EP3578713A1 - Polyester microfiber fabric and manufacturing process therefor - Google Patents

Polyester microfiber fabric and manufacturing process therefor Download PDF

Info

Publication number
EP3578713A1
EP3578713A1 EP17863758.3A EP17863758A EP3578713A1 EP 3578713 A1 EP3578713 A1 EP 3578713A1 EP 17863758 A EP17863758 A EP 17863758A EP 3578713 A1 EP3578713 A1 EP 3578713A1
Authority
EP
European Patent Office
Prior art keywords
done
staple fiber
polyester superfine
superfine staple
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP17863758.3A
Other languages
German (de)
French (fr)
Other versions
EP3578713A4 (en
Inventor
Guochun QIAN
Xuxu BAO
Xiaofeng SUI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Meisheng Industrial & Commerce Share Co Ltd
Original Assignee
Zhejiang Meisheng Industrial & Commerce Share Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Meisheng Industrial & Commerce Share Co Ltd filed Critical Zhejiang Meisheng Industrial & Commerce Share Co Ltd
Publication of EP3578713A1 publication Critical patent/EP3578713A1/en
Publication of EP3578713A4 publication Critical patent/EP3578713A4/en
Withdrawn legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0002Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate
    • D06N3/0004Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate using ultra-fine two-component fibres, e.g. island/sea, or ultra-fine one component fibres (< 1 denier)
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/04Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres having existing or potential cohesive properties, e.g. natural fibres, prestretched or fibrillated artificial fibres
    • D04H1/06Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres having existing or potential cohesive properties, e.g. natural fibres, prestretched or fibrillated artificial fibres by treatment to produce shrinking, swelling, crimping or curling of fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • D04H1/435Polyesters
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • D04H1/43838Ultrafine fibres, e.g. microfibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/44Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
    • D04H1/46Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/44Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
    • D04H1/46Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres
    • D04H1/48Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres in combination with at least one other method of consolidation
    • D04H1/482Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres in combination with at least one other method of consolidation in combination with shrinkage
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/44Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
    • D04H1/46Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres
    • D04H1/498Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres entanglement of layered webs
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H11/00Non-woven pile fabrics
    • D04H11/08Non-woven pile fabrics formed by creation of a pile on at least one surface of a non-woven fabric without addition of pile-forming material, e.g. by needling, by differential shrinking
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H5/00Non woven fabrics formed of mixtures of relatively short fibres and yarns or like filamentary material of substantial length
    • D04H5/02Non woven fabrics formed of mixtures of relatively short fibres and yarns or like filamentary material of substantial length strengthened or consolidated by mechanical methods, e.g. needling
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H5/00Non woven fabrics formed of mixtures of relatively short fibres and yarns or like filamentary material of substantial length
    • D04H5/02Non woven fabrics formed of mixtures of relatively short fibres and yarns or like filamentary material of substantial length strengthened or consolidated by mechanical methods, e.g. needling
    • D04H5/03Non woven fabrics formed of mixtures of relatively short fibres and yarns or like filamentary material of substantial length strengthened or consolidated by mechanical methods, e.g. needling by fluid jet
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H5/00Non woven fabrics formed of mixtures of relatively short fibres and yarns or like filamentary material of substantial length
    • D04H5/06Non woven fabrics formed of mixtures of relatively short fibres and yarns or like filamentary material of substantial length strengthened or consolidated by welding-together thermoplastic fibres, filaments, or yarns
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H5/00Non woven fabrics formed of mixtures of relatively short fibres and yarns or like filamentary material of substantial length
    • D04H5/08Non woven fabrics formed of mixtures of relatively short fibres and yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of fibres or yarns
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0002Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate
    • D06N3/0011Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate using non-woven fabrics
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0002Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate
    • D06N3/0013Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate using multilayer webs
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0002Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate
    • D06N3/0015Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate using fibres of specified chemical or physical nature, e.g. natural silk
    • D06N3/0036Polyester fibres
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/007Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by mechanical or physical treatments
    • D06N3/0075Napping, teasing, raising or abrading of the resin coating
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0086Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the application technique
    • D06N3/0088Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the application technique by directly applying the resin
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/12Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins
    • D06N3/14Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins with polyurethanes
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P3/00Special processes of dyeing or printing textiles, or dyeing leather, furs, or solid macromolecular substances in any form, classified according to the material treated
    • D06P3/34Material containing ester groups
    • D06P3/52Polyesters
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2209/00Properties of the materials
    • D06N2209/16Properties of the materials having other properties
    • D06N2209/1678Resistive to light or to UV
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2211/00Specially adapted uses
    • D06N2211/12Decorative or sun protection articles
    • D06N2211/28Artificial leather

