EP3575435A1 - Plasmaspritzverfahren zur beschichtung einer zylinderlaufbahn eines zylinderkurbelgehäuses einer hubkolbenbrennkraftmaschine - Google Patents
Plasmaspritzverfahren zur beschichtung einer zylinderlaufbahn eines zylinderkurbelgehäuses einer hubkolbenbrennkraftmaschine Download PDFInfo
- Publication number
- EP3575435A1 EP3575435A1 EP19176247.5A EP19176247A EP3575435A1 EP 3575435 A1 EP3575435 A1 EP 3575435A1 EP 19176247 A EP19176247 A EP 19176247A EP 3575435 A1 EP3575435 A1 EP 3575435A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- coating
- plasma spraying
- cylinder
- spraying method
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000576 coating method Methods 0.000 title claims abstract description 66
- 239000011248 coating agent Substances 0.000 title claims abstract description 60
- 238000000034 method Methods 0.000 title claims abstract description 41
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 8
- 239000007921 spray Substances 0.000 title abstract description 5
- 238000007750 plasma spraying Methods 0.000 claims abstract description 26
- 229910000831 Steel Inorganic materials 0.000 claims description 24
- 239000010959 steel Substances 0.000 claims description 24
- 239000000843 powder Substances 0.000 claims description 11
- 238000007788 roughening Methods 0.000 claims description 11
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 8
- 239000011651 chromium Substances 0.000 claims description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 4
- 239000000919 ceramic Substances 0.000 claims description 4
- 238000002347 injection Methods 0.000 claims description 4
- 239000007924 injection Substances 0.000 claims description 4
- 239000011572 manganese Substances 0.000 claims description 4
- 238000005507 spraying Methods 0.000 claims description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 3
- 229910052799 carbon Inorganic materials 0.000 claims description 3
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 229910052593 corundum Inorganic materials 0.000 claims description 3
- 239000010431 corundum Substances 0.000 claims description 3
- 238000005520 cutting process Methods 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 239000001301 oxygen Substances 0.000 claims description 3
- 229910052760 oxygen Inorganic materials 0.000 claims description 3
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 2
- 239000007789 gas Substances 0.000 claims description 2
- 229910052748 manganese Inorganic materials 0.000 claims description 2
- 230000001681 protective effect Effects 0.000 claims description 2
- 230000015572 biosynthetic process Effects 0.000 abstract description 7
- 239000000463 material Substances 0.000 abstract description 4
- 239000010410 layer Substances 0.000 description 19
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 6
- 229910000851 Alloy steel Inorganic materials 0.000 description 5
- 229910021536 Zeolite Inorganic materials 0.000 description 4
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 4
- 239000010457 zeolite Substances 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 238000005275 alloying Methods 0.000 description 2
- 238000005219 brazing Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000007749 high velocity oxygen fuel spraying Methods 0.000 description 2
- 239000011241 protective layer Substances 0.000 description 2
- 229910000906 Bronze Inorganic materials 0.000 description 1
- 229910001060 Gray iron Inorganic materials 0.000 description 1
- NPXOKRUENSOPAO-UHFFFAOYSA-N Raney nickel Chemical compound [Al].[Ni] NPXOKRUENSOPAO-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 239000010974 bronze Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010285 flame spraying Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/04—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
- C23C4/06—Metallic material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/04—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
- C23C4/06—Metallic material
- C23C4/08—Metallic material containing only metal elements
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/04—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
- C23C4/10—Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/04—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
- C23C4/10—Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
- C23C4/11—Oxides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/12—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
- C23C4/134—Plasma spraying
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/12—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
- C23C4/137—Spraying in vacuum or in an inert atmosphere
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/12—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
- C23C4/14—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying for coating elongate material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/12—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
- C23C4/14—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying for coating elongate material
- C23C4/16—Wires; Tubes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B13/00—Machines or plants for applying liquids or other fluent materials to surfaces of objects or other work by spraying, not covered by groups B05B1/00 - B05B11/00
- B05B13/06—Machines or plants for applying liquids or other fluent materials to surfaces of objects or other work by spraying, not covered by groups B05B1/00 - B05B11/00 specially designed for treating the inside of hollow bodies
- B05B13/0627—Arrangements of nozzles or spray heads specially adapted for treating the inside of hollow bodies
- B05B13/0636—Arrangements of nozzles or spray heads specially adapted for treating the inside of hollow bodies by means of rotatable spray heads or nozzles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B7/00—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
- B05B7/16—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
- B05B7/22—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed electrically, magnetically or electromagnetically, e.g. by arc
- B05B7/222—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed electrically, magnetically or electromagnetically, e.g. by arc using an arc
- B05B7/226—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed electrically, magnetically or electromagnetically, e.g. by arc using an arc the material being originally a particulate material
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02F—CYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
- F02F7/00—Casings, e.g. crankcases or frames
- F02F7/0085—Materials for constructing engines or their parts
Definitions
- the invention relates to a plasma spraying process for coating a cylinder bore of a cylinder crankcase of a reciprocating internal combustion engine.
- a coating process for coating a curved surface, a thermal coating and a cylinder with a thermal coating are known.
- a thermal spray device in particular a plasma spray gun or HVOF sprayer with a burner which rotates on a burner shaft about a shaft axis at a predetermined rotational frequency, wherein the coating jet for applying a coating to the curved Surface is at least partially radially directed away from the shaft axis to the curved surface.
