'air à proximité de la structure rayonnante de l'instrument (par exemple, simplement par le microphone d'un smartphone à proximité opérant le traitement de l'invention). Ainsi, l'instrument peut « sonner à l'oreille » de l'utilisateur comme un instrument cible choisi.
  • A titre d'exemple purement illustratif et non limitatif, le système instrument/capteur/actionneurs incluant le contrôle peut être formalisé, dans une première approche classique, comme suit : dx / dt = Ax t + Bu t + Gw t
    Figure imgb0001
    y t = Cx t
    Figure imgb0002
    y t = Kx t
    Figure imgb0003
    où x(t) est le vecteur d'état du système (ensemble des déplacements et vitesses modales par exemple), u(t), y(t) et w(t) étant respectivement la commande, la mesure et la perturbation, A est la matrice caractérisant la structure rayonnante, B celle des actionneurs, C celle du capteur, G celle de la perturbation et K le vecteur gain du contrôleur.
  • Ce système dépend de chaque structure rayonnante, de la position et la quantité de capteurs et d'actionneurs, et de la perturbation.
  • Dans un mode de réalisation particulier, la captation s'effectue à l'aide d'un seul capteur piézoélectrique (céramique PZT ou PVDF ou encore MFC par exemple) sous le sillet du chevalet d'une guitare ou à l'interface entre les cordes et le chevalet d'un violon. Une autre réalisation peut prévoir des capteurs multiples séparés sur le chevalet, un à l'interface avec chaque corde.
  • L'actionnement est tel qu'il produit un son rayonné de la qualité d'une bonne enceinte acoustique tout en permettant de mesurer les caractéristiques vibratoires de la caisse. Pour cela, la position et la quantité d'actionneurs peut être déterminée par optimisation sur une simulation numérique par éléments finis multi-physiques par exemple. Dans un mode de réalisation particulier illustré sur la figure 9, l'actionnement se fait au chevalet, à l'aide de deux actionneurs électrodynamiques inertiels ACT montés en parallèle de chaque côté du chevalet avec un déphasage contrôlable ou montés pour accueillir un signal stéréo.
  • Dans les expressions ci-dessus, les paramètres A, B, C et G sont estimés par exemple à partir de calcul numérique sur la simulation du système électromécanique complet avec la méthode des éléments finis. Une autre approche consiste à les estimer expérimentalement, à partir de la fonction de transfert en boucle ouverte entre capteur(s) et actionneur(s) pour A, B et C et une mesure d'admittance au chevalet avec marteau d'impact ou « pot vibrant » et accéléromètre pour G. L'estimation se fait alors par exemple avec la méthode Rational Fractional Polynomial (RFP). D'autre part, x(t) n'étant pas directement accessible (puisque la mesure donne seulement y(t)), il est estimé à tout instant, par exemple à l'aide d'observateurs d'état, comme l'observateur de Luenberger.
  • Une fonction de transfert y/w du système peut s'écrire alors : y / w = C sId A G 1 pour le système seul
    Figure imgb0004
    y / w = C sId A BK G 1 pour le système contrôlé
    Figure imgb0005
    où la fonction de transfert y/w dépend de la variable s, c'est-à-dire que la fonction de transfert y/w peut s'écrire y(s)/w(s) et où Id représente la fonction identité.
  • La vibration contrôlée de la structure rayonnante a ainsi la dynamique de (A - BK) et plus celle de A seul. Le vecteur K est calculé pour atteindre une certaine cible vibratoire, comme les fréquences et amortissements des résonances. On pourra par exemple utiliser des algorithmes de placement de pôles de (A - BK).
  • Dans une deuxième approche présentée plus haut en référence aux figures 3 à 5, le contrôleur proposé introduit, en plus dans la commande, les caractéristiques de la vibration prises en compte au capteur (permettant d'injecter un gain en feedforward transformant la pression acoustique rayonnée p mais générant du feedback). Dans ce cas, en plus de l'estimation de A, B, C et G, une moyenne par bande fréquentielle de la fonction de transfert H1 (et potentiellement de la fonction de transfert H2 illustrée sur les dessins) est effectuée. On peut choisir par exemple neuf bandes (Hz): [20, 100] ; [100, 200] ; [200, 400] ; [400, 800] ; [800, 1600] ; [1600, 3200] ; [3200, 6400] ; [6400, 12800] ; [12800, 20000]. La modification de chacune de ces bandes constitue ainsi la cible de la commande en feedforward. Une fois cette commande déterminée, le vecteur C est calculé.
  • On a illustré sur les figures 10A, 10B et 10C un exemple d'obtention des paramètres A, B, C, K intervenant dans les équations ci-avant. En référence à la figure 10A, le spectre (amplitudes/fréquences) de la fonction de transfert H1 entre le ou les capteur(s) et le ou les actionneur(s) est mesuré. En référence à la figure 10B, la détection fréquentielle des pics isolés d'amplitude de la fonction de transfert H1 permet d'obtenir les paramètres A, B et C. En référence à la figure 10C, le calcul de l'amplitude moyenne par bande fréquentielle de la fonction de transfert H1 est aussi effectué afin d'obtenir le paramètre K, en fonction en outre des paramètres estimés précédemment A, B et C. On peut alors obtenir en effet les gains K du contrôleur feedback, et aussi par bande fréquentielle ceux du contrôleur feedforward. Globalement, on obtient ainsi toutes les fréquences, amortissements et gains modaux, avec les amplitudes par bande.