Definitions

  • the present invention relates to a polyester superfine staple fiber fabric and a manufacturing process therefor, belonging to the technical field of fabric production.
  • the commercially available fabric for automotive interiors is mostly made of nylon and acrylic superfine fibers.
  • the fabric for automotive interiors which is made of nylon and acrylic superfine fibers, shows defects such as low emulation and low light resistance.
  • the superfine staple fiber fabric is short for superfine fiber polyurethane artificial leather.
  • sea-island superfine fibers are divided into two main types: sea-island filaments and sea-island staple fibers (including figured sea-island staple fibers and unfigured islands-in-sea fibers).
  • the sea-island filaments are usually used to produce, by weaving and knitting, a suede fabric which is applied in production of clothing and apparel.
  • the sea-island staple fibers are usually used to produce, by needling and non-woven processing, a thick artificial leather fabric which is mainly applied in production of shoes, sofas, automotive interiors, apparel and the like.
  • the splitting of the figured sea-island superfine staple fiber fabric is done with liquid caustic soda at a decrement rate.
  • the fabric has to be impregnated with oily polyurethane to which organic solvents such as DMF are to be added.
  • organic solvents such as DMF may lead to the following defects.
  • a process for manufacturing a superfine staple fiber fabric which is more environmentally-friendly and has higher emulation and higher light resistance.
  • the present invention provides a polyester superfine staple fiber fabric which is more environmentally-friendly and has higher emulation and higher light resistance, and a manufacturing process therefor.
  • the present invention employs the following technical solution.
  • the present invention provides a polyester superfine staple fiber fabric, comprising upper mesh cloth, a polyester superfine staple fiber non-woven fabric, and lower mesh cloth, which are arranged from top to bottom in sequence. Both the upper mesh cloth and the lower mesh cloth are made of high-strength FDY filaments with 2000-4000 twists and 75-100D/48F.
  • the polyester superfine staple fiber non-woven fabric is made of polyester superfine staple fibers having a denier per filament of 0.15-0.25 dtex.
  • the present invention provides a process for manufacturing a polyester superfine staple fiber fabric, comprising steps of:
  • the needling is done at a speed of 2-2.5 m/min and at a frequency of 700 times per minute.
  • the ironing is done at a speed of 3-4 m/min and at a temperature of 140°C.
  • the water-soluble resin has a viscosity of 0-100 cps and a solid content of 15-20%, and a liquid content in the grey cloth is 80-120%; and the drying is done at a temperature of 125-135 °C and at a speed of 5-7 m/min.
  • the water-soluble polyurethane has a viscosity of 300-1000 cps and a solid content of 40-50%, and a liquid content in the grey cloth is 150-180%; and the drying is done by three ovens, among which the first oven has a temperature of 110-125°C, the second oven has a temperature of 145-160°C, and the third oven has a temperature of 120-130°C, and at a speed of 3-5 m/min.
  • the initial drying temperature should be as low as possible, but higher than 100°C to facilitate water evaporation. However, it should not be too high. A too high temperature will cause water-soluble polyurethane on the surface to solidify too fast.
  • the splitting is done with NaOH having a concentration of 10-30 g/L, at a temperature of 85-110°C, for 45-90 min. Due to the low alkali resistance of polyester fiber, a low-temperature and low-concentration splitting process is used.
  • first wet sanding is done by two sand-rollers, both of which are 150-300 meshes; then, second wet sanding is done by one sand-roller which is 300-400 meshes; finally, third wet sanding is done by one sand-roller which is 400-600 meshes; and the wet sanding is done at a speed of 5-10 m/min and all the sand-rollers work at a speed of 1500-2100 revolutions/min.
  • the polyester superfine staple fiber is highly rigid. Consistent downy feeling is provided by coarse sanding (that is, the surface is smoothened) and fine sanding plays a role of combing to ensure uniform and delicate downy feeling on the surface.
  • the dyeing is done with a disperse dye by a low-bath-ratio one-bath process, at a bath ratio of 1:8-1:10 and at a temperature of 120-125°C.
  • Water-soluble polyurethane shows high affinity to the disperse dye.
  • the use of the one-bath process can greatly reduce the energy consumption, especially the water consumption, with high production efficiency. Meanwhile, this process can realize high color fastness of products.
  • first napping is done by two sand-rollers, both of which are 240-320 meshes; then, second napping is done by two sand-rollers, both of which are 400-600 meshes; finally, carding is done by a carding roller; and the napping is done at a speed of 5-8 m/min and all the sand-rollers work at a speed of 1500-2100 revolutions/min. Due to the use of water-soluble polyurethane, the fabric has great downy feeling and shade. Therefore, the conventional buffing procedure is omitted, and the production and treatment of industrial solid waste are reduced.
  • the present invention has the following beneficial effects.
  • the polyester superfine staple fiber fabric of the present invention has skin feeling and downy feeling close to genuine leather, shows high affinity and high color fastness to the disperse dye, and better deep-dyeing, bright-dyeing, aging resistance to light than nylon staple fibers; the replacement of the solvent-based polyurethane with water-soluble polyurethane avoids the generation of substances that are harmful to the human body and the environment during the production; and only slight napping is needed, the buffing procedure is omitted, and the production of industrial solid waste is reduced. Meanwhile, the manufacturing process of the present invention has advantages of short production process, low energy consumption and high production efficiency.
  • the polyester superfine staple fiber fabric of the present invention has the following main technical indicators:
  • the present invention provides a polyester superfine staple fiber fabric, comprising upper mesh cloth, a polyester superfine staple fiber non-woven fabric, and lower mesh cloth, which are arranged from top to bottom in sequence. Both the upper mesh cloth and the lower mesh cloth are made of high-strength FDY filaments with 2000 twists and 75D/48F.
  • the polyester superfine staple fiber non-woven fabric is made of polyester superfine staple fibers having a denier per filament of 0.15 dtex.
  • the present invention provides a process for manufacturing a polyester superfine staple fiber fabric, comprising steps of:
  • the needling is done at a speed of 2 m/min and at a frequency of 700 times per minute.
  • the ironing is done at a speed of 3 m/min and at a temperature of 140°C.
  • the water-soluble resin has a viscosity of 50 cps and a solid content of 15%, and a liquid content in the grey cloth is 80%; and the drying is done at a temperature of 125 °C and at a speed of 5 m/min.
  • the water-soluble polyurethane has a viscosity of 300 cps and a solid content of 40%, and a liquid content in the grey cloth is 150%; and the drying is done by three ovens, among which the first oven has a temperature of 110°C, the second oven has a temperature of 145°C, and the third oven has a temperature of 120°C, and at a speed of 3 m/min.
  • the splitting is done with NaOH having a concentration of 10 g/L, at a temperature of 85°C, for 90 min.
  • first wet sanding is done by two sand-rollers, both of which are 150 meshes; then, second wet sanding is done by one sand-roller which is 300 meshes; finally, third wet sanding is done by one sand-roller which is 400 meshes; and the wet sanding is done at a speed of 5 m/min and all the sand-rollers work at a speed of 1500 revolutions/min.
  • the dyeing is done with a disperse dye by a low-bath-ratio one-bath process, at a bath ratio of 1:8 and at a temperature of 120°C.
  • step (11) first napping is done by two sand-rollers, both of which are 240 meshes; then, second napping is done by two sand-rollers, both of which are 400 meshes; finally, carding is done by a carding roller; and the napping is done at a speed of 5 m/min and all the sand-rollers work at a speed of 1500 revolutions/min.
  • the present invention provides a polyester superfine staple fiber fabric, comprising upper mesh cloth, a polyester superfine staple fiber non-woven fabric, and lower mesh cloth, which are arranged from top to bottom in sequence. Both the upper mesh cloth and the lower mesh cloth are made of high-strength FDY filaments with 3000 twists and 90D/48F.
  • the polyester superfine staple fiber non-woven fabric is made of polyester superfine staple fibers having a denier per filament of 0.2 dtex.
  • the present invention provides a process for manufacturing a polyester superfine staple fiber fabric, comprising steps of:
  • the needling is done at a speed of 2.2 m/min and at a frequency of 700 times per minute.
  • the ironing is done at a speed of 3.5 m/min and at a temperature of 140°C.
  • the water-soluble resin has a viscosity of 0 cps and a solid content of 18%, and a liquid content in the grey cloth is 100%; and the drying is done at a temperature of 130°C and at a speed of 6 m/min.
  • the water-soluble polyurethane has a viscosity of 600 cps and a solid content of 45%, and a liquid content in the grey cloth is 160%; and the drying is done by three ovens, among which the first oven has a temperature of 118 °C, the second oven has a temperature of 150°C, and the third oven has a temperature of 125°C, and at a speed of 4 m/min.
  • the splitting is done with NaOH having a concentration of 20 g/L, at a temperature of 100°C, for 60 min.
  • first wet sanding is done by two sand-rollers, both of which are 220 meshes; then, second wet sanding is done by one sand-roller which is 350 meshes; finally, third wet sanding is done by one sand-roller which is 500 meshes; and the wet sanding is done at a speed of 8 m/min and all the sand-rollers work at a speed of 1800 revolutions/min.
  • the dyeing is done with a disperse dye by a low-bath-ratio one-bath process, at a bath ratio of 1:9 and at a temperature of 122°C.
  • step (11) first napping is done by two sand-rollers, both of which are 280 meshes; then, second napping is done by two sand-rollers, both of which are 500 meshes; finally, carding is done by a carding roller; and the napping is done at a speed of 6 m/min and all the sand-rollers work at a speed of 1800 revolutions/min.
  • the present invention provides a polyester superfine staple fiber fabric, comprising upper mesh cloth, a polyester superfine staple fiber non-woven fabric, and lower mesh cloth, which are arranged from top to bottom in sequence. Both the upper mesh cloth and the lower mesh cloth are made of high-strength FDY filaments with 4000 twists and 100D/48F.
  • the polyester superfine staple fiber non-woven fabric is made of polyester superfine staple fibers having a denier per filament of 0.25 dtex.
  • the present invention provides a process for manufacturing a polyester superfine staple fiber fabric, comprising steps of:
  • the needling is done at a speed of 2.5 m/min and at a frequency of 700 times per minute.
  • the ironing is done at a speed of 4 m/min and at a temperature of 140°C.
  • the water-soluble resin has a viscosity of 0 cps and a solid content of 20%, and a liquid content in the grey cloth is 120%; and the drying is done at a temperature of 135°C and at a speed of 7 m/min.
  • the water-soluble polyurethane has a viscosity of 1000 cps and a solid content of 50%, and a liquid content in the grey cloth is 180%; and the drying is done by three ovens, among which the first oven has a temperature of 125 °C, the second oven has a temperature of 160°C, and the third oven has a temperature of 130°C, and at a speed of 5 m/min.
  • the splitting is done with NaOH having a concentration of 30 g/L, at a temperature of 110°C, for 45 min.
  • first wet sanding is done by two sand-rollers, both of which are 300 meshes; then, second wet sanding is done by one sand-roller which is 400 meshes; finally, third wet sanding is done by one sand-roller which is 600 meshes; and the wet sanding is done at a speed of 10 m/min and all the sand-rollers work at a speed of 2100 revolutions/min.
  • the dyeing is done with a disperse dye by a low-bath-ratio one-bath process, at a bath ratio of 1:10 and at a temperature of 125°C.
  • step (11) first napping is done by two sand-rollers, both of which are 320 meshes; then, second napping is done by two sand-rollers, both of which are 600 meshes; finally, carding is done by a carding roller; and the napping is done at a speed of 8 m/min and all the sand-rollers work at a speed of 2100 revolutions/min.
  • both the upper mesh cloth and the lower mesh cloth are made by plain weave organization.
  • the high-strength FDY filaments have a strength of 6-7 g/d.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Treatment Of Fiber Materials (AREA)

Abstract

The present invention relates to a polyester superfine staple fiber fabric and a manufacturing process therefor, relating to the technical field of textile fabric production. The fabric comprises upper mesh cloth, a polyester superfine staple fiber non-woven fabric, and lower mesh cloth, which are arranged from top to bottom in sequence. Both the upper mesh cloth and the lower mesh cloth are made of high-strength FDY filaments with 2000-4000 twists and 75-100D/48F. The polyester superfine staple fiber non-woven fabric is made of polyester superfine staple fibers having a denier per filament of 0.15-0.25 dtex. The polyester superfine staple fiber fabric of the present invention has skin feeling and downy feeling close to genuine leather, and the manufacturing process of the present invention features short procedure, low energy consumption and high production efficiency.

Description

    TECHNICAL FIELD
  • The present invention relates to a polyester superfine staple fiber fabric and a manufacturing process therefor, belonging to the technical field of fabric production.
  • BACKGROUND OF THE PRESENT INVENTION
  • At present, the commercially available fabric for automotive interiors is mostly made of nylon and acrylic superfine fibers. However, the fabric for automotive interiors, which is made of nylon and acrylic superfine fibers, shows defects such as low emulation and low light resistance.
  • The superfine staple fiber fabric is short for superfine fiber polyurethane artificial leather. As a kind of superfine fibers, sea-island superfine fibers are divided into two main types: sea-island filaments and sea-island staple fibers (including figured sea-island staple fibers and unfigured islands-in-sea fibers). The sea-island filaments are usually used to produce, by weaving and knitting, a suede fabric which is applied in production of clothing and apparel. The sea-island staple fibers are usually used to produce, by needling and non-woven processing, a thick artificial leather fabric which is mainly applied in production of shoes, sofas, automotive interiors, apparel and the like.
  • Generally, as the ultimate objective, all superfine staple fiber fabrics are produced into high-emulation leather. By an splitting process in which the sea-island fibers are needled and spunlaced to form a matrix of a non-woven structure, the sea portion of the sea-island fibers is dissolved and the island portion thereof is survived. The survived island portion forms, together with the above non-woven structure, a structure similar to collagen bundles of genuine leather. To fix this structure and maintain soft touch feeling, flexible polymer elastomers are introduced as binders that fix this structure.
  • In the present processes and techniques for producing a superfine staple fiber fabric, the splitting of the figured sea-island superfine staple fiber fabric is done with liquid caustic soda at a decrement rate. Compared with the splitting of the unfigured islands-in-sea superfine staple fiber fabric with methylbenzene, it is safe and environmentally-friendly. However, for this process, in order to realize the touch feeling close to genuine leather, the fabric has to be impregnated with oily polyurethane to which organic solvents such as DMF are to be added. The addition of organic solvents such as DMF may lead to the following defects.
    1. 1. It is very harmful to operators during the production. As a volatile organic solvent, DMF may cause mild and moderate eye and upper respiratory tract irritation. After invading the body, DMF is metabolized by the liver and quickly excreted by the kidneys. The main target organ of DMF is the liver and the kidneys are somewhat damaged. DMF shows moderate toxicity.
    2. 2. As a solvent for adjusting polyurethane, there may be residual DMF on the superfine staple fiber fabric although it is washed with water in the subsequent processes, resulting in high VOC value of products and slight odor. Such products do not meet the environmental requirements and can even influence the users' experience.
    3. 3. Uncontrolled leakage of DMF may be caused in the case of incorrect operation, which may greatly affect the environment.
    4. 4. The treatment of the residual DMF further increases the production cost.
    5. 5. By using nylon superfine staple fibers as raw materials, the conventional superfine staple fiber fabric has low color fastness and thus has not yet been applied in high-grade fields such as automotive interiors.
    6. 6. Due to the structure of superfine staple fibers, the physical properties of the needled base fabric have congenital defects. It is difficult to improve both the density and the strength. To solve the problems, great efforts have been made by artificial leather research personnel. Among those efforts, a method is proposed, in which woven fabric or knitted fabric is added in non-woven fabric as a base, then superfine staple fibers are laid on the woven fabric or knitted fabric, and finally they are needled, to form a base fabric having a reinforced structure. However, the strength of the woven fabric or knitted fabric, which is used as the base, is significantly decreased due to needling. Their contribution to the increase in the overall strength of artificial leather is limited.
  • In view of those defects, the existing processes need to be modified and improved by artificial leather research personnel. A process for manufacturing a superfine staple fiber fabric which is more environmentally-friendly and has higher emulation and higher light resistance.
  • SUMMARY OF THE PRESENT INVENTION
  • To solve the problems mentioned in the Background and to overcome the technical defects, the present invention provides a polyester superfine staple fiber fabric which is more environmentally-friendly and has higher emulation and higher light resistance, and a manufacturing process therefor.
  • The present invention employs the following technical solution.
  • The present invention provides a polyester superfine staple fiber fabric, comprising upper mesh cloth, a polyester superfine staple fiber non-woven fabric, and lower mesh cloth, which are arranged from top to bottom in sequence. Both the upper mesh cloth and the lower mesh cloth are made of high-strength FDY filaments with 2000-4000 twists and 75-100D/48F. The polyester superfine staple fiber non-woven fabric is made of polyester superfine staple fibers having a denier per filament of 0.15-0.25 dtex.
  • The present invention provides a process for manufacturing a polyester superfine staple fiber fabric, comprising steps of:
    1. (1) laying polyester superfine staple fibers having a denier per filament of 0.15-0.25 dtex as raw material, to form a polyester superfine staple fiber layer;
    2. (2) double-sided ribbing the polyester superfine staple fiber layer with mesh cloth made of high-strength FDY filaments with 2000-4000 twists and 75-100D/48F, and needling;
    3. (3) ironing to form grey cloth, wherein the grey cloth has an apparent density of 0.15-0.45 g/cm3;
    4. (4) pre-shrinking the grey cloth in an impregnating tank at 90-100°C for 5-10 min, wherein the shrinkage of the pre-shrinking is to be controlled (at 12-15% in this step), and by pre-shrinking, the density of the fabric can be increased to a high density close to genuine leather and the use amount of PU can be reduced without decreasing the skin feeling close to genuine leather, thereby facilitating the subsequent downy feeling treatment to ensure more delicate downy feeling;
    5. (5) impregnating with water-soluble resin and then drying;
    6. (6) impregnating with water-soluble polyurethane and then drying;
    7. (7) splitting;
    8. (8) wet sanding;
    9. (9) rubbing: after wetting the cloth by water, transferring it into a drum device, wherein steam in the drum is at 85-110°C, the drum swings to and fro between positive 120° and negative 120° , and the drum device finishes the swinging action from the positive to negative direction or from the negative to positive direction within 20s to 40s, wherein by rubbing, the tension between fibers and polyurethane can be released so that the overall softness is better, and the fabric can be further shrunk;
    10. (10) dyeing; and
    11. (11) napping to obtain the finished product.
  • As a further arrangement of the solution, in the step (2), the needling is done at a speed of 2-2.5 m/min and at a frequency of 700 times per minute.
  • In the step (3), the ironing is done at a speed of 3-4 m/min and at a temperature of 140°C.
  • In the step (5), the water-soluble resin has a viscosity of 0-100 cps and a solid content of 15-20%, and a liquid content in the grey cloth is 80-120%; and the drying is done at a temperature of 125-135 °C and at a speed of 5-7 m/min.
  • In the step (6), the water-soluble polyurethane has a viscosity of 300-1000 cps and a solid content of 40-50%, and a liquid content in the grey cloth is 150-180%; and the drying is done by three ovens, among which the first oven has a temperature of 110-125°C, the second oven has a temperature of 145-160°C, and the third oven has a temperature of 120-130°C, and at a speed of 3-5 m/min. The initial drying temperature should be as low as possible, but higher than 100°C to facilitate water evaporation. However, it should not be too high. A too high temperature will cause water-soluble polyurethane on the surface to solidify too fast.
  • In the step (7), the splitting is done with NaOH having a concentration of 10-30 g/L, at a temperature of 85-110°C, for 45-90 min. Due to the low alkali resistance of polyester fiber, a low-temperature and low-concentration splitting process is used.
  • In the step (8), first wet sanding is done by two sand-rollers, both of which are 150-300 meshes; then, second wet sanding is done by one sand-roller which is 300-400 meshes; finally, third wet sanding is done by one sand-roller which is 400-600 meshes; and the wet sanding is done at a speed of 5-10 m/min and all the sand-rollers work at a speed of 1500-2100 revolutions/min. The polyester superfine staple fiber is highly rigid. Consistent downy feeling is provided by coarse sanding (that is, the surface is smoothened) and fine sanding plays a role of combing to ensure uniform and delicate downy feeling on the surface.
  • In the step (10), the dyeing is done with a disperse dye by a low-bath-ratio one-bath process, at a bath ratio of 1:8-1:10 and at a temperature of 120-125°C.Water-soluble polyurethane shows high affinity to the disperse dye. The use of the one-bath process can greatly reduce the energy consumption, especially the water consumption, with high production efficiency. Meanwhile, this process can realize high color fastness of products.
  • In the step (11), first napping is done by two sand-rollers, both of which are 240-320 meshes; then, second napping is done by two sand-rollers, both of which are 400-600 meshes; finally, carding is done by a carding roller; and the napping is done at a speed of 5-8 m/min and all the sand-rollers work at a speed of 1500-2100 revolutions/min. Due to the use of water-soluble polyurethane, the fabric has great downy feeling and shade. Therefore, the conventional buffing procedure is omitted, and the production and treatment of industrial solid waste are reduced.
  • The present invention has the following beneficial effects. The polyester superfine staple fiber fabric of the present invention has skin feeling and downy feeling close to genuine leather, shows high affinity and high color fastness to the disperse dye, and better deep-dyeing, bright-dyeing, aging resistance to light than nylon staple fibers; the replacement of the solvent-based polyurethane with water-soluble polyurethane avoids the generation of substances that are harmful to the human body and the environment during the production; and only slight napping is needed, the buffing procedure is omitted, and the production of industrial solid waste is reduced. Meanwhile, the manufacturing process of the present invention has advantages of short production process, low energy consumption and high production efficiency.
  • The polyester superfine staple fiber fabric of the present invention has the following main technical indicators:
    1. (1) color fastness to acid perspiration (grade): color change: 4; staining: 4;
    2. (2) color fastness to alkali perspiration (grade): color change: 4; staining: 4;
    3. (3) color fastness to soaping (grade): color change: 3-4; staining: 3;
    4. (4) color fastness to crocking (grade): dry crocking: 4; wet crocking: 3-4;
    5. (5) color fastness to light (color change): 3;
    6. (6) breaking strength (N): warp 778, weft 1030;
    7. (7) elongation at break (%): warp 87, weft 54; and
    8. (8) tear strength (N): warp 45, weft 48.
    DETAILED DESCRIPTION OF THE PRESENT INVENTION
  • The present invention will be further described below by specific embodiments. The present invention is not limited by the following embodiments.
  • Embodiment 1
  • The present invention provides a polyester superfine staple fiber fabric, comprising upper mesh cloth, a polyester superfine staple fiber non-woven fabric, and lower mesh cloth, which are arranged from top to bottom in sequence. Both the upper mesh cloth and the lower mesh cloth are made of high-strength FDY filaments with 2000 twists and 75D/48F. The polyester superfine staple fiber non-woven fabric is made of polyester superfine staple fibers having a denier per filament of 0.15 dtex.
  • The present invention provides a process for manufacturing a polyester superfine staple fiber fabric, comprising steps of:
    1. (1) laying polyester superfine staple fibers having a denier per filament of 0.15 dtex as raw material, to form a polyester superfine staple fiber layer;
    2. (2) double-sided ribbing the polyester superfine staple fiber layer with mesh cloth made of high-strength FDY filaments with 2000 twists and 75D/48F, and needling;
    3. (3) ironing to form grey cloth;
    4. (4) pre-shrinking the grey cloth in an impregnating tank at 90°C for 10 min;
    5. (5) impregnating with water-soluble resin and then drying;
    6. (6) impregnating with water-soluble polyurethane and then drying;
    7. (7) splitting;
    8. (8) wet sanding;
    9. (9) rubbing: after wetting the cloth by water, transferring it into a drum device, wherein steam in the drum is at 85°C, the drum swings to and fro between positive 120° and negative 120° , and the drum device finishes the swinging action from the positive to negative direction or from the negative to positive direction within 20s;
    10. (10) dyeing; and
    11. (11) napping to obtain the finished product.
  • In the step (2), the needling is done at a speed of 2 m/min and at a frequency of 700 times per minute.
  • In the step (3), the ironing is done at a speed of 3 m/min and at a temperature of 140°C.
  • In the step (5), the water-soluble resin has a viscosity of 50 cps and a solid content of 15%, and a liquid content in the grey cloth is 80%; and the drying is done at a temperature of 125 °C and at a speed of 5 m/min.
  • In the step (6), the water-soluble polyurethane has a viscosity of 300 cps and a solid content of 40%, and a liquid content in the grey cloth is 150%; and the drying is done by three ovens, among which the first oven has a temperature of 110°C, the second oven has a temperature of 145°C, and the third oven has a temperature of 120°C, and at a speed of 3 m/min.
  • In the step (7), the splitting is done with NaOH having a concentration of 10 g/L, at a temperature of 85°C, for 90 min.
  • In the step (8), first wet sanding is done by two sand-rollers, both of which are 150 meshes; then, second wet sanding is done by one sand-roller which is 300 meshes; finally, third wet sanding is done by one sand-roller which is 400 meshes; and the wet sanding is done at a speed of 5 m/min and all the sand-rollers work at a speed of 1500 revolutions/min.
  • In the step (10), the dyeing is done with a disperse dye by a low-bath-ratio one-bath process, at a bath ratio of 1:8 and at a temperature of 120°C.
  • In the step (11), first napping is done by two sand-rollers, both of which are 240 meshes; then, second napping is done by two sand-rollers, both of which are 400 meshes; finally, carding is done by a carding roller; and the napping is done at a speed of 5 m/min and all the sand-rollers work at a speed of 1500 revolutions/min.
  • Embodiment 2
  • The present invention provides a polyester superfine staple fiber fabric, comprising upper mesh cloth, a polyester superfine staple fiber non-woven fabric, and lower mesh cloth, which are arranged from top to bottom in sequence. Both the upper mesh cloth and the lower mesh cloth are made of high-strength FDY filaments with 3000 twists and 90D/48F. The polyester superfine staple fiber non-woven fabric is made of polyester superfine staple fibers having a denier per filament of 0.2 dtex.
  • The present invention provides a process for manufacturing a polyester superfine staple fiber fabric, comprising steps of:
    1. (1) laying polyester superfine staple fibers having a denier per filament of 0.2 dtex as raw material, to form a polyester superfine staple fiber layer;
    2. (2) double-sided ribbing the polyester superfine staple fiber layer with mesh cloth made of high-strength FDY filaments with 3000 twists and 90D/48F, and needling;
    3. (3) ironing to form grey cloth;
    4. (4) pre-shrinking the grey cloth in an impregnating tank at 95°C for 8 min;
    5. (5) impregnating with water-soluble resin and then drying;
    6. (6) impregnating with water-soluble polyurethane and then drying;
    7. (7) splitting;
    8. (8) wet sanding;
    9. (9) rubbing: after wetting the cloth by water, transferring it into a drum device, wherein steam in the drum is at 102°C, the drum swings to and fro between positive 120° and negative 120° , and the drum device finishes the swinging action from the positive to negative direction or from the negative to positive direction within 30s;
    10. (10) dyeing; and
    11. (11) napping to obtain the finished product.
  • In the step (2), the needling is done at a speed of 2.2 m/min and at a frequency of 700 times per minute.
  • In the step (3), the ironing is done at a speed of 3.5 m/min and at a temperature of 140°C.
  • In the step (5), the water-soluble resin has a viscosity of 0 cps and a solid content of 18%, and a liquid content in the grey cloth is 100%; and the drying is done at a temperature of 130°C and at a speed of 6 m/min.
  • In the step (6), the water-soluble polyurethane has a viscosity of 600 cps and a solid content of 45%, and a liquid content in the grey cloth is 160%; and the drying is done by three ovens, among which the first oven has a temperature of 118 °C, the second oven has a temperature of 150°C, and the third oven has a temperature of 125°C, and at a speed of 4 m/min.
  • In the step (7), the splitting is done with NaOH having a concentration of 20 g/L, at a temperature of 100°C, for 60 min.
  • In the step (8), first wet sanding is done by two sand-rollers, both of which are 220 meshes; then, second wet sanding is done by one sand-roller which is 350 meshes; finally, third wet sanding is done by one sand-roller which is 500 meshes; and the wet sanding is done at a speed of 8 m/min and all the sand-rollers work at a speed of 1800 revolutions/min.
  • In the step (10), the dyeing is done with a disperse dye by a low-bath-ratio one-bath process, at a bath ratio of 1:9 and at a temperature of 122°C.
  • In the step (11), first napping is done by two sand-rollers, both of which are 280 meshes; then, second napping is done by two sand-rollers, both of which are 500 meshes; finally, carding is done by a carding roller; and the napping is done at a speed of 6 m/min and all the sand-rollers work at a speed of 1800 revolutions/min.
  • Embodiment 3
  • The present invention provides a polyester superfine staple fiber fabric, comprising upper mesh cloth, a polyester superfine staple fiber non-woven fabric, and lower mesh cloth, which are arranged from top to bottom in sequence. Both the upper mesh cloth and the lower mesh cloth are made of high-strength FDY filaments with 4000 twists and 100D/48F. The polyester superfine staple fiber non-woven fabric is made of polyester superfine staple fibers having a denier per filament of 0.25 dtex.
  • The present invention provides a process for manufacturing a polyester superfine staple fiber fabric, comprising steps of:
    1. (1) laying polyester superfine staple fibers having a denier per filament of 0.25 dtex as raw material, to form a polyester superfine staple fiber layer;
    2. (2) double-sided ribbing the polyester superfine staple fiber layer with mesh cloth made of high-strength FDY filaments with 4000 twists and 100D/48F, and needling;
    3. (3) ironing to form grey cloth;
    4. (4) pre-shrinking the grey cloth in an impregnating tank at 100°C for 5 min;
    5. (5) impregnating with water-soluble resin and then drying;
    6. (6) impregnating with water-soluble polyurethane and then drying;
    7. (7) splitting;
    8. (8) wet sanding;
    9. (9) rubbing: after wetting the cloth by water, transferring it into a drum device, wherein steam in the drum is at 110°C, the drum swings to and fro between positive 120° and negative 120° , and the drum device finishes the swinging action from the positive to negative direction or from the negative to positive direction within 40s;
    10. (10) dyeing; and
    11. (11) napping to obtain the finished product.
  • In the step (2), the needling is done at a speed of 2.5 m/min and at a frequency of 700 times per minute.
  • In the step (3), the ironing is done at a speed of 4 m/min and at a temperature of 140°C.
  • In the step (5), the water-soluble resin has a viscosity of 0 cps and a solid content of 20%, and a liquid content in the grey cloth is 120%; and the drying is done at a temperature of 135°C and at a speed of 7 m/min.
  • In the step (6), the water-soluble polyurethane has a viscosity of 1000 cps and a solid content of 50%, and a liquid content in the grey cloth is 180%; and the drying is done by three ovens, among which the first oven has a temperature of 125 °C, the second oven has a temperature of 160°C, and the third oven has a temperature of 130°C, and at a speed of 5 m/min.
  • In the step (7), the splitting is done with NaOH having a concentration of 30 g/L, at a temperature of 110°C, for 45 min.
  • In the step (8), first wet sanding is done by two sand-rollers, both of which are 300 meshes; then, second wet sanding is done by one sand-roller which is 400 meshes; finally, third wet sanding is done by one sand-roller which is 600 meshes; and the wet sanding is done at a speed of 10 m/min and all the sand-rollers work at a speed of 2100 revolutions/min.
  • In the step (10), the dyeing is done with a disperse dye by a low-bath-ratio one-bath process, at a bath ratio of 1:10 and at a temperature of 125°C.
  • In the step (11), first napping is done by two sand-rollers, both of which are 320 meshes; then, second napping is done by two sand-rollers, both of which are 600 meshes; finally, carding is done by a carding roller; and the napping is done at a speed of 8 m/min and all the sand-rollers work at a speed of 2100 revolutions/min.
  • In all the above embodiments, both the upper mesh cloth and the lower mesh cloth are made by plain weave organization. The high-strength FDY filaments have a strength of 6-7 g/d.
  • The above embodiments are merely used for explaining the inventive concepts of the present invention, not intended to define the protection scope of the present invention. All substantive changes to the present invention based on those concepts shall be included in the protection scope of the present invention.

Claims (11)

  1. A process for manufacturing a polyester superfine staple fiber fabric, comprising steps of:
    (1) laying polyester superfine staple fibers having a denier per filament of 0.15-0.25 dtex as raw material, to form a polyester superfine staple fiber layer;
    (2) double-sided ribbing the polyester superfine staple fiber layer with mesh cloth made of high-strength FDY filaments with 2000-4000 twists and 75-100D/48F, and needling;
    (3) ironing to form grey cloth;
    (4) pre-shrinking the grey cloth in an impregnating tank at 90-100°C for 5-10 min;
    (5) impregnating with water-soluble resin and then drying;
    (6) impregnating with water-soluble polyurethane and then drying;
    (7) splitting;
    (8) wet sanding;
    (9) rubbing: after wetting the cloth by water, transferring it into a drum device, wherein steam in the drum is at 85-110°C, the drum swings to and fro between positive 120° and negative 120° , and the drum device finishes the whole swinging action from the positive to negative direction or from the negative to positive direction within 20s to 40s;
    (10) dyeing; and
    (11) napping to obtain the finished product.
  2. The process for manufacturing a polyester superfine staple fiber fabric according to claim 1, wherein, in the step (2), the needling is done at a speed of 2-2.5 m/min and at a frequency of 600-800 times per minute.
  3. The process for manufacturing a polyester superfine staple fiber fabric according to claim 1, wherein, in the step (3), the ironing is done at a speed of 3-4 m/min and at a temperature of 135-145 °C.
  4. The process for manufacturing a polyester superfine staple fiber fabric according to claim 1, wherein, in the step (5), the water-soluble resin has a viscosity of 0-100cps and a solid content of 15-20%, and a liquid content in the grey cloth is 80-120%; and the drying is done at a temperature of 125-135 °C and at a speed of 5-7 m/min.
  5. The process for manufacturing a polyester superfine staple fiber fabric according to claim 1, wherein, in the step (6), the water-soluble polyurethane has a viscosity of 300-1000 cps and a solid content of 40-50%, and a liquid content in the grey cloth is 150-180%; and the drying is done by three ovens, among which the first oven has a temperature of 110-125 °C, the second oven has a temperature of 145-160°C, and the third oven has a temperature of 120-130°C, and at a speed of 3-5 m/min.
  6. The process for manufacturing a polyester superfine staple fiber fabric according to claim 1, wherein, in the step (7), the splitting is done with NaOH having a concentration of 10-30 g/L, at a temperature of 85-110°C, for 45-90 min.
  7. The process for manufacturing a polyester superfine staple fiber fabric according to claim 1, wherein, in the step (8), first wet sanding is done by two sand-rollers, both of which are 150-300 meshes; then, second wet sanding is done by one sand-roller which is 300-400 meshes; finally, third wet sanding is done by one sand-roller which is 400-600 meshes; and the wet sanding is done at a speed of 5-10 m/min and all the sand-rollers work at a speed of 1500-2100 revolutions/min.
  8. The process for manufacturing a polyester superfine staple fiber fabric according to claim 1, wherein, in the step (10), the dyeing is done with a disperse dye by a low-bath-ratio one-bath process, at a bath ratio of 1:8-1:10 and at a temperature of 120-125 °C.
  9. The process for manufacturing a polyester superfine staple fiber fabric according to claim 1, wherein, in the napping step (11), first napping is done by two sand-rollers, both of which are 240-320 meshes; then, second napping is done by two sand-rollers, both of which are 400-600 meshes; finally, carding is done by a carding roller; and the napping is done at a speed of 5-8 m/min and all the sand-rollers work at a speed of 1500-2100 revolutions/min.
  10. A polyester superfine staple fiber fabric, manufactured by the process according to claims 1-9, wherein the fabric comprises upper mesh cloth, a polyester superfine staple fiber non-woven fabric, and lower mesh cloth, which are arranged from top to bottom in sequence;
    wherein both the upper mesh cloth and the lower mesh cloth are made of high-strength FDY filaments with 2000-4000 twists and 75-100D/48F; and
    wherein the polyester superfine staple fiber non-woven fabric is made of polyester superfine staple fibers having a denier per filament of 0.15-0.25 dtex, and is double-sided ribbed with the upper mesh cloth and the lower mesh cloth and needled.
  11. The polyester superfine staple fiber fabric according to claim 10, wherein the fabric is impregnated with water-soluble polyurethane.
EP17863758.3A 2016-10-28 2017-09-13 Polyester microfiber fabric and manufacturing process therefor Withdrawn EP3578713A4 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610963222.2A CN106544875B (en) 2016-10-28 2016-10-28 A kind of terylene woven fabric fabric and its manufacturing process
PCT/CN2017/101475 WO2018076947A1 (en) 2016-10-28 2017-09-13 Polyester microfiber fabric and manufacturing process therefor

Publications (2)

Publication Number Publication Date
EP3578713A1 true EP3578713A1 (en) 2019-12-11
EP3578713A4 EP3578713A4 (en) 2020-09-02

Family

ID=58394333

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17863758.3A Withdrawn EP3578713A4 (en) 2016-10-28 2017-09-13 Polyester microfiber fabric and manufacturing process therefor

Country Status (3)

Country Link
EP (1) EP3578713A4 (en)
CN (1) CN106544875B (en)
WO (1) WO2018076947A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106544875B (en) * 2016-10-28 2018-11-16 浙江梅盛实业股份有限公司 A kind of terylene woven fabric fabric and its manufacturing process
CN107904779A (en) * 2017-11-20 2018-04-13 恩平市奕马企业有限公司 A kind of laser adhesive-bonded fabric felt and preparation method thereof
CN107747235A (en) * 2017-11-22 2018-03-02 浙江申腾涂层织物有限公司 A kind of aqueous polyurethane is impregnated with fabric plus material producing method
CN108754802A (en) * 2018-06-08 2018-11-06 江苏聚杰微纤科技集团股份有限公司 The weaving method of the warming chamois flannel face fabric of water-absorbing fast-drying
CN110512351A (en) * 2019-06-19 2019-11-29 蒋庞星 A kind of preparation method of hard felt
CN112012022A (en) * 2020-09-07 2020-12-01 福建凤竹纺织科技股份有限公司 Preparation method of superfine fiber spunlace non-woven fabric
CN115519874B (en) * 2022-09-29 2023-10-13 艾尔玛科技股份有限公司 Microfiber cloth plastic surface decoration and preparation method thereof

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2034536A1 (en) * 1970-07-11 1972-02-03
US4073988A (en) * 1974-02-08 1978-02-14 Kanebo, Ltd. Suede-like artificial leathers and a method for manufacturing same
JP3122548B2 (en) * 1992-11-12 2001-01-09 鐘紡株式会社 Nonwoven fabric and milk pad using the same
KR100534525B1 (en) * 2002-02-01 2005-12-07 주식회사 코오롱 A composite sheet used for artificial leather with low elongation and excellent softness
ATE437264T1 (en) * 2002-04-10 2009-08-15 Alcantara Spa METHOD FOR PRODUCING A MICROFIBRE, SUEDE-LIKE NON-WOVEN FABRIC
KR100469753B1 (en) * 2002-08-31 2005-02-02 케이.엠.에프 주식회사 Method for producing microfilament suede-like textiles
US20050118394A1 (en) * 2003-11-25 2005-06-02 Kuraray Co., Ltd. Artificial leather sheet substrate and production method thereof
CN1249295C (en) * 2004-06-17 2006-04-05 东莞市新纶纤维材料科技有限公司 Processing method of ultrafine fiber needing non-woven fabric simulated genuine leather
CN1308539C (en) * 2005-01-18 2007-04-04 山东同大纺织机械有限公司 High strength ultrafine fiber simulation composite lether and its manufacturing method
CN101725052B (en) * 2009-11-04 2012-06-13 烟台万华超纤股份有限公司 Waterborne polyurethane resin superfiber leather and manufacturing method thereof
CN103057219B (en) * 2012-12-31 2015-09-02 浙江梅盛实业股份有限公司 The super fine needled fabric of a kind of high tenacity polyester fiber
CN103042776B (en) * 2012-12-31 2014-12-17 浙江梅盛实业股份有限公司 Skin-imitated microfiber fabric
CN103074780B (en) * 2013-01-24 2014-11-05 嘉兴学院 Preparation method of thin ultrafine composite fiber artificial leather base cloth
KR20150112355A (en) * 2014-03-27 2015-10-07 코오롱인더스트리 주식회사 Manufacturing method of artificial leather
CN105040269B (en) * 2015-06-24 2017-05-03 浙江梅盛实业股份有限公司 Green microfiber fabric
CN105133369A (en) * 2015-08-25 2015-12-09 浙江繁盛超纤制品有限公司 Aqueous polyurethane synthetic leather alkali amount reduction production process
CN106544875B (en) * 2016-10-28 2018-11-16 浙江梅盛实业股份有限公司 A kind of terylene woven fabric fabric and its manufacturing process

Also Published As

Publication number Publication date
CN106544875A (en) 2017-03-29
EP3578713A4 (en) 2020-09-02
WO2018076947A1 (en) 2018-05-03
CN106544875B (en) 2018-11-16

Similar Documents

Publication Publication Date Title
EP3578713A1 (en) Polyester microfiber fabric and manufacturing process therefor
CN104278421B (en) Antibacterial safe wet absorption quick drying fabric and preparation method thereof
CN109972275B (en) Knitted fabric with one-way moisture-conducting, double-sided opposite, moisture-absorbing and quick-drying functions and preparation method thereof
RU2527367C1 (en) Leatherette with ultrathin fibres and method of its manufacture
CN100350090C (en) Raising method for elastic non-woven base fabric
CN101517157B (en) Leather-like sheet and process for production thereof
CN102061629B (en) Superfine fiber artificial leather and manufacturing method thereof
CN102181990B (en) Heavy cotton viscose blended dual-elasticity yarn drill fabric and finishing process thereof
US20080268217A1 (en) Cloth having partially different cloth-stretchability and method of manufacturing thereof
JP7162205B2 (en) Composite fabric
CN102561040A (en) New anti-fluffing and anti-pilling technology for polyester-cotton fabric under special standards
CN101629387A (en) Micro-fiber knitted fabric synthetic leather and manufacturing method thereof
CN103057219A (en) High-strength terylene microfiber needling fabric
US20090047476A1 (en) Artificial leather and method for producing the same
CN103042776B (en) Skin-imitated microfiber fabric
KR20210104872A (en) Knitted fabric and its manufacturing method, using device and manufactured clothing
CN103126140A (en) Production process of cashmere lining cloth
EP3561164A1 (en) Ultrafine fiber fabric and manufacturing process therefor
CN114987010A (en) High-moisture-permeability bio-based nylon fabric and preparation method thereof
JP2017106127A (en) Dyed napped artificial leather and method for producing the same
WO2012094793A1 (en) Directly spun superfine fibre artificial leather and production method thereof
KR101249934B1 (en) Process Of Producing Suede―like Polyurethane―impregnated Textiles Using NanoFilaments
TW201802322A (en) Napped artificial leather and method for manufacturing same
CN102058190A (en) Preparation method of full cotton garment fabric with mono-hydrophobic mono-hydrophilic unidirectional water guide characteristics
TW201942443A (en) Napped artificial leather

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190806

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20200805

RIC1 Information provided on ipc code assigned before grant

Ipc: D06N 3/14 20060101ALI20200730BHEP

Ipc: D04H 5/06 20060101ALI20200730BHEP

Ipc: D04H 1/482 20120101ALI20200730BHEP

Ipc: D04H 1/435 20120101ALI20200730BHEP

Ipc: D04H 1/4382 20120101ALI20200730BHEP

Ipc: D04H 5/03 20120101ALI20200730BHEP

Ipc: D04H 5/08 20120101ALI20200730BHEP

Ipc: D04H 1/06 20120101ALI20200730BHEP

Ipc: D06N 3/00 20060101AFI20200730BHEP

Ipc: D06P 3/52 20060101ALI20200730BHEP

Ipc: D04H 11/08 20060101ALI20200730BHEP

Ipc: D04H 1/498 20120101ALI20200730BHEP

Ipc: D04H 5/02 20120101ALI20200730BHEP

Ipc: D04H 1/46 20120101ALI20200730BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20230401