- RPM revolutions / minute
- cylinder crankcases made of aluminum are used, however, which require a protective layer in the region of the cylinder bore, for example a protective layer applied by means of plasma spraying.
- a positive side effect of the coating in addition to a robustness increase of the cylinder bore a significantly reduced friction in the area of the piston group (and thereby also a reduced CO2 emission) as well as positive effects against corrosive media.
- Coating processes known in the art include powder plasma spraying (APS), wire spraying, such as plasma transferred wire arc (PTWA / RSW) coating, arc wire spraying (LDS) and high speed flame spraying (HVOF syringes).
- a brazing process for brazing the coating Prior to a thermal coating of cylinder bores in aluminum crankcases and sometimes gray cast iron, a brazing process for brazing the coating, i. Improving the adhesion of the coating, carried out or is required so that the coating can be applied at all.
- This roughening process is represented by radiant processes using corundum and water (medium pressure / high pressure water jets), laser beam roughening or roughening with a geometrically defined cutting edge.
- the object of the invention is to provide a coating method by means of which the formation of oxides is limited or oxide zones in the layer formation and thus negative influences due to oxide bursts occurring and a micro-roughness, which arises in particular due to such oxide breakdown or existing due to a high oxide line to avoid.
- the rate of injection of material reference is made in particular to the narrower value range between 80 and 150 g / min. More preferably, the range of values is between 90 and 130 g / min and more preferably the value range between 100 and 120 g / min.
- the rate of spray conveyance reference is made in particular to the value of 110 g / min, with which, in particular in conjunction with the rotation speed of 650 rpm, a particularly high-quality result of coating the cylinder bore has been achieved.
- the feed rate according to feature c) is referred to the value range between 30 and 70 mm / s, more preferably to the value range between 40 and 65 mm / s and particularly preferably to the value range between 50 and 65 mm / s.
- the coating is applied in the form of double strokes by means of 5-8 injection cycles. Particularly preferred in this regard is the application with 6-7 injection cycles to mention. It has been found that the thickness and the structure of a corresponding coating in conjunction with the required processing time in this case is particularly high-quality and efficient.
- a steel layer or a ceramic layer are preferably applied.
- the steel layers particular reference is made to low alloy and high alloy steel layers, i. on steel layers with steels in which the sum of the alloying elements does not exceed a content of 5% by mass (low-alloyed steels) or steels in which the average mass content of at least one alloying element is greater than or equal to 5% (high-alloyed steels).
- low alloy steels is preferred over high alloy steels.
- high-alloy steels results are also achieved which are advantageous over the results known from the prior art.
- TiO 2 titanium dioxide
- a ceramic layer irrespective of the above, is preferably applied in conjunction with a previous roughening process and the previous application of an adhesion-promoting layer.
- an adhesion-promoting layer in particular a nickel-aluminum layer, a bronze layer or a low-alloy steel layer in question.
- the thickness of an adhesion-promoting layer is preferably less than 100 ⁇ m, preferably less than 60 ⁇ m and particularly preferably not more than 40 ⁇ m.
- this coating is preferably by means of a low alloy steel powder applied. His steel powder with a predominantly spherical morphology with low proportions of satellites is particularly preferred.
- the coating is applied by means of a steel powder containing less than 2% by weight of carbon (C), less than 2% by weight of manganese (Mn). , less than 2 wt.% chromium (Cr), less than 1 wt.% nickel (Ni), less than 1 wt.% oxygen (O2), and less than 1 wt.% nitrogen (N 2 ) ,
- C carbon
- Mn manganese
- Cr manganese
- Cr manganese
- Ni manganese
- O2 less than 1 wt.% oxygen
- N 2 nitrogen
- the proportion of carbon reference is made in particular to a percentage by weight of 1.0 to 1.3.
- the proportion of manganese particular reference is made to a proportion of 1.2 to 1.6% by weight.
- proportion by weight of chromium particular reference is made to a value range from 1.2 to 1.6% by weight.
- proportion by weight of nickel reference is made in particular to the value range of less than 0.5% by weight.
- proportion by weight of oxygen reference is made in particular to values of less than 0.2% by weight and, with regard to the proportion by weight of nitrogen, in particular to the value range of less than 0.5% by weight.
- the abovementioned ranges of values preferably apply cumulatively, ie linked to one another in this combination.
- a particularly high-quality coating is obtained when a steel layer is applied by means of a steel powder whose grain size is exclusively smaller than 60 microns and / or whose grain size is for the most part less than 42 microns.
- the proportion in weight percent of steel powder having a particle size of less than 42 microns is preferably at most 90 percent.
- the proportion with a particle size of less than 26 microns is preferably at most 50 percent.
- the proportion with a particle size of less than 16 microns is preferably at most 10 percent.
- the coating is applied under the influence of the atmosphere.
- the method is also referred to as atmospheric plasma spraying or APS method.
- An advantage of the APS process is that it avoids the use of inert gases and the associated additional costs.
- the coating can be applied in a plasma spraying process according to the invention but also by using a protective gas or in a vacuum. Although in this case the costs for carrying out the process are increased, in individual cases a qualitatively even better result of a coating can be achieved, ie in particular a coating can be achieved which has a lower oxide content or has a lower oxide content.
- the plasma spraying process according to the invention is particularly advantageous if, prior to the application of the coating, at least one radiating roughening process is carried out by means of corundum and / or water, by means of laser beam roughening or by roughening with a geometrically defined cutting edge.