  • Dans ce qui suit, la commande en feedback est calculée différemment par rapport à la première approche précitée, dite « classique » (dans le sens où elle pourrait apparaitre immédiatement).
  • Dans cette deuxième approche, les équations (1) et (2) restent inchangées mais l'équation (3) devient : u t = Kx t + Cx t
    Figure imgb0006
  • La fonction de transfert y/w du système s'écrit pour le système contrôlé : y / w = C sId A + BC BK G 1
    Figure imgb0007
  • La caisse contrôlée a ainsi la dynamique de (A + BC - BK) et plus celle de (A - BK) avec le contrôleur selon la première approche classique. Le vecteur K est calculé pour :
    • assurer la stabilité pour toutes les modifications apportées au vecteur C,
    • atteindre une cible vibratoire donnée en plaçant par exemple les pôles de (A + BC - BK), les fréquences et amortissements des résonances étant contrôlées par le vecteur K et les amplitudes par bande étant contrôlées par la matrice C.
  • Bien entendu, il s'agit d'un exemple de réalisation pour illustrer les caractéristiques prises en compte au capteur CAP, comme illustré sur la figure 6, directement pour le contrôle feedforward CTL FF, mais indirectement aussi pour le contrôle feedback CTL FB et vice-versa. En effet, le contrôle feedforward est considéré ici comme appliquant une modification des caractéristiques vibratoires au capteur.
  • En référence maintenant à la figure 7 résumant un exemple de succession d'étapes d'un procédé au sens de l'invention, à l'issue d'une étape de début S1 visant par exemple la connexion du dispositif DIS au système instrument/capteur/actionneurs, il est mesuré, en pratique, la fonction de transfert H1 en boucle ouverte feedforward à l'étape S2, ce qui permet de déduire à l'étape S3 les paramètres vibratoires de la structure rayonnante et notamment la forme de fonction de transfert H1 et, de là, à l'étape S4 les paramètres du contrôle de feedback. Ensuite, à l'étape S5, le musicien peut programmer un réglage sonore et/ou d'effet particulier, auquel cas les paramètres du contrôle feedforward sont mis à jour à l'étape S6, ainsi que les autres paramètres estimés aux étapes S3 et S4. En complément ou en variante, le réglage sonore peut être effectué automatiquement, par exemple en fonction de l'attaque particulière du musicien, ou autre. D'ailleurs, dans une réalisation possible, l'effet peut ne pas être choisi directement et restrictivement par le musicien, mais peut se programmer dynamiquement selon le jeu du musicien.
  • Sinon (flèche « non » en sortie du test S5), le dispositif DIS peut opérer un traitement en temps réel à l'étape S7 pour appliquer le réglage de son et/ou d'effet programmés par l'utilisateur, pour une restitution à l'étape S8 par l'instrument lui-même.
  • Ainsi, le procédé ci-avant prend en compte particulièrement les paramètres de contrôle feedforward dans l'estimation des paramètres vibratoires et du calcul des gains de contrôle en feedback.
  • La présente invention permet alors de réduire drastiquement les instabilités et d'obtenir le niveau sonore et plus généralement les qualités acoustiques ciblées, grâce à un contrôleur hybride feedback/feedforward, c'est-à-dire que les effets audionumériques classiques et le traitement de la rétroaction intrinsèque à l'instrument sont calculés ensemble pour réinjecter le signal de vibration à un ou plusieurs actionneurs ACT de la structure rayonnante de l'instrument.
  • Parmi les avantages de la technique mise en oeuvre dans le cadre de la présente invention, on peut citer:
    • une augmentation du niveau sonore et un enrichissement du timbre de l'instrument acoustique,
    • l'injection des traitements audionumériques dans un instrument acoustique en évitant les instabilités de type effet Larsen,
    • l'atteinte des propriétés vibratoires de la structure rayonnante cibles que sont les fréquences, amortissements des résonances et amplitudes par bande fréquentielle, pour ainsi améliorer significativement les qualités acoustiques de l'instrument,
    • un seul capteur et un seul actionneur pouvant être prévus pour effectuer la totalité des transformations.
  • Bien entendu, la présente invention ne se limite pas la forme de réalisation décrite ci-avant à titre d'exemple ; elle s'étend à d'autres variantes.
  • Ainsi, on a décrit ci-avant une structure rayonnante, de type caisse de résonance d'un instrument à cordes (type guitare, ou encore violon ou piano). Toutefois, l'invention peut s'appliquer aussi à d'autres instruments de musique tels que par exemple des peaux et fûts de batteries, ou encore des instruments à vent. Plus généralement encore, l'invention peut s'appliquer à toute structure rayonnante (disposant d'une plaque ou table rayonnante couplée possiblement mais non nécessairement à une caisse de résonance), ou plus généralement à tout système électroacoustique. Il peut s'agir par exemple d'une enceinte acoustique, d'un boîtier d'ordinateur (ou même d'un appareil mobile (smartphone ou enceinte portative) diffusant des sons et de la musique) disposant classiquement d'un capteur et d'un actionneur piloté au sens de la présente invention.

Claims (9)

  1. Procédé mis en oeuvre par des moyens informatiques, de traitement de données sonores issues d'au moins un capteur monté sur une structure acoustiquement rayonnante d'un instrument de musique et d'activation d'au moins un actionneur appliqué contre la structure acoustiquement rayonnante,
    le capteur (CAP) captant un signal acoustique issu de la vibration de la structure rayonnante, ladite structure rayonnante portant au moins un actionneur piloté par lesdits moyens informatiques et participant à la vibration de la structure rayonnante,
    le procédé comportant :
    a) mesurer une fonction de transfert (H1) de l'ensemble actionneur, structure rayonnante, capteur,
    b) piloter une activation de l'actionneur (ACT) pour faire vibrer la structure rayonnante, selon une consigne choisie :
    - en tenant compte de la fonction de transfert mesurée, et
    - en tenant compte du signal acoustique capté par le capteur en mode de rétroaction,
    et dans lequel l'activation de l'actionneur est pilotée en mode hybride rétroaction/injection, de type « feedback/feedforward »,
    et dans lequel la consigne choisie ( S5 ) comporte une commande d'au moins un effet sonore parmi
    un changement d'amplitude sonore, une égalisation, un écho, une réverbération, une distorsion,
    un changement de phase, un changement de fréquence, une modulation d'amplitude, et une combinaison de ces effets sonores,
    le procédé comportant une ou plusieurs itérations des étapes :
    - sur commande de l'effet sonore choisi par l'utilisateur ( S5 ), ajuster des gains de type feedforward ( S6 ) et des gains d'un contrôle par rétroaction feedback, ( S4 ), en fonction de la consigne d'effet sonore choisi,
    - mettre à jour ( S3 ), avec les gains ajustés, ladite fonction de transfert,
    - piloter (S7) l'activation de l'actionneur (ACT) pour faire vibrer ( S8 ) la structure rayonnante, selon
    la consigne correspondant à l'effet sonore choisi, en tenant compte de la fonction de transfert mise à jour et du signal acoustique capté par le capteur en mode de rétroaction.
  2. Procédé selon la revendication 1, dans lequel, à l'étape a) :
    - ladite fonction de transfert (H1) est mesurée en boucle ouverte (S2), et
    - de là, des paramètres vibratoires de la structure sont estimés (S3) pour calculer des gains de contrôle de rétroaction (S4).
  3. Procédé selon l'une des revendications précédentes, dans lequel le traitement des données sonores s'effectue par échantillon, à une latence inférieure à cent microsecondes.
  4. Procédé selon l'une des revendications précédentes, dans lequel, la structure rayonnante comportant une caisse de résonance d'un instrument de musique à cordes, ladite fonction de transfert est mesurée cordes étouffées.
  5. Procédé selon l'une des revendications précédentes, dans lequel, la structure rayonnante comportant une caisse de résonance d'un instrument de musique à cordes, on prévoit deux actionneurs disposés de part et d'autre du chevalet portant les cordes.
  6. Procédé selon la revendication 2, dans lequel un microphone est prévu en outre pour capter une pression acoustique (p) dans l'air à proximité de la structure rayonnante, le procédé comportant en outre la mesure d'une deuxième fonction de transfert (H2) de l'ensemble actionneur, structure rayonnante, microphone,
    et dans lequel l'activation de l'actionneur est pilotée en mode feedback/feedforward, avec une estimation affinée des gains de contrôle de rétroaction en fonction en outre de ladite deuxième fonction de transfert (H2).
  7. Procédé selon l'une des revendications précédentes, dans lequel, la structure rayonnante comportant une caisse de résonance d'un instrument de musique réel, lesdits moyens informatiques sont configurés pour donner les caractéristiques vibratoires et sonores d'un instrument de musique choisi audit instrument de musique réel.
  8. Programme informatique comportant des instructions pour la mise en oeuvre du procédé selon l'une des revendications précédentes lorsque ce programme est exécuté par un processeur (PROC).
  9. Dispositif (DIS) comportant un circuit de traitement configuré pour la mise en oeuvre du procédé selon l'une des revendications 1 à 7.
EP17793990.7A 2017-02-22 2017-10-10 Instrument de musique acoustique augmenté avec actionneurs de rétroaction et d'injection . Active EP3586328B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1751403A FR3063173B1 (fr) 2017-02-22 2017-02-22 Instrument de musique acoustique, perfectionne
PCT/FR2017/052778 WO2018154188A1 (fr) 2017-02-22 2017-10-10 Instrument de musique acoustique augmenté avec actionneurs de rétroaction et d'injection

Publications (2)

Publication Number Publication Date
EP3586328A1 EP3586328A1 (fr) 2020-01-01
EP3586328B1 true EP3586328B1 (fr) 2023-09-06

Family

ID=58992999

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17793990.7A Active EP3586328B1 (fr) 2017-02-22 2017-10-10 Instrument de musique acoustique augmenté avec actionneurs de rétroaction et d'injection .

Country Status (6)

Country Link
US (1) US10783864B2 (fr)
EP (1) EP3586328B1 (fr)
JP (1) JP7004733B2 (fr)
CN (1) CN111108547B (fr)
FR (1) FR3063173B1 (fr)
WO (1) WO2018154188A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3063173B1 (fr) * 2017-02-22 2019-06-07 Hyvibe Instrument de musique acoustique, perfectionne
FR3069932B1 (fr) 2017-08-01 2019-09-06 Hyvibe Restitution sonore perfectionnee a partir d'un dispositif a actionneur mecanique vibrant
CN111210800B (zh) * 2020-02-21 2022-09-09 京东方科技集团股份有限公司 乐器消音系统及方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5796920A (en) * 1994-08-19 1998-08-18 Harris Corporation Multiprocessor system and method for identification and adaptive control of dynamic systems
US6320113B1 (en) * 1995-07-19 2001-11-20 Georgia Tech Research Corporation System for enhancing the sound of an acoustic instrument
FR2739214B1 (fr) * 1995-09-27 1997-12-19 Technofirst Procede et dispositif d'attenuation active hybride de vibrations, notamment de vibrations mecaniques, sonores ou analogues
US7305094B2 (en) * 2001-01-12 2007-12-04 University Of Dayton System and method for actively damping boom noise in a vibro-acoustic enclosure
US7279631B2 (en) * 2002-07-16 2007-10-09 Line 6, Inc. Stringed instrument with embedded DSP modeling for modeling acoustic stringed instruments
JP5707876B2 (ja) 2010-11-09 2015-04-30 ヤマハ株式会社 楽器
CN103151032A (zh) * 2011-09-14 2013-06-12 雅马哈株式会社 键盘乐器
FR2983026A1 (fr) * 2011-11-22 2013-05-24 Parrot Casque audio a controle actif de bruit de type non-adaptatif, pour l'ecoute d'une source musicale audio et/ou pour des fonctions de telephonie "mains-libres"
US9099069B2 (en) * 2011-12-09 2015-08-04 Yamaha Corporation Signal processing device
ITAN20120023A1 (it) * 2012-03-13 2013-09-14 Viscount Internat S P A Sistema per riprodurre il suono di uno strumento a corde.
FR2998086B1 (fr) * 2012-11-15 2015-02-06 Ecole Norm Superieure Lyon Ensemble et procede pour jouer automatiquement d'un instrument de musique a cordes frottees
JP6004027B2 (ja) * 2015-03-17 2016-10-05 ヤマハ株式会社 楽器
WO2016152219A1 (fr) 2015-03-24 2016-09-29 ヤマハ株式会社 Instrument et procédé capable de générer un son de vibration supplémentaire
SE544164C2 (en) * 2015-06-22 2022-02-15 Modern Ancient Instr Networked Ab Method to control the timbre of a target stringed instrument in real-time
FR3063173B1 (fr) * 2017-02-22 2019-06-07 Hyvibe Instrument de musique acoustique, perfectionne

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DONOVAN LIAM B ET AL: "Active Control of a String Instrument Bridge Using the Posicast Technique", AES CONVENTION 138; MAY 2015, AES, 60 EAST 42ND STREET, ROOM 2520 NEW YORK 10165-2520, USA, 6 May 2015 (2015-05-06), XP040670899 *
JOHN Y HUNG: "Feedback Control With Posicast", IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, IEEE SERVICE CENTER, PISCATAWAY, NJ, USA, vol. 50, no. 1, 1 February 2003 (2003-02-01), XP011073808, ISSN: 0278-0046 *

Also Published As

Publication number Publication date
EP3586328A1 (fr) 2020-01-01
JP2020508495A (ja) 2020-03-19
FR3063173A1 (fr) 2018-08-24
WO2018154188A1 (fr) 2018-08-30
CN111108547A (zh) 2020-05-05
JP7004733B2 (ja) 2022-01-21
US10783864B2 (en) 2020-09-22
CN111108547B (zh) 2023-08-01
US20200058278A1 (en) 2020-02-20
FR3063173B1 (fr) 2019-06-07

Similar Documents

Publication Publication Date Title
JP6020109B2 (ja) 伝達特性を算出するための装置及び方法
EP3662360B1 (fr) Restitution sonore perfectionnée à partir d'un dispositif à actionneur mécanique vibrant
EP3586328B1 (fr) Instrument de musique acoustique augmenté avec actionneurs de rétroaction et d'injection .
US7812243B2 (en) Stringed instrument with embedded DSP modeling for modeling acoustic stringed instruments
NL1030038C2 (nl) Werkwijze en apparaten om te compenseren voor een frequentiekarakteristiek van oortelefoons.
WO2010136661A1 (fr) Procede et dispositif d'attenuation d'un bruit a bande etroite dans un habitacle d'un vehicule
EP2047455A2 (fr) Dispositif de production de signaux representatifs de sons d'un instrument à clavier et à cordes
CN102194451A (zh) 信号处理装置和弦乐器
TWI317574B (en) Audio amplification apparatus with howling canceler
US8796530B2 (en) Musical instrument with acoustic transducer
KR102531296B1 (ko) 오디오 신호 보정방법
JP6622823B2 (ja) 音声信号の周波数を歪ませるための方法
FR2890280A1 (fr) Procede de filtrage numerique et de compensation pour lineariser la courbe de reponse d'une enceinte acoustique et moyens mis en oeuvre
JP2022550746A (ja) 音響空間のモード残響効果
FR2569077A1 (fr) Simulateur de resonateur de helmholtz
FR2958068A1 (fr) Procede et dispositif de synthese d'un signal audio selon un phrase melodique imparti sur un organe vibrant
JP2017173632A (ja) 演奏信号生成装置および演奏信号生成方法
JP2021157016A (ja) 楽器の調整装置、調整方法、及び製造方法
CN115910009A (zh) 电子设备、方法和计算机程序
FR3130438A1 (fr) Procédé de simulation numérique d’un son d’un instrument de musique à vent par décomposition modale.
Penttinen et al. Measuring and evaluating a louder design of the musical instrument kantele
WO2011117483A1 (fr) Procédé et dispositif de synthèse d'un signal audio selon des contacts impartis sur un organe vibrant
JP2003150165A (ja) 擦弦楽器、信号検出装置および音響信号生成装置
FR2963844A1 (fr) Procede de determination de parametres definissant des filtres applicables a des haut-parleurs, dispositif et programme associes
ITLE20110014A1 (it) Dispositivo per l'ausilio alla corretta amplificazione o registrazione delle sonorita' di tamburelli, tamburi a cornice e strumenti musicali a percussioni similari

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190821

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MAMOU-MANI, ADRIEN

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200825

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230327

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017073842

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231207

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231107

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230906

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230906

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231206

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230906

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230906

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230906

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231207

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230906

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231030

Year of fee payment: 7

Ref country code: DE

Payment date: 20231208

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1609620

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230906

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230906

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240106

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230906

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230906

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230906

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230906

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230906

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240108