EP3568638A1 - Chambre de combustion pour turbomachine - Google Patents

Chambre de combustion pour turbomachine

Info

Publication number
EP3568638A1
EP3568638A1 EP18700941.0A EP18700941A EP3568638A1 EP 3568638 A1 EP3568638 A1 EP 3568638A1 EP 18700941 A EP18700941 A EP 18700941A EP 3568638 A1 EP3568638 A1 EP 3568638A1
Authority
EP
European Patent Office
Prior art keywords
radially
combustion chamber
sealing member
bottom wall
cylindrical portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP18700941.0A
Other languages
German (de)
English (en)
Other versions
EP3568638B1 (fr
Inventor
Jacques Marcel Arthur Bunel
Dan Ranjiv JOORY
Patrice André Commaret
Romain Nicolas Lunel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
Safran Aircraft Engines SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Aircraft Engines SAS filed Critical Safran Aircraft Engines SAS
Publication of EP3568638A1 publication Critical patent/EP3568638A1/fr
Application granted granted Critical
Publication of EP3568638B1 publication Critical patent/EP3568638B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/42Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers
    • F23R3/60Support structures; Attaching or mounting means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/002Wall structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00012Details of sealing devices

Definitions

  • the present invention relates to a combustion chamber for a turbomachine, in particular for an airplane turbojet or turboprop engine.
  • a turbomachine in particular a double-body turbomachine, conventionally comprises, from upstream to downstream, a fan, a low-pressure compressor, a high-pressure compressor, a combustion chamber, a high-pressure turbine and a low-pressure turbine.
  • upstream and downstream are defined with respect to the direction of air circulation in the turbomachine.
  • inner and outer are defined radially with respect to the axis of the turbomachine.
  • a combustion chamber conventionally comprises a radially outer annular shell, a radially inner annular shell, coaxial with the radially outer shell, and a bottom wall connecting the radially outer shell and the radially inner shell.
  • the bottom wall has radially outer and inner cylindrical portions. Furthermore, the outer and inner rings each comprise a cylindrical portion at their upstream end.
  • the outer cylindrical portion of the bottom wall is bolted to the cylindrical portion of the outer shell.
  • the inner cylindrical portion of the bottom wall is bolted to the cylindrical portion of the inner shell.
  • these openings may represent an air passage area of approximately 300 mm 2 , ie 3% of the total air flow entering the combustion chamber.
  • the invention aims in particular to provide a simple, effective and economical solution to this problem.
  • a combustion chamber for a turbomachine in particular for a turbojet engine or an airplane turboprop engine, comprising:
  • first annular sealing member coaxial with said radially inner and outer shells, the first sealing member being interposed radially between the bottom wall and the radially outer shell.
  • the combustion chamber may comprise a second annular sealing member, coaxial with said radially inner and outer shrouds, the second sealing member being interposed radially between the bottom wall and the radially inner shell.
  • the sealing member makes it possible to fill the radial clearance between the bottom wall and the corresponding ferrule of the combustion chamber, in order to limit the passage of air to the aforementioned interface zones. This improves the performance of the turbomachine and limits the sources of pollution.
  • Each sealing member may be sectored and comprise at least two angular sectors.
  • each angular sector can be deformed slightly so as to adapt to the actual diameter of the interface area considered.
  • Each angular sector can then optimally close said interface zone.
  • the angular sectors may be distributed over the circumference with a total angular clearance between them between 0 and 1 ° or 0 and 5 mm.
  • the total clearance between the sectors is for example between 0 and 0
  • This spacing makes it possible in particular to authorize the deformations of the sectors during their conformation to the above-mentioned interface zones.
  • the outer shell of the combustion chamber may comprise a cylindrical portion surrounding a cylindrical radially outer portion of the bottom wall, the bottom wall may further comprise at least one radially inner cylindrical portion surrounding a cylindrical portion of the inner ferrule of the combustion chamber, the first sealing member being intercalable between the cylindrical portion of the outer shell and the outer cylindrical portion of the bottom wall, the second sealing member being interposable between the cylindrical portion of the inner shell and the internal cylindrical part of the bottom wall.
  • the combustion chamber may comprise a thermal protection member located downstream of the bottom wall.
  • This thermal protection member makes it possible to protect the bottom wall and the elements situated upstream thereof from the high temperatures within the combustion chamber.
  • the protective member may be a metal sheet having an annular portion which extends radially, and whose peripheral inner edges and external are extended by annular flanges extending axially downstream or upstream.
  • the radially outer rim of the thermal protection member may be located near the outer shell of the chamber, that is to say at a distance of between 0.1 and 2.5 mm.
  • the radially inner rim of the thermal protection member may be located near the inner ferrule of the chamber, that is to say at a distance of between 0.1 and 2.5 mm.
  • the radially outer and inner flanges of the protective member may extend axially upstream and may be interposed radially respectively, between the outer ferrule and the bottom wall, and between the inner ferrule and the bottom wall.
  • Each sealing member may be made of nickel-based alloy, for example of the Hastelloy® type, or of a cobalt-based alloy.
  • Such a material is able to withstand the thermal stresses in operation.