- at least one radiating roughening process is carried out by means of corundum and / or water, by means of laser beam roughening or by roughening with a geometrically defined cutting edge.
- the adhesiveness of the coating to be applied improves, and at the same time, the durability of the obtained coating increases.
- FIG. 1 shows a detail of a cylinder crankcase of a reciprocating internal combustion engine with a section of a cylinder bore of an aluminum body 10 of a cylinder crankcase 14, wherein the aluminum body 10 is provided with a coating 12 and the aluminum body 10 facing away from surface 16 is part of the cylinder bore 18 of the cylinder crankcase 14.
- the partly marked black areas 20 are oxides which have formed during the application of the coating 12 by means of a plasma spraying process.
- FIG. 2 shows the surface 16 of the cylinder barrel 18.
- 16 individual oxide rows 22a, 22b, 22c, 22d have formed on the surface, which are formed by black dots, which are arranged approximately in one row. This is the above-mentioned oxide zeolite.
- FIG. 3 shows a view similar to FIG. 1 wherein the coating 12 has been applied by means of a plasma spraying process according to the invention.
- FIG. 4 shows an enlarged view of the view FIG. 3 , As can be seen, the surface 16, which forms the cylinder bore 18 of the cylinder crankcase 14, a significantly increased quality in that no oxide zeolite is more recognizable. In addition, it can be seen that significantly fewer oxides have formed in the coating 12 than in the coating 12 according to the prior art, which is described in US Pat FIG. 1 is shown.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Coating By Spraying Or Casting (AREA)
- Pistons, Piston Rings, And Cylinders (AREA)
Abstract
Description
- Die Erfindung betrifft ein Plasmaspritzverfahren zur Beschichtung einer Zylinderlaufbahn eines Zylinderkurbelgehäuses einer Hubkolbenbrennkraftmaschine.
- Aus
WO 2017/202852 A1 sind ein Beschichtungsverfahren zur Beschichtung einer gekrümmten Oberfläche, eine thermische Beschichtung sowie ein Zylinder mit einer thermischen Beschichtung bekannt. Dabei wird insbesondere Bezug genommen auf die Verwendung von pulverförmigem Beschichtungsmaterial unter Verwendung einer thermischen Spritzgerätes, insbesondere ein Plasmaspritzgerät oder HVOF Spritzgerät mit einem Brenner, der an einem Brennerschaft um eine Schaftachse mit einer vorgegebenen Rotationsfrequenz rotiert, wobei der Beschichtungsstrahl zum Aufbringen einer Beschichtung auf die gekrümmte Oberfläche zumindest teilweise radial von der Schaftachse weg zur gekrümmten Oberfläche hin gerichtet wird. Dabei wird auf die Verwendung von erhöhten Rotationsfrequenzen über 200 Umdrehungen/Minute (U/min) verwiesen, insbesondere bis zu 800 U/min oder sogar mehr, wobei die Förderrate des pulverförmigen Beschichtungsmaterials entsprechend "geeignet gesteigert" werden soll. - Das Dokument
WO 2017/202852 A1 nimmt keinen Bezug auf den Vorschub während der Beschichtung und geht auch nicht auf die sogenannte Oxidzeiligkeit der zu erzielenden Beschichtung ein. - In der Fertigung von Zylinderkurbelgehäusen für Hubkolbenbrennkraftmaschinen wird zunehmend versucht, das Gewicht der Zylinderkurbelgehäuse zu reduzieren. Dazu werden Zylinderkurbelgehäuse aus Aluminium eingesetzt, die jedoch im Bereich der Zylinderlaufbahn eine Schutzschicht benötigen, z.B. eine mittels Plasmaspritzen aufgebrachte Schutzschicht. Ein positiver Nebeneffekt der Beschichtung ist neben einer Robustheitssteigerung der Zylinderlaufbahn eine deutlich reduzierte Reibung im Bereich der Kolbengruppe (und dadurch auch ein reduzierter CO2-Ausstoß) sowie positive Effekte gegenüber korrosiven Medien. Aus dem Stand der Technik bekannte Beschichtungsverfahren sind das Pulver-Plasmaspritzen (APS-Verfahren), das Drahtspritzverfahren, wie z.B. Plasma Transferred Wire Arc (PTWA/RSW) Beschichtungsverfahren, das Lichtbogen-Draht-Spritzen (LDS) und das Hochgeschwindigkeits-Flammspritzen (HVOF-Spritzen).
- Vor einer thermischen Beschichtung von Zylinderbohrungen in Kurbelgehäusen aus Aluminium und teilweise auch aus Grauguss wird ein Aufrauprozess zur Verklammerung der Beschichtung, d.h. Verbesserung der Haftung der Beschichtung, durchgeführt bzw. ist erforderlich, damit die Beschichtung überhaupt aufgebracht werden kann. Dieser Aufrauprozess wird durch strahlende Prozesse mittels Korund und Wasser (Mitteldruck-/Hochdruck-Wasserstrahlen), Laserstrahlaufrauen oder Aufrauen mit geometrisch definierter Schneide dargestellt.
