EP3564421A1 - Method and device for treating threads - Google Patents
Method and device for treating threads Download PDFInfo
- Publication number
- EP3564421A1 EP3564421A1 EP18170364.6A EP18170364A EP3564421A1 EP 3564421 A1 EP3564421 A1 EP 3564421A1 EP 18170364 A EP18170364 A EP 18170364A EP 3564421 A1 EP3564421 A1 EP 3564421A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- fluid flow
- fluidic oscillator
- oscillating
- fluid
- main
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- D—TEXTILES; PAPER
- D02—YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
- D02J—FINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
- D02J1/00—Modifying the structure or properties resulting from a particular structure; Modifying, retaining, or restoring the physical form or cross-sectional shape, e.g. by use of dies or squeeze rollers
- D02J1/08—Interlacing constituent filaments without breakage thereof, e.g. by use of turbulent air streams
-
- D—TEXTILES; PAPER
- D02—YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
- D02G—CRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
- D02G1/00—Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics
- D02G1/16—Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics using jets or streams of turbulent gases, e.g. air, steam
- D02G1/161—Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics using jets or streams of turbulent gases, e.g. air, steam yarn crimping air jets
Definitions
- the present invention relates to an apparatus and a method for treating threads comprising at least one nozzle and at least one fluidic oscillator.
- Nozzles for texturing or swirling threads are used primarily in textile production in the production of various types of yarn.
- air swirl nozzles are used in the production of knot yarn.
- texturing a smooth yarn thread is given a crimp structure. This increases the volume and the moisture absorption, improves the moisture transport and increases the wearing comfort.
- swirling the individual filaments of a multifilament yarn are mechanically connected to each other. This increases the compactness of the yarn and allows an increased processing speed.
- the yarn is processed with a fluid stream, preferably with an air stream.
- Such nozzles are made, for example WO 2010/086258 known.
- Such fluid streams can oscillate on the yarn.
- the oscillation of the fluid flow may be as in the EP 2 655 710 B1 be mechanically controlled.
- By turning a rotor, nozzle bores and chamber openings are superimposed at different points, so that a compressed air pulse can act on the thread.
- This construction is more susceptible to wear due to its mechanical construction and thus requires appropriate maintenance time and maintenance.
- a device which consists of a fluid oscillator, an amplifier and three swirl nozzles.
- a secondary fluid flow is oscillated by the fluidic oscillator through which Amplifier accelerates and alternately introduced into auxiliary nozzles, while the main fluid flow constantly flows into the main nozzle. Accordingly, this construction consumes a lot of energy, since three fluid streams act on the thread.
- DE 28 13 368 describes a method for interweaving a multi-filament yarn in which a constant main fluid stream and two oscillating tributary fluid streams fluidize the yarn in the yarn channel. Same as at DE 28 23 335 here the energy consumption is high.
- US 3 636 601 shows a nozzle, which oscillates a main fluid flow by means of an oscillator loop and based on the Coanda effect. A similar principle with only one oscillating loop is used in US 3,016,066 described. In US 3 638 291 the fluid flow is oscillated by the geometric shape of the yarn channel and the thread is swirled.
- An apparatus for treating threads, in particular for swirling threads, comprises at least one nozzle with a yarn channel and a knitting area in the yarn channel as well as at least one fluidic oscillator for generating an oscillating fluid flow.
- a fluidic oscillator is an oscillator which oscillates a fluid flow, usually an air flow.
- the oscillation of the fluid flow can be controlled inter alia by the geometric shape of the oscillator, by time-controlled elements or mechanical components. But there are also other controls or combinations thereof possible.
- the oscillation of the fluid flow can take place by means of feedback or via externally controlled components. In the case of the externally controlled variant, the oscillating loops are missing. In the case of oscillation by means of feedback, the fluid flow is oscillated with the aid of the oscillating loops.
- the fluidic oscillator has at least two oscillating loops and two outputs if the oscillator is controlled by the feedback.
- the fluidic oscillator can also oscillate the fluid flow by means of external excitation.
- An external excitation is here understood that the geometry of the path for the fluid is not changed between the input and the outputs and in particular no valve parts are present. Rather, the excitation leads to a change in the fluid flow between the outputs, in a channel not changed in terms of shape and structure. At the excitation sites, it can lead to temporary channel changes, but during the fluid flow, the channel geometry remains unchanged.
- Both outputs are connected to one or more fluid supply openings of the nozzle, which open into the effective range of the yarn channel.
- the fluidic oscillator generates an oscillating fluid flow which oscillates between the outputs. In the ideal case, the fluid flow oscillates completely between the outputs. By complete is here meant that at the minimum and maximum of the amplitude of the entire fluid flow through one of the two outputs flows into the nozzle.
- the fluid flow is introduced via a fluid supply opening of the nozzle.
- the fluid supply opening opens in a known manner in an effective range of a yarn channel of the nozzle and acts there as the main fluid flow.
- a main fluid stream is a fluid stream which contributes more than 50% and optimally more than 70% of the total amount of fluid that acts on the thread.
- a yarn passed through the yarn passage is treated in a known manner.
- the oscillation of the main airflow allows e.g. a constant node regularity, since a constant frequency is specified by the fluidic oscillator. Since the fluidic oscillator has no fluid loss and no manual control and the fluid flow divides into two yarn channels, it has a lower specific energy consumption than comparable constructions in the prior art.
- the lack of moving parts or controls also reduces the maintenance and wear of parts and elements.
- the inventive fluidic oscillator is preferably designed such that the oscillation between the outputs is pulse-controlled. This means that the feedback and switching between the two outputs by the transmission of a pressure pulse with speed of sound via the Oszarrichlaufe takes place.
- the fluidic oscillator could also be volume controlled. In this case, the feedback volume of the fluid flow accumulates in the oscillating loop until it is large enough to divert the fluid flow.
- the device preferably has a fluid oscillator with a separator for dividing a supplied fluid flow into two main lines.
- This separator has an end face, which is preferably concave-shaped and points in the direction of a fluid supply.
- the concave shape of the separator allows a fast and reliable switching of the currents from one main line to the other main line.
- each oscillating loop between the separator and the outlet at a branch branches off laterally from the main line and opens into an inlet space arranged upstream relative to the branch.
- the oscillator loop branches off at an angle laterally from the main line.
- This angle defined as the angle between the downstream part of the main line and the oscillating loop, is preferably blunt and influences the stability of the oscillation and thus the regularity of the knots in the yarn.
- the main line preferably has an edge immediately after the branching.
- the oscillating loop preferably opens in the direction of flow in front of the separator, in particular at right angles, into the inlet space.
- the Oszilliersch secured preferably have a smaller cross-sectional area compared to the main lines.
- the cross-sectional area of the oscillating loop is 50-75%, and more preferably 60-66%, as compared with the cross-sectional area of the main line.
- the oscillating loops have it a preferred cross-sectional area of 2 - 100 mm 2 and more preferably a cross-sectional area of 5 - 50 mm 2 .
- the oscillating loops are preferably adjustable in length. This could be done via telescopically extendable elements in the oscillating loop. It is also possible that oscillating loops of a certain length can be exchanged and replaced by those of a different length. A possible variant for this would be the installation of hoses. These hoses could be mounted via a releasable connection to coupling elements, which are located at the branches of the main line and the junctions in the inlet space.
- An advantage of this adjustable oscillating loop length is that it allows the oscillation frequency of a pulse-controlled fluidic oscillator to be influenced.
- the oscillation is preferably generated pneumatically (pulse-controlled or volume-controlled) at an intersection of the entry space and the oscillating loops, as stated above.