  • Each sealing member may have a thickness of between 0.8 and 3 mm.
  • the sealing member may be provided with fixing holes, evenly distributed around the circumference.
  • Each sealing member can be fixed to the bottom wall by means of fastening means, such as screws.
  • Said screws or said rivets can be engaged in the fixing holes of the corresponding sealing member.
  • the screws or the rivets can first be engaged in the holes located at the circumferentially median zone of the corresponding angular sector, then progressively in the holes located near the circumferential ends of the sector.
  • Each sector of the sealing member may be in the form of an arcuate band.
  • the thermal protection member may be in the form of a sheet whose thickness is between 0.5 and 1.5 mm.
  • the thermal protection member may be made of nickel-based alloy, for example of the Hastelloy® type, or of a cobalt-based alloy.
  • At least one of the inner and outer rings of the combustion chamber may have cutouts opening upstream.
  • the combustion chamber may comprise an upstream cover comprising a radially outer annular fixing portion, fixed to the outer shell of the combustion chamber, said cap further comprising an annular radially inner fixing portion, fixed to the outer shell of the chamber. of combustion.
  • the radially inner surface of the outer shell may comprise an annular recess whose downstream axial end forms an annular radial shoulder, the first sealing member being housed, at least in part, in the recess, the downstream end of each sector. angular of the first sealing member being adapted to bear against the shoulder.
  • the invention also proposes a turbomachine, in particular a turbojet or an airplane turboprop, comprising a combustion chamber of the aforementioned type.
  • FIG. 1 is a sectional view of a turbomachine according to the invention
  • FIG. 2 is a detail sectional view of a combustion chamber of the turbomachine of FIG. 1
  • FIG. 3 is a detailed view, according to a first embodiment, of the junction between the radially outer shell and the bottom wall of the combustion chamber,
  • FIG. 4 is a perspective view of a sealing member adapted to be mounted radially between the radially outer shell and the bottom wall of the combustion chamber,
  • FIG. 5 is a detailed view of the sealing member of FIG. 4,
  • FIG. 6 is a detailed view, according to a second variant embodiment, of the junction between the radially outer shell and the bottom wall of the combustion chamber;
  • FIG. 7 is a diagrammatic perspective view, from above, illustrating an upstream cover attached to the combustion chamber according to the invention.
  • FIG. 8 is a sectional view illustrating the positioning of the sealing member radially between the bottom wall and the radially outer shell, according to a second embodiment of the invention.
  • FIG. 1 shows a schematic sectional view of a turbomachine 1 according to the invention.
  • the turbomachine 1 is of double-body and double-flow type, and extends along a longitudinal axis X.
  • the turbomachine 1 comprises a fan 2 sucking a flow of air which is divided into a primary flow and a secondary flow.
  • the primary flow passes through a primary stream 3 which comprises, successively, upstream AM downstream AV, a low pressure compressor 4 and a high pressure compressor 5.
  • a primary stream 3 which comprises, successively, upstream AM downstream AV, a low pressure compressor 4 and a high pressure compressor 5.
  • the air is injected and mixed with a fuel in a combustion chamber 6.
  • hot gases successively pass through a high-pressure turbine 7 and a low-pressure turbine 8 before being ejected from the turbomachine 1 by an ejection nozzle 9.
  • FIGS. 2 to 7 show several embodiments of the combustion chamber 6 of the turbomachine 1 according to the invention.
  • the combustion chamber 6 comprises a radially outer annular shroud 11, a radially inner annular shroud 12, and an annular bottom wall extending radially and connecting the radially outer shroud 11 and the shroud. radially internal 12.
  • the outer shell 1 1 has a generally frustoconical shape flaring downstream AV.
  • the outer shell 1 1 comprises, at its upstream end, a cylindrical portion 14.
  • Said cylindrical portion 14 has holes distributed around the circumference.
  • the cylindrical portion 14 further comprises cutouts 15 distributed around the circumference, said cutouts 15 opening upstream AM.
  • the outer shell 1 1 further comprises air inlet holes 16, also called primary holes.
  • the inner shell 12 has a generally frustoconical shape flaring downstream AV.
  • the inner ferrule 12 comprises, at its upstream end, a cylindrical portion 17.
  • Said cylindrical portion 17 has holes distributed around the circumference.
  • the cylindrical portion 17 further comprises circumferentially distributed cutouts, said cutouts opening upstream AM.
  • the inner ferrule 12 further comprises air inlet holes
  • the bottom wall 13 is annular and comprises a part 19 of generally frustoconical or radially extending form.
  • the radially outer periphery of the frustoconical or radial portion is extended by a cylindrical portion 20 extending upstream AM.
  • the radially inner periphery of the frustoconical or radial portion is extended by a cylindrical portion 21 extending upstream AM.
  • the bottom wall 13 has openings 22 distributed around the circumference of the part 19.
  • the cylindrical portions 20, 21 of the bottom wall 13 comprise fixing holes 23 distributed around the circumference.
  • the combustion chamber 6 further comprises an annular cover 24 of generally C-sectional cross-section, located upstream AM of the bottom wall 13.
  • the radially outer periphery of the cover 24 comprises a cylindrical portion 25.
  • the radially inner periphery of the cover 24 comprises a cylindrical portion 26.
  • the radially central zone 27 of the cover 24 has openings 28 situated axially opposite the openings 22 of the bottom wall 13.
  • the outer cylindrical portion 25 of the cap 24 surrounds the cylindrical portion 14 of the outer shell 1 1, which itself surrounds the outer cylindrical portion 20 of the wall background 13.
  • the internal cylindrical portion 26 of the cover 24, the cylindrical portion 17 of the inner ring 12 and the internal cylindrical portion 21 of the bottom wall 13 are fixed to each other by means of bolts 30 distributed around the circumference and engaged in the holes in the cylindrical portion 17 of the inner ferrule 12 and the fixing holes 23 of the bottom wall 13. More particularly, the internal cylindrical portion 21 of the bottom wall 13 surrounds the cylindrical portion 17 of the inner ferrule 12, which itself surrounds the internal cylindrical portion 26 of the cover 24.
  • Each opening 22 of the bottom wall 13 serves to mount a fuel injection device 31.
  • the fuel injection device 31 is connected to an injection pipe 32 forming a fuel supply pipe, said injection pipe 32 passing through the corresponding opening 28 of the hood 24.
  • the structure of the injection device 31 is known per se and will not be described in more detail.
  • the downstream end (not shown) of the combustion chamber 6 is fixed on an outer casing 33.
  • Said outer casing 33 comprises a radially outer wall 34 and a radially inner wall 35 connected to their upstream end.
  • the junction 36 between the radially inner wall and the outer wall comprises an air inlet 37, allowing the air coming from the high pressure compressor 5 to enter the internal volume of the outer casing 33.
  • the casing is formed in one piece, that is to say that the radially outer wall 34 and radially inner 35 form a single piece with the junction 36.
  • the walls 34 35 and the junction 36 are for example came from matter.
  • the walls 34, 35 could be reported and fixed on the junction 36, the walls 34, 35 and the junction 36 then being independent of each other.
  • a radial annular clearance exists between the aforementioned cylindrical portions 14, 17, 20, 21 of the ferrules 1 1, 12 and of the bottom wall 13, in order to allow the mounting of the bottom wall 13 between the ferrules 1 1, 12 and due to manufacturing dimensional tolerances.
  • the combustion chamber 6 comprises first and second annular sealing members 38a, 38b intended to fill these gaps.
  • the first sealing member 38a is interposed radially between the bottom wall 13 and the radially outer shell 11.
  • the second sealing member 38b is interposed radially between the bottom wall 13 and the radially inner shell 12. Apart from their dimensions, the first sealing member 38a and the second sealing member 38b are concentric and of identical structures.
  • Each annular sealing member 38a, 38b is annular and formed of at least two angular sectors 39a, 39b (only the first sealing member 38a is shown in Figure 4), here two angular sectors 39a, 39b.
  • Each sector 39a, 39b is curved and has a shape of an arc.
  • Each sector 38a, 38b comprises, on its circumference, fixing holes 40 regularly distributed over the circumference.
  • the angular sectors 39a, 39b are distributed on the circumference of the cylindrical portion 20 of the bottom wall 13 and are spaced slightly from a set noted with respect to one another, at their ends, as this is better visible in Figure 5.
  • the total angular clearance between the sectors is for example between 0 and 1 ° or 0 and 5 mm.
  • Each sector 39a, 39b of each sealing member 38a, 38b is for example made of nickel-based alloy, for example of the Hastelloy® type, or of a cobalt-based alloy.
  • Each sector 38a, 38b has for example a thickness of between 0.8 and 3 mm.
  • each sealing member 38a, 38b are fixed by bolts (not shown) engaged only in some of the fixing holes 23 of the cylindrical portion 20, 21 corresponding to the bottom wall 13 and in the holes in the sectors 39a, 39b of the sealing member 38a, 38b.
  • the screw heads or nuts of these bolts are located at the cutouts 15 of the ferrule 1 1, 12 corresponding.
  • the combustion chamber 6 further comprises a thermal protection member 41 located downstream AV of the bottom wall 13, which is in the form of an annular sheet.
  • the protective member 41 comprises an annular portion 42, of frustoconical shape or extending into a radial plane, whose inner and outer peripheral edges are extended by annular flanges 43, 44 extending axially upstream AM ( Figure 3).
  • the outer flange 43 of the protective member 41 is radially interposed between the cylindrical portion 14 of the outer shell 1 1 and the outer cylindrical portion 20 of the bottom wall 13.
  • the outer flange 43 of the protection 41 is situated downstream AV of the first sealing member 38a.
  • the internal rim of the protection member 41 (not shown in FIG. 3) is inserted radially between the cylindrical portion 17 of the inner ferrule 12 and the internal cylindrical portion 21 of the bottom wall 13. Moreover, the internal rim of the protection member 41 is located downstream AV of the second sealing member 38b.
  • the flanges 43, 44 of the protection member may extend axially downstream AV, as shown in Figures 2 and 6.
  • each sealing member 38a, 38b makes it possible to fill the radial clearance between the bottom wall 13 and the corresponding ferrule 11, 12 of the combustion chamber 6, in order to limit the passage of air to the zones of combustion. aforementioned interface. This improves the performance of the turbomachine 1 and limits the sources of pollution.
  • each angular sector 39a, 39b can be slightly deformed so as to adapt to the actual diameter of the cylindrical portion 14, 17 of the ferrule 1 1, 12 corresponding and the corresponding cylindrical portion 20, 21 of the wall of 13.
  • Each angular sector 39a, 39b can then optimally close the interface area between the bottom wall 13 and the corresponding shell 1 1, 12.
  • FIG. 8 represents a second embodiment, which differs from that described with reference to FIGS. 1 to 7, in that the radially inner surface 45 of the outer shell 11 comprises a recess ring 46 whose downstream axial end forms an annular radial shoulder 47.
  • the first sealing member 38a is housed, at least in part, in the recess 46, the downstream end of each angular sector 39a, 39b of the first sealing member 38a can bear against the shoulder 47.
  • each sector 39a, 39b of the first sealing member 38a and the shoulder 47 above form a baffle for limiting the passage of air between these elements.

Abstract

L'invention concerne une chambre de combustion (6) pour turbomachine, notamment pour un turboréacteur ou un turbopropulseur d'avion, comportant: - une virole annulaire radialement externe (11), - une virole annulaire radialement interne (12), coaxiale avec la virole radialement externe (11), - une paroi de fond (13) reliant la virole radialement externe (11) et la virole radialement interne (12), caractérisée en ce qu'elle comprend un premier organe annulaire d'étanchéité (38a), coaxial avec lesdites viroles radialement interne (12) et externe (11), le premier organe d'étanchéité (38a) étant intercalé radialement entre la paroi de fond (13) et la virole radialement externe (11).

Description

Chambre de combustion pour turbomachine
La présente invention concerne une chambre de combustion pour turbomachine, notamment pour un turboréacteur ou un turbopropulseur d'avion.
Une turbomachine, en particulier une turbomachine à double corps, comporte classiquement, d'amont en aval, une soufflante, un compresseur basse pression, un compresseur haute pression, une chambre de combustion, une turbine haute pression et une turbine basse pression.
Par convention, dans la présente demande, les termes "amont " et "aval" sont définis par rapport au sens de circulation de l'air dans la turbomachine. De même, par convention dans la présente demande, les termes "intérieur" et "extérieur", "inférieur" et "supérieur" et "interne" et "externe" sont définis radialement par rapport à l'axe de la turbomachine.
Une chambre de combustion comporte classiquement une virole annulaire radialement externe, une virole annulaire radialement interne, coaxiale avec la virole radialement externe, et une paroi de fond reliant la virole radialement externe et la virole radialement interne.
La paroi de fond comporte des parties cylindriques radialement externe et interne. Par ailleurs, les viroles externe et interne comportent chacune une partie cylindrique à leur extrémité amont.
La partie cylindrique externe de la paroi de fond est fixée par boulonnage à la partie cylindrique de la virole externe. La partie cylindrique interne de la paroi de fond est fixée par boulonnage à la partie cylindrique de la virole interne.
Afin de permettre le montage de la paroi de fond entre les viroles externe et interne et du fait des tolérances dimensionnelles de fabrication, un jeu annulaire radial existe entre les parties cylindriques précitées. Après serrage des boulons et du fait du jeu précité, l'interface entre les parties cylindriques des viroles et les parties cylindriques de la paroi de fond délimite des lobes. De tels lobes entre les parties cylindriques précitées autorisent l'entrée d'air parasite dans la chambre de combustion ou la sortie de gaz de combustion hors de ladite chambre. Ceci pénalise le rendement de la chambre de combustion et peut générer un phénomène de pollution.
A titre d'exemple, ces ouvertures peuvent représenter une surface de passage d'air d'environ 300 mm2, soit 3% du débit d'air total pénétrant dans la chambre de combustion.
L'invention a notamment pour but d'apporter une solution simple, efficace et économique à ce problème.
A cet effet, elle propose une chambre de combustion pour turbomachine, notamment pour un turboréacteur ou un turbopropulseur d'avion, comportant :
- une virole annulaire radialement externe,
- une virole annulaire radialement interne, coaxiale avec la virole radialement externe,
- une paroi de fond reliant la virole radialement externe et la virole radialement interne,
caractérisée en ce qu'elle comprend un premier organe annulaire d'étanchéité, coaxial avec lesdites viroles radialement interne et externe, le premier organe d'étanchéité étant intercalé radialement entre la paroi de fond et la virole radialement externe.
La chambre de combustion peut comprendre un second organe annulaire d'étanchéité, coaxial avec lesdites viroles radialement interne et externe, le second organe d'étanchéité étant intercalé radialement entre la paroi de fond et la virole radialement interne.
L'organe d'étanchéité permet de combler le jeu radial entre la paroi de fond et la virole correspondante de la chambre de combustion, afin de limiter le passage d'air aux zones d'interface précitées. On améliore ainsi les performances de la turbomachine et on limite les sources de pollution. Chaque organe d'étanchéité peut être sectorisé et comprendre au moins deux secteurs angulaires.
De cette manière, chaque secteur angulaire peut se déformer légèrement de façon à s'adapter au diamètre réel de la zone d'interface considérée. Chaque secteur angulaire peut alors obturer de façon optimale ladite zone d'interface.
Pour chaque organe d'étanchéité, les secteurs angulaires peuvent être répartis sur la circonférence avec un jeu angulaire total entre eux compris entre 0 et 1 ° ou 0 et 5 mm.
Le jeu total entre les secteurs est par exemple compris entre 0 et
1 ° ou 0 et 5 mm, pour un diamètre d'implantation compris entre 500 et 650 mm, par exemple.
Cet écartement permet notamment d'autoriser les déformations des secteurs lors de leur conformation aux zones d'interface précitées.
La virole externe de la chambre de combustion peut comprendre une partie cylindrique entourant une partie cylindrique radialement externe de la paroi de fond, la paroi de fond pouvant comporter en outre au moins une partie cylindrique radialement interne entourant une partie cylindrique de la virole interne de la chambre de combustion, le premier organe d'étanchéité pouvant être intercalé entre la partie cylindrique de la virole externe et la partie cylindrique externe de la paroi de fond, le second organe d'étanchéité pouvant être intercalé entre la partie cylindrique de la virole interne et la partie cylindrique interne de la paroi de fond.
La chambre de combustion peut comprendre un organe de protection thermique situé en aval de la paroi de fond.
Cet organe de protection thermique permet de protéger la paroi de fond et les éléments situés en amont de celle-ci, des fortes températures au sein de la chambre de combustion.
L'organe de protection peut être une tôle comportant une partie annulaire qui s'étend radialement, et dont les bords périphériques interne et externe sont prolongés par des rebords annulaires s'étendant axialement vers l'aval ou vers l'amont.
Le rebord radialement externe de l'organe de protection thermique peut être situé à proximité de la virole externe de la chambre, c'est-à-dire à une distance comprise entre 0,1 et 2,5 mm.
Le rebord radialement interne de l'organe de protection thermique peut être situé à proximité de la virole interne de la chambre, c'est-à-dire à une distance comprise entre 0,1 et 2,5 mm.
Les rebords radialement externe et interne de l'organe de protection peuvent s'étendre axialement vers l'amont et peuvent être intercalés radialement respectivement, entre la virole externe et la paroi de fond, et entre la virole interne et la paroi de fond.
Chaque organe d'étanchéité peut être réalisé en alliage à base de Nickel, par exemple de type Hastelloy®, ou en alliage à base de Cobalt.
Un tel matériau est apte à résister aux contraintes thermiques en fonctionnement.
Chaque organe d'étanchéité peut présenter une épaisseur comprise entre 0,8 et 3 mm.
L'organe d'étanchéité peut être pourvu de trous de fixation, régulièrement répartis sur la circonférence.
Chaque organe d'étanchéité peut être fixé sur la paroi de fond par l'intermédiaire de moyens de fixation, tels que des vis.
Lesdites vis ou lesdits rivets peuvent être engagés dans les trous de fixation de l'organe d'étanchéité correspondant.
Dans ce cas, les vis ou les rivets peuvent d'abord être engagés dans les trous situés au niveau de la zone circonférentiellement médiane du secteur angulaire correspondant, puis progressivement dans les trous situés à proximité des extrémités circonférentielles du secteur.
Chaque secteur de l'organe d'étanchéité peut se présenter sous la forme d'une bande en forme d'arc de cercle. L'organe de protection thermique peut se présenter sous la forme d'une tôle dont l'épaisseur est comprise entre 0,5 et 1 ,5 mm.
L'organe de protection thermique peut être réalisé en alliage à base de Nickel, par exemple de type Hastelloy®, ou en alliage à base de Cobalt.
L'une au moins des viroles interne et externe de la chambre de combustion peut présenter des découpes débouchant vers l'amont.
La chambre de combustion peut comporter un capot amont comportant une partie annulaire de fixation radialement externe, fixée à la virole externe de la chambre de combustion, ledit capot comportant en outre une partie annulaire de fixation radialement interne, fixée à la virole externe de la chambre de combustion.
La surface radialement interne de la virole externe peut comporter un renfoncement annulaire dont l'extrémité axiale aval forme un épaulement radial annulaire, le premier organe d'étanchéité étant logé, au moins en partie, dans le renfoncement, l'extrémité aval de chaque secteur angulaire du premier organe d'étanchéité étant apte à venir en appui sur l'épaulement.
Une telle caractéristique permet d'améliorer l'étanchéité au niveau de cette zone.
L'invention propose également une turbomachine, notamment un turboréacteur ou un turbopropulseur d'avion, comportant une chambre de combustion du type précité.
L'invention sera mieux comprise et d'autres détails, caractéristiques et avantages de l'invention apparaîtront à la lecture de la description suivante faite à titre d'exemple non limitatif en référence aux dessins annexés dans lesquels :
- la figure 1 est une vue en coupe d'une turbomachine selon l'invention,
- la figure 2 est une vue de détail en coupe d'une chambre de combustion de la turbomachine de la figure 1 , - la figure 3 est une vue de détail, selon une première forme de réalisation, de la jonction entre la virole radialement externe et la paroi de fond de la chambre de combustion,
- la figure 4 est une vue en perspective d'un organe d'étanchéité apte à être monté radialement entre la virole radialement externe et la paroi de fond de la chambre de combustion,
- la figure 5 est une vue de détail de l'organe d'étanchéité de la figure 4,
- la figure 6 est une vue de détail, selon une seconde variante de réalisation, de la jonction entre la virole radialement externe et la paroi de fond de la chambre de combustion,
- la figure 7 est une vue schématique en perspective, de dessus, illustrant un capot amont rapporté sur la chambre de combustion selon l'invention, et
- la figure 8 est une vue en coupe illustrant le positionnement de l'organe d'étanchéité radialement entre la paroi de fond et la virole radialement externe, selon une seconde forme de réalisation de l'invention.
On a représenté, sur la figure 1 , une vue schématique en coupe d'une turbomachine 1 selon l'invention. La turbomachine 1 est de type à double corps et à double flux, et s'étend selon un axe longitudinal X.
La turbomachine 1 comprend une soufflante 2 aspirant un flux d'air qui est divisé en un flux primaire et un flux secondaire. Le flux primaire traverse une veine primaire 3 qui comporte successivement, d'amont AM en aval AV, un compresseur basse pression 4 et un compresseur haute pression 5. En sortie du compresseur haute pression 5, l'air est injecté et mélangé à un carburant dans une chambre de combustion 6. En sortie de la chambre de combustion 6, des gaz chauds traversent successivement une turbine haute pression 7 et une turbine basse pression 8 avant d'être éjectés de la turbomachine 1 par une tuyère d'éjection 9.
Le flux secondaire traverse, quant à lui, une veine secondaire 10 entourant la veine primaire 3. Les figures 2 à 7 représentent plusieurs formes de réalisation de la chambre de combustion 6 de la turbomachine 1 selon l'invention.
En référence à la figure 2, la chambre de combustion 6 comprend une virole annulaire radialement externe 1 1 , une virole annulaire radialement interne 12, et une paroi de fond 13 annulaire s'étendant radialement et reliant la virole radialement externe 1 1 et la virole radialement interne 12.
La virole externe 1 1 présente une forme générale tronconique s'évasant vers l'aval AV. La virole externe 1 1 comprend, à son extrémité amont, une partie cylindrique 14. Ladite partie cylindrique 14 comporte des trous répartis sur la circonférence. La partie cylindrique 14 comprend en outre des découpes 15 réparties sur la circonférence, lesdites découpes 15 débouchant vers l'amont AM.
La virole externe 1 1 comporte en outre des trous d'entrée d'air 16, également appelés trous primaires.
La virole interne 12 présente une forme générale tronconique s'évasant vers l'aval AV. La virole interne 12 comprend, à son extrémité amont, une partie cylindrique 17. Ladite partie cylindrique 17 comporte des trous répartis sur la circonférence. La partie cylindrique 17 comprend en outre des découpes réparties sur la circonférence, lesdites découpes débouchant vers l'amont AM.
La virole interne 12 comporte en outre des trous d'entrée d'air
18.
La paroi de fond 13 est annulaire et comporte une partie 19 de forme générale tronconique ou s'étendant radialement. La périphérie radialement externe de la partie tronconique ou radiale est prolongée par une partie cylindrique 20 s'étendant vers l'amont AM. La périphérie radialement interne de la partie tronconique ou radiale est prolongée par une partie cylindrique 21 s'étendant vers l'amont AM. La paroi de fond 13 comporte des ouvertures 22 réparties sur la circonférence de la partie tronconique 19. Par ailleurs, les parties cylindriques 20, 21 de la paroi de fond 13 comportent des trous de fixation 23 répartis sur la circonférence.
La chambre de combustion 6 comprend en outre un capot 24 annulaire de section en forme générale de C en coupe transversale, situé en amont AM de la paroi de fond 13. La périphérie radialement externe du capot 24 comprend une partie cylindrique 25. De même, la périphérie radialement interne du capot 24 comprend une partie cylindrique 26. La zone radialement médiane 27 du capot 24 comporte des ouvertures 28 situées axialement en regard des ouvertures 22 de la paroi de fond 13.
La partie cylindrique externe 25 du capot 24, la partie cylindrique
14 de la virole externe 1 1 et la partie cylindrique externe 20 de la paroi de fond 13 sont fixées les unes aux autres par l'intermédiaire de boulons 29 répartis sur la circonférence et engagés dans les trous de la partie cylindrique 14 de la virole externe et les trous de fixation 23 de la paroi de fond 13. Plus particulièrement, la partie cylindrique externe 25 du capot 24 entoure la partie cylindrique 14 de la virole externe 1 1 , qui elle-même entoure la partie cylindrique 20 externe de la paroi de fond 13.
La partie cylindrique interne 26 du capot 24, la partie cylindrique 17 de la virole interne 12 et la partie cylindrique interne 21 de la paroi de fond 13 sont fixées les unes aux autres par l'intermédiaire de boulons 30 répartis sur la circonférence et engagés dans les trous de la partie cylindrique 17 de la virole interne 12 et les trous de fixation 23 de la paroi de fond 13. Plus particulièrement, la partie cylindrique interne 21 de la paroi de fond 13 entoure la partie cylindrique 17 de la virole interne 12, qui elle- même entoure la partie cylindrique interne 26 du capot 24.
Chaque ouverture 22 de la paroi de fond 13 sert au montage d'un dispositif d'injection de carburant 31 . Le dispositif d'injection de carburant 31 est raccordé à une canne d'injection 32 formant une conduite d'amenée de carburant, ladite canne d'injection 32 traversant l'ouverture 28 correspondante du capot 24. La structure du dispositif d'injection 31 est connue en soi et ne sera pas décrite plus en détail . L'extrémité aval (non représentée) de la chambre de combustion 6 est fixée sur un carter externe 33. Ledit carter externe 33 comprend une paroi radialement externe 34 et une paroi radialement interne 35 reliées à leur extrémité amont. La jonction 36 entre la paroi radialement interne et la paroi externe comprend un orifice d'entrée d'air 37, permettant à l'air issu du compresseur haute pression 5 d'entrer dans le volume interne du carter externe 33. L'air traverse ainsi ledit orifice 37 puis se divise en une première partie qui traverse l'ouverture 28 du capot 24 et entre dans le dispositif d'injection de carburant 31 dans lequel il est mélangé au carburant. Une seconde partie de l'air contourne le capot 24 puis entre dans la chambre de combustion 6 par les trous 16, 18 des viroles interne 12 et externe 1 1 .
Dans les forme de réalisation illustrées sur les figures, le carter est formé d'une seule pièce, c'est-à-dire que les parois radialement externe 34 et radialement interne 35 forment une pièce unique avec la jonction 36. Les parois 34 35 et la jonction 36 sont par exemple venus de matière. En variante, les parois 34, 35 pourraient être rapportées et fixées sur la jonction 36, les parois 34, 35 et la jonction 36 étant alors indépendantes les unes des autres.
Comme indiqué précédemment, un jeu annulaire radial existe entre les parties cylindriques 14, 17, 20, 21 précitées des viroles 1 1 , 12 et de la paroi de fond 13, afin de permettre le montage de la paroi de fond 13 entre les viroles 1 1 , 12 et du fait des tolérances dimensionnelles de fabrication.
Selon l'invention, la chambre de combustion 6 comprend des premier et second organes annulaires d'étanchéité 38a, 38b visant à combler ces jeux.
Le premier organe d'étanchéité 38a est intercalé radialement entre la paroi de fond 13 et la virole radialement externe 1 1 . Le second organe d'étanchéité 38b est intercalé radialement entre la paroi de fond 13 et la virole radialement interne 12. Hormis dans leurs dimensions, le premier organe d'étanchéité 38a et le second organe d'étanchéité 38b sont concentriques et de structures identiques.
Chaque organe annulaire d'étanchéité 38a, 38b est annulaire et formé d'au moins deux secteurs angulaires 39a, 39b (seul le premier organe d'étanchéité 38a est représenté à la figure 4), ici deux secteurs angulaires 39a, 39b. Chaque secteur 39a, 39b est courbé et présente une forme d'arc de cercle. Chaque secteur 38a, 38b comprend, sur sa circonférence, des trous de fixation 40 régulièrement répartis sur la circonférence.
Les secteurs angulaires 39a, 39b sont répartis sur la circonférence de la partie cylindrique 20 de la paroi de fond 13 et sont écartés légèrement d'un jeu noté j l'un par rapport à l'autre, au niveau de leurs extrémités, comme cela est mieux visible à la figure 5. Le jeu angulaire total entre les secteurs est par exemple compris entre 0 et 1 ° ou 0 et 5 mm.
Chaque secteur 39a, 39b de chaque organe d'étanchéité 38a, 38b est par exemple réalisé en alliage à base de Nickel, par exemple de type Hastelloy®, ou en alliage à base de Cobalt. Chaque secteur 38a, 38b a par exemple une épaisseur comprise entre 0,8 et 3 mm.
Les secteurs 39a, 39b, de chaque organe d'étanchéité 38a, 38b sont fixés par des boulons (non représentés) engagés uniquement dans certains des trous de fixation 23 de la partie cylindrique 20, 21 correspondante de la paroi de fond 13 et dans les trous des secteurs 39a, 39b de l'organe d'étanchéité 38a, 38b. Les têtes de vis ou les écrous de ces boulons sont situés au niveau des découpes 15 de la virole 1 1 , 12 correspondante.
La chambre de combustion 6 comporte en outre un organe de protection thermique 41 situé en aval AV de la paroi de fond 13, se présentant sous la forme d'une tôle annulaire. L'organe de protection 41 comporte une partie annulaire 42, de forme tronconique ou s'étendant dans un plan radial, dont les bords périphériques interne et externe sont prolongés par des rebords annulaires 43, 44 s'étendant axialement vers l'amont AM (figure 3).
Le rebord externe 43 de l'organe de protection 41 est intercalé radialement entre la partie cylindrique 14 de la virole externe 1 1 et la partie cylindrique externe 20 de la paroi de fond 13. Par ailleurs, le rebord externe 43 de l'organe de protection 41 est situé en aval AV du premier organe d'étanchéité 38a.
Le rebord interne de l'organe de protection 41 (non représenté sur la figure 3) est intercalé radialement entre la partie cylindrique 17 de la virole interne 12 et la partie cylindrique interne 21 de la paroi de fond 13. Par ailleurs, le rebord interne de l'organe de protection 41 est situé en aval AV du second organe d'étanchéité 38b.
En variante, les rebords 43, 44 de l'organe de protection peuvent s'étendre axialement vers l'aval AV, comme cela est représenté aux figures 2 et 6.
Comme indiqué précédemment, chaque organe d'étanchéité 38a, 38b permet de combler le jeu radial entre la paroi de fond 13 et la virole correspondante 1 1 , 12 de la chambre de combustion 6, afin de limiter le passage d'air aux zones d'interface précitées. On améliore ainsi les performances de la turbomachine 1 et on limite les sources de pollution.
Par ailleurs, chaque secteur angulaire 39a, 39b peut se déformer légèrement de façon à s'adapter au diamètre réel de la partie cylindrique 14, 17 de la virole 1 1 , 12 correspondante et de la partie cylindrique 20, 21 correspondante de la paroi de fond 13. Chaque secteur angulaire 39a, 39b peut alors obturer de façon optimale la zone d'interface entre la paroi de fond 13 et la virole 1 1 , 12 correspondante.
La figure 8 représente une seconde forme de réalisation, qui diffère de celle décrite en référence aux figures 1 à 7, en ce que la surface radialement interne 45 de la virole externe 1 1 comporte un renfoncement annulaire 46 dont l'extrémité axiale aval forme un épaulement radial annulaire 47.
Dans cette forme de réalisation, le premier organe d'étanchéité 38a est logé, au moins en partie, dans le renfoncement 46, l'extrémité aval de chaque secteur angulaire 39a, 39b du premier organe d'étanchéité 38a pouvant venir en appui sur l'épaulement 47.
On notera que l'extrémité aval de chaque secteur 39a, 39b du premier organe d'étanchéité 38a et l'épaulement 47 précité forment une chicane permettant de limiter le passage d'air entre ces éléments.

Claims

REVENDICATIONS
1 . Chambre de combustion (6) pour turbomachine (1 ), notamment pour un turboréacteur ou un turbopropulseur d'avion, comportant :
- une virole annulaire radialement externe (1 1 ),
- une virole annulaire radialement interne (12), coaxiale avec la virole radialement externe (1 1 ),
- une paroi de fond (13) reliant la virole radialement externe (1 1 ) et la virole radialement interne (12),
caractérisée en ce qu'elle comprend un premier organe annulaire d'étanchéité (38a), coaxial avec lesdites viroles radialement interne (12) et externe (1 1 ), le premier organe d'étanchéité (38a) étant intercalé radialement entre la paroi de fond (13) et la virole radialement externe (1 1 ), et chaque organe d'étanchéité (38a, 38b) est sectorisé et comprend au moins deux secteurs angulaires (39a 39b).
2. Chambre de combustion (6) selon la revendication 1 , dans laquelle elle comprend un second organe annulaire d'étanchéité (38b), coaxial avec lesdites viroles radialement interne (12) et externe (1 1 ), le second organe d'étanchéité (38b) étant intercalé radialement entre la paroi de fond (13) et la virole radialement interne (12).
3. Chambre de combustion (6) selon la revendication 2, dans laquelle, pour chaque organe d'étanchéité (38a, 38b), les secteurs angulaires (39a, 39b) sont répartis sur la circonférence avec un jeu angulaire total entre eux compris entre 0 et 1 ° ou 0 et 5 mm.
4. Chambre de combustion (6) selon l'une des revendications 1 à 3, dans laquelle la virole externe (1 1 ) de la chambre de combustion (6) comprend une partie cylindrique (14) entourant une partie cylindrique radialement externe (20) de la paroi de fond (13), la paroi de fond (13) comportant en outre au moins une partie cylindrique radialement interne (21 ) entourant une partie cylindrique (17) de la virole interne (12) de la chambre de combustion (6), le premier organe d'étanchéité (38a) étant intercalé entre la partie cylindrique (14) de la virole externe (1 1 ) et la partie cylindrique externe (20) de la paroi de fond (13), le second organe d'étanchéité (38b) étant intercalé entre la partie cylindrique (17) de la virole interne (12) et la partie cylindrique interne (21 ) de la paroi de fond (13).
5. Chambre de combustion (6) selon l'une des revendications 1 à 4, dans laquelle elle comprend un organe de protection thermique (41 ) situé en aval (AV) de la paroi de fond (13).
6. Chambre de combustion (6) selon la revendication 5, dans laquelle l'organe de protection (41 ) est une tôle comportant une partie annulaire (42) s'étendant radialement, dont les bords périphériques interne et externe sont prolongés par des rebords annulaires (43, 44) s'étendant axialement vers l'aval (AV) ou vers l'amont (AM).
7. Chambre de combustion (6) selon la revendication 6, dans laquelle les rebords radialement externe (43) et interne (44) de l'organe de protection (41 ) s'étendant axialement vers l'amont (AM) et sont intercalés radialement respectivement, entre la virole externe (1 1 ) et la paroi de fond (6), et entre la virole interne (12) et la paroi de fond (13).
8. Chambre de combustion (6) selon l'une des revendications 1 à 7, dans laquelle chaque organe d'étanchéité (38a, 38b) est réalisé en alliage à base de Nickel, ou en alliage à base de Cobalt.
9. Chambre de combustion selon l'une des revendications 1 à 8, dans laquelle chaque organe d'étanchéité (38a, 38b) présente une épaisseur comprise entre 0,8 et 3 mm.
10. Chambre de combustion selon l'une des revendications
1 à 9, caractérisée en ce que la surface radialement interne (45) de la virole externe (1 1 ) comporte un renfoncement annulaire (46) dont l'extrémité axiale aval forme un épaulement radial annulaire (47), le premier organe d'étanchéité (38a) étant logé, au moins en partie, dans le renfoncement (46), l'extrémité aval de chaque secteur angulaire (39a, 39b) du premier organe d'étanchéité (38a) étant apte à venir en appui sur l'épaulement (47).
1 1 . Turbomachine (1 ), notamment un turboréacteur ou un turbopropulseur d'avion, comportant une chambre de combustion (6) selon l'une des revendications 1 à 10.
EP18700941.0A 2017-01-10 2018-01-04 Chambre de combustion pour turbomachine Active EP3568638B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1750208A FR3061761B1 (fr) 2017-01-10 2017-01-10 Chambre de combustion pour turbomachine
PCT/FR2018/050021 WO2018130765A1 (fr) 2017-01-10 2018-01-04 Chambre de combustion pour turbomachine