- Beim Einsatz des Pulver-Plasmaspritzens (APS-Verfahren) entsteht an durch den vorstehend erwähnten Aufrauprozess bedingten Inhomogenitäten eine verstärkte Oxidbildung, wenn eine Prozessführung gemäß einem aus dem Stand der Technik bekannten Beschichtungsvorgang mit beispielsweise 4 Doppelzyklen gewählt wird. Diese kann zu einer parallel zur Oberfläche entstehenden Oxidzeiligkeit in der Beschichtung führen. Die Oxidzeiligkeit wiederum bewirkt eine verminderte Schichtstabilität und kann insbesondere bei einem Vorliegen der Oxide/Oxidzeilen nach dem Fertighonen an der Oberfläche der Beschichtung (Zylinderlaufbahn) zu einem Ausbrechen der Oxide und nachfolgend zu einer Mikroriefigkeit der Zylinderlauffläche führen. Werden die Oxide/Oxidzeilen an der Oberfläche durch den Honprozess beansprucht, kann es zu verstärkten Ausbrüchen dieser Oxide und damit zu einem erhöhten Porenflächenanteil der Laufbahnoberfläche kommen. Dieser kann einen erhöhten Ölverbrauch bewirken und damit korrespondierend zu einem erhöhten Partikelausstoß führen. Ein weiterer Nachteil des aus dem Stand der Technik bekannten Verfahrens ist, dass dieses relativ viel Zeit für den Beschichtungsvorgang benötigt.
- Der Erfindung liegt die Aufgabe zugrunde, ein Beschichtungsverfahren zur Verfügung zu stellen, mittels welchem die Ausbildung von Oxiden begrenzt bzw. Oxidzeiligkeiten in der Schichtausbildung und somit negative Einflüsse aufgrund auftretender Oxidausbrüche und einer - insbesondere durch solche Oxidausbrücke entstehenden oder aufgrund einer hohen Oxidzeiligkeit existierenden - Mikroriefigkeit zu vermeiden.
- Die Lösung der Aufgabe erfolgt erfindungsgemäß mit den Merkmalen der unabhängigen Ansprüche. Weitere praktische Ausführungsformen und Vorteile der Erfindung sind in Verbindung mit den abhängigen Ansprüchen beschrieben.
- Gemäß dem erfindungsgemäßen Plasmaspritzverfahren zur Beschichtung einer Zylinderlaufbahn eines Zylinderkurbelgehäuses einer Hubkolbenbrennkraftmaschine wird die Beschichtung zumindest teilweise mit folgender Parameterkombination auf die Zylinderlaufbahn des Zylinderkurbelgehäuses aufgebracht:
- a) Rotationsgeschwindigkeit: 600 - 800 U/min,
- b) Spritzgutförderrate: 80 - 180 g/min und
- c) Vorschubgeschwindigkeit: 24 - 75 mm/s.
- Mittels ausführlicher empirischer Versuchsreihen und unter Einbeziehung modifizierter Anlagentechnik wurde ermittelt, dass mit dem vorstehend genannten Parameterbereiche, die allesamt gemäß a), b) und c) erfüllt sein müssen, damit die erfindungsgemäßen Vorteile erzielt werden, sich die Bildung von Oxiden verringern und die entstehende Oxidzeiligkeit drastisch reduziert werden kann. Dadurch kann eine besonders homogene Oberfläche erzielt werden, die weitestgehend frei von einer unerwünschten Mikroriefigkeit ist, welche durch eine erhöhte Oxidbildung und eine hohe Oxidzeiligkeit entsteht. Darüber hinaus kann eine hohe Rotationsgeschwindigkeit während des Verfahrens eingesetzt werden und damit die gewünschte Beschichtung in einer kürzeren Zeit aufgebracht werden als mit den bislang aus dem Stand der Technik bekannten Verfahren. Hinsichtlich der Rotationsgeschwindigkeit der Brennertechnik haben sich Werte zwischen 600-700 U/min als bevorzugt herausgestellt. Weiter bevorzugt sind Werte zwischen 630 U/min und 770 U/min, besonders bevorzugt Werte zwischen 640 U/min und 660 U/min. Besonders gute Ergebnisse wurden mit Rotationsgeschwindigkeiten von 650 U/min erzielt.
- Hinsichtlich der Spritzgutförderrate wird insbesondere auf den schmaleren Wertebereich zwischen 80 und 150 g/min verwiesen. Weiter bevorzugt ist der Wertebereich zwischen 90 und 130 g/min und besonders bevorzugt der Wertebereich zwischen 100 und 120 g/min. In Bezug auf die Spritzgutförderrate wird besonders auf den Wert von 110 g/min verwiesen, mit welchem, insbesondere in Verbindung mit der Rotationsgeschwindigkeit von 650 U/min ein qualitativ besonders hochwertiges Ergebnis einer Beschichtung der Zylinderlaufbahn erzielt wurde.
- Zu der Vorschubgeschwindigkeit gemäß Merkmal c) wird auf den Wertebereich zwischen 30 und 70 mm/s, weiter bevorzugt auf den Wertebereich zwischen 40 und 65 mm/s und besonders bevorzugt auf den Wertebereich zwischen 50 und 65 mm/s verwiesen. Darüber hinaus wird auf die noch engeren Wertebereiche zwischen 52 und 60 mm/s und weiter bevorzugt zwischen 54 und 58 mm/s verwiesen.
- In einer praktischen Ausführungsform des erfindungsgemäßen Plasmaspritzverfahrens wird die Beschichtung mittels 5-8 Spritzzyklen jeweils in Form von Doppelhüben aufgebracht. Besonders bevorzugt ist diesbezüglich die Aufbringung mit 6-7 Spritzzyklen zu erwähnen. Es hat sich gezeigt, dass die Dicke und die Struktur einer entsprechenden Beschichtung in Verbindung mit der jeweils benötigten Bearbeitungsdauer in diesem Fall besonders hochwertig und effizient ist.