- the oscillation can also be triggered externally electrically, mechanically or pneumatically.
- a combination of the described or that further upstream fluidic oscillators, instead of the oscillator loops trigger the oscillation is also conceivable.
- further fluid oscillators are coupled to each of the oscillating loops in order to trigger the oscillation. It is also possible to additionally pressurize the nozzle with constant or oscillating secondary fluid streams.
- Finefluidströme fluid flows are defined, which contribute less than 50% and optimally less than 30% to the total amount of fluid, which acts on the thread.
- an embodiment of the fluid oscillator according to the invention typically enables an oscillation of the fluid flow in a frequency range of 50-5000 Hz.
- the device preferably has a cross-sectional constriction between the branch of the oscillating loop and the effective area of the nozzle. This cross-sectional constriction supports the feedback via the oscillating loop.
- the cross-sectional constriction is preferably located at the outlet of the fluidic oscillator.
- the output of the fluidic oscillator is connected via a connecting line to the fluid supply opening of the nozzle.
- the connecting line is preferably designed so that a symmetrical flow profile of the flow is formed. An asymmetrical profile would lead to irregular and unstable knots in the yarn and thus to a lower quality yarn.
- the main line and / or the Oszarrichlaufe of the fluidic oscillator preferably have a rectangular cross-sectional profile. But it would also be possible that the main line and / or the Oszarrichlaufe of the fluidic oscillator have a round, oval or polygonal profile. A rectangular profile is easier to produce.
- the fluidic oscillator is preferably made of a metallic or plastic-based material.
- the nozzle is preferably made of a ceramic material.
- the yarn duct of the nozzle typically has a yarn channel cross-sectional area of 0.5-75.0 mm 2 , preferably a yarn channel cross-sectional area of 1.0-50.0 mm 2, and particularly preferably a yarn channel cross-sectional area of 2.0-40.0 mm 2 .
- the connecting line is preferably made of a metal or Kunsstoff and / or preferably has a cross-sectional area of 0.5-30.0 mm 2 , preferably a cross-sectional area of 0.9-25.0 mm 2, and more preferably a cross-sectional area of 1.0-20.0 mm 2 .
- the device may include various types and arrangements of nozzles.
- a first embodiment according to the invention has two nozzles, each with a fluid supply opening and an effective area, which are each fed by a connecting line of the fluidic oscillator.
- the nozzle has two fluid supply openings, which are connected via connecting lines to the outputs of the fluidic oscillator.
- the fluid supply openings lead in the longitudinal direction offset in the effective range of the yarn channel of the nozzle.
- a fluid supply opening is connected to the outputs of the fluidic oscillator via two connecting lines opening into the opening at different angles.
- fluid supply openings are fed from both sides of the Garnkanalachse in the effective range from the fluidic oscillator.
- a fifth embodiment of the device comprises two nozzles and two fluidic oscillators.
- one output of each fluid oscillator is connected via a connecting line to a respective fluid supply opening of the nozzles.
- the two fluidic oscillators are coupled together by means of a synchronization line in order to guarantee a synchronization of the oscillation.
- the inlet space is preferably formed such that the fluid flow supplied through a fluid supply line is accelerated to the speed of sound and above, upon entry into the fluidic oscillator.
- the first fluidic oscillator can be connected to a second fluidic oscillator.
- the first fluidic oscillator has no Oszarrich awarded and the second fluidic oscillator has two outputs which are connected to the inlet space of the first fluidic oscillator.
- the fluidic oscillator has no oscillating loops. Instead, the oscillation of the main fluid flow is controlled by means of external excitation, in particular with pneumatic, electrical, mechanical or other excitations.
- a thread is passed through at least one effective region of a yarn channel of at least one nozzle.
- an oscillating fluid flow is generated by a fluid oscillator with two oscillating loops and brought via connecting lines to the fluid supply openings of the nozzle.
- the fluid flow is introduced as the main fluid flow into the effective region of the nozzle.
- a number of knots of 15-40 / m is achieved at a yarn speed of 5 km / min.
- This constant Fluid flow is generated by the fluid supply and oscillated in the fluidic oscillator before being directed to the nozzle.
- the constant fluid flow allows a high stability of the oscillation in the fluidic oscillator.
- a fluid flow of 1 - 100 Nm 3 / h (standard cubic meters per hour) is brought from the fluid supply in the fluidic oscillator and is oscillated there in a frequency range of 5 - 5000 Hz.
- the oscillating fluid flow is preferably accelerated by a cross-sectional constriction to supersonic speed before it enters the effective range.
- a further device for treating threads, in particular for twisting threads, comprises two nozzles and a fluid oscillator with an oscillating loop and two outlets, between which the main fluid flow oscillates.
- the outputs are connected to a respective fluid supply opening of a nozzle, so that the main fluid flow oscillates between the two nozzles.
- FIG. 1 shows a device 1 comprising a fluid supply 10 which generates a fluid flow Fs.
- the fluid flow Fs is oscillated by a fluidic oscillator 2 to a main oscillating fluid flow HFs.
- the main fluid flow HFs is introduced into a nozzle 40 and 40 '.
- FIG. 2 shows an embodiment of the nozzle 40.
- the fluid flow Fs is passed via a cross-sectional constriction 44 through a fluid feed opening 41 in an operative region 42 of a yarn channel 43 to treat the yarn F.
- FIG. 3 shows a longitudinal section through the fluidic oscillator 2.
- the fluid is brought from the fluid supply 10 via the fluid supply line 11 to an inlet space 20 of the fluidic oscillator 2.
- the fluid forms a fluid flow Fs, which is alternately deflected to the left or right at a separator 21.
- the fluid flow Fs is deflected to the left on the separator 21 and enters a main line 26.
- the fluid flow Fs is divided by an edge 25 again.
- a part is deflected into an oscillating loop 23. The other part remains in the main line 26 and flows in the direction of an output 24.
- a pressure pulse is transmitted to the inlet space 20, in order to redirect the fluid flow Fs in the other direction at the point of intersection 12 and thus initiate a new oscillation.
- the fluid flow Fs remaining in the main conduits 26 and 26 ' is accelerated to supersonic through a cross-sectional constriction 44 between the branch 22 and the effective area 42 prior to entering the effective area.
- the fluidic oscillator 2 preferably has two extendable elements 29 and 29 'on the oscillating loops 23 and 23'.
- FIG. 4 shows an enlarged view of the separator 21 of the fluidic oscillator 2.
- the separator 21 separates the two main lines 26 and 26 'and has an end face 28 which faces the inlet region 20.
- the end face 28 is preferably concave.
- FIG. 5 shows an enlarged view of the edge 25 at the junction 22 of the Oszarrichlaufe 23.
- the Oszarrichlaufe branches at an angle ⁇ from the main line.
- the fluid flow Fs comes from the inlet space 20 through the main line 26 to the branch 22.
- the edge 25 of the main line 26 causes the fluid flow Fs is divided between the Oszarrichlaufe 23 and the main line 26. From there flows the fluid flow Fs either over the Oszarrichlaufe 23 back to the entry space 20 or via the main line 26 to the output 24th
- FIG. 6 shows a profile of the oscillating loops 23 and 23 'and the main lines 26 and 26'.
- the cross-sectional profiles of the lines are rectangular.
- Figure 7a shows an alternative embodiment of the nozzle 40 in longitudinal section in the thread axis F.
- the nozzle 40 has two fluid supply openings 41 and 41 ', which in the thread axis F to each other offset in the yarn channel 43 are attached.
- the fluid flow Fs is introduced through the fluid supply port 41 and 41 'into the effective regions 42 and 42'. In the effective areas 42 and 42 'of the yarn channel 43, the thread is swirled.
- FIG. 7b shows a further arrangement of a nozzle 40 in cross section.
- the fluid flow Fs is introduced from the connection lines 30 and 30 'through the fluid supply opening 41 and 41' into the effective region 42 of the yarn channel 43.
- the thread is swirled.
- the fluid supply openings 41 and 41 ' are located on the same side of the yarn channel 43 but open at the same point in the effective region 42 but from different directions.
- FIG. 7c shows a variant of the nozzle 40 in cross section.
- the main fluid flow HFs via two connecting lines 30 and 30 'through the opposing fluid supply openings 41 and 41' in the active region 42 is introduced.
- FIG. 7d shows a variant of the device 1 with two nozzles 40 and 40 'and two fluidic oscillators 2 and 2'.
- a fluid supply 10 generates a fluid flow Fs which is oscillated in the fluidic oscillators 2 and 2 '.
- two main fluid flows HFs are generated, which are respectively led to each of the two nozzles 40 and 40'.
- the fluidic oscillators are connected to each other by a synchronization line 27.
- FIG. 8a shows a second fluidic oscillator 3 which is connected to the first fluidic oscillator 2.
- the second fluidic oscillator 3 has outputs 51, 51 'which open into the inlet space 20 of the first fluidic oscillator 2.
- the pneumatic impulses off the outputs 51,51 ' divert the main fluid flow Fs in the inlet space 20.
- FIG. 8b shows a further embodiment of the fluidic oscillator 2.
- This fluidic oscillator 2 has no oscillating loops, so that the oscillation is controlled by external excitation 50.
- These external excitation 50 are in the concrete embodiment, a piezoelectric element 60th
- FIG. 8c shows a further embodiment of the fluidic oscillator 2 which oscillates the main fluid flow Fs between two nozzles.
- This fluidic oscillator 2 has an oscillating loop 23.
- the pneumatic pulses from the oscillating loop 23 deflect the main fluid flow Fs in the inlet space 20.
- the main fluid flow thus oscillates between the outputs 51, 51 '.
- the fluidic oscillator is connected via each of the outputs 51, 51 'to a fluid supply port 41, 41' of a nozzle 40, 40 ', so that the main fluid flow Fs oscillates between the two nozzles 40, 40'.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Textile Engineering (AREA)
- Mechanical Engineering (AREA)
- Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
Abstract
Die vorliegende Erfindung betrifft eine Vorrichtung (1) zum Behandeln von Fäden, insbesondere zum Verwirbeln von Fäden, umfassend mindestens eine Düse (40) und einen Fluidoszillator (2) sowie eine Fluidzufuhr (10). Die Fluidzufuhr (10) erzeugt einen Fluidstrom (Fs) der vom Fluidoszillator (2) oszilliert und als Hauptfluidstrom (HFs) in die Düsen (40, 40') eingeleitet wird. In den Düsen (40, 40') verwirbelt der Hauptfluidstrom (HFs) einen Faden.The present invention relates to a device (1) for treating threads, in particular for twisting threads, comprising at least one nozzle (40) and a fluidic oscillator (2) and a fluid supply (10). The fluid supply (10) generates a fluid flow (Fs) which oscillates from the fluidic oscillator (2) and is introduced as main fluid flow (HFs) into the nozzles (40, 40 '). In the nozzles (40, 40 '), the main fluid stream (HFs) swirls a thread.
Description
Die vorliegende Erfindung betrifft eine Vorrichtung und ein Verfahren zum Behandeln von Fäden umfassend mindestens eine Düse und mindestens einen Fluidoszillator.The present invention relates to an apparatus and a method for treating threads comprising at least one nozzle and at least one fluidic oscillator.
Düsen zum Texturieren oder zum Verwirbeln von Fäden werden vorwiegend in der Textilproduktion bei der Herstellung von verschiedenen Garnarten verwendet. Beispielsweise werden Luftverwirbelungsdüsen bei der Produktion von Knotengarn verwendet. Beim Texturieren wird einem glatten Garnfaden eine Kräuselstruktur verliehen. Dies erhöht das Volumen und die Feuchtigkeitsaufnahme, verbessert den Feuchtigkeitstransport und erhöht den Tragekomfort. Beim Verwirbeln werden die einzelnen Filamente eines Multifilamentgarns miteinander mechanisch verbunden. Dies erhöht die Kompaktheit des Garns und ermöglicht eine erhöhte Verarbeitungsgeschwindigkeit. Für beide Prozesse wird das Garn mit einem Fluidstrom, bevorzugt mit einem Luftstrom bearbeitet. Solche Düsen sind z.B. aus
Solche Fluidströme können oszillierend auf das Garn einwirken. Die Oszillation des Fluidstroms kann wie in der
Aus der
Alle diese bekannten Lösungen haben einen hohen Luftverbrauch und/oder eine aufwendige Konstruktion, welche einen entsprechenden Wartungsaufwand benötigt. Es ist daher Aufgabe der Erfindung, Nachteil des Stands der Technik zu beheben. Insbesondere soll eine Vorrichtung zum Verwirbeln von Fäden bereitgestellt werden, welche eine geringe Wartung erfordert und bei geringerem Energieverbrauch eine hohe Regelmässigkeit der Knoten im Garn garantiert, auch bei niedrigen Drücken.All of these known solutions have a high air consumption and / or a complex construction, which requires a corresponding maintenance. It is therefore an object of the invention to overcome the disadvantage of the prior art. In particular, an apparatus for swirling threads is to be provided, which requires a low maintenance and with lower energy consumption guarantees a high regularity of knots in the yarn, even at low pressures.
Erfindungsgemäss werden diese und andere Aufgaben mit den Merkmalen gemäss dem kennzeichnenden Teil der unabhängigen Patentansprüche gelöst.According to the invention these and other objects are achieved with the features according to the characterizing part of the independent claims.
Eine erfindungsgemässe Vorrichtung zum Behandeln von Fäden, insbesondere zum Verwirbeln von Fäden, umfasst mindestens eine Düse mit einem Garnkanal und einem Wirkbereich im Garnkanal sowie mindestens einen Fluidoszillator zum Erzeugen eines oszillierenden Fluidstroms. Ein Fluidoszillator ist definitionsgemäss ein Oszillator, der einen Fluidstrom, meistens einen Luftstrom, oszilliert. Die Oszillation des Fluidstroms kann unter anderem durch die geometrische Form des Oszillators, über zeitliche gesteuerte Elemente oder mechanische Bauteile gesteuert werden. Es sind aber auch andere Steuerelemente oder Kombinationen davon möglich. Die Oszillation des Fluidstroms kann mittels Rückkopplung oder über zeitlich extern angesteuerte Bauteile erfolgen. Im Fall der externen angesteuerten Variante fehlen die Oszillierschlaufen. Im Fall der Oszillation mittels Rückkopplung wird mit Hilfe der Oszillierschlaufen der Fluidstrom oszilliert.An apparatus according to the invention for treating threads, in particular for swirling threads, comprises at least one nozzle with a yarn channel and a knitting area in the yarn channel as well as at least one fluidic oscillator for generating an oscillating fluid flow. By definition, a fluidic oscillator is an oscillator which oscillates a fluid flow, usually an air flow. The oscillation of the fluid flow can be controlled inter alia by the geometric shape of the oscillator, by time-controlled elements or mechanical components. But there are also other controls or combinations thereof possible. The oscillation of the fluid flow can take place by means of feedback or via externally controlled components. In the case of the externally controlled variant, the oscillating loops are missing. In the case of oscillation by means of feedback, the fluid flow is oscillated with the aid of the oscillating loops.
Der Fluidoszillator besitzt mindestens zwei Oszillierschlaufen und zwei Ausgänge, falls der Oszillator über die Rückkopplung gesteuert wird. Der Fluidoszillator kann auch mittels externer Anregung den Fluidstrom oszillieren. Unter einer externen Anregung wird hierbei verstanden, dass zwischen dem Eingang und den Ausgängen die Geometrie des Weges für das Fluid nicht verändert wird und insbesondere keine Ventilteile vorhanden sind. Vielmehr führt die Anregung zu einem Wechsel des Fluidstroms zwischen den Ausgängen, in einem hinsichtlich Form und Struktur nicht veränderten Kanals. An den Anregungsstellen kann es zu temporären Kanalveränderungen kommen, wobei aber während dem Fluidfluss die Kanalgeometrie unverändert bleibt.The fluidic oscillator has at least two oscillating loops and two outputs if the oscillator is controlled by the feedback. The fluidic oscillator can also oscillate the fluid flow by means of external excitation. An external excitation is here understood that the geometry of the path for the fluid is not changed between the input and the outputs and in particular no valve parts are present. Rather, the excitation leads to a change in the fluid flow between the outputs, in a channel not changed in terms of shape and structure. At the excitation sites, it can lead to temporary channel changes, but during the fluid flow, the channel geometry remains unchanged.
Beide Ausgänge sind mit einer oder mehreren Fluidzufuhröffnungen der Düse verbunden, welche in den Wirkbereich des Garnkanals münden. Der Fluidoszillator erzeugt einen oszillierenden Fluidstrom, welcher zwischen den Ausgängen oszilliert. Im idealen Fall oszilliert der Fluidstrom komplett zwischen den Ausgängen. Mit komplett ist hierbei gemeint, dass am Minimum und Maximum der Amplitude der gesamte Fluidstrom durch einen der beiden Ausgänge in die Düse strömt. Der Fluidstrom wird über eine Fluidzufuhröffnung der Düse eingeleitet. Die Fluidzufuhröffnung mündet in bekannter Art und Weise in einen Wirkbereich eines Garnkanals der Düse und wirkt dort als Hauptfluidstrom.
Ein Hauptfluidstrom ist ein Fluidstrom, welcher mehr als 50% und optimal mehr als 70% zur Gesamtfluidmenge beiträgt, welche auf den Faden einwirkt.Both outputs are connected to one or more fluid supply openings of the nozzle, which open into the effective range of the yarn channel. The fluidic oscillator generates an oscillating fluid flow which oscillates between the outputs. In the ideal case, the fluid flow oscillates completely between the outputs. By complete is here meant that at the minimum and maximum of the amplitude of the entire fluid flow through one of the two outputs flows into the nozzle. The fluid flow is introduced via a fluid supply opening of the nozzle. The fluid supply opening opens in a known manner in an effective range of a yarn channel of the nozzle and acts there as the main fluid flow.
A main fluid stream is a fluid stream which contributes more than 50% and optimally more than 70% of the total amount of fluid that acts on the thread.
Durch Zufuhr des Hauptfluidstroms wird ein durch den Garnkanal geführter Faden in bekannter Weise behandelt. Die Oszillation des Hauptluftstroms ermöglicht z.B. eine gleichbleibende Knotenregelmässigkeit, da eine konstante Frequenz vom Fluidoszillator vorgegeben wird. Da der Fluidoszillator keinen Fluidverlust und keine manuelle Steuerung hat und sich der Fluidstrom auf zwei Garnkanäle aufteilt weist er einen tieferen spezifischen Energieverbrauch als vergleichbare Konstruktionen im Stand der Technik auf. Das Fehlen von beweglichen Teilen oder Steuerelementen senkt zudem den Wartungsaufwand und den Verschleiss von Teilen und Elementen.By supplying the main fluid flow, a yarn passed through the yarn passage is treated in a known manner. The oscillation of the main airflow allows e.g. a constant node regularity, since a constant frequency is specified by the fluidic oscillator. Since the fluidic oscillator has no fluid loss and no manual control and the fluid flow divides into two yarn channels, it has a lower specific energy consumption than comparable constructions in the prior art. The lack of moving parts or controls also reduces the maintenance and wear of parts and elements.
Der erfindungsgemässe Fluidoszillator ist bevorzugt derart ausgebildet, dass die Oszillation zwischen den Ausgängen Impulsgesteuert ist. Dies bedeutet, dass die Rückkopplung und Umschaltung zwischen den beiden Ausgängen durch die Übertragung eines Druckimpulses mit Schallgeschwindigkeit über die Oszillierschlaufe erfolgt. Alternativ könnte der Fluidoszillator auch Volumen-gesteuert sein. Dabei sammelt sich in der Oszillierschlaufe das rückgekoppelte Volumen des Fluidstroms, bis es genug gross ist, um den Fluidstrom umzulenken.The inventive fluidic oscillator is preferably designed such that the oscillation between the outputs is pulse-controlled. This means that the feedback and switching between the two outputs by the transmission of a pressure pulse with speed of sound via the Oszillierschlaufe takes place. Alternatively, the fluidic oscillator could also be volume controlled. In this case, the feedback volume of the fluid flow accumulates in the oscillating loop until it is large enough to divert the fluid flow.
Die Vorrichtung weist bevorzugt einen Fluidoszillator mit einem Separator auf, zur Teilung eines zugeführten Fluidstroms in zwei Hauptleitungen.The device preferably has a fluid oscillator with a separator for dividing a supplied fluid flow into two main lines.
Dieser Separator weist eine Stirnfläche auf, welche bevorzugt konkav geformt ist und in Richtung einer Fluidzufuhr zeigt. Die konkave Form des Separators ermöglicht ein schnelles und zuverlässiges Umschalten der Ströme von einer Hauptleitung zur anderen Hauptleitung.This separator has an end face, which is preferably concave-shaped and points in the direction of a fluid supply. The concave shape of the separator allows a fast and reliable switching of the currents from one main line to the other main line.
Bevorzugt zweigt jede Oszillierschlaufe zwischen dem Separator und dem Ausgang an einer Abzweigung seitlich aus der Hauptleitung ab und mündet in einen bezogen auf die Abzweigung stromaufwärts angebrachten Eintrittsraum.Preferably, each oscillating loop between the separator and the outlet at a branch branches off laterally from the main line and opens into an inlet space arranged upstream relative to the branch.
Die Oszillatorschlaufe zweigt in einem Winkel seitlich aus der Hauptleitung ab. Dieser Winkel, definiert als Winkel zwischen dem in Flussrichtung unteren Teil der Hauptleitung und der Oszillierschlaufe, ist bevorzugt stumpf und beeinflusst die Stabilität der Oszillation und somit die Regelmässigkeit der Knoten im Garn.The oscillator loop branches off at an angle laterally from the main line. This angle, defined as the angle between the downstream part of the main line and the oscillating loop, is preferably blunt and influences the stability of the oscillation and thus the regularity of the knots in the yarn.
Um eine präzise Aufteilung des Fluidstroms zwischen der Oszillierschlaufe und der Hauptleitung zu definieren, weist die Hauptleitung bevorzugt unmittelbar nach der Abzweigung eine Kante auf.In order to define a precise distribution of the fluid flow between the oscillating loop and the main line, the main line preferably has an edge immediately after the branching.
Die Oszillierschlaufe mündet bevorzugt in Flussrichtung vor dem Separator, insbesondere rechtwinklig, in den Eintrittsraum.The oscillating loop preferably opens in the direction of flow in front of the separator, in particular at right angles, into the inlet space.
Die Oszillierschlaufen besitzen bevorzugt im Vergleich zu den Hauptleitungen eine geringere Querschnittsfläche. Bevorzugt beträgt die Querschnittsfläche der Oszillierschlaufe im Vergleich mit der Querschnittsfläche der Hauptleitung 50 - 75% und besonders bevorzugt 60 - 66%. Die Oszillierschlaufen besitzen dabei eine bevorzugte Querschnittsfläche von 2 - 100 mm2 und besonders bevorzugt eine Querschnittsfläche von 5 - 50 mm2.The Oszillierschlaufen preferably have a smaller cross-sectional area compared to the main lines. Preferably, the cross-sectional area of the oscillating loop is 50-75%, and more preferably 60-66%, as compared with the cross-sectional area of the main line. The oscillating loops have it a preferred cross-sectional area of 2 - 100 mm 2 and more preferably a cross-sectional area of 5 - 50 mm 2 .
Die Oszillierschlaufen sind bevorzugt in der Länge verstellbar. Dies könnte über teleskopisch verlängerbare Elemente in der Oszillierschlaufe erfolgen. Es ist ebenfalls möglich, dass Oszillierschlaufen von einer bestimmten Länge ausgetauscht werden können und durch solche einer anderen Länge ersetzt werden. Eine mögliche Variante hierfür wäre die Montage von Schläuchen. Diese Schläuche könnten über eine lösbare Verbindung an Kupplungselementen montiert werden, welche sich an den Abzweigungen der Hauptleitung und den Einmündungen in den Eintrittsraum befinden. Ein Vorteil dieser verstellbaren Oszillierschlaufenlänge ist, dass damit die Oszillierfrequenz eines Impuls-gesteuerten Fluidoszillators beeinflusst werden kann.The oscillating loops are preferably adjustable in length. This could be done via telescopically extendable elements in the oscillating loop. It is also possible that oscillating loops of a certain length can be exchanged and replaced by those of a different length. A possible variant for this would be the installation of hoses. These hoses could be mounted via a releasable connection to coupling elements, which are located at the branches of the main line and the junctions in the inlet space. An advantage of this adjustable oscillating loop length is that it allows the oscillation frequency of a pulse-controlled fluidic oscillator to be influenced.
Die Oszillation wird an einem Schnittpunkt des Eintrittsraums und der Oszillierschlaufen wie vorstehend ausgeführt bevorzugt pneumatisch (Impuls- oder Volumen-gesteuert) erzeugt. Alternativ kann die Oszillation auch extern elektrisch, mechanisch oder pneumatisch ausgelöst werden. Jede weitere Variante, eine Kombination aus den beschriebenen oder dass weitere vorgeschaltete Fluidoszillatoren, anstelle der Oszillatorschlaufen die Oszillation auslösen, ist ebenfalls denkbar. Ausserdem ist denkbar, dass weitere Fluidoszillatoren mit jeder der Oszillierschlaufen gekoppelt sind, um die Oszillation auszulösen. Es ist ebenfalls möglich, die Düse zusätzlich mit konstanten oder oszillierenden Nebenfluidströmen zu beaufschlagen. Als Nebenfluidströme werden Fluidströme definiert, welche weniger als 50% und optimal weniger als 30% zur Gesamtfluidmenge beitragen, welche auf den Faden einwirkt.The oscillation is preferably generated pneumatically (pulse-controlled or volume-controlled) at an intersection of the entry space and the oscillating loops, as stated above. Alternatively, the oscillation can also be triggered externally electrically, mechanically or pneumatically. Any further variant, a combination of the described or that further upstream fluidic oscillators, instead of the oscillator loops trigger the oscillation, is also conceivable. In addition, it is conceivable that further fluid oscillators are coupled to each of the oscillating loops in order to trigger the oscillation. It is also possible to additionally pressurize the nozzle with constant or oscillating secondary fluid streams. As Nebenfluidströme fluid flows are defined, which contribute less than 50% and optimally less than 30% to the total amount of fluid, which acts on the thread.
Dabei ermöglicht eine erfindungsgemässe Ausführung des Fluidoszillators typischerweise eine Oszillation des Fluidstroms in einem Frequenzbereich von 50 - 5000 Hz.In this case, an embodiment of the fluid oscillator according to the invention typically enables an oscillation of the fluid flow in a frequency range of 50-5000 Hz.
Die Vorrichtung weist bevorzugt zwischen der Abzweigung der Oszillierschlaufe und dem Wirkbereich der Düse eine Querschnittsverengung auf. Diese Querschnittsverengung unterstützt die Rückkopplung über die Oszillierschlaufe. Die Querschnittsverengung befindet sich bevorzugt am Ausgang des Fluidoszillators.The device preferably has a cross-sectional constriction between the branch of the oscillating loop and the effective area of the nozzle. This cross-sectional constriction supports the feedback via the oscillating loop. The cross-sectional constriction is preferably located at the outlet of the fluidic oscillator.
Der Ausgang des Fluidoszillators ist über eine Verbindungsleitung mit der Fluidzufuhröffnung der Düse verbunden. Die Verbindungsleitung ist bevorzugt so ausgebildet, dass ein symmetrisches Strömungsprofil des Flusses entsteht. Ein asymmetrisches Profil würde zu unregelmässigen und instabilen Knoten im Garn führen und somit zu einem qualitativ schlechteren Garn.The output of the fluidic oscillator is connected via a connecting line to the fluid supply opening of the nozzle. The connecting line is preferably designed so that a symmetrical flow profile of the flow is formed. An asymmetrical profile would lead to irregular and unstable knots in the yarn and thus to a lower quality yarn.
Die Hauptleitung und/oder die Oszillierschlaufe des Fluidoszillators weisen bevorzugt ein rechteckiges Querschnittsprofil auf. Es wäre aber auch möglich, dass die Hauptleitung und/oder die Oszillierschlaufe des Fluidoszillators ein rundes, ovales oder mehreckiges Profil aufweisen. Ein rechteckiges Profil ist einfacher herstellbar.The main line and / or the Oszillierschlaufe of the fluidic oscillator preferably have a rectangular cross-sectional profile. But it would also be possible that the main line and / or the Oszillierschlaufe of the fluidic oscillator have a round, oval or polygonal profile. A rectangular profile is easier to produce.
Der Fluidoszillator ist bevorzugt aus einem metallischen oder kunststoff-basierten Material gefertigt. Die Düse ist bevorzugt aus einem keramischen Material gefertigt. Der Garnkanal der Düse besitzt typischerweise eine Garnkanalquerschnittsfläche von 0.5-75.0 mm2, bevorzugt eine Garnkanalquerschnittsfläche von 1.0-50.0 mm2 und besonders bevorzugt eine Garnkanalquerschnittsfläche von 2.0-40.0 mm2. Die Verbindungsleitung ist bevorzugt aus einem Metall oder Kunsstoff gefertigt und/oder besitzt bevorzugt eine Querschnittsfläche von 0.5-30.0 mm2, bevorzugt eine Querschnittsfläche von 0.9-25.0 mm2 und besonders bevorzugt eine Querschnittsfläche von 1.0-20.0 mm2.The fluidic oscillator is preferably made of a metallic or plastic-based material. The nozzle is preferably made of a ceramic material. The yarn duct of the nozzle typically has a yarn channel cross-sectional area of 0.5-75.0 mm 2 , preferably a yarn channel cross-sectional area of 1.0-50.0 mm 2, and particularly preferably a yarn channel cross-sectional area of 2.0-40.0 mm 2 . The connecting line is preferably made of a metal or Kunsstoff and / or preferably has a cross-sectional area of 0.5-30.0 mm 2 , preferably a cross-sectional area of 0.9-25.0 mm 2, and more preferably a cross-sectional area of 1.0-20.0 mm 2 .
Die Vorrichtung kann verschiedene Arten und Anordnungen von Düsen enthalten. Eine erste erfindungsgemässe Ausführungsform weist zwei Düsen mit je einer Fluidzufuhröffnung und einem Wirkbereich auf, welche jeweils von einer Verbindungsleitung des Fluidoszillators gespiesen werden.The device may include various types and arrangements of nozzles. A first embodiment according to the invention has two nozzles, each with a fluid supply opening and an effective area, which are each fed by a connecting line of the fluidic oscillator.
Bei einer zweiten Ausführungsform weist die Düse zwei Fluidzufuhröffnungen auf, welche über Verbindungsleitungen mit den Ausgängen des Fluidoszillators verbunden sind. Die Fluidzufuhröffnungen führen dabei in Längsrichtung versetzt in den Wirkbereich des Garnkanals der Düse.In a second embodiment, the nozzle has two fluid supply openings, which are connected via connecting lines to the outputs of the fluidic oscillator. The fluid supply openings lead in the longitudinal direction offset in the effective range of the yarn channel of the nozzle.
Bei einer dritten Ausführungsform ist eine Fluidzufuhröffnung über zwei unter verschiedenen Winkeln in die Öffnung mündenden Verbindungsleitungen mit den Ausgängen des Fluidoszillators verbunden.In a third embodiment, a fluid supply opening is connected to the outputs of the fluidic oscillator via two connecting lines opening into the opening at different angles.
Bei einer vierten Ausführungsform werden Fluidzufuhröffnungen von beiden Seiten der Garnkanalachse in den Wirkbereich vom Fluidoszillator gespiesen.In a fourth embodiment, fluid supply openings are fed from both sides of the Garnkanalachse in the effective range from the fluidic oscillator.
Eine fünfte Ausführungsform der Vorrichtung umfasst zwei Düsen und zwei Fluidoszillatoren. Dabei ist jeweils je ein Ausgang jedes Fluidoszillators über eine Verbindungsleitung mit je einer Fluidzufuhröffnung der Düsen verbunden. Zusätzlich sind die beiden Fluidoszillatoren über eine Synchronisationsleitung miteinander schwingungsmässig gekoppelt, um eine Synchronisation der Oszillation zu garantieren.A fifth embodiment of the device comprises two nozzles and two fluidic oscillators. In this case, in each case one output of each fluid oscillator is connected via a connecting line to a respective fluid supply opening of the nozzles. In addition, the two fluidic oscillators are coupled together by means of a synchronization line in order to guarantee a synchronization of the oscillation.
Für alle diese Ausführungsformen gelten die schon erwähnten Energieeinsparungen, da kein Fluidverlust stattfindet.For all these embodiments, the already mentioned energy savings, since no loss of fluid takes place.
Der Eintrittsraum ist bevorzugt so ausbildet, dass der durch eine Fluidzufuhrleitung zugeführte Fluidstrom auf Schallgeschwindigkeit und darüber beschleunigt wird, beim Eintritt in den Fluidoszillator.The inlet space is preferably formed such that the fluid flow supplied through a fluid supply line is accelerated to the speed of sound and above, upon entry into the fluidic oscillator.
Der erste Fluidoszillator kann mit einem zweiten Fluidoszillator verbunden werden. In dieser Ausführungsform besitzt der erste Fluidoszillator keine Oszillierschlaufen und der zweite Fluidoszillator besitzt zwei Ausgänge welche mit dem Eintrittsraum des ersten Fluidoszillators verbunden sind.The first fluidic oscillator can be connected to a second fluidic oscillator. In this embodiment, the first fluidic oscillator has no Oszillierschlaufen and the second fluidic oscillator has two outputs which are connected to the inlet space of the first fluidic oscillator.
In einer weiteren Ausführungsform besitzt der Fluidoszillator keine Oszillierschlaufen. Stattdessen wird die Oszillation des Hauptfluidstroms mittels externer Anregung, insbesondere mit pneumatischen, elektrischen, mechanischen oder anderen Anregungen gesteuert.In a further embodiment, the fluidic oscillator has no oscillating loops. Instead, the oscillation of the main fluid flow is controlled by means of external excitation, in particular with pneumatic, electrical, mechanical or other excitations.
Beim erfindungsgemässen Verfahren zum Behandeln von Fäden, insbesondere zum Verwirbeln von Fäden wird ein Fadens durch mindestens einen Wirkbereich eines Garnkanals mindestens einer Düse durchgeführt. Dabei wird ein oszillierender Fluidstrom von einem Fluidoszillator mit zwei Oszillierschlaufen erzeugt und über Verbindungsleitungen zu Fluidzufuhröffnungen der Düse gebracht. An der Fluidzufuhröffnung wir der Fluidstrom als Hauptfluidstrom in den Wirkbereich der Düse eingeleitet. Im typischen Betrieb wird so beim Erzeugen von Knotengarn eine Knotenzahl von 15-40/m bei einer Garngeschwindigkeit von 5 km/min erreicht.In the method according to the invention for treating threads, in particular for twisting threads, a thread is passed through at least one effective region of a yarn channel of at least one nozzle. In this case, an oscillating fluid flow is generated by a fluid oscillator with two oscillating loops and brought via connecting lines to the fluid supply openings of the nozzle. At the fluid supply opening, the fluid flow is introduced as the main fluid flow into the effective region of the nozzle. In typical operation, when knot yarn is produced, a number of knots of 15-40 / m is achieved at a yarn speed of 5 km / min.
Zum Betrieb der Vorrichtung und zum Erzeugen einer stabilen Oszillation wird ein konstanter Fluidstrom benötigt. Dieser konstante Fluidstrom wird von der Fluidzufuhr erzeugt und im Fluidoszillator oszilliert, bevor er zur Düse geleitet wird.
Der konstante Fluidstrom ermöglicht eine hohe Stabilität der Oszillation im Fluidoszillator.To operate the device and to generate a stable oscillation, a constant fluid flow is needed. This constant Fluid flow is generated by the fluid supply and oscillated in the fluidic oscillator before being directed to the nozzle.
The constant fluid flow allows a high stability of the oscillation in the fluidic oscillator.
Ein Fluidstrom von 1 - 100 Nm3/h (Normkubikmeter pro Stunde) wird von der Fluidzufuhr in den Fluidoszillator gebracht und wird dort in einem Frequenzbereich von 5 - 5000 Hz oszilliert.A fluid flow of 1 - 100 Nm 3 / h (standard cubic meters per hour) is brought from the fluid supply in the fluidic oscillator and is oscillated there in a frequency range of 5 - 5000 Hz.
Der oszillierende Fluidstrom wird bevorzugt durch eine Querschnittsverengung auf Überschallgeschwindigkeit beschleunigt bevor er in den Wirkbereich eintritt.The oscillating fluid flow is preferably accelerated by a cross-sectional constriction to supersonic speed before it enters the effective range.
Eine weitere erfindungsgemässe Vorrichtung zum Behandeln von Fäden, insbesondere zum Verwirbeln von Fäden, umfasst zwei Düsen und einen Fluidoszillator mit einer Oszillierschlaufe und zwei Ausgängen, zwischen welchen der Hauptfluidstrom oszilliert. Die Ausgänge sind dabei mit je einer Fluidzufuhröffnung einer Düse verbunden, sodass der Hauptfluidstrom zwischen den beiden Düsen oszilliert.A further device according to the invention for treating threads, in particular for twisting threads, comprises two nozzles and a fluid oscillator with an oscillating loop and two outlets, between which the main fluid flow oscillates. The outputs are connected to a respective fluid supply opening of a nozzle, so that the main fluid flow oscillates between the two nozzles.
Die Erfindung wird nachstehend anhand von Ausführungsbeispielen und Zeichnungen zum besseren Verständnis erläutert.The invention will be explained below with reference to exemplary embodiments and drawings for better understanding.
Es zeigen:
- Fig. 1:
- Schematische Darstellung einer erfindungsgemässen Vorrichtung.
- Fig. 2:
- Schnitt durch eine Düse mit einer Fluidzufuhröffnung
- Fig. 3:
- Schnitt durch eine erste Ebene entlang einer Längsachse eines erfindungsgemässen Fluidoszillators
- Fig. 4:
- Vergrösserte Ansicht eines Separators
- Fig. 5:
- Vergrösserte Ansicht einer Kante an der Abzweigung einer Oszillierschlaufe.
- Fig. 6:
- Querschnitt senkrecht zur Flussrichtung durch die Hauptleitung und Oszillierschlaufe des Fluidoszillators.
- Fig. 7a:
- Alternative Ausführungsform der Düse mit zwei Fluidzufuhröffnungen welche versetzt in den Garnkanal münden.
- Fig. 7b:
- Alternative Ausführungsform der Düse mit zwei Fluidzufuhröffnungen welche am selben Punkt aus unterschiedlichen Richtungen in den Wirkbereich münden.
- Fig. 7c:
- Alternative Ausführungsform der Düse mit zwei Fluidzufuhröffnungen welche in der Garnkanalachse einander gegenüberliegend in den Wirkbereich münden
- Fig. 7d:
- Alternative Ausführungsform der Vorrichtung mit zwei Düsen und zwei Fluidoszillatoren.
- Fig. 8a:
- Alternative Ausführungsform des Fluidoszillators mit Kopplung zu einem weiteren Fluidoszillator.
- Fig. 8b:
- Alternative Ausführungsform des Fluidoszillators mit externer Anregung durch ein Piezoelement.
- Fig. 8c:
- Alternative Ausführungsform des Fluidoszillators mit einer Oszillierschlaufe.
- Fig. 1:
- Schematic representation of an inventive device.
- Fig. 2:
- Section through a nozzle with a fluid supply opening
- 3:
- Section through a first plane along a longitudinal axis of a fluidic oscillator according to the invention
- 4:
- Enlarged view of a separator
- Fig. 5:
- Enlarged view of an edge at the branch of an oscillating loop.
- Fig. 6:
- Cross section perpendicular to the flow direction through the main line and oscillating loop of the fluidic oscillator.
- Fig. 7a:
- Alternative embodiment of the nozzle with two fluid supply openings which open out into the yarn channel.
- Fig. 7b:
- Alternative embodiment of the nozzle with two fluid supply openings which open at the same point from different directions in the effective range.
- Fig. 7c:
- Alternative embodiment of the nozzle with two fluid supply openings which open in the Garnkanalachse opposite each other in the effective range
- Fig. 7d:
- Alternative embodiment of the device with two nozzles and two fluidic oscillators.
- 8a:
- Alternative embodiment of the fluidic oscillator coupled to another fluidic oscillator.
- 8b:
- Alternative embodiment of the fluidic oscillator with external excitation by a piezoelectric element.
- 8c:
- Alternative embodiment of the fluidic oscillator with an oscillating loop.
Claims (24)
mindestens eine Düse (40, 40') mit einem Garnkanal (43) und einem Wirkbereich (42) im Garnkanal und
mindestens einen Fluidoszillator (2, 2') zum Erzeugen eines oszillierenden Fluidstroms (Fs), welcher als Hauptfluidstrom (HFs) in die Düse (40) eingeleitet wird, dadurch gekennzeichnet, dass
der Fluidoszillator (2) mindestens zwei Oszillierschlaufen (23, 23') hat und/oder eine externe Anregung (50),
sowie zwei Ausgänge (24, 24') aufweist, zwischen welchen ein Fluidstrom (Fs) oszilliert und
dass jeder Ausgang (24) mit einer Fluidzufuhröffnung (41) einer Düse (40) verbunden ist.Device (1) for treating threads, in particular for swirling threads
at least one nozzle (40, 40 ') with a yarn channel (43) and an effective region (42) in the yarn channel and
at least one fluidic oscillator (2, 2 ') for generating an oscillating fluid flow (Fs), which is introduced into the nozzle (40) as the main fluid flow (HFs), characterized in that
the fluidic oscillator (2) has at least two oscillating loops (23, 23 ') and / or an external excitation (50),
and two outputs (24, 24 ') between which a fluid flow (Fs) oscillates and
in that each outlet (24) is connected to a fluid supply opening (41) of a nozzle (40).
wobei der Winkel bevorzugt ein stumpfer Winkel ist.Device (1) according to any one of claims 3 to 5, characterized in that the oscillating loops (23) are inclined at an angle defined by the lower part of the main pipe (26) and the oscillating loop (23) in the direction of flow (F) (26) branches off,
wherein the angle is preferably an obtuse angle.
wobei der oszillierende Fluidstrom (Fs) mittels einer Vorrichtung, insbesondere mit einer Vorrichtung (1) gemäss einem der Ansprüche 1-23, erzeugt wird.Process for treating threads, in particular for twisting threads, comprising the steps:
wherein the oscillating fluid flow (Fs) by means of a device, in particular with a device (1) according to any one of claims 1-23, is generated.
zwei Düsen (40, 40') mit je einem Garnkanal (43) und einem Wirkbereich (42) im Garnkanal und
einen Fluidoszillator (2) zum Erzeugen eines oszillierenden Fluidstroms (Fs), welcher als Hauptfluidstrom (HFs) in die Düse (40) eingeleitet wird, dadurch gekennzeichnet, dass der Fluidoszillator (2) eine Oszillierschlaufe (23)
sowie zwei Ausgänge (24, 24') aufweist, zwischen welchen ein Fluidstrom (Fs) oszilliert und
dass jeder Ausgang (24) mit einer Fluidzufuhröffnung (41) je einer Düse (40,40') verbunden ist.Device (1) for treating threads, in particular for swirling threads
two nozzles (40, 40 ') each having a yarn channel (43) and an effective region (42) in the yarn channel and
a fluidic oscillator (2) for generating an oscillating fluid flow (Fs) which is introduced as the main fluid flow (HFs) into the nozzle (40), characterized in that the fluidic oscillator (2) comprises an oscillating loop (23)
and two outputs (24, 24 ') between which a fluid flow (Fs) oscillates and
in that each outlet (24) is connected to a fluid supply opening (41) of each nozzle (40, 40 ').
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18170364.6A EP3564421A1 (en) | 2018-05-02 | 2018-05-02 | Method and device for treating threads |
EP19716927.9A EP3788193B1 (en) | 2018-05-02 | 2019-04-16 | Method and device for treating threads |
PCT/EP2019/059736 WO2019211092A1 (en) | 2018-05-02 | 2019-04-16 | Device and method for treating yarns |
CN201980029062.6A CN112055765A (en) | 2018-05-02 | 2019-04-16 | Device and method for yarn treatment |
TW108114125A TWI827596B (en) | 2018-05-02 | 2019-04-23 | Device and method for treating threads |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18170364.6A EP3564421A1 (en) | 2018-05-02 | 2018-05-02 | Method and device for treating threads |
Publications (1)
Publication Number | Publication Date |
---|---|
EP3564421A1 true EP3564421A1 (en) | 2019-11-06 |
Family
ID=62104197
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP18170364.6A Withdrawn EP3564421A1 (en) | 2018-05-02 | 2018-05-02 | Method and device for treating threads |
EP19716927.9A Active EP3788193B1 (en) | 2018-05-02 | 2019-04-16 | Method and device for treating threads |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19716927.9A Active EP3788193B1 (en) | 2018-05-02 | 2019-04-16 | Method and device for treating threads |
Country Status (4)
Country | Link |
---|---|
EP (2) | EP3564421A1 (en) |
CN (1) | CN112055765A (en) |
TW (1) | TWI827596B (en) |
WO (1) | WO2019211092A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114016176B (en) * | 2021-12-02 | 2022-09-16 | 南通新源特种纤维有限公司 | Swelling composite wire for clutch facing, preparation method and processing equipment thereof |
DE102022204734B4 (en) | 2022-05-13 | 2024-02-15 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein | Hydraulic switch and hammer drill |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3016066A (en) | 1960-01-22 | 1962-01-09 | Raymond W Warren | Fluid oscillator |
US3158166A (en) * | 1962-08-07 | 1964-11-24 | Raymond W Warren | Negative feedback oscillator |
US3247861A (en) * | 1963-11-20 | 1966-04-26 | Sperry Rand Corp | Fluid device |
US3636601A (en) | 1969-06-23 | 1972-01-25 | Monsanto Co | Regularly tangled compact yarn process |
US3638291A (en) | 1970-10-01 | 1972-02-01 | Du Pont | Yarn-treating jet |
DE2813368A1 (en) | 1977-03-30 | 1978-10-05 | Toray Industries | METHOD AND DEVICE FOR BRAIDING A MULTI-THREAD YARN |
DE2823335A1 (en) | 1978-05-29 | 1979-12-13 | Norddeutsche Faserwerke Gmbh | Filament texturising jet - has additional jets to stabilise filament movement by forming reserve lengths |
WO2010086258A1 (en) | 2009-01-30 | 2010-08-05 | Oerlikon Heberlein Temco Wattwil Ag | Texturing device and method for texturing continuous yarns |
EP2655710B1 (en) | 2010-12-22 | 2014-12-03 | Oerlikon Textile GmbH & Co. KG | Device for producing interlaced knots |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4005505A (en) * | 1975-05-27 | 1977-02-01 | Owens-Corning Fiberglas Corporation | Method of producing a sliver-like fibrous element |
DE102011015689A1 (en) * | 2011-03-31 | 2012-10-04 | Oerlikon Textile Gmbh & Co. Kg | Device for generating turbulences on a multifilament yarn |
-
2018
- 2018-05-02 EP EP18170364.6A patent/EP3564421A1/en not_active Withdrawn
-
2019
- 2019-04-16 WO PCT/EP2019/059736 patent/WO2019211092A1/en unknown
- 2019-04-16 EP EP19716927.9A patent/EP3788193B1/en active Active
- 2019-04-16 CN CN201980029062.6A patent/CN112055765A/en active Pending
- 2019-04-23 TW TW108114125A patent/TWI827596B/en active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3016066A (en) | 1960-01-22 | 1962-01-09 | Raymond W Warren | Fluid oscillator |
US3158166A (en) * | 1962-08-07 | 1964-11-24 | Raymond W Warren | Negative feedback oscillator |
US3247861A (en) * | 1963-11-20 | 1966-04-26 | Sperry Rand Corp | Fluid device |
US3636601A (en) | 1969-06-23 | 1972-01-25 | Monsanto Co | Regularly tangled compact yarn process |
US3638291A (en) | 1970-10-01 | 1972-02-01 | Du Pont | Yarn-treating jet |
DE2813368A1 (en) | 1977-03-30 | 1978-10-05 | Toray Industries | METHOD AND DEVICE FOR BRAIDING A MULTI-THREAD YARN |
DE2823335A1 (en) | 1978-05-29 | 1979-12-13 | Norddeutsche Faserwerke Gmbh | Filament texturising jet - has additional jets to stabilise filament movement by forming reserve lengths |
WO2010086258A1 (en) | 2009-01-30 | 2010-08-05 | Oerlikon Heberlein Temco Wattwil Ag | Texturing device and method for texturing continuous yarns |
EP2655710B1 (en) | 2010-12-22 | 2014-12-03 | Oerlikon Textile GmbH & Co. KG | Device for producing interlaced knots |
Also Published As
Publication number | Publication date |
---|---|
TW201947071A (en) | 2019-12-16 |
TWI827596B (en) | 2024-01-01 |
WO2019211092A1 (en) | 2019-11-07 |
EP3788193A1 (en) | 2021-03-10 |
CN112055765A (en) | 2020-12-08 |
EP3788193B1 (en) | 2024-07-24 |
EP3788193C0 (en) | 2024-07-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1778901B1 (en) | Spindle having an injector channel and method for piecing up the yarn end in an air jet spinning machine | |
EP2391750B2 (en) | Texturing device and method for texturing continuous yarns | |
EP3317546A1 (en) | Fluidic component | |
EP3788193B1 (en) | Method and device for treating threads | |
WO2018197231A1 (en) | Fluidic assembly | |
DE3337847C2 (en) | ||
CH619495A5 (en) | ||
EP1092796A1 (en) | Apparatus for interlacing multifilament yarns | |
DE19703572C2 (en) | Method and device for generating swirl nodes | |
DE4019959C2 (en) | Splice nozzle block and thread splicing process | |
EP0716171B1 (en) | Weft tensioning and detecting device for jet looms | |
EP1842598B1 (en) | Blasting discharge jet | |
DD293276A5 (en) | DEVICE FOR CLEANING SURFACES | |
EP1252379B1 (en) | Method for false twisting filament yarn and a false twist nozzle consisting of several components | |
EP2135980A2 (en) | Filament drawing device | |
DE19947894C1 (en) | Appts to eddy and interlace texturized multifilament yarns has a structured yarn channel in sections in relation to the blower channel to give a stable bond unaffected during weaving/knitting | |
DE3527415A1 (en) | Apparatus for air swirling and for the bulking of multifilament and stable-fibre yarns | |
DE3727262A1 (en) | Apparatus for the swirling of multi-filament yarns | |
DE10008389A1 (en) | Influencing drop spectrum of suspensions comprises adjusting splitting ratio of partial streams divided by nozzles, and adjusting average diameter of drops using valve or pump | |
DE19713377A1 (en) | Nozzle, use of a nozzle, and method of injecting a first fluid into a second fluid | |
WO2021151968A1 (en) | Sliver receiving device and method for forming same | |
WO1989001538A1 (en) | Device for twisting multifilament yarns | |
EP4197643A1 (en) | Nozzle with adjustable beam geometry, nozzle assembly and method for operating a nozzle | |
DE2823335A1 (en) | Filament texturising jet - has additional jets to stabilise filament movement by forming reserve lengths | |
DE3931462A1 (en) | Bundled yarn spinning - has forwards air flow to direct free fibre ends in sliver towards suction zone of pneumatic spinning jet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20200603 |