Publications (2)

Publication Number Publication Date
EP3568638A1 true EP3568638A1 (fr) 2019-11-20
EP3568638B1 EP3568638B1 (fr) 2021-03-31

Family

ID=58347668

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18700941.0A Active EP3568638B1 (fr) 2017-01-10 2018-01-04 Chambre de combustion pour turbomachine

Country Status (5)

Country Link
US (1) US11614234B2 (fr)
EP (1) EP3568638B1 (fr)
CN (1) CN110168284B (fr)
FR (1) FR3061761B1 (fr)
WO (1) WO2018130765A1 (fr)

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2597800B2 (ja) * 1992-06-12 1997-04-09 ゼネラル・エレクトリック・カンパニイ ガスタービンエンジン用燃焼器
US7093440B2 (en) * 2003-06-11 2006-08-22 General Electric Company Floating liner combustor
US7051532B2 (en) * 2003-10-17 2006-05-30 General Electric Company Methods and apparatus for film cooling gas turbine engine combustors
ES2296165T3 (es) * 2004-05-05 2008-04-16 Alstom Technology Ltd Camara de combustion para turbina de gas.
FR2897922B1 (fr) * 2006-02-27 2008-10-10 Snecma Sa Agencement pour une chambre de combustion de turboreacteur
FR2980554B1 (fr) * 2011-09-27 2013-09-27 Snecma Chambre annulaire de combustion d'une turbomachine
US10378775B2 (en) * 2012-03-23 2019-08-13 Pratt & Whitney Canada Corp. Combustor heat shield
EP2900970B1 (fr) * 2012-09-30 2018-12-05 United Technologies Corporation Écran thermique d'interface pour une chambre de combustion d'un moteur à turbine à gaz
CN105518389B (zh) * 2013-09-11 2017-10-24 通用电气公司 弹簧加载且密封的陶瓷基质复合物燃烧器衬套
GB201408690D0 (en) * 2014-05-16 2014-07-02 Rolls Royce Plc A combustion chamber arrangement
US10215418B2 (en) * 2014-10-13 2019-02-26 Ansaldo Energia Ip Uk Limited Sealing device for a gas turbine combustor
EP3078914A1 (fr) * 2015-04-09 2016-10-12 Siemens Aktiengesellschaft Chambre de combustion annulaire pour un moteur à turbine à gaz
US10801729B2 (en) * 2015-07-06 2020-10-13 General Electric Company Thermally coupled CMC combustor liner
US10197278B2 (en) * 2015-09-02 2019-02-05 General Electric Company Combustor assembly for a turbine engine
EP3252378A1 (fr) * 2016-05-31 2017-12-06 Siemens Aktiengesellschaft Agencement de chambre de combustion annulaire de turbine à gaz

Also Published As

Publication number Publication date
WO2018130765A1 (fr) 2018-07-19
CN110168284B (zh) 2021-02-23
FR3061761B1 (fr) 2021-01-01
US11614234B2 (en) 2023-03-28
EP3568638B1 (fr) 2021-03-31
US20190360698A1 (en) 2019-11-28
FR3061761A1 (fr) 2018-07-13
CN110168284A (zh) 2019-08-23

Similar Documents

Publication Publication Date Title
EP1862644B1 (fr) Dispositif de guidage d'un flux d'air pour turbomachine, et turbomachine et diffuseur associés
FR3004518A1 (fr) Chambre de combustion annulaire d'une turbomachine
EP1777460B2 (fr) Fixation d'une chambre de combustion à l'intérieur de son carter
EP2836684B2 (fr) Turbomachine, tel qu'un turboréacteur ou un turbopropulseur d'avion
FR3020865A1 (fr) Chambre annulaire de combustion
EP4240956A1 (fr) Ensemble pour une turbomachine
FR2998038A1 (fr) Chambre de combustion pour une turbomachine
FR3099801A1 (fr) Ensemble pour une turbine de turbomachine
EP3824221B1 (fr) Ensemble pour une turbomachine
FR3005693A1 (fr) Turbomachine d'aeronef a double flux comprenant une virole inter-veine a maintien aval simplifie
FR2992018A1 (fr) Montage d'un distributeur de turbine haute-pression sur une chambre a combustion d'une turbomachine
EP3568638B1 (fr) Chambre de combustion pour turbomachine
WO2022096820A1 (fr) Fixation d'un cône d'éjection dans une tuyère de turbomachine
EP4240957A1 (fr) Ensemble pour une turbomachine
EP3928034B1 (fr) Chambre de combustion pour une turbomachine
WO2022096825A1 (fr) Fixation d'un cône d'éjection au carter d'échappement d'une turbomachine
EP4240955A1 (fr) Fixation d'un cône d'éjection dans une tuyère de turbomachine
FR3115833A1 (fr) Fixation d’un cône d’éjection dans une turbine de turbomachine
FR2991387A1 (fr) Turbomachine, telle qu'un turboreacteur ou un turbopropulseur d'avion
FR3089544A1 (fr) Dispositif de refroidissement d’un carter de turbomachine
WO2022096832A1 (fr) Fixation d'un cône d'éjection dans une turbine de turbomachine
EP4226034A1 (fr) Ensemble d'étanchéité pour un cône d'éjection de turbine
WO2024013444A1 (fr) Ensemble de turbine de turbomachine
FR3097271A1 (fr) Dispositif de refroidissement d’un carter d’une turbomachine
FR3116305A1 (fr) Arbre de liaison d’un corps haute pression d’une turbomachine

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190710

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20201111

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602018014703

Country of ref document: DE

Ref country code: AT

Ref legal event code: REF

Ref document number: 1377350

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210331

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1377350

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210731

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210802

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602018014703

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220104

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230103

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231219

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20231219

Year of fee payment: 7

Ref country code: FR

Payment date: 20231219

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231219

Year of fee payment: 7