- Als Beschichtung werden vorzugsweise eine Stahlschicht oder eine Keramikschicht aufgebracht. In Bezug auf die Stahlschichten wird insbesondere auf niedriglegierte und hochlegierte Stahlschichten verwiesen, d.h. auf Stahlschichten mit Stählen, bei denen die Summe der Legierungselemente einen Gehalt von 5 Massenprozent nicht überschreitet (niedriglegierte Stähle) bzw. Stähle, bei denen der mittlere Massengehalt mindestens eines Legierungselementes größer gleich 5 % ist (hochlegierte Stähle). Die Verwendung von niedriglegierten Stählen ist gegenüber hochlegierten Stählen bevorzugt. Mit hochlegierten Stählen werden jedoch ebenfalls Ergebnisse erzielt, die gegenüber den aus dem bisherigen Stand der Technik bekannten Ergebnissen vorteilhaft sind.
- In Bezug auf die Aufbringung einer Keramikschicht wird insbesondere auf Schichten aus TitanDioxid (TiO2) verwiesen.
- Eine Keramikschicht wird unabhängig von Vorstehendem vorzugsweise in Verbindung mit einem vorherigen Aufrauhungsprozess und dem vorherigen Aufbringen einer haftvermittelnden Schicht aufgebracht. Als haftvermittelnde Schicht kommen insbesondere eine Nickel-Aluminium-Schicht, eine Bronzeschicht oder eine niedrig legierte Stahlschicht in Frage. Die Dicke einer haftvermittelnden Schicht beträgt dabei vorzugsweise weniger als 100 µm, bevorzugt weniger als 60 µm und besonders bevorzugt maximal 40 µm.
- Wenn bei einem erfindungsgemäßen Plasmaspritzverfahren eine Beschichtung in Form einer niedriglegierten Stahlschicht erzielt werden soll, wird diese Beschichtung vorzugsweise mittels eines niedriglegierten Stahlpulvers aufgebracht. Dabei sein Stahlpulver mit einer vorwiegend kugeligen Morphologie mit geringen Anteilen an Satelliten besonders bevorzugt.
- In einer weiteren praktischen Ausführungsform eines erfindungsgemäßen Plasmaspritzverfahrens, bei welchem als Beschichtung eine Stahlschicht aufgebracht wird, wird die Beschichtung mittels eines Stahlpulvers aufgebracht, die weniger als 2 Gew.-% Kohlenstoff (C), weniger als 2 Gew.-% Mangan (Mn), weniger als 2 Gew.-% Chrom (Cr), weniger als 1 Gew.-% Nickel (Ni), weniger als 1 Gew.-% Sauerstoff (O2) und weniger als 1 Gew.-% Stickstoff (N2) aufweist. In Bezug auf den Anteil von Kohlenstoff wird insbesondere auf einen Gew.-%-Anteil von 1,0 bis 1,3 verwiesen. In Bezug auf den Anteil von Mangan wird insbesondere auf einen Anteil von 1,2 bis 1,6 Gew.-% verwiesen. In Bezug auf den Gewichtsanteil von Chrom wird insbesondere auf einen Wertebereich von 1,2 bis 1,6 Gew.-% verwiesen. In Bezug auf den Gewichtsanteil von Nickel wird insbesondere auf den Wertebereich von weniger als 0,5 Gew.-% verwiesen. In Bezug auf den Gewichtsanteil von Sauerstoff wird insbesondere auf Werte von weniger als 0,2 Gew.-% verwiesen und in Bezug auf den Gewichtsanteil von Stickstoff wird insbesondere auf den Wertebereich von weniger als 0,5 Gew.-%. Die vorstehend genannten Wertebereiche gelten vorzugsweise kumulativ, d.h. in dieser Kombination mit einander verknüpft.
- Eine qualitativ besonders hochwertige Beschichtung ergibt sich, wenn eine Stahlschicht mittels eines Stahlpulvers aufgebracht wird, dessen Korngröße ausschließlich kleiner ist als 60 µm und/oder dessen Korngröße zu einem überwiegenden Teil kleiner als 42 µm ist. Der Anteil in Gewichtsprozent von Stahlpulver mit einer Korngröße von weniger als 42 µm liegt vorzugsweise bei maximal 90 Prozent. Der Anteil mit einer Korngröße von kleiner als 26 µm liegt vorzugweise bei maximal 50 Prozent. Der Anteil mit einer Korngröße von weniger als 16 µm liegt vorzugsweise bei maximal 10 Prozent.
- In einer weiteren praktischen Ausführungsform eines erfindungsgemäßen Plasmaspritzverfahrens wird die Beschichtung unter Einfluss der Atmosphäre aufgebracht. In diesem Fall wird das Verfahren auch als atmosphärisches Plasmaspritzverfahren oder APS-Verfahren bezeichnet. Ein Vorteil des APS-Verfahrens ist, dass auf den Einsatz von Schutzgasen und die damit verbundenen zusätzlichen Kosten verzichtet werden kann. Alternativ kann die Beschichtung bei einem erfindungsgemäßen Plasmaspritzverfahren aber auch unter Einsatz eines Schutzgases oder im Vakuum aufgebracht werden. In diesem Fall sind zwar die Kosten zur Durchführung des Verfahrens erhöht, im Einzelfall kann so aber ein qualitativ noch deutlich besseres Ergebnis einer Beschichtung erzielt werden, d.h. insbesondere eine Beschichtung erzielt werden, die einen geringeren Oxidanteil aufweist bzw. eine geringere Oxidzeiligkeit aufweist.
