EP3577342A1 - Flügelzellen-gaspumpe - Google Patents

Flügelzellen-gaspumpe

Info

Publication number
EP3577342A1
EP3577342A1 EP17706691.7A EP17706691A EP3577342A1 EP 3577342 A1 EP3577342 A1 EP 3577342A1 EP 17706691 A EP17706691 A EP 17706691A EP 3577342 A1 EP3577342 A1 EP 3577342A1
Authority
EP
European Patent Office
Prior art keywords
fluid outlet
outlet opening
gas pump
pump
slot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP17706691.7A
Other languages
English (en)
French (fr)
Inventor
Steffen Schnurr
Sebastian Cramer
Nabil Salim AL-HASAN
Stanislaus Russ
Tobias GRÜNE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pierburg Pump Technology GmbH
Original Assignee
Pierburg Pump Technology GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pierburg Pump Technology GmbH filed Critical Pierburg Pump Technology GmbH
Publication of EP3577342A1 publication Critical patent/EP3577342A1/de
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/344Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/344Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • F04C18/3446Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along more than one line or surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/30Casings or housings

Definitions

  • the invention relates to a vane-cell gas pump.
  • Such vane-type gas pumps are known from the prior art and are usually used in motor vehicles as so-called vacuum pumps in combination with a brake booster.
  • the vane pump delivers the vacuum pressure required to operate the brake booster, which is generally 100 mbar or less in absolute terms.
  • the vane-cell gas pumps known from the prior art are usually dry-running or oil-lubricated vane-cell gas pumps, wherein in the case of dry-running gas pumps, no lubricant is conducted into the pumping chamber.
  • oil-lubricated vane pumps the air exiting the pumping chamber is mixed with lubricant, and prior to disposal of this air-lubricant mixture, the air-lubricant mixture must be laboriously separated into its components.
  • By omitting the lubricant the contamination of the air leaving the pumping chamber can be avoided.
  • the omission of the lubricant but leads to increased wear of the relatively moving components, in particular the slide elements. The wear is usually reduced to a minimum by selective choice of suitable material pairings of the abutting and mutually relatively moving components.
  • a dry-running vane gas pump is disclosed in EP 2 568 180 A1.
  • the vane gas pump has a pump housing, which forms a pumping chamber.
  • a pump rotor is arranged, which has five radially displaceable slide elements.
  • the pump rotor is rotatably connected to an electric motor and is driven by this.
  • the slide elements shift due to the force acting on the slide elements centrifugal force such that they rest with their head in each case on a peripheral wall of the pumping chamber.
  • Two adjacent slide elements bound together with the pump rotor and the pump housing in each case a circulating Pumpfach.
  • a fluid inlet opening associated with the pumping chamber and two fluid outlet openings associated with the pumping chamber are formed, wherein the fluid outlet openings are designed with a circular opening cross-section.
  • a disadvantage of the embodiment disclosed in EP 2 568 180 A1 is that the opening cross-sections of the circular fluid outlet openings must have a certain size in order to ensure a low flow resistance.
  • this causes a brief short circuit between two adjacent pump wells when the relevant slide element passes the fluid outlet opening.
  • Such a short circuit leads to an increase in the leakage at the individual slide elements, whereby the pneumatic efficiency of the vane-cell gas pump decreases. If you make the fluid outlet smaller, the flow resistance increases, which at high speeds, an overpressure prevails in the Pumpfzzern in the outlet.
  • the slider elements are additionally mechanically stressed and increases the wear of the slider elements.
  • the invention is therefore an object of the invention to provide a vane gas pump with low wear of the slide elements and a good pneumatic efficiency. This object is achieved by a vane gas pump having the features of the main claim.
  • the vane-gas pump according to the invention has a pump housing which defines a pumping chamber.
  • a pump rotor is arranged, which is either driven electrically by an associated electric motor or mechanically by an internal combustion engine.
  • the pump rotor is arranged eccentrically in the pumping chamber and, together with the peripheral wall of the pumping chamber, forms a sealing gap defining the sealing sector, whereby a crescent-shaped working space is defined outside the sealing sector.
  • At least one displaceable slide element is mounted in the pump rotor.
  • the pump rotor has a slide slot, in which in each case the at least one slide element is displaceably mounted and arranged.
  • the at least one slide element shifts due to the force acting on the slide element centrifugal force such that the slide element always rests with its head on the peripheral wall of the pumping chamber.
  • the at least one slide element may be spring-loaded, so that the head of the at least one slide element bears against the circumferential wall of the pumping chamber by the spring force, even at low rotational speeds.
  • the pumping chamber is divided into function in an inlet, an outlet and a sealing sector.
  • the inlet sector at least one fluid inlet opening is arranged, which is fluidically connected in the installed state of the gas pump, for example, with a vacuum chamber of a brake booster.
  • the outlet sector at least one fluid outlet opening is arranged, wherein the pumping chamber communicates with the atmospheric outlet via the fluid outlet opening Environment is connected.
  • the sealing sector is arranged, in which the pump rotor rests so close to the pump housing that no gas flow between the fluid inlet opening and the fluid outlet opening is possible.
  • the at least one fluid outlet opening is slot-shaped.
  • the tangential width of the slide element corresponds at least to the tangential width of the slot-like fluid outlet opening, the slot-like fluid outlet opening being oriented such that the entire fluid outlet opening is briefly covered and closed by the slide element.
  • the tangential width of the slider element refers to the transverse direction to the linear trajectory of the slider element.
