EP3582512A1 - Verfahren zur identifikation eines hörers, hörsystem und hörerset - Google Patents

Verfahren zur identifikation eines hörers, hörsystem und hörerset Download PDF

Info

Publication number
EP3582512A1
EP3582512A1 EP19174860.7A EP19174860A EP3582512A1 EP 3582512 A1 EP3582512 A1 EP 3582512A1 EP 19174860 A EP19174860 A EP 19174860A EP 3582512 A1 EP3582512 A1 EP 3582512A1
Authority
EP
European Patent Office
Prior art keywords
signal
receiver
sensor
handset
hearing system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP19174860.7A
Other languages
English (en)
French (fr)
Other versions
EP3582512B1 (de
Inventor
Bernd Meister
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sivantos Pte Ltd
Original Assignee
Sivantos Pte Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sivantos Pte Ltd filed Critical Sivantos Pte Ltd
Publication of EP3582512A1 publication Critical patent/EP3582512A1/de
Application granted granted Critical
Publication of EP3582512B1 publication Critical patent/EP3582512B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/55Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception using an external connection, either wireless or wired
    • H04R25/552Binaural
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/30Monitoring or testing of hearing aids, e.g. functioning, settings, battery power
    • H04R25/305Self-monitoring or self-testing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/35Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception using translation techniques
    • H04R25/356Amplitude, e.g. amplitude shift or compression
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/43Electronic input selection or mixing based on input signal analysis, e.g. mixing or selection between microphone and telecoil or between microphones with different directivity characteristics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/60Mounting or interconnection of hearing aid parts, e.g. inside tips, housings or to ossicles
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2225/00Details of deaf aids covered by H04R25/00, not provided for in any of its subgroups
    • H04R2225/41Detection or adaptation of hearing aid parameters or programs to listening situation, e.g. pub, forest
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2225/00Details of deaf aids covered by H04R25/00, not provided for in any of its subgroups
    • H04R2225/59Arrangements for selective connection between one or more amplifiers and one or more receivers within one hearing aid
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2420/00Details of connection covered by H04R, not provided for in its groups
    • H04R2420/05Detection of connection of loudspeakers or headphones to amplifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/30Monitoring or testing of hearing aids, e.g. functioning, settings, battery power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/55Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception using an external connection, either wireless or wired
    • H04R25/554Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception using an external connection, either wireless or wired using a wireless connection, e.g. between microphone and amplifier or using Tcoils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/70Adaptation of deaf aid to hearing loss, e.g. initial electronic fitting

Definitions

  • the invention relates to a method for identifying a receiver, a hearing system and a receiver set.
  • a hearing system has one or two hearing aids that are worn by a user in or on the ear.
  • a hearing system with two hearing aids, which are then worn in or on the ears on different sides of the head, is also referred to as a binaural hearing system.
  • a hearing aid has a handset for sound output, which depending on the hearing aid type is either inserted into the ear or worn outside the ear, the sound signals then e.g. be inserted into the ear via a sound tube.
  • a binaural hearing system therefore has two listeners.
  • Hearing aid types are, for example, BTE, ITE, or RIC hearing aids.
  • a hearing system generally serves to output sound signals and often specifically to improve the hearing ability of the user.
  • the user typically has limited hearing and the hearing system is then generally used to amplify sound signals from the environment, with the aim of compensating for deficient hearing.
  • a respective hearing system is usually individually adapted and adjusted to the respective user in order to do justice to their individual hearing ability and to optimally compensate for the individual hearing impairment. Frequently, the user's hearing ability is specifically determined as part of an adjustment and then the hearing system is adjusted accordingly, possibly different for both ears.
  • a hearing system can also be headphones in general.
  • An essential component of a hearing system is the receiver, which is used for sound output and which is available in systems with an external or a modular receiver unit in a large number of variants.
  • a correspondingly suitable earpiece is then selected and used in the hearing system.
  • different earphones differ in the performance class, ie in the maximum possible power of the sound signal output and the maximum possible amplification which can be achieved with the hearing system during operation.
  • a handset of a higher performance class must be selected in order to be able to compensate for the hearing loss accordingly.
  • the hearing system is usually parameterized in such a way that its transmission behavior is adapted to the connected handset.
  • the hearing system is typically designed in such a way that various receivers of different types of receivers can be connected as required. If several different types of listeners are now available, when assembling the hearing system, ie when connecting a listener to the hearing system, it must be ensured that the correct type of listener is also used. If a handset with handsets of different performance classes is available and a handset of a certain performance class is to be used, there is a risk that a handset of the wrong performance class may be accidentally picked up and used.
  • the US 8,433,072 B2 proposed to use and measure the electrical resistance of a receiver as a characteristic parameter. It is also proposed to provide a handset with an identification tag, for example an RFID tag, and then to read it out in order to determine the properties of the handset.
  • an identification tag for example an RFID tag
  • a suitable method, a suitable hearing system and a suitable earphone set are to be specified.
  • different types of listeners should be recognized as reliably as possible.
  • the risk of damage to the user by inserting and operating the wrong handset is to be reduced.
  • the object is achieved according to the invention by a method with the features according to claim 1. Furthermore, the object is achieved by a hearing system with the features according to claim 14 and by a receiver set with the features according to claim 15.
  • Advantageous refinements, developments and variants are the subject of the dependent claims , The explanations regarding the method apply mutatis mutandis to the hearing system and the handset and vice versa.
  • the method serves to identify a listener of a binaural hearing system and is expediently also used for this.
  • the method preferably serves to identify the listener in the hearing system, ie while the listener is connected to the hearing system, ie connected to it.
  • the identification is thus carried out, so to speak, in situ, that is, when used as intended, and preferably by the hearing system itself and precisely not decoupled from the hearing system.
  • the hearing system has in particular a control unit which is designed such that it carries out the method. Suitable is, however, also a variant in which the listener is alternatively or additionally identified outside the hearing system and independently of it, for example in a separate test procedure at the audiologist.
  • the control unit is integrated in an external device, for example in a smartphone or a computer.
  • the listener belongs to one of several, in particular different, listener types.
  • the handset is now identified by assigning it to one of the several handset types.
  • the terms “identification” and “identify” in the context of a handset mean that it is not only recognized whether a handset is connected, but rather what type of handset is connected. In other words, the listener type is determined specifically and not just the presence of any listener, so that different, that is to say at least two, different listener types can be distinguished from one another and can also be distinguished.
  • An electrical input signal or simply an input signal, is fed to the listener for sound output.
  • the listener converts the input signal into an acoustic sound signal, in short simply a sound signal, and outputs it. So there is a sound output.
  • the input signal is generally a primary signal and, based on the sound output, a secondary signal is now generated which is dependent on the input signal.
  • the secondary signal is not necessarily the sound signal itself. A large number of different signals can be considered as the secondary signal, it being particularly important that the secondary signal is causally related to the input signal.
  • the secondary signal is then detected by a sensor which, depending on the secondary signal, generates an electrical sensor signal, briefly only a sensor signal.
  • the secondary signal is therefore measured by the sensor.
  • the sensor signal is therefore dependent on the input signal.
  • the dependency of the sensor signal on the input signal is determined in particular by a transfer function, which does not necessarily have to be known.
  • the transfer function describes in particular the change that the input signal experiences during the conversion into the sensor signal along a transfer path.
  • a phase measurement is also carried out by determining a phase difference between the input signal and the sensor signal.
  • the phase measurement is therefore in particular an electrical comparison measurement in which two electrical signals, namely the input signal and the sensor signal, are compared with one another and the phase of which is determined relative to one another.
  • the handset is then identified by assigning it to one of the several handset types based on the phase difference.
  • the receiver is connected to a receiver connection, preferably to a receiver connection of the hearing system.
  • the input signal is provided to the listener via the handset connection.
  • the invention is based in particular on the idea of identifying a listener in that listeners of different types of listeners are designed in such a way that they cause different phase changes and thus phase differences on the same handset connection and for the same input signal, and then recognize these phase differences in order to easily and easily reliable way to make a corresponding assignment of the handset to one of the handset types.
  • the listeners of different types of listeners differ in that they result in different phase differences in the phase measurement.
  • different listeners of the same listener type expediently also result in the same phase difference. Therefore, an earphone set according to the invention has at least two earphones, which belong to different types of earphones and which are designed such that they can be differentiated accordingly by the phase measurement described.
  • the listener and the sensor are advantageously designed in such a way that their interaction produces the overall phase difference.
  • a so-called transfer phase difference may already result from the transfer function between the input signal and the sensor signal.
  • an identification phase difference, or ID phase difference is now added in addition to the transfer phase difference as a function of the listener type.
  • different phase differences then also result for different types of listeners, with the transfer path in particular remaining the same or only slightly changed.
  • an additional phase for identification ie an identification phase or ID phase, is thus impressed, which is then present in the sensor signal in addition to a possible transfer phase difference due to the transfer path itself.
  • the transfer phase difference is then suitably taken into account as an offset in the phase measurement and is preferably estimated or measured in advance, for example.
  • a core idea of the invention therefore consists, in particular, in designing a hearing system or a receiver for one or both such that a receiver of an incorrect and unused type of receiver results in a discernably different phase difference during phase measurement, that is to say an actual phase difference which is recognizable by deviates from an expected phase difference which a listener of a correct listener type would result in.
  • An important aspect here is phase measurement, which can be implemented in a particularly simple manner and enables a particularly compact structure.
  • a particular advantage of phase measurement is that no special or additional components such as resistors or RFID tags are required to identify the listener. Accordingly, a sensor is preferably used as the sensor, which is already installed in the hearing system anyway and which is then also used for other purposes, in particular when the hearing system is operated as intended.
  • a further particular advantage is in particular that the listener initially only requires two signal contacts to connect to the hearing system and a third contact, which is designed as an identification contact and in particular solely for identifying the listener, is not required. Such a third contact is therefore preferably dispensed with and corresponding installation space is saved.
  • an assignment rule in particular an assignment table, is expediently stored in a memory, in particular of the hearing system.
  • the assignment rule assigns a certain phase difference to each type of listener, so that during the phase measurement the type of listener can be determined via the assignment table and expediently also determined.
  • the memory is in particular part of the control unit.
  • the method can be used particularly advantageously to determine whether a receiver is also connected to a respective side of a binaural hearing system, which belongs to a type of receiver that is also provided for this side.
  • the hearing system is therefore binaural and a first of the plurality of handset types is a left handset, which is intended for use on the left side of the hearing system, and a second of the plurality of handset types is a right handset, which is intended for use on the right Side of the hearing system is provided.
  • the hearing system therefore has a left hearing device and a right hearing device.
  • the left hearing aid serves to care for the left ear of a user and is worn on the left side when used as intended
  • the right hearing aid serves analogously to care for the right ear of the user and is worn on the right side when used as intended.
  • a mix-up is not provided and should rather be prevented since the user may have different hearing abilities on both sides and therefore the two hearing aids are expediently individually adapted to supply the corresponding side.
  • a side recognition is then carried out within the scope of the method in that the listener is identified as a left listener or as a right listener on the basis of the phase difference.
  • the phase measurement is therefore preferably used for side detection and in particular to distinguish between exactly two types of listeners.
  • the two types of listeners then preferably produce phase differences which differ by 180 ° and are therefore particularly easy to discriminate, ie distinguishable.
  • Using page recognition a user is then advantageously prevented from incorrectly using the two earphones of a binaural hearing system in an interchanged manner.
  • an embodiment is also possible in such a way that more than two handset types are distinguished by means of the phase measurement, in that the handset types accordingly generate more than two different phase differences and recognize them.
  • the receiver has two signal contacts, and the receiver can be connected to and preferably also connected to a hearing device of the hearing system by means of the signal contacts.
  • the receiver and especially the two signal contacts are thus designed to be protected against polarity reversal.
  • a first handset type and a second handset type of the plurality of handset types now differ from one another in that they are designed to be reverse polarity-proof, so that the two phase differences that are generated by a handset of the first handset type and by a handset of the second handset type are 180 ° differentiate.
  • the signal contacts of the two handset types are thus designed to be reverse polarity-proof.
  • the first type of receiver is provided for the left side of a binaural hearing system and the second type of receiver for the right side. If one of the two listeners is wrongly connected on the other side, a phase difference is measured as part of a side detection that deviates by 180 ° from an expected phase difference, the expected phase difference being the phase difference that would be generated by the other listener.
  • the receiver has a signal interface for connection to a hearing aid of the hearing system.
  • the signal interface has a first signal contact and a second signal contact.
  • the signal contacts are each associated in particular with a specific pole of the listener, the first signal contact is then always a positive pole and the second signal contact is always a negative pole.
  • the hearing aid has a correspondingly complementary hearing aid signal interface, which has two poles, for connecting the signal contacts, one pole per signal contact.
  • the signal interface is now designed to be protected against polarity reversal such that one of the signal contacts can only be connected to a first pole of the hearing device and the other the signal contact can only be connected to a second pole of the hearing device and not vice versa. This is achieved, for example, by different geometries of the individual signal contacts and poles or by a corresponding plug-in contour.
  • a first handset type and a second handset type of the plurality of handset types then differ from one another in particular in that in the first handset type the first signal contact can only be connected to the first pole and the second signal contact can only be connected to the second pole, whereas the second handset type compared to the first handset type is reversed in polarity such that, conversely, the first signal contact can only be connected to the second pole and the second signal contact can only be connected to the first pole.
  • the positive pole is also connected to a positive pole on the hearing aid and, accordingly, a negative pole on the handset is connected to a negative pole on the hearing aid, and in the other handset a negative pole is connected to a positive pole.
  • the electrical input signal is supplied to the listener via the signal contacts, and the sensor is arranged outside the listener and independently of the listener.
  • the polarity reversal is thus realized that the transmission of the input signal to the listener is polarity reversed, so that, in principle, the secondary signal generated by a listener of the first handset type then has an opposite sign with respect to the secondary signal generated by a listener of the second handset type.
  • the phase difference for identifying the listener is thus generated in particular when the input signal is transferred to the listener, ie the ID phase is impressed when the input signal is transferred to the listener and thus at the beginning of the transfer path.
  • the sensor then generates a corresponding sensor signal depending on the secondary signal.
  • the listeners themselves are designed to be reverse-polarized.
  • the input signal is preferably passed to the listener on the one side with the opposite sign, so that the secondary signals on both sides are then no longer opposed, but in particular in phase.
  • the original input signal is then expediently used to identify the listener in order to be able to generate secondary signals correspondingly in phase opposition, so that the two types of listeners can then be distinguished and also differentiated.
  • a second suitable variant on the other hand, it is not the listeners themselves who are polarized with respect to the input signal, but rather the sensors on both sides of the hearing system.
  • the sensor is expediently integrated into the receiver and firmly connected to it, so that the sensor and the receiver together form in particular an inseparable assembly.
  • the sensor signal is now transmitted via the signal contacts and not the input signal.
  • the above explanations for the first variant also apply mutatis mutandis to the second variant, in which the input signals and also the secondary signals are now basically in phase, but in which the sensor signals are in phase opposition.
  • the phase difference for identifying the listener is thus when the sensor signal is generated, generated more precisely when the sensor signal is transferred to the control unit, ie the ID phase is impressed on the sensor signal and thus at the end of the transfer path.
  • the listener has in particular two signal interfaces, a polarized signal interface for the sensor signal and a further, non-polarized signal interface for the input signal.
  • the listener in the second variant has only one signal interface, namely for the input signal, and otherwise no further signal interfaces.
  • the senor is connected to the receiver in such a way that it cannot be separated if handled properly.
  • the sensor is thus permanently and clearly assigned to the listener.
  • the sensor is therefore designed in particular as a component of the receiver. This ensures that the correct sensor is always connected to the associated handset, since identification of the same is not possible based on the handset alone. This is because the sensor and, more specifically, its special polarity reversal is used.
  • the sensor is attached to the handset, e.g. glued to it, poured into a housing of the receiver or part of the receiver itself.
  • phase measurement a variety of different concepts are suitable for phase measurement.
  • An important point here is in particular that a sensor signal is generated which is connected to the input signal via a transfer function and that an additional phase difference is added when the sensor signal is generated from the input signal, i.e. an additional phase is impressed, which one or which then is used to identify the listener.
  • This phase is therefore referred to as the ID phase, as already described above.
  • all types of secondary signals and a wide variety of sensors are suitable for measuring them. Some preferred combinations of secondary signal and sensor are explained in detail below. The variants mentioned can also be combined with one another.
  • the secondary signal is a sound signal which is generated by the listener when the sound is output
  • the sensor is a microphone which picks up the sound signal.
  • a microphone of the hearing system is advantageously used as the sensor, in particular a microphone which is part of a hearing device of the hearing system and which is used in a hearing mode to record noises from the environment in order to subsequently amplify them and output them via the receiver of the hearing device.
  • a microphone worn by the user when used as intended in particular a structure-borne sound microphone, or alternatively an additional microphone.
  • the secondary signal is in particular a sound signal that is generated anyway for output to the user. This is usually modified further by reflections, self-modes and diffractions in the auditory canal of the user before it is picked up by the sensor.
  • the secondary signal is a magnetic field, which is generated by the listener when the sound is output
  • the sensor is a magnetic field sensor, which measures the magnetic field.
  • the sensor is suitably a Hall sensor, a coil or a telephone coil that is already present in a hearing aid of the hearing system, also referred to as a T-coil.
  • the secondary signal is a vibration, which is generated in particular at least indirectly by the listener when the sound is output, and the sensor is a vibration or acceleration sensor which picks up the vibration.
  • a vibration sensor differs from a microphone in particular in that a vibration sensor is not excited directly by a sound signal, but rather measures vibration, ie mechanical acceleration, in particular of the surrounding environment or the surrounding components or of both. For example, the sensor measures then during the sound output a vibration of the handset or more precisely a housing of the handset.
  • a vibration or acceleration sensor comprises an oscillating test mass which is excited accordingly by sound or vibration or both, so that the vibration or acceleration sensor then generates a sensor signal which is dependent on the input signal.
  • a suitable sampling rate for the sensor is used to measure the phase difference as reliably as possible.
  • the input signal usually has a frequency spectrum in the range audible to normal hearing, in particular 20 Hz to 20 kHz, so that the secondary signal also lies in this frequency range accordingly.
  • the sampling rate for the sensor is therefore expediently chosen such that the sensor signal also reproduces such frequencies.
  • an acceleration sensor is typically operated with a sampling rate of only a few measured values per second, that is to say well below 20 Hz, when used as intended.
  • a sampling rate between 40 Hz and 40 kHz is then expediently generally selected for the sensor.
  • any signal can be used as the input signal, in particular also any sound signal recorded and converted in the listening mode from the environment or, alternatively or additionally, an electrical audio signal.
  • the electrical input signal in a practical embodiment is a start signal, which when switched on, i.e. is played when the hearing system is started up. As a result, the listener is identified before an actual hearing operation.
  • the start signal is preferably a start melody, which is played when the hearing system is switched on and for the acoustic display of the start-up.
  • the listener is advantageously identified in the context of an open-loop gain measurement of the hearing system.
  • This open loop gain measurement is also referred to as calibration operation and, more precisely, is a calibration operation for calibrating a maximum amplification of the hearing aid, which usually depends on the respectively existing and possibly changing environmental conditions.
  • the hearing system therefore has a gain control, which is calibrated in the calibration mode by using a test signal as the input signal, whereby a calibration signal is generated in order to set the maximum gain of the hearing system.
  • the calibration signal is in particular a microphone signal, so the test signal is output and resumed in order to characterize the environment.
  • the calibration signal In combination with the test signal, the calibration signal then serves in particular to determine, in particular to estimate, the transmission function from the hearing aid of the hearing system to the eardrum of the user, and to set the maximum amplification as a function thereof.
  • the calibration signal is now advantageously also used as a sensor signal, ie the calibration signal is the sensor signal.
  • this embodiment is similar to the embodiment described above with the sound signal as a secondary signal and the microphone as a sensor.
  • the identification of the listener is then advantageously carried out parallel to the open-loop gain measurement, so that the outlay in terms of apparatus and control technology for identifying the listener is minimal, since the same calibration signal is used for both purposes.
  • the measurement described is also not limited to a special calibration operation, but is carried out in an advantageous embodiment during operation, in particular during normal operation.
  • the measurement is preferably carried out adaptively.
  • the phase is then advantageously continuously determined during the running time of the hearing system, ie recurring.
  • the sensor is connected in particular to a suitable signal processing block, which estimates the transfer function.
  • the signal processing block is preferably part of the control unit.
  • a performance class of the listener is preferably also determined by means of an amplitude measurement, the amplitude measurement preferably being carried out with the sensor.
  • the amplitude measurement is in particular a measurement of an amplitude frequency response.
  • the listener thus has a performance class, which by an additional amplitude measurement is determined, which is carried out in particular at the same time as the phase measurement.
  • the performance class is suitably defined by a transmission behavior of the listener, ie in particular by an amplitude frequency response which is assigned to a specific performance class.
  • the performance class of the listener is then determined by measuring the amplitude, ie by measuring the amplitude.
  • a performance class of the listener is also determined by means of an impedance measurement.
  • the listener thus has a performance class which is determined by an additional impedance measurement, which is carried out in particular at the same time as the phase measurement.
  • the performance class is suitably defined by an electrical resistance of the handset, i.e. An electrical resistance is integrated into the receiver, which has a specific resistance value which is assigned to a specific power class. This then determines the performance class of the listener by measuring the resistance.
  • phase measurement is used for side detection, so that a listener is then assigned to a power class on the one hand by means of an amplitude or resistance measurement and on the other hand by a phase measurement of one side of the hearing system.
  • the listener is then identified in two dimensions, so to speak, one with regard to the performance class and one with respect to the side.
  • a handset type is therefore characterized by two parameters, namely by a first parameter "performance class” and a second parameter "side".
  • a particular advantage in determining the performance class is, in particular, that with the same measurement, also referred to as the measurement routine, the phase difference can also be measured at the same time, ie the phase measurement is generally part of the measurement routine, so that the performance class and the Side can be determined simultaneously with a single measurement and expediently also be determined.
  • the phase measurement is preferably carried out at a frequency of at most 500 Hz. This is based in particular on the observation that the phase difference can be determined better at low frequencies than at high frequencies, since signals at high frequencies are more susceptible to interference. At higher frequencies, interferences from e.g. the individual geometry of the user's ear or the selected length of a sound tube of a hearing aid of the hearing system. Basically, the entire acoustic frequency range can be considered for measurement, but low frequencies, i.e. Frequencies of at most 500 Hz, enable particularly reliable measurements. However, the phase measurement is preferably carried out at least at a frequency of 20 Hz. The sampling rate of the sensor is expediently adapted to the frequency and preferably corresponds to at least twice the frequency.
  • a hearing system according to the invention is designed to carry out the method described above and, in particular, has a control unit for this purpose.
  • the control unit is integrated in a hearing device of the hearing system.
  • the control unit is designed as a separate part of the hearing system.
  • FIG. 1 A binaural hearing system 2 is shown, with or two hearing aids 4, which are each worn by a user in or on the ear.
  • a respective hearing device 4 has a receiver 6 for sound output, which is either inserted into the ear or worn outside the ear, depending on the hearing device type.
  • a so-called RIC hearing device is shown by way of example, in which the receiver 6 is worn in the ear and is connected to the rest of the hearing device 4 via an electrical connection 8.
  • the hearing system 2 shown is generally used to amplify sound signals from the environment, with the aim of compensating for a hearing loss of the user that is deficient.
  • the hearing system 2 is individually adapted and adjusted to the user in order to meet their individual hearing ability and to compensate for the individual hearing impairment.
  • the hearing system 2 is generally headphones.
  • An essential component of a hearing system 2 is the receiver 6, which is used for sound output and is available in a large number of variants.
  • a suitable receiver 6 is selected and used in the hearing system 2.
  • the hearing system 2 is now designed such that the risk of confusing the receiver 6 is reduced, i.e. the risk of incorrectly using a receiver 6 of a receiver type that is not intended for the user.
  • a method is carried out by means of which the receiver 6 is identified, i.e. is assigned to one of several handset types. In the present case, the method is carried out by a control unit 10, which is part of the hearing system 2 and is accommodated in one of the hearing aids 4.
  • Fig. 2 explained in more detail in which one of the hearing aids 4 Fig. 1 is shown very schematically as a circuit diagram.
  • the hearing system 2 is initially designed such that a microphone 12 picks up sound signals 100 from the surroundings and converts them into a microphone signal 102. This is forwarded to the control unit 10 and amplified there.
  • the control unit 10 thus generates an amplified microphone signal, which is an electrical input signal 104, which is passed on to the receiver 6 for output.
  • the receiver 6 converts the input signal 104 as part of a sound output into a sound signal 106, which is output to the user. In the present case, the receiver 6 also generates a magnetic field 108 due to the principle.
  • the sound signal 106 and the magnetic field 108 are therefore dependent on the input signal 104, which is also referred to as the primary signal 110. Therefore, the sound signal 106 and the magnetic field 108 are also referred to as secondary signal 112.
  • Other secondary signals 112, not shown, are, for example, a vibration generated during the sound output or an acceleration.
  • the method now serves to identify the receiver 6, which belongs to one of several different receiver types.
  • At least one of the secondary signals 112 is now detected by a sensor 14, which generates an electrical sensor signal 114 as a function of the secondary signal 112.
  • the dependency of the sensor signal 114 on the input signal 112 is determined in particular by a transfer function T, which does not necessarily have to be known and which describes the change which the input signal 104 undergoes during the conversion into the sensor signal 114 along a transfer path.
  • a transfer function T which does not necessarily have to be known and which describes the change which the input signal 104 undergoes during the conversion into the sensor signal 114 along a transfer path.
  • the control unit 10 also carries out a phase measurement by determining a phase difference between the input signal 104 and the sensor signal 114.
  • the receiver 6 is then assigned to one of the several receiver types on the basis of the phase difference and thereby identified.
  • the receiver 6 is connected to a receiver connection 16 of the hearing system 2, the input signal 104 being transmitted to the receiver 6 via the receiver connection 16 becomes.
  • the earphones 6 of different earphone types are now designed such that they cause different phase differences at the same earphone connection 16 and for the same input signal 104.
  • the phase measurement therefore results in different phase differences for different types of listeners.
  • Different listeners 6 of the same listener type also result in the same phase difference.
  • a so-called transfer phase difference may already result due to the transfer function T between the input signal 104 and the sensor signal 114.
  • an identification phase difference or ID phase difference for short, is now added in addition to the transfer phase difference depending on the receiver type .
  • ID phase difference an additional phase for identification
  • an identification phase or ID phase is thus impressed, which is then present in the sensor signal 114 in addition to a possible transfer phase difference due to the transfer path T itself.
  • the ID phase can generally be stamped at different points along the transfer path.
  • the secondary signal 112 is a sound signal 106, which is generated by the receiver 6 when the sound is output.
  • the sensor 14 is the microphone 12, which is used in a hearing mode to pick up noises from the environment in order to subsequently amplify them and output them via the receiver 6 of the hearing device 4. Alternatively, another microphone is used.
  • the secondary signal 112 is a magnetic field 108 which is generated by the receiver 6 when the sound is output.
  • the sensor 14 is a magnetic field sensor, which measures the magnetic field 108.
  • the sensor 14 is, for example, a Hall sensor, a coil or a telephone coil of the hearing device 4, also referred to as a T-coil.
  • the secondary signal 112 is a vibration, which in particular is at least indirectly transmitted by the receiver 6 Sound output is generated, in which case the sensor 14 is a vibration sensor which picks up the vibration. Also not shown is a variant in which the secondary signal 112 is an acceleration which is generated at least indirectly by the sound output, the sensor 14 then being an acceleration sensor which measures the acceleration.
  • the method is used in the present case to determine whether a receiver 6, which belongs to a type of receiver, which is also intended for use on this side, is also connected to a respective side of the binaural hearing system 2.
  • a first of the several handset types is then a left handset, which is intended for use on the left side of the hearing system 2, and a second of the several handset types is a right handset, which is intended for use on the right side of the hearing system 2.
  • a side recognition is then carried out within the scope of the method in that the listener 6 is identified as a left hand listener or as a right hand listener on the basis of the phase difference.
  • the receiver 6 can be connected to a hearing device 4 of the hearing system 2 with reverse polarity protection and is thus designed to be protected against reverse polarity.
  • the first type of listener, each in the 3a, 4a and 5a shown, and the second type of listener, each in the 3b, 4b and 5b shown, differ from one another in that they are designed to be reverse polarity-proof so that the two phase differences, which are generated by a receiver 6 of the first receiver type and by a receiver 6 of the second receiver type, differ by 180 °.
  • One of the two handset types therefore results in an additional phase of 180 ° being impressed when the input signal 104 is converted to the sensor signal 114 is, so that there is a corresponding phase difference relative to the other handset type.
  • the first handset type is provided for the left side of the binaural hearing system 2 and the second handset type is provided for the right side.
  • phase difference is measured as part of a side detection, which differs by 180 ° from an expected phase difference, the expected phase difference being the phase difference that is generated by the other earphone 6 would.
  • this concept is implemented, for example, as follows with two types of listeners that are designed to be reverse-polarity-proof: the listener 6 has a signal interface 18 for connection to one of the hearing aids 4, more precisely to the handset connection 16, which therefore has a correspondingly complementary hearing aid signal interface is.
  • the signal interface 18 has a first signal contact 20 and a second signal contact 22.
  • the hearing device 4, more precisely the receiver connection 16, now has two poles 24, 26 for connecting the signal contacts 20, 22.
  • the signal interface 18 is now designed to be protected against polarity reversal, that one of the signal contacts 20, 22 can only be connected to a first pole 24 of the hearing device and the other of the signal contacts 20, 22 only to a second pole 26 and not vice versa.
  • the first handset type and the second handset type then differ from one another in that, in the first handset type, the first signal contact 20 can only be connected to the first pole 24 and the second signal contact 22 can only be connected to the second pole 26, whereas the second handset type is different from the first handset type is reversed in polarity so that, conversely, the first signal contact 20 can only be connected to the second pole 26 and the second signal contact 22 can only be connected to the first pole 24.
  • This ensures that the two phase differences that are generated by the two types of receiver , by 180 ° if they are connected on the same side, that is to say on the same hearing aid signal interface 18.
  • the first signal contact 20 is a positive pole and can be connected to the first pole 24, which is also a positive pole.
  • the second signal contact 22 is a negative pole and can be connected to the second pole 26, which is also a negative pole.
  • the first signal contact 20 is also a positive pole but vice versa 3a, 4a and 5a connectable to the second pole 26, which is now a negative pole.
  • the second signal contact 22 is then a negative pole and can be connected to the first pole 24, which is now a positive pole.
  • the listeners 6 of the 3a and 3b are polarized against each other.
  • the two in the 3a and 3b Handset 6 shown also form together a handset set. Both apply accordingly to the two listeners 6 4a and 4b and for the two listeners 6 the 5a and 5b ,
  • the variant of 3a, 3b is now characterized by the fact that the electrical input signal 104 is fed to the receiver 6 via the signal contacts 20, 22 and that the sensor 14 is arranged outside the receiver 6 and independently of it, here as part of the hearing device 4.
  • the polarity reversal is thus thereby realizes that the transmission of the input signal 104 to the receiver 6 is polarized, so that, in principle, the secondary signal 112, which is transmitted by the receiver 6 of the first receiver type Fig. 3a is generated with respect to the secondary signal 112, which is generated by a receiver 6 of the second receiver type in Fig. 3b is generated, has an opposite sign.
  • the phase difference for identifying the receiver 6 is thus generated when the input signal 104 is transferred to the receiver 6 and thus at the beginning of the transfer path.
  • the second variant of the 4a, 4b it is not the earphones 6 which are polarity reversed with respect to the input signal 104 itself, but the sensors 14 on both sides of the hearing system 2.
  • the respective sensor 14 is integrated in the respective earpiece 6 and is permanently connected to it and forms an inseparable assembly with it as shown.
  • the sensor signal 114 is now transmitted via the signal contacts 20, 22 and not the input signal 104.
  • the phase difference for identifying the receiver 6 is thus generated when the sensor signal 114 is generated, more precisely when the sensor signal 114 is transferred to the control unit 10 generated, ie at the end of the transfer path.
  • the input signal 104 is transmitted separately to the receiver 6 via an additional signal line with two additional signal contacts 28, 30.
  • the receiver 6, especially its signal interface 18, points into the 4a, 4b that is, four signal contacts 20, 22, 28, 30 open, two signal contacts 28, 30 for the input signal 104 and two further signal contacts 20, 22 for the sensor signal 114.
  • the 5a and 5b now show a combination of the two variants of 3a, 3b and 4a, 4b .
  • the two types of listeners are polarity reversed with respect to the input signal 104, ie as in the variant of FIG 3a and 3b educated.
  • the sensor 14 is integrated into the receiver 6, as in the variant of FIG 4a, 4b .
  • the handset types are according to the variant 5a, 5b however, not reverse polarity, but always in the correct phase.
  • the variant of 5a, 5b is based on the variant of 3a, 3b , wherein the sensor 14 is now integrated in the respective receiver 6.
  • any signal can be used as input signal 104, e.g. Alternatively or in addition to the amplified microphone signal 102, an electrical audio signal can also be used.
  • a start signal is used as input signal 104, which when switched on, i.e. is played when the hearing system 4 is started up and is generated, for example, by the control unit 10 or is stored therein. As a result, the receiver 6 is identified even before actual hearing operation.
  • the receiver 6 is identified in the context of an open-loop gain measurement of the hearing system 4.
  • This open-loop gain measurement is also referred to as a calibration operation and, more precisely, is a calibration operation for calibrating a maximum gain of the hearing device 4, which is usually dependent on the particular present and possibly depends on changing environmental conditions.
  • the hearing system 2 thus has a gain control, which is calibrated in the calibration mode by using a test signal as the input signal 104, as a result of which a calibration signal is generated in order to set the maximum gain of the hearing system 4.
  • the calibration signal is used in particular to determine the transfer function from the receiver 6 of the hearing system 4 to the eardrum of the user and to set the maximum amplification as a function thereof.
  • the calibration signal is then also used as sensor signal 114.
  • the measurement described takes place adaptively during operation and not or not exclusively during calibration operation.
  • a performance class of the receiver 6 is also determined by means of an impedance measurement or by means of an amplitude measurement or both.
  • the power class is defined, for example, by an electrical resistance of the receiver 6, ie an electrical resistance is integrated in the receiver 6, for example similar to the sensor 4 in FIGS 4a, 4b ,
  • the resistance has a specific resistance value, which is assigned to a specific power class, so that the power class of the receiver 6 is determined by measuring the resistance.

Landscapes

  • General Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Physics & Mathematics (AREA)
  • Neurosurgery (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Headphones And Earphones (AREA)
  • Stereophonic System (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Stereophonic Arrangements (AREA)

Abstract

Es wird ein Verfahren zur Identifikation eines Hörers (6) eines Hörsystems (2) angegeben. Der Hörer (6) gehört einem von mehreren Hörertypen an. Dem Hörer (6) wird zur Schallausgabe ein elektrisches Eingangssignal (104) zugeführt, wobei das Eingangssignal (104) ein Primärsignal (110) ist und aufgrund der Schallausgabe ein Sekundärsignal (112) erzeugt wird, welches von dem Eingangssignal (104) abhängig ist. Das Sekundärsignal (112) von einem Sensor (14) erfasst, welcher abhängig von dem Sekundärsignal (112) ein elektrisches Sensorsignal (114) erzeugt. Weiter wird eine Phasenmessung durchgeführt, indem ein Phasenunterschied zwischen dem Eingangssignal (104) und dem Sensorsignal (114) bestimmt wird. Der Hörer (6) wird dann identifiziert, indem der Hörer (6) anhand des Phasenunterschieds einem der mehreren Hörertypen zugeordnet wird. Weiter werden ein entsprechende Hörsystem (2) angegeben sowie ein Hörerset.

Description

  • Die Erfindung betrifft ein Verfahren zur Identifikation eines Hörers, ein Hörsystem sowie ein Hörerset.
  • Ein Hörsystem weist ein oder zwei Hörgeräte auf, welche von einem Nutzer im oder am Ohr getragen werden. Ein Hörsystem mit zwei Hörgeräten, welche dann in oder an den Ohren auf unterschiedlichen Seiten des Kopfes getragen werden, wird auch als binaurales Hörsystem bezeichnet. Ein Hörgerät weist zur Schallausgabe einen Hörer auf, welcher je nach Hörgerätetyp entweder in das Ohr eingesetzt wird oder außerhalb des Ohrs getragen wird, wobei dann die Schallsignale z.B. über einen Schallschlauch in das Ohr geführt werden. Ein binaurales Hörsystem weist demnach zwei Hörer auf. Hörgerätetypen sind beispielsweise BTE-, ITE-, oder RIC-Hörgeräte.
  • Ein Hörsystem dient allgemein der Ausgabe von Schallsignalen und oftmals speziell der Verbesserung der Hörfähigkeit des Nutzers. Typischerweise weist der Nutzer ein eingeschränktes Hörvermögen auf und das Hörsystem wird dann allgemein zur Verstärkung von Schallsignalen aus der Umgebung verwendet, mit dem Ziel, ein defizitäres Hörvermögen auszugleichen. Dabei ist ein jeweiliges Hörsystem üblicherweise individuell auf den jeweiligen Nutzer angepasst und eingestellt, um dessen individuellem Hörvermögen gerecht zu werden und die individuelle Einschränkung des Hörvermögens möglichst optimal auszugleichen. Häufig wird hierzu im Rahmen einer Anpassung das Hörvermögen des Nutzers konkret bestimmt und dann das Hörsystem entsprechend eingestellt, ggf. für beide Ohren unterschiedlich. Ein Hörsystem kann aber auch allgemein ein Kopfhörer sein. Eine wesentliche Komponente eines Hörsystems ist der Hörer, welcher zur Schallausgabe dient und welcher bei Systemen mit einer externen oder einer modularen Hörereinheit in einer Vielzahl von Varianten verfügbar ist. Je nach Hörvermögen wird dann ein entsprechend geeigneter Hörer ausgewählt und in dem Hörsystem verwendet. Beispielsweise unterscheiden sich verschiedene Hörer in der Leistungsklasse, d.h. in der maximal möglichen Leistung des ausgegebenen Schallsignals und der maximal möglichen Verstärkung, welche mit dem Hörsystem im Betrieb erzielbar ist. Bei einem stärkeren Hörverlust ist dann ein Hörer einer höheren Leistungsklasse zu wählen, um den Hörverlust entsprechend ausgleichen zu können. Das Hörsystem wird üblicherweise derart parametriert, dass dessen Übertragungsverhalten an den angeschlossenen Hörer angepasst ist.
  • Problematisch ist, dass in einem Hörsystem grundsätzlich verschiedene Hörer verwendet werden können oder dass beide Seiten unterschiedlich eingestellt sind oder beides und daher die Gefahr einer Verwechslung besteht. Das Hörsystem ist typischerweise derart ausgestaltet, dass je nach Bedarf diverse Hörer unterschiedlicher Hörertypen angeschlossen werden können. Sind nun mehrere verschiedene Hörertypen vorhanden, muss beim Zusammensetzen des Hörsystems, d.h. beim Verbinden eines Hörers mit dem Hörsystem, sichergestellt sein, dass auch der korrekte Hörertyp verwendet wird. Falls ein Hörerset mit Hörern unterschiedlicher Leistungsklassen zur Verfügung steht und ein Hörer einer bestimmten Leistungsklasse verwendet werden soll, besteht die Gefahr, dass versehentlich ein Hörer der falschen Leistungsklasse gegriffen und eingesetzt wird. Auch beispielsweise beim Reinigen eines Hörsystems besteht die Gefahr, dass dieses zunächst zum Reinigen in mehrere Teile zerlegt wird und anschließend falsch zusammengesetzt wird. Besonders problematisch ist dies bei binauralen Hörsystemen, da hier prinzipbedingt zwei Hörer vorhanden sind, welche sich aufgrund eines unterschiedlichen Hörvermögens auf den beiden Seiten entsprechend unterscheiden können, also unterschiedlichen Hörertypen angehören können. Werden die beiden Hörer versehentlich vertauscht, wird der für die linke Seite bestimmte Hörer auf der rechten Seite verwendet und umgekehrt. Allgemein ergibt sich durch die Verwendung eines falschen Hörers ein erhebliches Sicherheitsrisiko für den Nutzer, besonders dann, wenn versehentlich eine zu hohe Leistungsklasse verwendet wird.
  • Zur Unterscheidung von Hörern mit unterschiedlichen Eigenschaften wird in der US 8,433,072 B2 vorgeschlagen, den elektrischen Widerstand eines Hörers als einen charakteristischen Parameter zu verwenden und zu messen. Ebenfalls wird vorgeschlagen, einen Hörer mit einer Identifikationsmarke, z.B. einer RFID-Marke, zu versehen und diese dann auszulesen, um die Eigenschaften des Hörers zu bestimmen.
  • Vor diesem Hintergrund ist es eine Aufgabe der Erfindung, die Identifikation eines Hörers zu verbessern. Hierzu sollen ein geeignetes Verfahren, ein geeignetes Hörsystem sowie ein geeignetes Hörerset angegeben werden. Allgemein sollen unterschiedliche Hörertypen möglichst zuverlässig erkannt werden. Speziell soll die Gefahr einer Schädigung des Nutzers durch Einsetzen und Betreiben eines falschen Hörers reduziert werden.
  • Die Aufgabe wird erfindungsgemäß gelöst durch ein Verfahren mit den Merkmalen gemäß Anspruch 1. Weiter wird die Aufgabe gelöst durch ein Hörsystem mit den Merkmalen gemäß Anspruch 14 sowie durch ein Hörerset mit den Merkmalen gemäß Anspruch 15. Vorteilhafte Ausgestaltungen, Weiterbildungen und Varianten sind Gegenstand der Unteransprüche. Dabei gelten die Ausführungen bezüglich des Verfahrens sinngemäß auch für das Hörsystem sowie für das Hörerset und umgekehrt.
  • Das Verfahren dient zur Identifikation eines Hörers eines binauralen Hörsystems und wird zweckmäßigerweise auch hierzu angewandt. Vorzugsweise dient das Verfahren zur Identifikation des Hörers in dem Hörsystem, d.h. während der Hörer mit dem Hörsystem verbunden, d.h. an dieses angeschlossen ist. Die Identifikation wird also sozusagen in situ, d.h. bei der bestimmungsgemäßen Verwendung, durchgeführt und vorzugsweise durch das Hörsystem selbst und gerade nicht entkoppelt von dem Hörsystem. Das Hörsystem weist insbesondere eine Steuereinheit auf, welche derart ausgebildet ist, dass diese das Verfahren durchführt. Geeignet ist aber auch eine Variante, bei welcher der Hörer alternativ oder zusätzlich außerhalb des Hörsystems und unabhängig von diesem identifiziert wird, z.B. in einem separaten Testverfahren beim Audiologen. Die Steuereinheit ist alternativ oder zusätzlich in ein externes Gerät integriert, z.B. in ein Smartphone oder einen Computer.
  • Der Hörer gehört einem von mehreren insbesondere unterschiedlichen Hörertypen an. Der Hörer wird nun identifiziert, indem dieser einem der mehreren Hörertypen zugeordnet wird. Unter den Begriffen "Identifikation" und "identifizieren" wird im Zusammenhang mit einem Hörer verstanden, dass nicht lediglich erkannt wird, ob ein Hörer angeschlossen ist, sondern es wird erkannt, was für ein Hörer angeschlossen ist. Mit anderen Worten: es wird konkret der Hörertyp ermittelt und nicht bloß die Präsenz irgendeines Hörers, sodass verschiedene, also wenigstens zwei unterschiedliche Hörertypen voneinander unterschieden werden können und auch unterschieden werden.
  • Dem Hörer wird zur Schallausgabe ein elektrisches Eingangssignal, kurz lediglich Eingangssignal, zugeführt. Der Hörer wandelt das Eingangssignal in ein akustisches Schallsignal, kurz lediglich Schallsignal, um und gibt dieses aus. Es erfolgt also eine Schallausgabe. Das Eingangssignal ist allgemein ein Primärsignal und aufgrund der Schallausgabe wird nun ein Sekundärsignal erzeugt, welches von dem Eingangssignal abhängig ist. Das Sekundärsignal ist nicht notwendigerweise das Schallsignal selbst. Als Sekundärsignal kommt eine Vielzahl an unterschiedlichen Signalen in Betracht, wesentlich ist dabei insbesondere, dass das Sekundärsignal kausal mit dem Eingangssignal zusammenhängt.
  • Das Sekundärsignal wird dann von einem Sensor erfasst, welcher abhängig von dem Sekundärsignal ein elektrisches Sensorsignal, kurz lediglich Sensorsignal, erzeugt. Das Sekundärsignal wird also von dem Sensor gemessen. Das Sensorsignal ist somit vom Eingangssignal abhängig. Die Abhängigkeit des Sensorsignals vom Eingangssignal ist insbesondere durch eine Transferfunktion bestimmt, welche nicht notwendigerweise bekannt sein muss. Die Transferfunktion beschreibt insbesondere die Veränderung, die das Eingangssignals bei der Umwandlung in das Sensorsignal entlang eines Transferpfads erfährt.
  • Weiter wird eine Phasenmessung durchgeführt, indem ein Phasenunterschied zwischen dem Eingangssignal und dem Sensorsignal bestimmt wird. Die Phasenmessung ist also insbesondere eine elektrische Vergleichsmessung, bei welcher zwei elektrische Signale, nämlich das Eingangssignal und das Sensorsignal, miteinander verglichen werden und deren Phase relativ zueinander bestimmt wird. Der Hörer wird dann identifiziert, indem dieser anhand des Phasenunterschieds einem der mehreren Hörertypen zugeordnet wird.
  • Bei dem Verfahren ist der Hörer an einen Höreranschluss angeschlossen, vorzugsweise an einen Höreranschluss des Hörsystems. Über den Höreranschluss wird das Eingangssignal an den Hörer bereitgestellt. Der Erfindung liegt nun insbesondere die Idee zugrunde, einen Hörer dadurch zu identifizieren, dass Hörer unterschiedlicher Hörertypen derart ausgebildet sind, dass diese an demselben Höreranschluss und für das gleiche Eingangssignal unterschiedliche Phasengänge und somit Phasenunterschiede hervorrufen und dann diese Phasenunterschiede zu erkennen, um auf einfache und zuverlässige Weise eine entsprechende Zuordnung des Hörers zu einem der Hörertypen vorzunehmen. Kurz gesagt: die Hörer unterschiedlicher Hörertypen unterscheiden sich dadurch, dass diese bei der Phasenmessung unterschiedliche Phasenunterschiede ergeben. Verschiedene Hörer desselben Hörertyps ergeben dagegen zweckmäßigerweise auch denselben Phasenunterschied. Daher weist ein erfindungsgemäßes Hörerset wenigstens zwei Hörer auf, welche unterschiedlichen Hörertypen angehören und welche derart ausgebildet sind, dass diese durch die beschriebene Phasenmessung entsprechend unterscheidbar sind.
  • Zur Erzeugung des Phasenunterschieds zwecks Identifikation des Hörers werden der Hörer und der Sensor vorteilhafterweise derart ausgebildet, dass diese in ihrem Zusammenwirken insgesamt den Phasenunterschied erzeugen. Prinzipbedingt ergibt sich ein sogenannter Transfer-Phasenunterschied möglicherweise bereits aufgrund der Transferfunktion zwischen dem Eingangssignal und dem Sensorsignal. Zur Identifikation des Hörers wird nun aber zusätzlich zum Transfer-Phasenunterschied in Abhängigkeit des Hörertyps ein Identifikations-Phasenunterschied, kurz ID-Phasenunterschied, hinzugefügt. Insgesamt ergeben sich dann für unterschiedliche Hörertypen bei insbesondere gleichbleibendem oder lediglich geringfügig verändertem Transferpfad auch unterschiedliche Phasenunterschiede. Entlang des Transferpfads wird also eine zusätzliche Phase zur Identifikation, also eine Identifikationsphase oder ID-Phase aufgeprägt, welche dann im Sensorsignal zusätzlich zu einem möglichen Transfer-Phasenunterschied aufgrund des Transferpfads selbst vorhanden ist. Der Transfer-Phasenunterschied wird bei der Phasenmessung dann geeigneterweise als Offset berücksichtigt und hierzu vorzugsweise im Voraus beispielsweise geschätzt oder gemessen.
  • Ein Kerngedanke der Erfindung besteht demnach insbesondere darin, ein Hörsystem oder einen Hörer für ein solches oder beide derart auszubilden, dass ein Hörer eines falschen und nicht zu verwendenden Hörertyps bei der Phasenmessung einen erkennbar abweichenden Phasenunterschied ergibt, das heißt einen tatsächlichen Phasenunterschied, welcher erkennbar von einem erwarteten Phasenunterschied abweicht, welchen ein Hörer eines korrekten Hörertyps ergeben würde. Ein wesentlicher Aspekt ist hierbei die Phasenmessung, welche sich auf besonders einfache Weise realisieren lässt und einen besonders kompakten Aufbau ermöglicht. Ein besonderer Vorteil bei der Phasenmessung ist insbesondere, dass zunächst keine speziellen oder zusätzlichen Komponenten wie Widerstände oder RFID-Marken benötigt werden, um den Hörer zu identifizieren. Entsprechend wird als Sensor vorzugsweise ein Sensor verwendet, welcher ohnehin schon im Hörsystem verbaut ist und welcher dann insbesondere beim bestimmungsgemäßen Betrieb des Hörsystems auch zu anderen Zwecken verwendet wird. Ein weiterer besonderer Vorteil ist insbesondere, dass der Hörer zum Anschließen an das Hörsystem zunächst lediglich zwei Signalkontakte benötigt und ein dritter Kontakt, welcher als Identifikationskontakt und insbesondere alleinig zur Identifikation des Hörers ausgebildet ist wird nicht benötigt. Vorzugsweise wird auf einen solchen dritten Kontakt daher verzichtet und entsprechend Bauraum eingespart.
  • Bei der Identifikation des Hörers ist also insbesondere vorbekannt, welcher Hörertyp welchen Phasenunterschied erzeugt. Hierzu ist zweckmäßigerweise eine Zuordnungsvorschrift, insbesondere eine Zuordnungstabelle, in einem Speicher insbesondere des Hörsystems hinterlegt. Die Zuordnungsvorschrift ordnet jedem Hörertyp einen bestimmten Phasenunterschied zu, sodass dann bei der Phasenmessung der Hörertyp über die Zuordnungstabelle bestimmt werden kann und zweckmäßigerweise auch bestimmt wird. Der Speicher ist insbesondere ein Teil der Steuereinheit.
  • Das Verfahren lässt sich besonders vorteilhaft verwenden, um festzustellen, ob auf einer jeweiligen Seite eines binauralen Hörsystems auch ein Hörer angeschlossen ist, welcher einem Hörertyp angehört, welcher für diese Seite auch vorgesehen ist. In einer besonders bevorzugten Ausgestaltung ist daher das Hörsystem binaural und ein erster der mehreren Hörertypen ist ein linker Hörer, welcher zur Verwendung auf der linken Seite des Hörsystems vorgesehen ist, und ein zweiter der mehreren Hörertypen ist ein rechter Hörer, welcher zur Verwendung auf der rechten Seite des Hörsystems vorgesehen ist. Das Hörsystem weist also ein linkes Hörgerät und ein rechtes Hörgerät auf. Das linke Hörgerät dient zur Versorgung des linken Ohrs eines Nutzers und wird beim bestimmungsgemäßen Gebrauch auf der linken Seite getragen, das rechte Hörgerät dient analog zur Versorgung des rechten Ohrs des Nutzers und wird beim bestimmungsgemäßen Gebrauch auf der rechten Seite getragen. Ein Vertauschen ist nicht vorgesehen und soll vielmehr verhindert werden, da der Nutzer auf beiden Seiten unter Umständen unterschiedliche Hörfähigkeiten hat und deshalb die beiden Hörgeräte zweckmäßigerweise jeweils zur Versorgung der entsprechenden Seite individuell angepasst sind. Im Rahmen des Verfahrens wird dann eine Seitenerkennung durchgeführt, indem der Hörer anhand des Phasenunterschieds als ein linker Hörer oder als ein rechter Hörer identifiziert wird. Vorzugsweise wird die Phasenmessung also zur Seitenerkennung genutzt und dabei insbesondere zur Unterscheidung von lediglich genau zwei Hörertypen. Die zwei Hörertypen erzeugen dann vorzugsweise Phasenunterschiede, welche sich um 180° unterscheiden und somit besonders gut diskriminierbar, d.h. unterscheidbar sind. Mittels der Seitenerkennung wird dann ein Nutzer vorteilhaft davor bewahrt, die beiden Hörer eines binauralen Hörsystems fälschlicherweise in vertauschter Weise zu verwenden.
  • Grundsätzlich möglich und geeignet ist aber auch eine Ausgestaltung derart, dass mehr als zwei Hörertypen mittels der Phasenmessung unterschieden werden, indem durch die Hörertypen entsprechend mehr als zwei unterschiedliche Phasenunterschiede erzeugt werden und diese erkannt werden.
  • Die Erzeugung unterschiedlicher Phasenunterschiede durch Hörer unterschiedlicher Hörertypen lässt sich auf verschiedene Weise realisieren, wie nachfolgend näher erläutert wird.
  • In einer geeigneten Ausgestaltung weist der Hörer zwei Signalkontakte auf und der Hörer ist mittels der Signalkontakte verpolungssicher mit einem Hörgerät des Hörsystems verbindbar und vorzugsweise auch verbunden. Der Hörer und speziell die zwei Signalkontakte sind also verpolungssicher ausgebildet. Ein erster Hörertyp und ein zweiter Hörertyp der mehreren Hörertypen unterscheiden sich nun vorzugsweise dadurch voneinander, dass diese entgegengesetzt zueinander verpolungssicher ausgebildet sind, sodass sich die beiden Phasenunterschiede, die von einem Hörer des ersten Hörertyps und von einem Hörer des zweiten Hörertyps erzeugt werden, um 180° unterscheiden. Die Signalkontakte der beiden Hörertypen sind also entgegengesetzt zueinander verpolungssicher ausgebildet. Der eine der beiden Hörertypen führt also dazu, dass bei der Umwandlung des Eingangssignals zum Sensorsignal eine zusätzliche Phase von 180° aufgeprägt wird, sodass sich ein entsprechender Phasenunterschied relativ zum anderen Hörertyp ergibt. In einer geeigneten Ausgestaltung ist der erste Hörertyp für die linke Seite eines binauralen Hörsystems vorgesehen und der zweite Hörertyp für die rechte Seite. Wird nun fälschlicherweise einer der beiden Hörer umgekehrt auf der anderen Seite angeschlossen, dann wird im Rahmen einer Seitenerkennung ein Phasenunterschied gemessen, welcher um 180° von einem erwarteten Phasenunterschied abweicht, wobei der erwartete Phasenunterschied derjenige Phasenunterschied ist, welcher von dem anderen Hörer erzeugt würde.
  • Im Detail wird dieses Konzept mit zwei entgegengesetzt zueinander verpolungssicher ausgebildeten Hörertypen vorzugsweise wie folgt realisiert: der Hörer weist eine Signalschnittstelle auf, zum Anschließen an ein Hörgerät des Hörsystems. Die Signalschnittstelle weist einen ersten Signalkontakt auf und einen zweiten Signalkontakt auf. Dabei sind die Signalkontakte jeweils insbesondere mit einem bestimmten Pol des Hörers assoziiert, der erste Signalkontakt ist dann immer ein Pluspol und der zweite Signalkontakt immer ein Minuspol. Das Hörgerät weist insbesondere eine entsprechend komplementäre Hörgerät-Signalschnittstelle auf, welche zwei Pole aufweist, zum Anschließen der Signalkontakte, je ein Pol pro Signalkontakt. Die Signalschnittstelle ist nun derart verpolungssicher ausgebildet, dass einer der Signalkontakte lediglich mit einem ersten Pol des Hörgeräts verbindbar ist und der andere der Signalkontakt lediglich mit einem zweiten Pol des Hörgeräts und gerade nicht umgekehrt. Dies ist beispielsweise durch unterschiedliche Geometrien der einzelnen Signalkontakte und Pole oder durch eine entsprechende Steckkontur realisiert. Ein erster Hörertyp und ein zweiter Hörertyp der mehreren Hörertypen unterscheiden sich dann insbesondere dadurch voneinander, dass bei dem ersten Hörertyp der erste Signalkontakt lediglich mit dem ersten Pol verbindbar ist und der zweite Signalkontakt lediglich mit dem zweiten Pol, wohingegen der zweite Hörertyp gegenüber dem ersten Hörertyp derart verpolt ausgebildet ist, dass bei diesem umgekehrt der erste Signalkontakt lediglich mit dem zweiten Pol verbindbar ist und der zweite Signalkontakt lediglich mit dem ersten Pol. Bei dem einen Hörertyp ist also der Pluspol auch mit einem Pluspol am Hörgerät verbunden und entsprechend ein Minuspol am Hörer mit einem Minuspol am Hörgerät und bei dem anderen Hörertyp ist umgekehrt ein jeweiliger Minuspol mit einem Pluspol verbunden. Allgemein wird dadurch vorteilhaft erreicht, dass sich die beiden Phasenunterschiede, die von den beiden Hörertypen erzeugt werden, um 180° unterscheiden, wenn diese auf derselben Seite angeschlossen werden, also an derselben Hörgerät-Signalschnittstelle.
  • In einer ersten geeigneten Variante wird dem Hörer über die Signalkontakte das elektrische Eingangssignals zugeführt und der Sensor ist außerhalb des Hörers und unabhängig von dem Hörer angeordnet. Die Verpolung wird also dadurch realisiert, dass die Übertragung des Eingangssignals an den Hörer verpolt ausgebildet ist, sodass dann prinzipbedingt das Sekundärsignal, welches durch einen Hörer des ersten Hörertyps erzeugt wird, bezüglich des Sekundärsignals, welches durch einen Hörer des zweiten Hörertyps erzeugt wird, ein umgekehrtes Vorzeichen aufweist. Der Phasenunterschied zur Identifikation des Hörers wird also insbesondere bei der Übergabe des Eingangssignals an den Hörer erzeugt, d.h. die ID-Phase wird bei der Übergabe des Eingangssignals an den Hörer und somit am Anfang des Transferpfads aufgeprägt. Der Sensor erzeugt dann je nach Sekundärsignal ein entsprechendes Sensorsignal. In dieser Variante sind also die Hörer selbst zueinander entgegensetzt verpolt ausgebildet.
  • Für einen optimalen Hörkomfort wird speziell bei der ersten Variante in einem normalen Hörbetrieb, kurz Hörbetrieb, vorzugsweise das Eingangssignal auf der einen Seite mit umgekehrtem Vorzeichen an den Hörer übergeben, sodass die Sekundärsignale auf beiden Seiten dann gerade nicht mehr entgegensetzt sind, sondern insbesondere gleichphasig. Zur Identifikation des Hörers wird dann aber zweckmäßigerweise das originale Eingangssignal verwendet, um entsprechend gegenphasige Sekundärsignale erzeugen zu können, sodass die beiden Hörertypen dann unterschieden werden können und auch unterschieden werden.
  • In einer zweiten geeigneten Variante werden dagegen nicht die Hörer hinsichtlich des Eingangssignals selbst verpolt, sondern die Sensoren auf beiden Seiten des Hörsystems. Zweckmäßigerweise ist der Sensor dabei in den Hörer integriert und mit diesem fest verbunden, sodass der Sensor und der Hörer zusammen insbesondere eine untrennbare Baugruppe bilden. Dies gilt entsprechend für beide Seiten eins binauralen Hörsystems, wobei auch ganz allgemein ein binaurales Hörsystem insbesondere zwei Sensoren aufweist, nämlich einen für jeden der beiden Hörer. Bei der zweiten Variante wird nun über die Signalkontakte das Sensorsignal übertragen und nicht das Eingangssignal. Die obigen Ausführungen zur ersten Variante gelten jedoch sinngemäß auch für die zweite Variante, bei welcher nunmehr die Eingangssignale und auch die Sekundärsignale grundsätzlich gleichphasig sind, bei welcher aber die Sensorsignale gegenphasig sind. Der Phasenunterschied zur Identifikation des Hörers wird also bei der Erzeugung des Sensorsignals, genauer bei der Übergabe des Sensorsignals an die Steuereinheit erzeugt, d.h. die ID-Phase wird dem Sensorsignal aufgeprägt und somit am Ende des Transferpfads. Dies bietet insbesondere den Vorteil, dass das Eingangssignal nicht für einen normalen Hörbetrieb manipuliert zu werden braucht.
  • Bei der zweiten Variante weist der Hörer insbesondere zwei Signalschnittstellen auf, eine verpolte Signalschnittstelle für das Sensorsignal und eine weitere, nichtverpolte Signalschnittstelle für das Eingangssignal. Demgegenüber weist der Hörer bei der zweiten Variante lediglich eine Signalschnittstelle auf, nämlich für das Eingangssignal, und ansonsten keine weiteren Signalschnittstellen.
  • Speziell bei der zweiten Variante ist der Sensor derart mit dem Hörer verbunden, dass eine Trennung bei ordnungsgemäßer Handhabung nicht möglich ist. Der Sensor ist somit dem Hörer dauerhaft und auch eindeutig zugeordnet. Der Sensor ist also insbesondere als ein Bestandteil des Hörers ausgebildet. Dadurch wird sichergestellt, dass auch immer der korrekte Sensor mit dem zugehörigen Hörer verbunden ist, da allein aufgrund des Hörers eine Identifikation desselben nicht möglich ist. Hierzu dient nämlich der Sensor und genauer gesagt dessen spezielle Verpolung. Zur Integration des Sensors in den Hörer ist der Sensor an dem Hörer befestigt, z.B. mit diesem verklebt, in ein Gehäuse des Hörers eingegossen oder ein Bestandteil des Hörers selbst.
  • Grundsätzlich sind zur Phasenmessung eine Vielzahl unterschiedlicher Konzepte geeignet. Ein wesentlicher Punkt hierbei ist insbesondere, dass ein Sensorsignal erzeugt wird, welches über eine Transferfunktion mit dem Eingangssignal verbunden ist und dass bei der Erzeugung des Sensorsignals aus dem Eingangssignal ein zusätzlicher Phasenunterschied hinzugefügt wird, also eine zusätzliche Phase aufgeprägt wird, welcher bzw. welche dann zur Identifikation des Hörers verwendet wird. Diese Phase wird daher wie oben bereits beschrieben als ID-Phase bezeichnet. Dabei sind aber grundsätzlich jegliche Arten von Sekundärsignalen und verschiedenste Sensoren zu deren Messung geeignet. Einige bevorzugte Kombinationen von Sekundärsignal und Sensor werden nachfolgend im Detail erläutert. Die genannten Varianten lassen sich auch miteinander kombinieren.
  • In einer bevorzugten Ausgestaltung ist das Sekundärsignal ein Schallsignal, welches von dem Hörer bei der Schallausgabe erzeugt wird, und der Sensor ist ein Mikrofon, welches das Schallsignal aufnimmt. Vorteilhafterweise wird als Sensor ein Mikrofon des Hörsystems verwendet, insbesondere ein Mikrofon, welches ein Teil eines Hörgeräts des Hörsystems ist und welches in einem Hörbetrieb zur Aufnahme von Geräuschen aus der Umgebung dient, um diese nachfolgend zu verstärken und über den Hörer des Hörgeräts auszugeben. Geeignet ist aber auch z.B. ein vom Nutzer bei der bestimmungsgemäßen Verwendung im Gehörgang getragenes Mikrofon, insbesondere ein Körperschallmikrofon, oder alternativ ein zusätzliches Mikrofon. Das Sekundärsignal ist insbesondere ein ohnehin zur Ausgabe an den Nutzer erzeugtes Schallsignal. Dieses wird üblicherweise durch Reflektionen, Eigenmodi und Beugungen im Gehörgang des Nutzers weiter modifiziert, bevor es vom Sensor aufgenommen wird.
  • In einer weiteren bevorzugten Ausgestaltung ist das Sekundärsignal ein Magnetfeld, welches von dem Hörer bei der Schallausgabe erzeugt wird, und der Sensor ist ein Magnetfeldsensor, welcher das Magnetfeld misst. Dieser Variante liegt die Überlegung zugrunde, dass ein Hörer bei der Schallausgabe prinzipbedingt ein Magnetfeld erzeugt, welches abhängig vom elektrischen Eingangssignal ist, sodass ein zusätzlicher Phasenunterschied bei einem Vergleich mit dem Eingangssignal besonders gut erkennbar ist. Der Sensor ist geeigneterweise ein Hall-Sensor, eine Spule oder eine ohnehin in einem Hörgerät des Hörsystems bereits vorhandene Telefonspule, auch als T-Coil bezeichnet.
  • In einer weiteren bevorzugten Ausgestaltung ist das Sekundärsignal eine Vibration, welche insbesondere wenigstens mittelbar von dem Hörer bei der Schallausgabe erzeugt wird, und der Sensor ist ein Vibrations- oder Beschleunigungssensor, welcher die Vibration aufnimmt. Ein Vibrationssensor unterscheidet sich von einem Mikrofon insbesondere dadurch, dass ein Vibrationssensor nicht direkt durch ein Schallsignal angeregt wird, sondern vielmehr eine Vibration, d.h. eine mechanische Beschleunigung, insbesondere der umliegenden Umgebung oder der umliegenden Bauteile oder von beidem misst. Beispielsweise misst der Sensor dann während der Schallausgabe eine Vibration des Hörers oder genauer gesagt eines Gehäuses des Hörers. Ein Vibrations- oder Beschleunigungssensor umfasst in einer geeigneten Ausgestaltung eine schwingend gelagerte Testmasse, welche durch Schall oder Vibration oder beides entsprechend angeregt wird, sodass der Vibrations- oder Beschleunigungssensor dann ein Sensorsignal erzeugt, welches abhängig vom Eingangssignal ist.
  • Insbesondere ist zu beachten, dass zu einer möglichst sicheren Messung des Phasenunterschieds eine entsprechend geeignete Samplingrate für den Sensor verwendet wird. Das Eingangssignal weist üblicherweise ein Frequenzspektrum im für Normalhörende hörbaren Bereich von insbesondere 20 Hz bis 20 kHz auf, sodass auch das Sekundärsignal entsprechend in diesem Frequenzbereich liegt. Zweckmäßigerweise wird daher die Samplingrate für den Sensor derart gewählt, dass auch das Sensorsignal solche Frequenzen abbildet. Speziell ein Beschleunigungssensor wird typischerweise beim bestimmungsgemäßen Gebrauch mit einer Samplingrate von lediglich wenigen Messwerten pro Sekunde betrieben, also deutlich unterhalb von 20 Hz. Zur Messung des Sekundärsignals wird dann allgemein für den Sensor zweckmäßigerweise eine Samplingrate zwischen 40 Hz und 40 kHz gewählt.
  • Als Eingangssignal kann prinzipiell jedes Signal verwendet werden, insbesondere auch jedes im Hörbetrieb aufgenommene und umgewandelte Schallsignal aus der Umgebung oder alternativ oder zusätzlich ein elektrisches Audiosignal. Um jedoch möglichst frühzeitig und vorteilhafterweise außerhalb des regulären Hörbetriebs den Hörer zu identifizieren, ist das elektrische Eingangssignal in einer zweckmäßigen Ausgestaltung ein Startsignal, welches beim Einschalten, d.h. bei einer Inbetriebnahme des Hörsystems abgespielt wird. Dadurch erfolgt noch vor einem eigentlichen Hörbetrieb eine Identifikation des Hörers. Das Startsignal ist vorzugsweise eine Startmelodie, welche beim Einschalten des Hörsystems und zur akustischen Anzeige der Inbetriebnahme abgespielt wird.
  • Alternativ oder zusätzlich wird der Hörer vorteilhafterweise im Rahmen einer open-loop-gain-Messung des Hörsystems identifiziert. Diese open-loop-gain-Messung wird auch als Kalibrierungsbetrieb bezeichnet und ist genauer gesagt ein Kalibrierungsbetrieb zur Kalibrierung einer maximalen Verstärkung des Hörgeräts, welche üblicherweise von den jeweils konkret vorliegenden und möglicherweise wechselnden Umgebungsbedingungen abhängt. Hierbei weist das Hörsystem also eine Verstärkungsregelung auf, welche in dem Kalibrierungsbetrieb kalibriert wird, indem ein Testsignal als das Eingangssignal verwendet wird, wodurch ein Kalibrierungssignal erzeugt wird, um die maximale Verstärkung des Hörsystems einzustellen. Das Kalibrierungssignal ist insbesondere ein Mikrofonsignal, das Testsignal wird also ausgegeben und wiederaufgenommen, um die Umgebung zu charakterisieren. Das Kalibrierungssignal dient dann in Kombination mit dem Testsignal insbesondere dazu, die Übertragungsfunktion vom Hörer des Hörsystems zum Trommelfell des Nutzers zu bestimmen, insbesondere zu schätzen, und abhängig davon die maximale Verstärkung einzustellen. Das Kalibrierungssignal wird nun vorteilhaft zugleich als Sensorsignal verwendet, d.h. das Kalibrierungssignal ist das Sensorsignal. Insofern ähnelt diese Ausgestaltung der weiter oben beschriebenen Ausgestaltung mit dem Schallsignal als Sekundärsignal und dem Mikrofon als Sensor. Die Identifikation des Hörers erfolgt hierbei dann vorteilhaft parallel zur open-loop-gain-Messung, sodass der apparative und steuerungstechnische Aufwand zur Identifikation des Hörers minimal ist, da dasselbe Kalibrierungssignal für beide Zwecke verwendet wird. Die beschriebene Messung ist zudem nicht auf einen speziellen Kalibrierungsbetrieb beschränkt, sondern wird in einer vorteilhaften Ausgestaltung im laufenden Betrieb, insbesondere im Normalbetrieb, durchgeführt. Die Messung wird vorzugsweise adaptiv durchgeführt. Dabei wird dann vorteilhaft die Phase während der Laufzeit des Hörsystems ständig ermittelt, d.h. wiederkehrend. Hierzu ist der Sensor insbesondere an einen geeigneten Signalverarbeitungsblock angeschlossen, welcher die Übertragungsfunktion schätzt. Der Signalverarbeitungsblock ist vorzugsweise ein Teil der Steuereinheit.
  • Vorzugsweise wird zusätzlich zur Identifikation des Hörers mittels der Phasenmessung auch eine Leistungsklasse des Hörers mittels einer Amplitudenmessung ermittelt, wobei die Amplitudenmessung vorzugsweise mit dem Sensor durchgeführt wird. Die Amplitudenmessung ist insbesondere eine Messung eines Amplitudenfrequenzgangs. Der Hörer weist also eine Leistungsklasse auf, welche durch eine zusätzliche Amplitudenmessung ermittelt wird, welche insbesondere zeitgleich zur Phasenmessung durchgeführt wird. Die Leistungsklasse ist geeigneterweise durch ein Übertragungsverhalten des Hörers definiert, d.h. insbesondere durch einen Amplitudenfrequenzgang, welcher einer bestimmten Leistungsklasse zugeordnet ist. Dadurch wird dann durch Messung der Amplitude, d.h. durch die Amplitudenmessung, die Leistungsklasse des Hörers bestimmt.
  • Alternativ oder zusätzlich wird in einer geeigneten Ausgestaltung zusätzlich zur Identifikation des Hörers mittels der Phasenmessung auch eine Leistungsklasse des Hörers mittels einer Impedanzmessung bestimmt. Der Hörer weist also eine Leistungsklasse auf, welche durch eine zusätzliche Impedanzmessung ermittelt wird, welche insbesondere zeitgleich zur Phasenmessung durchgeführt wird. Die Leistungsklasse ist geeigneterweise durch einen elektrischen Widerstand des Hörers definiert, d.h. in den Hörer ist ein elektrischer Widerstand integriert, welcher einen bestimmten Widerstandswert aufweist, welcher einer bestimmten Leistungsklasse zugeordnet ist. Dadurch wird dann durch Messung des Widerstands die Leistungsklasse des Hörers bestimmt.
  • Besonders vorteilhaft bei der Leistungsklassenerkennung wie oben beschrieben ist eine Ausgestaltung, bei welcher die Phasenmessung zur Seitenerkennung genutzt wird, sodass dann ein Hörer einerseits durch eine Amplituden- oder Widerstandsmessung einer Leistungsklasse zugeordnet wird und andererseits zusätzlich durch eine Phasenmessung einer Seite des Hörsystems. Der Hörer wird dann also sozusagen in zwei Dimensionen identifiziert, nämlich einmal hinsichtlich der Leistungsklasse und einmal hinsichtlich der Seite. Insofern ist ein Hörertyp also durch zwei Parameter gekennzeichnet, nämlich durch einen ersten Parameter "Leistungsklasse" und einen zweiten Parameter "Seite".
  • Ein besonderer Vorteil bei der Bestimmung der Leistungsklasse besteht insbesondere darin, dass mit derselben Messung, auch als Messroutine bezeichnet, zugleich auch der Phasenunterschied messbar ist, d.h. die Phasenmessung erfolgt als ein Teil allgemein der Messroutine, sodass die Leistungsklasse und die Seite mit einer einzelnen Messung gleichzeitig bestimmbar sind und zweckmäßigerweise auch bestimmt werden.
  • Vorzugsweise wird die Phasenmessung bei einer Frequenz von höchstens 500 Hz durchgeführt. Dem liegt insbesondere die Beobachtung zugrunde, dass sich der Phasenunterschied bei niedrigen Frequenzen besser bestimmen lässt als bei hohen Frequenzen, da Signale bei hohen Frequenzen störanfälliger sind. So zeigen sich bei höheren Frequenzen zunehmend Störeinflüsse durch z.B. die individuelle Geometrie des Ohrs des Nutzers oder die gewählte Länge eines Schallschlauchs eines Hörgeräts des Hörsystems. Grundsätzlich kommt der gesamte akustische Frequenzbereich zur Messung in Betracht, wobei jedoch niedrige Frequenzen, d.h. Frequenzen von höchstens 500 Hz, besonders zuverlässige Messungen ermöglichen. Vorzugsweise wird die Phasenmessung jedoch wenigstens bei einer Frequenz von 20 Hz durchgeführt. Die Samplingrate des Sensors ist zweckmäßigerweise auf die Frequenz angepasst und entspricht vorzugsweise wenigstens dem doppelten der Frequenz.
  • Ein erfindungsgemäßes Hörsystem ist ausgebildet, das zuvor beschriebene Verfahren auszuführen und weist hierzu insbesondere eine Steuereinheit auf. Die Steuereinheit ist in einer geeigneten Ausgestaltung in ein Hörgerät des Hörsystems integriert. In einer ebenfalls geeigneten Variante ist die Steuereinheit als separates Teil des Hörsystems ausgebildet.
  • Nachfolgend wird ein Ausführungsbeispiel der Erfindung anhand einer Zeichnung näher erläutert. Darin zeigen jeweils schematisch:
  • Fig. 1
    ein binaurales Hörsystem
    Fig. 2
    eine schematisierte Darstellung des Hörsystems aus Fig. 1,
    Fig. 3a, 3b
    eine erste Variante eines Hörsystems,
    Fig. 4a, 4b
    eine zweite Variante eines Hörsystems,
    Fig. 5a, 5b
    eine dritte Variante eines Hörsystems.
  • In den Fig. 1 ist ein binaurales Hörsystem 2 gezeigt, mit oder zwei Hörgeräten 4, welche jeweils von einem Nutzer im oder am Ohr getragen werden. Die nachfolgenden Ausführungen sind jedoch sinngemäß auch auf ein Hörsystem 2 mit lediglich einem Hörgerät 4 anwendbar. Im gezeigten Ausführungsbeispiel weist ein jeweiliges Hörgerät 4 zur Schallausgabe einen Hörer 6 auf, welcher je nach Hörgerätetyp entweder in das Ohr eingesetzt wird oder außerhalb des Ohrs getragen wird. Vorliegend ist lediglich beispielhaft ein sogenannten RIC-Hörgerät gezeigt, bei welchem der Hörer 6 im Ohr getragen wird und über eine elektrische Verbindung 8 mit dem übrigen Hörgerät 4 verbunden ist.
  • Das gezeigte Hörsystem 2 dient allgemein zur Verstärkung von Schallsignalen aus der Umgebung, mit dem Ziel, ein defizitäres Hörvermögen des Nutzers auszugleichen. Hierzu ist das Hörsystem 2 individuell auf den Nutzer angepasst und eingestellt, um dessen individuellem Hörvermögen gerecht zu werden und die individuelle Einschränkung des Hörvermögens auszugleichen. In einer nicht gezeigten Variante ist das Hörsystem 2 allgemein ein Kopfhörer.
  • Eine wesentliche Komponente eines Hörsystems 2 ist der Hörer 6, welcher zur Schallausgabe dient und in einer Vielzahl von Varianten verfügbar ist. Je nach Hörvermögen wird ein geeigneter Hörer 6 ausgewählt und in dem Hörsystem 2 verwendet. Das Hörsystem 2 ist nun derart ausgebildet, dass die Gefahr einer Verwechslung des Hörers 6 verringert wird, d.h. die Gefahr, fälschlicherweise einen Hörer 6 eines Hörertyps zu verwenden, welcher nicht für den Nutzer vorgesehen ist. Hierzu wird ein Verfahren durchgeführt, mittels welchem der Hörer 6 identifiziert wird, d.h. einem von mehreren Hörertypen zugeordnet wird. Das Verfahren wird vorliegend von einer Steuereinheit 10 ausgeführt, welche ein Teil des Hörsystems 2 ist und in einem der Hörgeräte 4 untergebracht ist.
  • Das Verfahren wird anhand von Fig. 2 näher erläutert, in welcher eines der Hörgeräte 4 aus Fig. 1 stark schematisiert als Schaltbild dargestellt ist. Grundsätzlich ist das Hörsystem 2 zunächst derart ausgebildet, dass ein Mikrofon 12 Schallsignale 100 aus der Umgebung aufnimmt und in ein Mikrofonsignal 102 umwandelt. Dieses wird an die Steuereinheit 10 weitergeleitet und dort verstärkt. Die Steuereinheit 10 erzeugt also ein verstärktes Mikrofonsignal, welches ein elektrisches Eingangssignal 104 ist, welches zur Ausgabe an den Hörer 6 übergeben wird. Der Hörer 6 wandelt das Eingangssignal 104 im Rahmen einer Schallausgabe in ein Schallsignal 106 um, welches an den Nutzer ausgegeben wird. Dabei erzeugt der Hörer 6 vorliegend prinzipbedingt auch ein Magnetfeld 108. Das Schallsignal 106 sowie das Magnetfeld 108 sind also abhängig vom Eingangssignal 104, welches auch als Primärsignal 110 bezeichnet wird. Daher werden das Schallsignal 106 sowie das Magnetfeld 108 auch jeweils als Sekundärsignal 112 bezeichnet. Andere, nicht gezeigte Sekundärsignale 112 sind beispielsweise eine bei der Schallausgabe erzeugte Vibration oder eine Beschleunigung.
  • Das Verfahren dient nun zur Identifikation des Hörers 6, welcher einem von mehreren unterschiedlichen Hörertypen angehört. Wenigstens eines der Sekundärsignale 112 wird nun von einem Sensor 14 erfasst, welcher abhängig von dem Sekundärsignal 112 ein elektrisches Sensorsignal 114 erzeugt. Die Abhängigkeit des Sensorsignals 114 vom Eingangssignal 112 ist insbesondere durch eine Transferfunktion T bestimmt, welche nicht notwendigerweise bekannt sein muss und welche die Veränderung beschreibt, welche das Eingangssignals 104 bei der Umwandlung in das Sensorsignal 114 entlang eines Transferpfads erfährt. Entsprechend ergeben sich in Fig. 2 zwei Transferfunktionen T für die beiden durch Pfeile angedeuteten Transferpfade, nämlich einmal vom Hörer 6 zum Sensor 14 und einmal vom Hörer 6 zum Mikrofon 12, welches ebenfalls als Sensor 14 verwendbar ist. Weiter wird vorliegend von der Steuereinheit 10 eine Phasenmessung durchgeführt, indem ein Phasenunterschied zwischen dem Eingangssignal 104 und dem Sensorsignal 114 bestimmt wird. Der Hörer 6 wird dann anhand des Phasenunterschieds einem der mehreren Hörertypen zugeordnet und dadurch identifiziert.
  • Der Hörer 6 ist an einen Höreranschluss 16 des Hörsystems 2 angeschlossen, wobei über den Höreranschluss 16 das Eingangssignal 104 an den Hörer 6 übergeben wird. Die Hörer 6 unterschiedlicher Hörertypen sind nun derart ausgebildet, dass diese an demselben Höreranschluss 16 und für das gleiche Eingangssignal 104 unterschiedliche Phasenunterschiede hervorrufen. Bei der Phasenmessung ergeben sich also für unterschiedliche Hörertypen unterschiedliche Phasenunterschiede. Verschiedene Hörer 6 desselben Hörertyps ergeben dagegen auch denselben Phasenunterschied. Prinzipbedingt ergibt sich ein sogenannter Transfer-Phasenunterschied möglicherweise bereits aufgrund der Transferfunktion T zwischen dem Eingangssignal 104 und dem Sensorsignal 114. Zur Identifikation des Hörers 6 wird nun zusätzlich zum Transfer-Phasenunterschied in Abhängigkeit des Hörertyps ein Identifikations-Phasenunterschied, kurz ID-Phasenunterschied, hinzugefügt. Insgesamt ergeben sich dann für unterschiedliche Hörertypen bei gleichbleibendem Transferpfad auch unterschiedliche Phasenunterschiede. Entlang des Transferpfads T wird also eine zusätzliche Phase zur Identifikation, also eine Identifikationsphase oder ID-Phase aufgeprägt, welche dann im Sensorsignal 114 zusätzlich zu einem möglichen Transfer-Phasenunterschied aufgrund des Transferpfads T selbst vorhanden ist. Die ID-Phase kann allgemein an unterschiedlichen Stellen entlang des Transferpfads aufgeprägt werden.
  • In Fig. 1 ist eine Variante gezeigt, bei welcher das Sekundärsignal 112 ein Schallsignal 106 ist, welches von dem Hörer 6 bei der Schallausgabe erzeugt wird. Der Sensor 14 ist hier das Mikrofon 12, welches in einem Hörbetrieb zur Aufnahme von Geräuschen aus der Umgebung dient, um diese nachfolgend zu verstärken und über den Hörer 6 des Hörgeräts 4 auszugeben. Alternativ wird ein anderes Mikrofon verwendet.
  • Ebenfalls in Fig. 1 gezeigt ist eine Variante, bei welcher das Sekundärsignal 112 ein Magnetfeld 108 ist, welches von dem Hörer 6 bei der Schallausgabe erzeugt wird. Der Sensor 14 ist ein Magnetfeldsensor, welcher das Magnetfeld 108 misst. Der Sensor 14 ist beispielsweise ein Hall-Sensor, eine Spule oder eine Telefonspule der Hörgeräts 4, auch als T-Coil bezeichnet.
  • Nicht gezeigt ist eine weitere Variante, bei welcher das Sekundärsignal 112 eine Vibration ist, welche insbesondere wenigstens mittelbar von dem Hörer 6 bei der Schallausgabe erzeugt wird, wobei dann der Sensor 14 ein Vibrationssensor ist, welcher die Vibration aufnimmt. Ebenfalls nicht gezeigt ist eine Variante, bei welcher das Sekundärsignal 112 eine Beschleunigung ist, welche wenigstens mittelbar durch die Schallausgabe erzeugt wird, wobei dann der Sensor 14 ein Beschleunigungssensor ist, welcher die Beschleunigung misst.
  • Die genannten gezeigten und nicht gezeigten Varianten können auch einzeln angewendet oder beliebig kombiniert werden.
  • Das Verfahren wird vorliegend verwendet, um festzustellen, ob auf einer jeweiligen Seite des binauralen Hörsystems 2 auch ein Hörer 6 angeschlossen ist, welcher einem Hörertyp angehört, welcher auch zur Verwendung auf dieser Seite vorgesehen ist. Ein erster der mehreren Hörertypen ist dann ein linker Hörer, welcher zur Verwendung auf der linken Seite des Hörsystems 2 vorgesehen ist, und ein zweiter der mehreren Hörertypen ist ein rechter Hörer, welcher zur Verwendung auf der rechten Seite des Hörsystems 2 vorgesehen ist. Im Rahmen des Verfahrens wird dann eine Seitenerkennung durchgeführt, indem der Hörer 6 anhand des Phasenunterschieds als ein linker Hörer oder als ein rechter Hörer identifiziert wird.
  • In den Fig. 3a, 3b, 4a, 4b und 5a, 5b ist verdeutlicht, wie sich die Erzeugung unterschiedlicher Phasenunterschiede durch Hörer 6 unterschiedlicher Hörertypen realisieren lässt. Dabei zeigen die Fig. 3a und 3b eine erste Variante, die Fig. 4a und 4b eine zweite Variante und die Fig. 5a und 5b eine dritte Variante. In allen Varianten ist der Hörer 6 verpolungssicher mit einem Hörgerät 4 des Hörsystems 2 verbindbar und somit verpolungssicher ausgebildet. Der erste Hörertyp, jeweils in den Fig. 3a, 4a und 5a gezeigt, und der zweite Hörertyp, jeweils in den Fig. 3b, 4b und 5b gezeigt, unterscheiden sich nun dadurch voneinander, dass diese entgegengesetzt zueinander verpolungssicher ausgebildet sind, sodass sich die beiden Phasenunterschiede, die von einem Hörer 6 des ersten Hörertyps und von einem Hörer 6 des zweiten Hörertyps erzeugt werden, um 180° unterscheiden. Der eine der beiden Hörertypen führt also dazu, dass bei der Umwandlung des Eingangssignals 104 zum Sensorsignal 114 eine zusätzliche Phase von 180° aufgeprägt wird, sodass sich ein entsprechende Phasenunterschied relativ zum anderen Hörertyp ergibt. Vorliegend ist lediglich beispielhaft der erste Hörertyp für die linke Seite des binauralen Hörsystems 2 vorgesehen und der zweite Hörertyp für die rechte Seite. Wird nun fälschlicherweise einer der beiden Hörer 6 umgekehrt auf der anderen Seite angeschlossen, dann wird im Rahmen einer Seitenerkennung ein Phasenunterschied gemessen, welcher um 180° von einem erwarteten Phasenunterschied abweicht, wobei der erwartete Phasenunterschied derjenige Phasenunterschied ist, welcher von dem anderen Hörer 6 erzeugt würde.
  • Im den gezeigten Ausführungsbeispielen wird dieses Konzept mit zwei entgegengesetzt zueinander verpolungssicher ausgebildeten Hörertypen beispielhaft wie folgt realisiert: der Hörer 6 weist eine Signalschnittstelle 18 auf, zum Anschließen an eines der Hörgeräte 4, genauer an den Höreranschluss 16, welcher also eine entsprechend komplementäre Hörgerät-Signalschnittstelle ist. Die Signalschnittstelle 18 weist einen ersten Signalkontakt 20 auf und einen zweiten Signalkontakt 22. Das Hörgerät 4, genauer der Höreranschluss 16, weist nun zwei Pole 24, 26 auf, zum Anschließen der Signalkontakte 20, 22. Die Signalschnittstelle 18 ist nun derart verpolungssicher ausgebildet, dass einer der Signalkontakte 20, 22 lediglich mit einem ersten Pol 24 des Hörgeräts verbindbar ist und der andere der Signalkontakte 20, 22 lediglich mit einem zweiten Pol 26 und gerade nicht umgekehrt. Dies ist beispielsweise wie in den Fig. 3a, 3b, 4a, 4b, 5a, 5b gezeigt durch unterschiedliche Geometrien der einzelnen Signalkontakte 20, 22 und Pole 24, 26 realisiert. Der erste Hörertyp und der zweite Hörertyp unterscheiden sich dann dadurch voneinander, dass bei dem ersten Hörertyp der erste Signalkontakt 20 lediglich mit dem ersten Pol 24 verbindbar ist und der zweite Signalkontakt 22 lediglich mit dem zweiten Pol 26, wohingegen der zweite Hörertyp gegenüber dem ersten Hörertyp derart verpolt ausgebildet ist, dass bei diesem umgekehrt der erste Signalkontakt 20 lediglich mit dem zweiten Pol 26 verbindbar ist und der zweite Signalkontakt 22 lediglich mit dem ersten Pol 24. Dadurch wird erreicht, dass sich die beiden Phasenunterschiede, die von den beiden Hörertypen erzeugt werden, um 180° unterscheiden, wenn diese auf derselben Seite angeschlossen werden, also an derselben Hörgerät-Signalschnittstelle 18.
  • Bei dem einen Hörertyp in Fig. 3a, 4a und 5a ist der erste Signalkontakt 20 ein Pluspol und mit dem ersten Pol 24 verbindbar, welcher auch ein Pluspol ist. Der zweite Signalkontakt 22 ist ein Minuspol und mit dem zweiten Pol 26 verbindbar, welcher auch ein Minuspol ist. Bei dem in Fig. 3b, 4b und 5b gezeigten anderen Hörertyp ist der erste Signalkontakt 20 ebenfalls ein Pluspol aber umgekehrt zu Fig. 3a, 4a und 5a mit dem zweiten Pol 26 verbindbar, welcher nun ein Minuspol ist. Der zweite Signalkontakt 22 ist dann ein Minuspol und mit dem ersten Pol 24 verbindbar, welcher nun ein Pluspol ist. Die Hörer 6 der Fig. 3a und 3b sind also gegeneinander verpolt ausgebildet. Die beiden in den Fig. 3a und 3b gezeigten Hörer 6 bilden auch gemeinsam ein Hörerset. Beides gilt entsprechend auch für die beiden Hörer 6 der Fig. 4a und 4b sowie für die beiden Hörer 6 der Fig. 5a und 5b.
  • Die Variante der Fig. 3a, 3b zeichnet sich nun dadurch aus, dass dem Hörer 6 über die Signalkontakte 20, 22 das elektrische Eingangssignals 104 zugeführt wird und dass der Sensor 14 außerhalb des Hörers 6 und unabhängig von diesem angeordnet ist, hier als Teil des Hörgeräts 4. Die Verpolung wird also dadurch realisiert, dass die Übertragung des Eingangssignals 104 an den Hörer 6 verpolt ausgebildet ist, sodass dann prinzipbedingt das Sekundärsignal 112, welches durch den Hörer 6 des ersten Hörertyps in Fig. 3a erzeugt wird, bezüglich des Sekundärsignals 112, welches durch einen Hörer 6 des zweiten Hörertyps in Fig. 3b erzeugt wird, ein umgekehrtes Vorzeichen aufweist. Der Phasenunterschied zur Identifikation des Hörers 6 wird also bei der Übergabe des Eingangssignals 104 an den Hörer 6 erzeugt und somit am Anfang des Transferpfads.
  • Demgegenüber werden in der zweiten Variante der Fig. 4a, 4b nicht die Hörer 6 hinsichtlich des Eingangssignals 104 selbst verpolt, sondern die Sensoren 14 auf beiden Seiten des Hörsystems 2. Der jeweilige Sensor 14 ist dabei in den jeweiligen Hörer 6 integriert und mit diesem fest verbunden und bildet mit diesem wie gezeigt eine untrennbare Baugruppe. Über die Signalkontakte 20, 22 wird nun das Sensorsignal 114 übertragen und nicht das Eingangssignal 104. Der Phasenunterschied zur Identifikation des Hörers 6 wird also bei der Erzeugung des Sensorsignals 114, genauer bei der Übergabe des Sensorsignals 114 an die Steuereinheit 10 erzeugt, d.h. am Ende des Transferpfads. Das Eingangssignal 104 wird separat über zusätzliche Signalleitung mit entsprechend zwei zusätzlichen Signalkontakten 28, 30 an den Hörer 6 übertragen. Diese Signalkontakte 28, 30 für das Eingangssignal 104 sind bei unterschiedlichen Hörertypen dann nicht verpolt. Unterschiedliche Hörertypen sind also hinsichtlich des Eingangssignals 104 immer phasenrichtig angeschlossen und speziell auch unabhängig von der Seite immer phasenrichtig angeschlossen. Insgesamt weist der Hörer 6, speziell dessen Signalschnittstelle 18, in den Fig. 4a, 4b also vier Signalkontakte 20, 22, 28, 30 auf, zwei Signalkontakte 28, 30 für das Eingangssignal 104 und zwei weitere Signalkontakte 20, 22 für das Sensorsignal 114.
  • Die Fig. 5a und 5b zeigen nun eine Kombination der beiden Varianten der Fig. 3a, 3b und 4a, 4b. In den Fig. 5a, 5b sind die beiden Hörertypen hinsichtlich des Eingangssignals 104 verpolt ausgebildet, d.h. wie in der Variante der Fig. 3a und 3b ausgebildet. Im Gegensatz zu der Variante der Fig. 3a, 3b ist jedoch bei der Variante der Fig. 5a, 5b der Sensor 14 jeweils in den Hörer 6 integriert, wie in der Variante der Fig. 4a, 4b. Hinsichtlich des Sensorsignals 114 sind die Hörertypen der Variante gemäß Fig. 5a, 5b jedoch nicht verpolt ausgebildet, sondern immer phasenrichtig. Die Variante der Fig. 5a, 5b basiert also auf der Variante der Fig. 3a, 3b, wobei der Sensor 14 nunmehr in den jeweiligen Hörer 6 integriert ist.
  • Als Eingangssignal 104 kann prinzipiell jedes Signal verwendet werden, z.B. kann alternativ oder zusätzlich zum verstärkten Mikrofonsignal 102 auch ein elektrisches Audiosignal verwendet werden. In einer nicht gezeigten Variante wird als Eingangssignal 104 ein Startsignal verwendet, welches beim Einschalten, d.h. bei einer Inbetriebnahme des Hörsystems 4 abgespielt wird und beispielsweise von der Steuereinheit 10 erzeugt wird oder in dieser gespeichert ist. Dadurch erfolgt noch vor einem eigentlichen Hörbetrieb eine Identifikation des Hörers 6.
  • In einer ebenfalls nicht gezeigten Variante wird der Hörer 6 im Rahmen einer open-loop-gain-Messung des Hörsystems 4 identifiziert. Diese open-loop-gain-Messung wird auch als Kalibrierungsbetrieb bezeichnet und ist genauer gesagt ein Kalibrierungsbetrieb zur Kalibrierung einer maximalen Verstärkung des Hörgeräts 4, welche üblicherweise von den jeweils konkret vorliegenden und möglicherweise wechselnden Umgebungsbedingungen abhängt. Hierbei weist das Hörsystem 2 also eine Verstärkungsregelung auf, welche in dem Kalibrierungsbetrieb kalibriert wird, indem ein Testsignal als das Eingangssignal 104 verwendet wird, wodurch ein Kalibrierungssignal erzeugt wird, um die maximale Verstärkung des Hörsystems 4 einzustellen. Das Kalibrierungssignal dient in Kombination mit dem Testsignal insbesondere dazu, die Übertragungsfunktion vom Hörer 6 des Hörsystems 4 zum Trommelfell des Nutzers zu bestimmen und abhängig davon die maximale Verstärkung einzustellen. Das Kalibrierungssignal wird dann zugleich als Sensorsignal 114 verwendet. Alternativ oder zusätzlich erfolgt die beschriebene Messung adaptiv im laufenden Betrieb und nicht oder nicht ausschließlich im Kalibrierungsbetrieb.
  • In einer nicht gezeigten Variante wird zusätzlich zur Identifikation des Hörers 6 mittels der beschriebenen Phasenmessung auch eine Leistungsklasse des Hörers 6 mittels einer Impedanzmessung oder mittels einer Amplitudenmessung oder beides bestimmt. Die Leistungsklasse ist beispielsweise durch einen elektrischen Widerstand des Hörers 6 definiert, d.h. in den Hörer 6 ist ein elektrischer Widerstand integriert, z.B. ähnlich wie der Sensor 4 in den Fig. 4a, 4b. Der Widerstand weist einen bestimmten Widerstandswert auf, welcher einer bestimmten Leistungsklasse zugeordnet ist, sodass durch eine Messung des Widerstands die Leistungsklasse des Hörers 6 bestimmt wird.
  • Bezugszeichenliste
  • 2
    Hörsystem
    4
    Hörgerät
    6
    Hörer
    8
    Verbindung
    10
    Steuereinheit
    12
    Mikrofon
    14
    Sensor
    16
    Höreranschluss
    18
    Signalschnittstelle
    20, 22
    Signalkontakt
    24, 26
    Pol
    28, 30
    Signalkontakt
    100
    Schallsignal
    102
    Mikrofonsignal
    104
    Eingangssignal
    106
    Schallsignal
    108
    Magnetfeld
    110
    Primärsignal
    112
    Sekundärsignal
    114
    Sensorsignal
    T
    Transferfunktion

Claims (15)

  1. Verfahren zur Identifikation eines Hörers (6) eines Hörsystems (2),
    wobei der Hörer (6) einem von mehreren Hörertypen angehört,
    wobei dem Hörer (6) zur Schallausgabe ein elektrisches Eingangssignal (104) zugeführt wird,
    wobei das Eingangssignal (104) ein Primärsignal (110) ist und aufgrund der Schallausgabe ein Sekundärsignal (112) erzeugt wird, welches von dem Eingangssignal (104) abhängig ist,
    wobei das Sekundärsignal (112) von einem Sensor (14) erfasst wird, welcher abhängig von dem Sekundärsignal (112) ein elektrisches Sensorsignal (114) erzeugt,
    wobei eine Phasenmessung durchgeführt wird, indem ein Phasenunterschied zwischen dem Eingangssignal (104) und dem Sensorsignal (114) bestimmt wird,
    wobei der Hörer (6) identifiziert wird, indem der Hörer (6) anhand des Phasenunterschieds einem der mehreren Hörertypen zugeordnet wird.
  2. Verfahren nach Anspruch 1,
    wobei das Hörsystem (2) binaural ist,
    wobei ein erster der mehreren Hörertypen ein linker Hörer ist, welcher zur Verwendung auf der linken Seite des Hörsystems (2) vorgesehen ist, wobei ein zweiter der mehreren Hörertypen ein rechter Hörer ist, welcher zur Verwendung auf der rechten Seite des Hörsystems (2) vorgesehen ist, wobei eine Seitenerkennung durchgeführt wird, indem der Hörer (6) anhand des Phasenunterschieds als ein linker Hörer oder als ein rechter Hörer identifiziert wird.
  3. Verfahren nach einem der Ansprüche 1 bis 2,
    wobei der Hörer (6) zwei Signalkontakte (20, 22) aufweist,
    wobei der Hörer (6) mittels der Signalkontakte (20, 22) verpolungssicher mit einem Hörgerät (4) des Hörsystems (2) verbindbar ist,
    wobei sich ein erster Hörertyp und ein zweiter Hörertyp der mehreren Hörertypen dadurch voneinander unterscheiden, dass diese entgegen-gesetzt zueinander verpolungssicher ausgebildet sind, sodass sich die beiden Phasenunterschiede, die von einem Hörer (6) des ersten Hörertyps und von einem Hörer (6) des zweiten Hörertyps erzeugt werden, um 180° unterscheiden.
  4. Verfahren nach Anspruch 3,
    wobei dem Hörer (6) über die Signalkontakte (20, 22) das elektrische Eingangssignals (104) zugeführt wird,
    wobei der Sensor (14) außerhalb des Hörers (6) und unabhängig von dem Hörer (6) angeordnet ist.
  5. Verfahren nach Anspruch 3,
    wobei der Sensor (14) in den Hörer (6) integriert ist und mit diesem fest verbunden ist,
    wobei über die Signalkontakte (20, 22) das Sensorsignal (114) übertragen wird.
  6. Verfahren nach einem der Ansprüche 1 bis 5,
    wobei das Sekundärsignal (112) ein Schallsignal (106) ist, welches von dem Hörer (6) bei der Schallausgabe erzeugt wird,
    wobei der Sensor (14) ein Mikrofon (12) ist, welches das Schallsignal (106) aufnimmt.
  7. Verfahren nach einem der Ansprüche 1 bis 6,
    wobei das Sekundärsignal (112) ein Magnetfeld (108) ist, welches von dem Hörer (6) bei der Schallausgabe erzeugt wird,
    wobei der Sensor (14) ein Magnetfeldsensor ist, welcher das Magnetfeld (108) misst.
  8. Verfahren nach einem der Ansprüche 1 bis 7,
    wobei das Sekundärsignal (112) eine Vibration ist, welche von dem Hörer (6) bei der Schallausgabe erzeugt wird,
    wobei der Sensor (14) ein Vibrationssensor oder ein Beschleunigungssensor ist, welcher die Vibration aufnimmt.
  9. Verfahren nach einem der Ansprüche 1 bis 8,
    wobei das elektrische Eingangssignal (104) ein Startsignal ist, welches beim Einschalten des Hörsystems (4) abgespielt wird.
  10. Verfahren nach einem der Ansprüche 1 bis 9,
    wobei das Hörsystem (2) eine Verstärkungsregelung aufweist, welche in einem Kalibrierungsbetrieb kalibriert wird, indem ein Testsignal als das Eingangssignal (104) verwendet wird, wodurch ein Kalibrierungssignal erzeugt wird, um eine maximale Verstärkung des Hörsystems (2) einzustellen,
    wobei das Kalibrierungssignal zugleich als das Sensorsignal (114) verwendet wird.
  11. Verfahren nach einem der Ansprüche 1 bis 10,
    wobei der Hörer (6) eine Leistungsklasse aufweist, welche durch eine zusätzliche Amplitudenmessung mit dem Sensor (14) ermittelt wird, welche insbesondere zeitgleich zur Phasenmessung durchgeführt wird.
  12. Verfahren nach einem der Ansprüche 1 bis 11,
    wobei der Hörer (6) eine Leistungsklasse aufweist, welche durch eine zusätzliche Impedanzmessung ermittelt wird, welche insbesondere zeitgleich zur Phasenmessung durchgeführt wird.
  13. Verfahren nach einem der Ansprüche 1 bis 12,
    wobei die Phasenmessung bei einer Frequenz von höchstens 500 Hz durchgeführt wird.
  14. Hörsystem (2), welches ausgebildet ist zur Durchführung eines Verfahrens nach einem der Ansprüche 1 bis 13.
  15. Hörerset, welches zur Verwendung in einem Verfahren nach einem der Ansprüche 1 bis 13 ausgebildet ist.
EP19174860.7A 2018-06-15 2019-05-16 Verfahren zur identifikation eines hörers, hörsystem und hörerset Active EP3582512B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102018209720.8A DE102018209720B3 (de) 2018-06-15 2018-06-15 Verfahren zur Identifikation eines Hörers, Hörsystem und Hörerset

Publications (2)

Publication Number Publication Date
EP3582512A1 true EP3582512A1 (de) 2019-12-18
EP3582512B1 EP3582512B1 (de) 2021-03-17

Family

ID=66589308

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19174860.7A Active EP3582512B1 (de) 2018-06-15 2019-05-16 Verfahren zur identifikation eines hörers, hörsystem und hörerset

Country Status (5)

Country Link
US (1) US10924871B2 (de)
EP (1) EP3582512B1 (de)
CN (1) CN110611870B (de)
DE (1) DE102018209720B3 (de)
DK (1) DK3582512T3 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11741093B1 (en) 2021-07-21 2023-08-29 T-Mobile Usa, Inc. Intermediate communication layer to translate a request between a user of a database and the database
US11924711B1 (en) 2021-08-20 2024-03-05 T-Mobile Usa, Inc. Self-mapping listeners for location tracking in wireless personal area networks

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030235311A1 (en) * 2002-06-21 2003-12-25 Lake Technology Limited Audio testing system and method
WO2009006889A1 (en) * 2007-07-10 2009-01-15 Widex A/S Method for identifying a receiver in a hearing aid
EP2166781A1 (de) * 2008-09-17 2010-03-24 Siemens Medical Instruments Pte. Ltd. Rechts-Links-Erkennung bei Hörhilfegeräten
US8433072B2 (en) 2007-11-19 2013-04-30 Oticon A/S Hearing instrument using receivers with different performance characteristics
EP2637423A1 (de) * 2012-03-06 2013-09-11 Oticon A/S Testvorrichtung für ein Lautsprechermodul einer Hörvorrichtung

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1627552B1 (de) * 2003-05-09 2007-12-26 Widex A/S Hörgerätesystem, hörgerät und verfahren zur verarbeitung von audiosignalen
US20050031137A1 (en) * 2003-08-07 2005-02-10 Tymphany Corporation Calibration of an actuator
DE102007039452B3 (de) * 2007-08-21 2009-06-04 Siemens Audiologische Technik Gmbh Automatische Hörer-Typ-Erkennung bei Hörhilfegeräten
CN101931851B (zh) * 2009-06-19 2014-06-25 中山市天键电子工业有限公司 一种喇叭极性测试装置
US9560456B2 (en) * 2011-04-11 2017-01-31 Panasonic Intellectual Property Management Co., Ltd. Hearing aid and method of detecting vibration
US9781521B2 (en) * 2013-04-24 2017-10-03 Oticon A/S Hearing assistance device with a low-power mode
DE102017209816B3 (de) 2017-06-09 2018-07-26 Sivantos Pte. Ltd. Verfahren zur Charakterisierung eines Hörers in einem Hörgerät, Hörgerät und Testvorrichtung für ein Hörgerät

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030235311A1 (en) * 2002-06-21 2003-12-25 Lake Technology Limited Audio testing system and method
WO2009006889A1 (en) * 2007-07-10 2009-01-15 Widex A/S Method for identifying a receiver in a hearing aid
US8433072B2 (en) 2007-11-19 2013-04-30 Oticon A/S Hearing instrument using receivers with different performance characteristics
EP2166781A1 (de) * 2008-09-17 2010-03-24 Siemens Medical Instruments Pte. Ltd. Rechts-Links-Erkennung bei Hörhilfegeräten
EP2637423A1 (de) * 2012-03-06 2013-09-11 Oticon A/S Testvorrichtung für ein Lautsprechermodul einer Hörvorrichtung

Also Published As

Publication number Publication date
CN110611870A (zh) 2019-12-24
DE102018209720B3 (de) 2019-07-04
US10924871B2 (en) 2021-02-16
CN110611870B (zh) 2021-07-27
DK3582512T3 (da) 2021-06-07
EP3582512B1 (de) 2021-03-17
US20190387329A1 (en) 2019-12-19

Similar Documents

Publication Publication Date Title
EP2180726B2 (de) Richtungshören bei binauraler Hörgeräteversorgung
DE102008064430B4 (de) Hörvorrichtung mit automatischer Algorithmenumschaltung
DE102007046437B4 (de) Vollautomatisches Ein-/Ausschalten bei Hörhilfegeräten
EP2104376B1 (de) Verfahren zur aktiven Okklusionsreduktion mit Plausibilitätsprüfung und entsprechende Hörvorrichtung
EP1737270B1 (de) Hörhilfegerät mit Mitteln zur Rückkopplungskompensation
EP2053876A1 (de) Hörvorrichtung mit gemeinsamem Anschluss für Schirmung und Identifikation eines Hörers
EP2437258B1 (de) Verfahren und Vorrichtung zur Frequenzkompression mit selektiver Frequenzverschiebung
EP2247119A1 (de) Vorrichtung zum akustischen Analysieren einer Hörvorrichtung und Analyseverfahren
EP3582512B1 (de) Verfahren zur identifikation eines hörers, hörsystem und hörerset
WO2004100601A1 (de) Detektionsvorrichtung
DE102011006129B4 (de) Hörvorrichtung mit Rückkopplungsunterdrückungseinrichtung und Verfahren zum Betreiben der Hörvorrichtung
EP3454572A1 (de) Verfahren zum erkennen eines defektes in einem hörinstrument
DE10347212B3 (de) Hörhilfevorrichtung zum automatischen Schalten in einen Telefonbetrieb und entsprechendes Verfahren
DE102006047694B4 (de) Verfahren zur Dynamikkompression eines Audiosignals und entsprechende Hörvorrichtung
DE10344367B4 (de) Hörhilfegerät mit magnetfeldgesteuertem Schalter und entsprechendes Verfahren zum Betreiben eines Hörhilfegeräts
EP3413588B1 (de) Verfahren zur charakterisierung eines hörers in einem hörgerät, hörgerät und testvorrichtung für ein hörgerät
EP2053877A1 (de) Verfahren und Vorrichtung zur Anpassung eines Hörgeräts mittels DPOAE
EP1416764B1 (de) Verfahren zur Einstellung eines Hörgerätes sowie Vorrichtung zur Durchführung des Verfahrens
DE102013111295A1 (de) Vorrichtung zum Vergleichstest von Hörgeräten
EP3448063A1 (de) Verfahren zum anpassen einer hörvorrichtung
DE102005008318B4 (de) Hörhilfegerät mit benutzergesteuerter Einmessautomatik
DE102010041775A1 (de) Verfahren zum Anpassen einer Hörvorrichtung mit Perzentilanalyse und Anpassvorrichtung
EP2658289A1 (de) Verfahren zum Steuern einer Richtcharakteristik und Hörsystem
DE102013207080B4 (de) Binaurale Mikrofonanpassung mittels der eigenen Stimme
DE102012203253B3 (de) Verstärken eines Sprachsignals in Abhängigkeit vom Eingangspegel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200602

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200825

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20201022

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019001000

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM AND CO. AG PATENT- UND MARKENANWAELTE V, CH

Ref country code: AT

Ref legal event code: REF

Ref document number: 1373380

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210415

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20210603

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210617

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210617

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210618

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210719

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210717

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019001000

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210516

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210531

26N No opposition filed

Effective date: 20211220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210717

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20190516

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230517

Year of fee payment: 5

Ref country code: DK

Payment date: 20230522

Year of fee payment: 5

Ref country code: DE

Payment date: 20230519

Year of fee payment: 5

Ref country code: CH

Payment date: 20230605

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230522

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317