- Das erfindungsgemäße Plasmaspritzverfahren ist insbesondere dann von Vorteil, wenn vor dem Aufbringen der Beschichtung mindestens ein strahlender Aufrauprozess mittels Korund und/oder Wasser, mittels Laserstrahlaufrauen oder mittels Aufrauen mit geometrisch definierter Schneide durchgeführt wird. In diesem Fall verbessert sich die Haftungsfähigkeit der aufzubringenden Beschichtung und gleichzeitig erhöht sich die Dauerhaltbarkeit der erzielten Beschichtung.
- Weitere praktische Ausführungsformen der Erfindung sind nachfolgend im Zusammenhang mit den Zeichnungen beschrieben.
- Es zeigen:
- Figur 1:
- eine Querschnittsdarstellung eines Ausschnitts einer Zylinderlaufbahn mit einer Beschichtung,
- Figur 2:
- einen Blick auf eine Oberfläche einer Beschichtung einer Zylinderlaufbahn gemäß Stand der Technik,
- Figur 3:
- einen Querschnitt durch eine mit einem erfindungsgemäßen Verfahren hergestellte Beschichtung auf einer Zylinderlaufbahn und
- Figur 4:
- eine vergrößerte Darstellung des Ausschnitts gemäß
Figur 3 . -
Figur 1 zeigt einen Ausschnitt eines Zylinderkurbelgehäuses einer Hubkolbenbrennkraftmaschine mit einem Ausschnitt einer Zylinderlaufbahn eines Aluminiumgrundkörpers 10 eines Zylinderkurbelgehäuses 14, wobei der Aluminiumgrundkörper 10 mit einer Beschichtung 12 versehen ist und die dem Aluminiumgrundkörper 10 abgewandte Oberfläche 16 Teil der Zylinderlaufbahn 18 des Zylinderkurbelgehäuses 14 ist. Die zum Teil gekennzeichneten schwarzen Bereiche 20 sind Oxide, die sich während des Aufbringens der Beschichtung 12 mittels eines Plasmaspritzverfahrens gebildet haben. -
Figur 2 zeigt die Oberfläche 16 der Zylinderlaufbahn 18. Wie in der Figur erkennbar ist, haben sich auf der Oberfläche 16 einzelne Oxidzeilen 22a, 22b, 22c, 22d gebildet, die durch schwarze Punkte gebildet sind, die ungefähr ein einer Reihe angeordnet sind. Hierbei handelt es sich um die eingangs erwähnte Oxidzeiligkeit. -
Figur 3 zeigt eine Ansicht analog zuFigur 1 , wobei die Beschichtung 12 mittels eines erfindungsgemäßen Plasmaspritzverfahrens aufgebracht wurde. -
Figur 4 zeigt eine vergrößerte Darstellung der Ansicht ausFigur 3 . Wie erkennbar ist, weist die Oberfläche 16, welche die Zylinderlaufbahn 18 des Zylinderkurbelgehäuses 14 bildet, eine deutlich erhöhte Qualität dadurch auf, dass keine Oxidzeiligkeit mehr erkennbar ist. Darüber hinaus ist erkennbar, dass sich in der Beschichtung 12 deutlich weniger Oxide gebildet haben, als bei der Beschichtung 12 gemäß Stand der Technik, welche inFigur 1 dargestellt ist. - Die in der vorliegenden Beschreibung, in den Zeichnungen sowie in den Ansprüchen offenbarten Merkmale der Erfindung können sowohl einzeln als auch in beliebigen Kombinationen für die Verwirklichung der Erfindung in ihren verschiedenen Ausführungsformen wesentlich sein. Die Erfindung kann im Rahmen der Ansprüche und unter Berücksichtigung der Kenntnisse des zuständigen Fachmanns variiert werden.
-
- 10
- Aluminiumgrundkörper
- 12
- Beschichtung
- 14
- Zylinderkurbelgehäuse
- 16
- Oberfläche
- 18
- Zylinderlaufbahn
- 20
- schwarzer Bereich (Oxid)
- 22a-d
- Oxidzeilen
Claims (10)
- Plasmaspritzverfahren zur Beschichtung einer Zylinderlaufbahn eines Zylinderkurbelgehäuses einer Hubkolbenbrennkraftmaschine, dadurch gekennzeichnet, dass das die Beschichtung (12) zumindest teilweise mit folgender Parameterkombination auf die Zylinderlaufbahn (18) des Zylinderkurbelgehäuses (14) aufgebracht wird:a) Rotationsgeschwindigkeit: 600 - 800 Umdrehungen/Minute,b) Spritzgutförderrate: 80 - 180 Gramm/Minute undc) Vorschubgeschwindigkeit: 24 - 75 mm/s
- Plasmaspritzverfahren nach dem vorstehenden Anspruch, dadurch gekennzeichnet, dass die Beschichtung (12) mittels 5 - 8 Spritzzyklen jeweils in Form von Doppelhüben aufgebracht wird.
- Plasmaspritzverfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass als Beschichtung (12) eine Stahlschicht oder einer Keramikschicht aufgebracht wird.