  • the tangential width of the slot-like fluid outlet opening is aligned perpendicular to the direction of displacement of the slide element in the slide slot and in the moment in which the slide element covers the fluid outlet opening in the middle.
  • the longitudinal axis of the slot-like fluid outlet opening and the longitudinal axis of the slide element share or overlap one another.
  • the tangential width of the at least one slide element is slightly larger, preferably at least a few tenths of a millimeter larger than the tangential width of the at least one fluid outlet opening, wherein the fluid outlet opening is covered by overlapping by the at least one slide element.
  • the tangential width of the at least one slide element is slightly larger, preferably at least a few tenths of a millimeter larger than the tangential width of the at least one fluid outlet opening, wherein the fluid outlet opening is covered by overlapping by the at least one slide element.
  • the at least one slot-like fluid outlet opening has a constant tangential width over its length in its middle part.
  • the two end regions of the slot-like fluid outlet opening may be rounded or bevelled.
  • the fluid outlet opening may for example be designed such that the tangential width of the fluid outlet opening decreases in the radial direction towards the motor rotor.
  • the pumping chamber is associated with a first fluid outlet opening and a second fluid outlet opening in the direction of rotation, wherein at least the first fluid outlet opening is formed like an oblong hole.
  • a larger amount of gas can be ejected without resistance from the Pumpfach.
  • the pump housing has a valve cover, a lifting ring and a bottom cover.
  • the cam ring forms the peripheral surface of the pumping chamber and rests with its one end face the valve cover and with its other end to the bottom cover sealingly.
  • the valve cover closes the pump chamber on one side.
  • the valve cover preferably has the at least one fluid outlet opening and the bottom element has the fluid inlet opening, wherein a check valve is preferably arranged on the valve cover, which closes the at least one fluid outlet opening and releases the fluid outlet opening when the opening pressure prevails in the pumping hood.
  • the length L of the at least one slot-like fluid outlet opening preferably corresponds to the free working space width W in the sliding element longitudinal direction, with the working space width W extending from the outer circumferential surface of the pump rotor to the inner circumference of the pumping chamber defined by the lifting ring.
  • FIG. 1 shows an exploded view of a vane-cell gas pump
  • FIG. 2 shows a top view of a pump rotor of the vane-cell gas pump from FIG. 1.
  • FIGS 1 and 2 show a trained as a so-called vacuum pump vane gas pump 10, which is for example intended for use in a motor vehicle and can generate an absolute pressure of 100 mbar or less.
  • the dry-running vane pump 10 has a metal pump housing 20, which encloses a pumping chamber 22.
  • the pump housing 20 is essentially composed of a lifting ring 74, a bottom plate 76 and a valve cover 72.
  • a pump rotor 30 rotatably arranged.
  • the pump rotor 30 has five slide slots 321, 341, 361, 381, 401, in each of which a slide element 32, 34, 36, 38, 40 is slidably mounted.
  • the five slide elements 32, 34, 36, 38, 40 divide the pumping chamber 22 into five rotating pumping chambers, each having the same pumping rear angle a of approximately 70 °.
  • the pump rotor 30 is driven by an associated electric motor 90.
  • the present vane gas pump 10 is a dry-running vane gas pump 10, with no lubricant, such as oil, is introduced into the pumping chamber 22.
  • the gas pump 10 therefore has no lubricant connection.
  • the components may have another friction reducing composition.
  • the pumping chamber 22 can be divided into several sectors, namely an inlet sector 42 with a fluid inlet opening 60, an outlet sector 44 with a first fluid outlet opening 52 and a second fluid outlet opening 54, and a sealing sector 46, seen in the direction of rotation between the outlet sector 44 and the inlet sector 42 is arranged and in which a gas flow over the sealing gap between the pump rotor 30 and the cam ring 74 is prevented from the fluid outlet openings 52, 54 to the fluid inlet port 60.
  • the fluid inlet port 60 is formed in the bottom plate 76.
  • the two fluid outlet openings 52, 54 are formed in the opposite valve cover 72.
  • the first fluid outlet opening 52 is in Direction of rotation of the pump rotor 30 seen before the second fluid outlet opening 54 arranged.
  • the first fluid outlet 52 is fluidly associated with a check valve 70, wherein the check valve 70 is a reed valve and a valve tongue 80 and a Wegbegrenzer 82, both of which are fixedly mounted or screwed to the valve cover 72.
  • the first fluid outlet opening 52 is slot-shaped.
  • the tangential width Bl of the slide elements 32, 34, 36, 38, 40 corresponds at least to the tangential width B2 of the fluid outlet opening 52, wherein the slot-like fluid outlet opening 52 is aligned such that the first fluid outlet opening 52 in predefined rotor positions of one of the slide elements 32, 34, 36, 38, 40 are completely concealed and thus completely closed in this way for a short time.
  • the longitudinal axis of the closed fluid outlet opening 52 and the longitudinal axis of the corresponding slide element 32, 34, 36, 38, 40 have a common identical Focus on.
  • the air is sucked by the rotation of the pump rotor 30 through the fluid inlet opening 60 in the respective Pumpfach and ejected through the two fluid outlet openings 52, 54 from the further rotating Pumpfach.
  • the first fluid outlet opening 52 is released, and the air is expelled through the first fluid outlet opening 52.
  • the air is expelled through the second fluid outlet port 54 as soon as the respective puffach reaches it.
  • the flow area of the fluid outlet 52 is large enough to allow the air practically without resistance flow out of the Pumpfach, so that the slide elements 32, 34, 36, 38, 40 no additional mechanical stress in experienced tangential direction.
  • a short circuit between two adjacent pump wells is also prevented, since the slide elements 32, 34, 36, 38, 40 completely cover and close the fluid outlet openings 52, 54 temporarily.
  • the return flow losses are therefore equal to zero here. In this way, the wear of the slider elements 32, 34, 36, 38, 40 is reduced, without the pneumatic efficiency of the vane-gas pump 10 is reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