- Plasmaspritzverfahren nach dem vorstehenden Anspruch, dadurch gekennzeichnet, dass die Beschichtung (12) mittels eines niedriglegierten Stahlpulvers aufgebracht wird.
- Plasmaspritzverfahren nach einem der beiden vorstehenden Ansprüche, dadurch gekennzeichnet, dass als Beschichtung (12) eine Stahlschicht mittels eines Stahlpulvers mit einer vorwiegend kugeligen Morphologie mit geringen Anteilen an Satelliten aufgebracht wird.
- Plasmaspritzverfahren nach einem der drei vorstehenden Ansprüche, dadurch gekennzeichnet, dass als Beschichtung (12) eine Stahlschicht mittels eines Stahlpulvers aufgebracht wird, die weniger als 2 Gew.-% Kohlenstoff (C), weniger als 2 Gew.-% Mangan (Mn), weniger als 2 Gew.-% Chrom (Cr), weniger als 1 Gew.-% Nickel (Ni), weniger als 1 Gew.-% Sauerstoff (O2) und weniger als 1 Gew.-% Stickstoff (N2) aufweist.
- Plasmaspritzverfahren nach einem der vier vorstehenden Ansprüche, dadurch gekennzeichnet, dass eine Stahlschicht mittels eines Stahlpulvers aufgebracht wird, dessen Korngröße ausschließlich kleiner ist als 60 µm und/oder zu einem überwiegenden Teil kleiner als 42 µm ist.
- Plasmaspritzverfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Beschichtung (12) unter Einfluss der Atmosphäre aufgebracht wird (APS-Verfahren).
- Plasmaspritzverfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Beschichtung (12) unter Einsatz eines Schutzgases oder im Vakuum aufgebracht wird.
- Plasmaspritzverfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass vor dem Aufbringen der Beschichtung (12) mindestens ein strahlender Aufrauprozess mittels Korund und/oder Wasser, mittels Laserstrahlaufrauen oder mittels Aufrauen mit geometrisch definierter Schneide durchgeführt wird.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102018208435.1A DE102018208435A1 (de) | 2018-05-29 | 2018-05-29 | Plasmaspritzverfahren zur Beschichtung einer Zylinderlaufbahn eines Zylinderkurbelgehäuses einer Hubkolbenbrennkraftmaschine |
Publications (1)
Publication Number | Publication Date |
---|---|
EP3575435A1 true EP3575435A1 (de) | 2019-12-04 |
Family
ID=66647147
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19176247.5A Pending EP3575435A1 (de) | 2018-05-29 | 2019-05-23 | Plasmaspritzverfahren zur beschichtung einer zylinderlaufbahn eines zylinderkurbelgehäuses einer hubkolbenbrennkraftmaschine |
Country Status (5)
Country | Link |
---|---|
US (1) | US20190368023A1 (de) |
EP (1) | EP3575435A1 (de) |
CN (1) | CN110607495B (de) |
DE (1) | DE102018208435A1 (de) |
RU (1) | RU2723491C1 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3896190A1 (de) * | 2020-04-16 | 2021-10-20 | Sturm Maschinen- & Anlagenbau GmbH | Verfahren und anlage zur metallischen beschichtung einer bohrungswand |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10941766B2 (en) * | 2019-06-10 | 2021-03-09 | Halliburton Energy Sendees, Inc. | Multi-layer coating for plunger and/or packing sleeve |
CN112746272A (zh) * | 2020-12-28 | 2021-05-04 | 洛阳清科激光技术有限公司 | 发动机缸套强化方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102008053642A1 (de) * | 2008-10-29 | 2010-05-06 | Daimler Ag | Thermisch gespritzte Zylinderlaufbuchse für Verbrennungsmotoren und Verfahren zu dessen Herstellung |
WO2017202852A1 (de) | 2016-05-27 | 2017-11-30 | Oerlikon Metco Ag, Wohlen | Beschichtungsverfahren, thermische beschichtung, sowie zylinder mit einer thermischen beschichtung |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US566450A (en) * | 1896-08-25 | Hot-air furnace | ||
US4126448A (en) * | 1977-03-31 | 1978-11-21 | Alcan Research And Development Limited | Superplastic aluminum alloy products and method of preparation |
US4976948A (en) * | 1989-09-29 | 1990-12-11 | Gte Products Corporation | Process for producing free-flowing chromium oxide powders having a low free chromium content |
RU2165995C1 (ru) * | 1999-10-05 | 2001-04-27 | Государственное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" | Высокопрочный сплав на основе алюминия и изделие, выполненное из этого сплава |
RU2245388C1 (ru) * | 2003-12-19 | 2005-01-27 | Государственное образовательное учреждение высшего профессионального образования "Московский государственный институт стали и сплавов" (технологический университет) | Материал на основе алюминия |
FR2872172B1 (fr) * | 2004-06-25 | 2007-04-27 | Pechiney Rhenalu Sa | Produits en alliage d'aluminium a haute tenacite et haute resistance a la fatigue |
EP2784171B1 (de) * | 2011-11-22 | 2018-05-09 | Nissan Motor Company, Limited | Herstellungsverfahren für zylinderblock |
RU2478132C1 (ru) * | 2012-01-23 | 2013-03-27 | Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" | Высокопрочный сплав на основе алюминия с добавкой кальция |