Die Erfindung betrifft Flügelzellen-Gaspumpe für ein kompressibles Fluid, mit einem Pumpengehäuse (20), das eine Pumpkammer (22) bildet, in der ein Pumpenrotor (30) mit mindestens einem verschiebbaren Schieberelement (32, 34, 36, 38, 40) drehbar gelagert ist, wobei der Pumpkammer (22) mindestens eine Fluideinlassöffnung (60) und mindestens eine langlochartige Fluidauslassöffnung (52) zugeordnet sind, wobei die tangentiale Breite B1 des mindestens einen Schieberelements (32, 34, 36, 38, 40) mindestens der tangentialen Breite B2 der langlochartigen Fluidauslassöffnung (52) entspricht, derart, dass das mindestens eine Schieberelement (32, 34, 36, 38, 40) die mindestens eine Fluidauslassöffnung (52) temporär vollständig überdeckt. Mit einer derartigen Flügelzellen-Gaspumpe (10)wird der Verschleiß der Schieberelemente (32, 34, 36, 38, 40) reduziert, ohne den pneumatische Wirkungsgrad der Flügelzellen-Gaspumpe (10) zu erhöhen.

Description

B E S C H R E I B U N G
Flügelzellen-Gaspumpe
Die Erfindung betrifft eine Flügelzellen-Gaspumpe.
Derartige Flügelzellen-Gaspumpen sind aus dem Stand der Technik bekannt und werden in Kraftfahrzeugen als sogenannte Vakuumpumpen üblicherweise in Kombination mit einem Bremskraftverstärker eingesetzt. Die Flügelzellenpumpe liefert dabei den zum Betrieb des Bremskraftverstärkers benötigten Vakuumdruck, wobei dieser in der Regel absolut 100 mbar oder weniger beträgt.
Die aus dem Stand der Technik bekannten Flügelzellen-Gaspumpen sind üblicherweise trockenlaufende oder ölgeschmierte Flügelzellen- Gaspumpen, wobei bei trockenlaufenden Gaspumpen kein Schmiermittel in die Pumpkammer geleitet wird. Bei ölgeschmierten Flügelzellenpumpen ist die aus der Pumpkammer austretende Luft mit Schmiermittel vermischt, wobei vor der Entsorgung dieses Luft- Schmiermittel-Gemisches das Luft-Schmiermittel-Gemisch aufwendig in seine Bestandteile getrennt werden muss. Durch Weglassen des Schmiermittels kann die Kontamination der die Pumpkammer verlassenden Luft vermieden werden. Das Weglassen des Schmiermittels führt aber zu einem erhöhten Verschleiß der sich relativ zueinander bewegenden Bauteile, insbesondere der Schieberelemente. Der Verschleiß wird üblicherweise durch gezielte Wahl geeigneter Werkstoffpaarungen der aneinander anliegenden und sich zueinander relativ bewegenden Bauteile auf ein Minimum reduziert.
Eine trockenlaufende Flügelzellen-Gaspumpe ist in der EP 2 568 180 AI offenbart. Die Flügelzellen-Gaspumpe weist ein Pumpengehäuse auf, welches eine Pumpkammer bildet. In der Pumpkammer ist ein Pumpenrotor angeordnet, der fünf radial verschiebbare Schieberelemente aufweist. Der Pumpenrotor ist mit einem Elektromotor drehfest verbunden und wird durch diesen angetrieben. Bei einem rotierenden Pumpenrotor verschieben sich die Schieberelemente aufgrund der auf die Schieberelemente wirkenden Fliehkraft derart, dass diese mit ihrem Kopf jeweils an einer Umfangswand der Pumpkammer anliegen. Zwei benachbarte Schieberelemente begrenzen gemeinsam mit dem Pumpenrotor und dem Pumpengehäuse jeweils ein umlaufendes Pumpfach. In dem Pumpengehäuse sind eine der Pumpkammer zugeordnete Fluideinlassöffnung und zwei der Pumpkammer zugeordnete Fluidauslassöffnungen ausgebildet, wobei die Fluidauslassöffnungen mit einem kreisförmigen Öffnungsquerschnitt ausgeführt sind.
Nachteilig an der in der EP 2 568 180 AI offenbarten Ausführung ist, dass die Öffnungsquerschnitte der kreisförmigen Fluidauslassöffnungen eine gewisse Größe aufweisen müssen, um einen geringen Strömungswiderstand sicherzustellen. Allerdings tritt dadurch ein kurzzeitiger Kurzschluss zwischen zwei benachbarten Pumpfächern auf, wenn das betreffende Schieberelement die Fluidauslassöffnung passiert. Ein derartiger Kurzschluss führt zu einer Erhöhung der Leckage an den einzelnen Schieberelementen, wodurch der pneumatische Wirkungsgrad der Flügelzellen-Gaspumpe sinkt. Wenn man die Fluidauslassöffnung kleiner macht, erhöht sich der Strömungswiderstand, wodurch bei hohen Drehzahlen ein Überdruck in den Pumpfächern im Auslassbereich herrscht. Dadurch werden die Schieberelemente zusätzlich mechanisch belastet und der Verschleiß der Schieberelemente erhöht.
Der Erfindung liegt daher die Aufgabe zugrunde, eine Flügelzellen- Gaspumpe mit geringem Verschleiß der Schieberelemente und einem guten pneumatischen Wirkungsgrad zu schaffen. Diese Aufgabe wird durch eine Flügelzellen-Gaspumpe mit den Merkmalen des Hauptanspruchs gelöst.
Die erfindungsgemäße Flügelzellen-Gaspumpe weist ein Pumpengehäuse auf, welches eine Pumpkammer begrenzt. In der Pumpkammer ist ein Pumpenrotor angeordnet, der entweder elektrisch durch einen zugeordneten Elektromotor oder mechanisch durch einen Verbrennungsmotor angetrieben wird. Der Pumpenrotor ist exzentrisch in der Pumpkammer angeordnet und bildet zusammen mit der Umfangswand der Pumpkammer einen den Dichtsektor definierenden Dichtspalt, wodurch außerhalb des Dichtsektors ein sichelförmiger Arbeitsraum definiert wird.
In dem Pumpenrotor ist mindestens ein verschiebbares Schieberelement gelagert. Zur Lagerung des mindestens einen Schieberelements weist der Pumpenrotor einen Schieberschlitz auf, in dem jeweils das mindestens eine Schieberelement verschiebbar gelagert und angeordnet ist. Bei einem rotierenden Pumpenrotor verschiebt sich das mindestens eine Schieberelement aufgrund der auf das Schieberelement wirkenden Fliehkraft derart, dass das Schieberelement mit seinem Kopf stets an der Umfangswand der Pumpkammer anliegt. Zusätzlich kann das mindestens eine Schieberelement federbelastet sein, so dass der Kopf des mindestens einen Schieberelements durch die Federkraft auch bei geringen Drehzahlen an der Umfangswand der Pumpkammer anliegt.
Die Pumpkammer ist bezüglich der Funktion in einen Einlass-, einen Auslass- und einen Dichtsektor eingeteilt. In dem Einlasssektor ist mindestens eine Fluideinlassöffnung angeordnet, die im eingebauten Zustand der Gaspumpe beispielsweise mit einer Unterdruckkammer eines Bremskraftverstärkers fluidisch verbunden ist. In dem Auslasssektor ist mindestens eine Fluidauslassöffnung angeordnet, wobei über die Fluidauslassöffnung die Pumpkammer mit der atmosphärischen Umgebung verbunden ist. Zwischen der Fluidauslassöffnung und der Fluideinlassöffnung ist, gesehen in Drehrichtung, der Dichtsektor angeordnet, in dem der Pumpenrotor so dicht an dem Pumpengehäuse anliegt, dass kein Gasstrom zwischen der Fluideinlassöffnung und der Fluidauslassöffnung möglich ist.
Die mindestens eine Fluidauslassöffnung ist langlochartig ausgebildet. Dabei entspricht die tangentiale Breite des Schieberelements mindestens der tangentialen Breite der langlochartigen Fluidauslassöffnung, wobei die langlochartig ausgebildete Fluidauslassöffnung derart ausgerichtet ist, dass die gesamte Fluidauslassöffnung von dem Schieberelement kurzzeitig verdeckt und verschlossen ist. Die tangentiale Breite des Schieberelements bezieht sich auf die Querrichtung zu der linearen Bewegungsbahn des Schieberelements. Die tangentiale Breite der langlochartigen Fluidauslassöffnung ist senkrecht zur Verschieberichtung des Schieberelements in dem Schieberschlitz ausgerichtet und zwar in dem Moment, in dem das Schieberelement die Fluidauslassöffnung mittig überdeckt. In der Rotorstellung, in der die Fluidauslassöffnung temporär und kurzzeitig durch das Schieberelement vollständig verschlossen ist, weisen die Längsachse der langlochartigen Fluidauslassöffnung und die Längsachse des Schieberelements eine gemeinsame Ausrichtung auf bzw. überlagern sich.
Im Betrieb wird über die Fluideinlassöffnung Luft in das passierende Pumpfach angesaugt und dann über die mindestens eine Fluidauslassöffnung aus dem Pumpfach ausgestoßen. Dadurch, dass die mindestens eine Fluidauslassöffnung langlochartig ausgebildet ist, ist der Durchströmungsquerschnitt der Fluidauslassöffnung so groß, dass die Luft auch bei hohen Drehzahlen annähernd widerstandslos aus dem Pumpfach ausströmen kann, so dass das Schieberelement keine zusätzliche mechanische Belastung erfährt. Ein fluidischer Kurzschluss wird ebenfalls verhindert, da das mindestens eine Schieberelement die mindestens eine Fluidauslassöffnung kurzfristig vollständig überdeckt und fluidisch verschließt. Auf diese Weise wird der Verschleiß der Schieberelemente reduziert, wobei der pneumatische Wirkungsgrad der Flügelzellen-Gaspumpe gut ist.
Vorzugsweise ist die tangentiale Breite des mindestens einen Schieberelements geringfügig größer, vorzugsweise mindestens wenige Zehntel-Millimeter größer, als die tangentiale Breite der mindestens einen Fluidauslassöffnung, wobei die Fluidauslassöffnung bei Überlappung durch das mindestens eine Schieberelement überdeckt wird. Auf diese Weise wird ein Kurzschluss zwischen zwei benachbarten Pumpfächern zuverlässig verhindert und wird der Verschleiß des mindestens einen Schieberelements auf ein Minimum reduziert.
In einer bevorzugten Ausgestaltung weist die mindestens eine langlochartige Fluidauslassöffnung in ihrem Mittelteil über die Länge eine konstante tangentiale Breite auf. Die beiden Endbereiche der langlochartigen Fluidauslassöffnung können abgerundet oder abgeschrägt ausgebildet sein. Alternativ kann die Fluidauslassöffnung beispielsweise derart ausgebildet sein, dass sich die tangentiale Breite der Fluidauslassöffnung in radialer Richtung zum Motorrotor hin verkleinert.
Vorzugsweise sind der Pumpkammer eine in Drehrichtung erste Fluidauslassöffnung und eine zweite Fluidauslassöffnung zugeordnet, wobei zumindest die erste Fluidauslassöffnung langlochartig ausgebildet ist. Dadurch kann eine größere Gasmenge widerstandlos aus dem Pumpfach ausgestoßen werden.
Vorzugsweise weist das Pumpengehäuse einen Ventildeckel, einen Hubring und einen Bodendeckel auf. Der Hubring bildet die Umfangsfläche der Pumpkammer und liegt mit seiner einen Stirnseite an dem Ventildeckel und mit seiner anderen Stirnseite an dem Bodendeckel dichtend an. Der Ventildeckel schließt die Pumpkammer einseitig ab. Vorzugsweise weist der Ventildeckel die mindestens eine Fluidauslassöffnung und weist das Bodenelement die Fluideinlassöffnung auf, wobei an dem Ventildeckel bevorzugt ein Rückschlagventil angeordnet ist, welches die mindestens eine Fluidauslassöffnung verschließt und bei einem im Pumpfach herrschenden Öffnungsdruck die Fluidauslassöffnung freigibt.
Vorzugsweise entspricht die Länge L der mindestens einen langlochartigen Fluidauslassöffnung der freien Arbeitsraum-Weite W in Schieberelement-Längsrichtung, wobei sich die Arbeitsraum-Weite W von der Außenumfangsfläche des Pumpenrotors bis zu dem durch den Hubring definierten Innenumfang der Pumpkammer erstreckt.
Die Erfindung wird anhand der Zeichnungen näher erläutert. Hierbei zeigen : die Figur 1 eine Explosionsdarstellung einer Flügelzellen-Gaspumpe, und die Figur 2 eine Draufsicht eines Pumpenrotors der Flügelzellen- Gaspumpe aus Figur 1.
Die Figuren 1 und 2 zeigen eine als sogenannte Vakuumpumpe ausgebildete Flügelzellen-Gaspumpe 10, die beispielsweise für den Einsatz in einem Kraftfahrzeug bestimmt ist und einen Absolutdruck von 100 mbar oder weniger erzeugen kann. Die trockenlaufende Flügelzellenpumpe 10 weist ein Metall-Pumpengehäuse 20 auf, welches eine Pumpkammer 22 umschließt. Das Pumpengehäuse 20 setzt sich im Wesentlichen aus einem Hubring 74, einer Bodenplatte 76 und einem Ventildeckel 72 zusammen. In der Pump kämm er 22 ist exzentrisch zum Schwerpunkt der Pumpkammer 22 ein Pumpenrotor 30 drehbar angeordnet. Der Pumpenrotor 30 weist fünf Schieberschlitze 321, 341, 361, 381, 401 auf, in welchen jeweils ein Schieberelement 32, 34, 36, 38, 40 verschiebbar gelagert ist. Die fünf Schieberelemente 32, 34, 36, 38, 40 teilen die Pumpkammer 22 in fünf rotierende Pumpfächer auf, die jeweils den gleichen Pumpfachwinkel a von ca. 70° aufweisen. Der Pumpenrotor 30 wird vorliegend von einem zugeordneten Elektromotor 90 angetrieben.
Die vorliegende Flügelzellen-Gaspumpe 10 ist eine trockenlaufende Flügelzellen-Gaspumpe 10, wobei kein Schmiermittel, beispielsweise Öl, in die Pumpkammer 22 eingeleitet wird. Die Gaspumpe 10 weist daher keinen Schmiermittel-Anschluss auf. Um die Reibung und den Verschleiß der aneinander anliegenden und sich relativ zueinander bewegenden Bauteile der Flügelzellen-Gaspumpe 10 zu reduzieren, weisen die Schieberelemente 32, 34, 36, 38, 40 Graphitanteile auf. Alternativ können die Bauteile eine andere reibungsmindernde Zusammensetzung aufweisen.
Die Pumpkammer 22 lässt sich in mehrere Sektoren einteilen, nämlich einen Einlasssektor 42 mit einer Fluideinlassöffnung 60, einen Auslasssektor 44 mit einer ersten Fluidauslassöffnung 52 sowie einer zweiten Fluidauslassöffnung 54, und einen Dichtsektor 46, der in Drehrichtung gesehen zwischen dem Auslasssektor 44 und dem Einlasssektor 42 angeordnet ist und in dem ein Gasstrom über den Dichtspalt zwischen dem Pumpenrotor 30 und dem Hubring 74 von den Fluidauslassöffnungen 52, 54 zu der Fluideinlassöffnung 60 unterbunden ist.
Die Fluideinlassöffnung 60 ist in der Bodenplatte 76 ausgebildet. Die beiden Fluidauslassöffnungen 52, 54 sind in dem gegenüberliegenden Ventildeckel 72 ausgebildet. Die erste Fluidauslassöffnung 52 ist in Drehrichtung des Pumpenrotors 30 gesehen vor der zweiten Fluidauslassöffnung 54 angeordnet. Der ersten Fluidauslassöffnung 52 ist fluidisch ein Rückschlagventil 70 zugeordnet, wobei das Rückschlagventil 70 ein Zungenventil ist und eine Ventilzunge 80 und einen Wegbegrenzer 82 aufweist, welche beide an dem Ventildeckel 72 fest angeordnet bzw. verschraubt sind.
Die erste Fluidauslassöffnung 52 ist langlochartig ausgebildet. Dabei entspricht die tangentiale Breite Bl der Schieberelemente 32, 34, 36, 38, 40 mindestens der tangentialen Breite B2 der Fluidauslassöffnung 52, wobei die langlochartig ausgebildete Fluidauslassöffnung 52 derart ausgerichtet ist, dass die erste Fluidauslassöffnung 52 in vordefinierten Rotorstellungen von einem der Schieberelemente 32, 34, 36, 38, 40 jeweils vollständig verdeckt und auf diese Weise kurzzeitig vollständig verschlossen ist. In den Rotorstellungen, in denen die Fluidauslassöffnung 52 kurzzeitig durch ein Schieberelement 32, 34, 36, 38, 40 verschlossen ist, weisen die Längsachse der geschlossenen Fluidauslassöffnung 52 und die Längsachse des entsprechenden Schieberelements 32, 34, 36, 38, 40 eine gemeinsame identische Ausrichtung auf.
Im Betrieb der Gaspumpe 10 wird die Luft durch die Rotation des Pumpenrotors 30 durch die Fluideinlassöffnung 60 in das betreffende Pumpfach angesaugt und durch die beiden Fluidauslassöffnungen 52, 54 aus dem weiterrotierenden Pumpfach ausgestoßen. Solange in dem Pumpfach ein vordefinierter Überdruck herrscht, ist die erste Fluidauslassöffnung 52 freigegeben, und wird die Luft durch die erste Fluidauslassöffnung 52 ausgestoßen. Zusätzlich wird die Luft durch die zweite Fluidauslassöffnung 54 ausgestoßen, sobald das betreffende Pumpfach diese erreicht. Dadurch, dass die erste Fluidauslassöffnung 52 langlochartig ausgebildet ist, ist die Durchströmungsfläche der Fluidauslassöffnung 52 groß genug, um die Luft praktisch widerstandslos aus dem Pumpfach ausströmen zu lassen, so dass die Schieberelemente 32, 34, 36, 38, 40 keine zusätzliche mechanische Belastung in tangentialer Richtung erfahren. Ein Kurzschluss zwischen zwei benachbarten Pumpfächern wird ebenfalls verhindert, da die Schieberelemente 32, 34, 36, 38, 40 die Fluidauslassöffnungen 52, 54 jeweils temporär vollständig überdecken und verschließen. Die Rückströmungs-Verluste sind hier also gleich Null. Auf diese Weise wird der Verschleiß der Schieberelemente 32, 34, 36, 38, 40 reduziert, ohne dass der pneumatische Wirkungsgrad der Flügelzellen-Gaspumpe 10 reduziert wird.
Es sollte deutlich sein, dass auch andere konstruktive Ausführungsformen der trockenlaufenden Gaspumpe im Vergleich zur beschriebenen Ausführungsform möglich sind, ohne den Schutzbereich des Hauptanspruchs zu verlassen. Es kann beispielsweise die Anzahl der Schieberelemente variieren oder die Fluideinlassöffnung und/oder die Fluidauslassöffnungen an anderen Gehäusebauteilen ausgebildet sein.

Claims

Pierburg GmbH P A T E N T A N S P R Ü C H E
1. Flügelzellen-Gaspumpe für ein kompressibles Fluid, mit
einem Pumpengehäuse (20), das eine Pumpkammer (22) bildet, in der ein Pumpenrotor (30) mit mindestens einem verschiebbaren Schieberelement (32, 34, 36, 38, 40) drehbar gelagert ist,
wobei der Pumpkammer (22) mindestens eine Fluideinlassöffnung (60) und mindestens eine langlochartige Fluidauslassöffnung (52) zugeordnet sind,
wobei die tangentiale Breite Bl des mindestens einen Schieberelements (32, 34, 36, 38, 40) mindestens der tangentialen Breite B2 der langlochartigen Fluidauslassöffnung (52) entspricht, derart, dass das mindestens eine Schieberelement (32, 34, 36, 38, 40) die mindestens eine Fluidauslassöffnung (52) temporär vollständig überdeckt.
2. Flügelzellen-Gaspumpe nach Anspruch 1,
dadurch gekennzeichnet, dass
die tangentiale Breite Bl des mindestens einen Schieberelements (32, 34, 36, 38, 40) geringfügig größer als die tangentiale Breite B2 der mindestens einen Fluidauslassöffnung (52) ist.
3. Flügelzellen-Gaspumpe nach Anspruch 1 oder 2,
dadurch gekennzeichnet, dass
die mindestens eine langlochartige Fluidauslassöffnung (52) über ihre Länge eine konstante tangentiale Breite B2 aufweist.
4. Flügelzellen-Gaspumpe nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass
der Pumpkammer (22) eine in Drehrichtung erste Fluidauslassöffnung (52) und eine zweite Fluidauslassöffnung (54) zugeordnet sind, wobei zumindest die erste Fluidauslassöffnung (52) langlochartig ausgeführt ist.
5. Flügelzellen-Gaspumpe nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass
das Pumpengehäuse (20) eine Anlaufscheibe (72), einen Hubring (74) und ein Bodenelement (76) aufweist, welche die Pumpkammer (22) begrenzen.
6. Flügelzellen-Gaspumpe nach Anspruch 5,
dadurch gekennzeichnet, dass
die Fluideinlassöffnung (60) an dem Bodenelement (76) ausgebildet ist und die mindestens eine langlochartige Fluidauslassöffnung (52) an der Anlaufscheibe (72) ausgebildet ist.
7. Flügelzellen-Gaspumpe nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass
die Länge L der mindestens einen langlochartigen Fluidauslassöffnung (52) der freien Arbeitsraum-Weite W in Schieberelement-Längsrichtung entspricht.
EP17706691.7A 2017-02-01 2017-02-01 Flügelzellen-gaspumpe Pending EP3577342A1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2017/052167 WO2018141381A1 (de) 2017-02-01 2017-02-01 Flügelzellen-gaspumpe

Publications (1)

Publication Number Publication Date
EP3577342A1 true EP3577342A1 (de) 2019-12-11

Family

ID=58108575

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17706691.7A Pending EP3577342A1 (de) 2017-02-01 2017-02-01 Flügelzellen-gaspumpe

Country Status (5)

Country Link
US (1) US11261868B2 (de)
EP (1) EP3577342A1 (de)
JP (1) JP2020506332A (de)
CN (1) CN110234883B (de)
WO (1) WO2018141381A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11261869B2 (en) * 2016-06-22 2022-03-01 Pierburg Pump Technology Gmbh Motor vehicle vacuum pump arrangement

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1553283A1 (de) 1964-08-17 1969-09-25 Zahnradfabrik Friedrichshafen Fluegelzellen-Kapselwerk
JPS56129795A (en) * 1980-03-12 1981-10-12 Nippon Soken Inc Rotary compressor
JPS62247194A (ja) 1986-04-21 1987-10-28 Honda Motor Co Ltd ベ−ン式回転圧縮機
JPS62265483A (ja) 1986-05-14 1987-11-18 Hitachi Ltd 回転ベ−ン式真空ポンプ
EP2568180B1 (de) 2011-09-12 2019-11-13 Pierburg Pump Technology GmbH Flügelzellenpumpe
JP5828863B2 (ja) 2012-08-22 2015-12-09 カルソニックカンセイ株式会社 気体圧縮機
CN104995409A (zh) 2012-11-16 2015-10-21 莫戈公司 叶轮泵和操作该叶轮泵的方法
JP6200164B2 (ja) 2013-02-22 2017-09-20 Kyb株式会社 可変容量型ベーンポンプ
WO2016104652A1 (ja) 2014-12-24 2016-06-30 ナブテスコオートモーティブ 株式会社 真空ポンプ
US11261869B2 (en) * 2016-06-22 2022-03-01 Pierburg Pump Technology Gmbh Motor vehicle vacuum pump arrangement
DE102017128972A1 (de) * 2017-12-06 2019-06-06 Joma-Polytec Gmbh Vakuumpumpe

Also Published As

Publication number Publication date
CN110234883B (zh) 2021-04-13
WO2018141381A1 (de) 2018-08-09
JP2020506332A (ja) 2020-02-27
US11261868B2 (en) 2022-03-01
US20190345943A1 (en) 2019-11-14
CN110234883A (zh) 2019-09-13

Similar Documents

Publication Publication Date Title
DE3529929C2 (de)
DE102006058980B4 (de) Flügelzellenpumpe
EP3545195A1 (de) Verdrängermaschine nach dem spiralprinzip, verfahren zum betreiben einer verdrängermaschine, verdrängerspirale, fahrzeugklimaanlage und fahrzeug
WO2009089960A1 (de) Hydraulisches steuerventil mit integriertem rückschlagventil
DE3319000C2 (de)
DE3800324A1 (de) Fluegelzellenverdichter
DE112015000504T5 (de) Flügelpumpe
EP3532728B1 (de) Drehkolbenpumpe mit sperrkammerdichtung
WO2017162425A1 (de) Rückschlagventil für ein pleuel für eine brennkraftmaschine mit variabler verdichtung sowie pleuel mit einem rückschlagventil
WO2016173800A1 (de) Pumpenvorrichtung
DE102017128972A1 (de) Vakuumpumpe
DE102009037443A1 (de) Selbstansaugende Flügelzellenpumpe
DE4326408C2 (de) Vielfach-Axialkolbenverdichter
DE102006058978A1 (de) Flügelzellenpumpe
EP3475574B1 (de) Trockenlaufende flügelzellen-gaspumpe
EP3577342A1 (de) Flügelzellen-gaspumpe
DE2131000A1 (de) Drehfluegelkompressor
DE3826548C2 (de) Flügelzellenverdichter mit variabler Förderleistung
DE4008522C2 (de)
EP0509077B1 (de) Kolbenpumpe, insbesondere radialkolbenpumpe
DE10133445A1 (de) Ventileinstellungs-Steuerungsvorrichtung
DE3401064A1 (de) Stroemungsmittelpumpe
DE4033420C2 (de) Druckventil
DE2654991C3 (de) Drehschieberkompressor
DE3801306A1 (de) Fluegelzellenverdichter

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190823

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20211222