-
2018
- 2018-05-29 DE DE102018208435.1A patent/DE102018208435A1/de active Pending
-
2019
- 2019-05-23 EP EP19176247.5A patent/EP3575435A1/de active Pending
- 2019-05-28 RU RU2019116393A patent/RU2723491C1/ru active
- 2019-05-29 US US16/425,082 patent/US20190368023A1/en not_active Abandoned
- 2019-05-29 CN CN201910456716.5A patent/CN110607495B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102008053642A1 (de) * | 2008-10-29 | 2010-05-06 | Daimler Ag | Thermisch gespritzte Zylinderlaufbuchse für Verbrennungsmotoren und Verfahren zu dessen Herstellung |
WO2017202852A1 (de) | 2016-05-27 | 2017-11-30 | Oerlikon Metco Ag, Wohlen | Beschichtungsverfahren, thermische beschichtung, sowie zylinder mit einer thermischen beschichtung |
Non-Patent Citations (1)
Title |
---|
K. BOBZIN ET AL: "Coating Bores of Light Metal Engine Blocks with a Nanocomposite Material using the Plasma Transferred Wire Arc Thermal Spray Process", JOURNAL OF THERMAL SPRAY TECHNOLOGY., vol. 17, no. 3, 3 July 2008 (2008-07-03), US, pages 344 - 351, XP055258217, ISSN: 1059-9630, DOI: 10.1007/s11666-008-9188-y * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3896190A1 (de) * | 2020-04-16 | 2021-10-20 | Sturm Maschinen- & Anlagenbau GmbH | Verfahren und anlage zur metallischen beschichtung einer bohrungswand |
WO2021209190A1 (de) * | 2020-04-16 | 2021-10-21 | Sturm Maschinen- & Anlagenbau Gmbh | Verfahren und anlage zur metallischen beschichtung einer bohrungswand |
Also Published As
Publication number | Publication date |
---|---|
CN110607495A (zh) | 2019-12-24 |
RU2723491C1 (ru) | 2020-06-11 |
CN110607495B (zh) | 2022-03-25 |
DE102018208435A1 (de) | 2019-12-05 |
US20190368023A1 (en) | 2019-12-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3575435A1 (de) | Plasmaspritzverfahren zur beschichtung einer zylinderlaufbahn eines zylinderkurbelgehäuses einer hubkolbenbrennkraftmaschine | |
EP1790752B1 (de) | Thermischer Spritzwerkstoff, thermisch gespritzte Beschichtung, thermisches Spritzverfahren, sowie ein thermisch beschichtetes Werkstück | |
EP2650398B1 (de) | Spritzpulver mit einer superferritischen Eisenbasisverbindung, sowie ein Substrat, insbesondere Bremsscheibe mit einer thermischen Spritzschicht | |
EP1774053B1 (de) | Verfahren zur erzeugung einer beschichtung auf einem kolbenring sowie kolbenring | |
DE69703144T2 (de) | Eine verschleissfeste Beschichtung für Bürstendichtungen | |
EP1980773B1 (de) | Thermisches Spritzverfahren zum Beschichten einer Kolbenringnute, Verwendung eines Spritzdrahts, sowie ein Kolben mit einer thermischen Spritzschicht | |
EP3325685B1 (de) | Verfahren zur beschichtung einer zylinderlaufbahn eines zylinderkurbelgehäuses, zylinderkurbelgehäuse mit einer beschichteten zylinderlaufbahn sowie motor | |
DE19637737A1 (de) | Verfahren zur Abscheidung einer Eisenoxid-haltigen Beschichtung auf ein Leichtmetallsubstrat | |
WO2004106721A1 (de) | Zylinderlaufbuchse, verfahren zu ihrer herstellung sowie verbundteil | |
DE102008056578B4 (de) | Verfahren zur Herstellung einer Erosionsschutzschicht für aerodynamische Komponenten und Strukturen | |
EP3463678B1 (de) | Beschichtungsverfahren | |
DE10221800A1 (de) | Verfahren zur Erzeugung von Verschleißschichten an Strahlkolbenringen sowie Strahlkolbenring mit einer derartigen Verschleißschutzschicht | |
WO2019076809A1 (de) | Panzerungsbauteil | |
WO2009000245A1 (de) | Kolbenring | |
DE102012007264A1 (de) | Zylinderkurbelgehäuse und Verfahren zur Herstellung einer Zylinderlaufbahn in einem Zylinderkurbelgehäuse | |
DE3337012C2 (de) | Verfahren zum Aufbringen einer metallischen und/oder keramischen Schutzschicht auf ein Substrat | |
EP2537959B1 (de) | Mehrfache Verschleißschutzbeschichtung und Verfahren zu Ihrer Herstellung | |
EP3601629B1 (de) | Kolbenring mit kugelgestrahlter einlaufschicht und verfahren zur herstellung | |
EP2215334B1 (de) | Ein- oder auslassventil für einen verbrennungsmotor sowie verfahren zu dessen herstellung | |
EP3485056B1 (de) | Zylinderbohrungen beschichten ohne vorgängige aktivierung der oberfläche | |
DE3917951C2 (de) | ||
DE102014011139A1 (de) | Motorkomponente | |
DE102016108088B4 (de) | Beschichteter Kolbenring mit Schutzschicht | |
DE112017001682T5 (de) | Kolbenring für einen Verbrennungsmotor und Verfahren zum Erhalten einesKolbenrings und Verbrennungsmotor | |
WO1982001898A1 (en) | Method for coating a metal with a protection layer resistant to hot gas corrosion |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20200604 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20220202 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |