EP3558645A1 - Sonotrode à canaux de refroidissement non linéaires - Google Patents

Sonotrode à canaux de refroidissement non linéaires

Info

Publication number
EP3558645A1
EP3558645A1 EP17816974.4A EP17816974A EP3558645A1 EP 3558645 A1 EP3558645 A1 EP 3558645A1 EP 17816974 A EP17816974 A EP 17816974A EP 3558645 A1 EP3558645 A1 EP 3558645A1
Authority
EP
European Patent Office
Prior art keywords
sonotrode
conduit
duct
outlet
inner channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP17816974.4A
Other languages
German (de)
English (en)
Inventor
David Tresse
Jérôme Brizin
Stéphane GUILLIER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Plastic Omnium SE
Original Assignee
Plastic Omnium SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Plastic Omnium SE filed Critical Plastic Omnium SE
Publication of EP3558645A1 publication Critical patent/EP3558645A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/08Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/814General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/8141General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined
    • B29C66/81433General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined being toothed, i.e. comprising several teeth or pins, or being patterned
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/818General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the cooling constructional aspects, or by the thermal or electrical insulating or conducting constructional aspects of the welding jaws or of the clamps ; comprising means for compensating for the thermal expansion of the welding jaws or of the clamps
    • B29C66/8181General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the cooling constructional aspects, or by the thermal or electrical insulating or conducting constructional aspects of the welding jaws or of the clamps ; comprising means for compensating for the thermal expansion of the welding jaws or of the clamps characterised by the cooling constructional aspects
    • B29C66/81811General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the cooling constructional aspects, or by the thermal or electrical insulating or conducting constructional aspects of the welding jaws or of the clamps ; comprising means for compensating for the thermal expansion of the welding jaws or of the clamps characterised by the cooling constructional aspects of the welding jaws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/832Reciprocating joining or pressing tools
    • B29C66/8322Joining or pressing tools reciprocating along one axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/812General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the composition, by the structure, by the intensive physical properties or by the optical properties of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps
    • B29C66/8122General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the composition, by the structure, by the intensive physical properties or by the optical properties of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps characterised by the composition of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/814General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/8141General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined
    • B29C66/81411General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined characterised by its cross-section, e.g. transversal or longitudinal, being non-flat
    • B29C66/81415General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined characterised by its cross-section, e.g. transversal or longitudinal, being non-flat being bevelled
    • B29C66/81417General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined characterised by its cross-section, e.g. transversal or longitudinal, being non-flat being bevelled being V-shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/816General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the mounting of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/8167Quick change joining tools or surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/30Vehicles, e.g. ships or aircraft, or body parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/30Vehicles, e.g. ships or aircraft, or body parts thereof
    • B29L2031/3044Bumpers

Definitions

  • the invention relates to the field of welding plastic parts, more specifically motor vehicle parts. More particularly, the invention relates to a sonotrode adapted to perform such welding operations.
  • Motor vehicle parts such as for example a bumper or a floor, comprise a plurality of plastic elements, for example made of a thermoplastic material, fixed to each other by welding.
  • the sonotrode means a device preferably taking elongated form, for example rod-shaped or cylindrical, connected to an ultrasound generator. This sonotrode receives ultrasound from the ultrasound generator, at a frequency generally between 20 kHz and 40 kHz, and restores the vibration energy in its end in contact with the materials to be welded.
  • the sonotrode includes an end for welding two plastic elements in contact with each other.
  • the restitution of the vibratory energy locally causes the excitation of the molecules of the material, releasing energy and causing a rise in temperature to melt the two plastic elements at the contact zone with the sonotrode so to weld the two elements together.
  • After stopping the ultrasound it is necessary to wait until the plastic begins to cool before removing the sonotrode otherwise the quality of the weld will be affected.
  • the large number of elements to be welded to each other on certain parts of a motor vehicle leads to having to perform a large number of welds while respecting a production rate as fast as possible.
  • the repetition of the welds leads to a gradual heating of the sonotrode.
  • the sonotrode has accumulated a certain amount of heat, it is necessary to leave it longer in place at a weld zone. Indeed, in case of withdrawal too fast and especially if the temperature is still high locally, the melt would generate son. This waiting time is detrimental to performance.
  • Another solution envisaged consists in drilling a set of linear holes in the body of the sonotrode in order to create a fluid circuit inside the sonotrode, a circuit supplied with compressed air.
  • a solution for creating a circuit having a complex structure (that is to say composed of non-rectilinear channels) consists in producing a sonotrode in several blocks which are drilled according to different drilling angles and then assembling the different blocks to create the sonotrode.
  • this requires perfect alignment of the different blocks, otherwise it will partially or completely close the fluid circuit.
  • the sonotrode being a device traversed by vibrations, this structure in several blocks can lead to embrittlement of the sonotrode.
  • An object of the invention is to eliminate, or at least to limit substantially all or part of the aforementioned drawbacks.
  • the subject of the invention is a sonotrode for welding two plastic parts, characterized in that the sonotrode is made in one piece, and in that it comprises:
  • the sonotrode comprises at least one fluid circuit extending from the inlet port, through the internal channel and up to the outlet orifice, the internal channel having a non-linear shape capable of optimizing the heat exchange with the fluid flowing through it.
  • a sonotrode comprising a cooling capacity superior to the prior art because the shape of the circuit will allow a better heat exchange between the sonotrode and the cooling fluid and thus generate the cooling of a larger volume of the sonotrode, and also facilitate the creation and maintenance of a turbulent regime of the cooling fluid, which improves the heat exchange and therefore cooling with respect to a laminar flow regime. It is even conceivable that the sonotrode does not heat at all despite the repetition of the welds.
  • this sonotrode is made in a single block, which allows to maintain a solid structure and despite the presence of an internal cooling circuit of a shape capable of generating and maintaining turbulence in the fluid flowing through it.
  • the sonotrode according to the invention may comprise one or more of the following characteristics:
  • the duct is capable of generating and maintaining turbulences in the fluid flowing through it;
  • the conduit has a shape chosen from the double helix form or the lattice form
  • the sonotrode comprises a hollow volume between 5% and 60% of the total volume of the sonotrode, preferably between 8% and 40%, even more preferably between 20% and 34%;
  • the sonotrode comprises an exchange surface area of between 5,000 and 50,000 mm 2 , preferably between 6,500 and 35,000 mm 2 , even more preferentially between 11,000 and 25,000 mm 2 ;
  • the duct is able to be traversed by a gas, preferably air;
  • the sonotrode is produced by additive manufacturing
  • the sonotrode is made of titanium, aluminum or steel, with or without heat treatment.
  • FIG. 1 is a perspective view of a sonotrode according to the invention.
  • FIG. 2 is a perspective view of a duct according to a first embodiment of the invention
  • FIG. 3 is a perspective view of a variant of the duct of FIG. 2;
  • FIGS. 4 and 5 are perspective views of a duct according to a second embodiment of the invention.
  • FIGS. 6 and 7 are perspective views of a duct according to a third embodiment of the invention.
  • FIGs 1 and 2 show a sonotrode 2 comprising a main body 4 and two ends 6 and 8.
  • the sonotrode can be made of metal, for example titanium, aluminum or steel, or in any other material adapted to its function, with or without heat treatment.
  • An upper end 6 of the sonotrode 2 is able to connect the sonotrode with an ultrasound generator.
  • a lower end 8 of the sonotrode 2 is adapted to be in contact with plastic elements to be welded.
  • the lower end 8 may be V or angle allowing the sonotrode to cover the areas to be welded, or, as shown in Figure 2, include several rows (the number may vary) of teeth 10 allowing the sonotrode to pass through the first thickness of plastic material at the areas to be welded.
  • the sonotrode 2 may comprise two ducts 1 2 and 14 forming internal channels for the circulation of a cooling fluid, for example compressed air, inside the sonotrode 2, as shown in FIG. 12 comprises an inlet port 1 6 and an outlet port 18.
  • the conduit 14 comprises an inlet port 20 and an outlet port 22.
  • These orifices can of course be reversed, the orifices 1 8 and 22 becoming orifices inlet and the orifices 16 and 20 becoming outlet orifices. These orifices can lead to the side walls of the main body 4 of the sonotrode 2.
  • the two ducts 1 2 and 14 are wound around each other to form a structure in the form of a double helix, each of the propellers having a pitch identical to the other.
  • This identity of step is visible in FIG. 2, but also in FIG. 3, on which it can be seen that the pitch Pi of the helix 12 is identical to the pitch P 2 of the propeller 14.
  • This identity allows the ducts to be distributed. 1 2 and 14 uniformly over the length of the sonotrode 2.
  • the pitch of the propellers may be different.
  • This double-helix structure makes it possible to distribute the ducts 12 and 14 widely in the volume of the sonotrode, thus generating an exchange surface that can cool a large part of the volume of the sonotrode and this geometry with curvatures also makes it possible to create more easily turbulence in the cooling fluid, for example compressed air, circulating in the conduits 12 and 14.
  • the internal channel may have a diameter smaller than a sonotrode according to the invention.
  • the sonotrode 2 may be, like all the sonotrodes described hereinafter, carried out by three-dimensional printing (3D), a technique allowing to build the sonotrode 2 layer after layers and thus create a sonotrode 2 of a single holding and comprising conduits 12 and 14. These conduits 12 and 14 extend over approximately 70% of the length of the sonotrode 2 and on average 40% of its width.
  • 3D three-dimensional printing
  • the empty volume of the sonotrode 2 is equal to 8,265 mm 3 for a total volume of 100,428 mm 3 , ie a percentage of hollow zones equal to 9% of the total volume of the sonotrode.
  • the heat exchange surface is equal to 6 609 mm 2 .
  • FIG. 3 represents an alternative embodiment of the duct of FIG. 2.
  • the sonotrode according to this variant comprises only one duct 24 forming an internal channel and consequently a single inlet orifice 26 and a single outlet orifice 28.
  • the Conduit 24 forms, like the conduits 12 and 14 of Figure 2, a structure in the form of a double helix.
  • An end loop 30 then replaces the ends of the conduits 12 and 14 opening on the orifices 18 and 22.
  • the empty volume of the sonotrode 2 is equal to 8 869 mm 3 for a total volume of 100 428 mm 3 , ie a percentage of hollow zones equal to 9.7% of the total volume of the sonotrode.
  • the heat exchange surface is equal to 7 093 mm 2 .
  • the channel 24 extends about 70% of the length of the sonotrode 2 and averages over 40% of its width.
  • the sonotrode 2 may comprise a duct 32 forming an internal channel connected to two orifices 36 and 38 for entering and leaving cooling fluid.
  • the conduit 32 comprises a plurality of rectilinear portions 33 extending parallel to each other in a direction parallel to a longitudinal axis A.
  • the portions 33 are located equidistant from each other and form a circle in a parallel cutting plane to a transverse axis B. This arrangement, which may vary from that of Figures 4 and 5, allows to evenly distribute the hollow areas in the sonotrode 2 to optimize the cooling of the latter.
  • the portions 33 are connected to each other via two circular portions 34 located substantially at the openings 36 and 38 and extending in a direction perpendicular to the longitudinal axis A.
  • the fluid circuit extends over approximately 80% of the length of the sonotrode 2 and on average 60% of its width.
  • the empty volume of the sonotrode is equal to 17 259 mm 3 for a total volume of 100 428 mm 3 , ie a percentage of hollow zones equal to 20.8% of the total volume of the sonotrode.
  • the heat exchange surface is itself equal to 11 828 mm 2 .
  • the sonotrode may comprise a trellis-shaped conduit 40 connected to two input and output orifices (not shown), which duct forms an internal diffusion circuit. cooling fluid.
  • the duct 40 comprises a plurality of straight portions 42 extending parallel to each other in a direction parallel to the longitudinal axis A.
  • the portions 42 are located equidistant from one another and form a network having a shape adapted to the region of the sonotrode in which they are located.
  • the portions 42 form a cylindrical network.
  • the portions 42 form a network whose section in a plane parallel to the axis B has the shape of a rectangular parallelepiped.
  • the rectilinear portions 42 are connected to each other via connecting portions 44 extending in directions forming an angle of between 30 ° and 60 °, preferably substantially equal to 45 ° aveda direction in which extend the straight portions 42.
  • the angles formed at the junction between the portions 42 and 44 make it easier to produce the sonotrode in additive manufacturing and also have the advantage of easily generating large turbulences of the cooling fluid flowing through the duct 40 .
  • the duct extends about 80% of the length of the sonotrode 2 and about 80% of its width.
  • the empty volume of the sonotrode 2 is 25 352 mm 3 for a total volume of 100 428 mm 3 , a percentage of hollow zones equal to 33.8% of the total volume of the sonotrode.
  • the heat exchange surface is equal to 19 078 mm 2 .
  • compressed air (or any other coolant) is injected into the sonotrode duct (s) during operation.
  • one or more ducts extending over a length of between 70% and 80% of the length of the sonotrode 2 and over a width of between 40% and 80% of the width of the sonotrode 2 and on the other hand a conduit structure for generating and maintaining turbulence in the fluid flow along its path can effectively cool the sonotrode 2 or even to avoid heating of the latter in operation. This makes it possible to maintain a very high rate of production of plastic parts comprising elements to be welded to each other. other.
  • A longitudinal axis
  • A longitudinal axis

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

L'invention concerne une sonotrode (2) pour soudage de deux pièces en matière plastique, sonotrode réalisée d'un seul tenant et comprenant : - au moins un orifice d'entrée (16, 20, 26; 36; 46), - au moins un orifice de sortie (18, 22, 28; 38; 48), et au moins un conduit (12, 14, 24; 32; 40) formant un canal interne communiquant avec les orifices d'entrée et de sortie de sorte que la sonotrode comprend au moins un circuit de fluide s'étendant depuis l'orifice d'entrée, à travers le canal interne et jusqu'à l'orifice de sortie, le canal interne ayant une forme non linéaire apte à optimiser l'échange thermique avec le fluide le parcourant.

Description

Sonotrode à canaux de refroidissement non linéaires
L'invention concerne le domaine du soudage de pièces en matière plastique, plus précisément de pièces de véhicule automobile. Plus particulièrement, l'invention concerne une sonotrode apte à réaliser de telles opérations de soudage.
Des pièces de véhicule automobile, comme par exemple un pare-chocs ou encore un plancher, comprennent une pluralité d'éléments en matière plastique, par exemple réalisés dans un matériau thermoplastique, fixés les uns aux autres par soudage.
Afin de réaliser ces opérations de soudage, il est possible d'utiliser une sonotrode. On entend par sonotrode un dispositif prenant de préférence de forme allongée, par exemple en forme de tige ou cylindrique, reliée à un générateur d'ultrasons. Cette sonotrode reçoit des ultrasons provenant du générateur d'ultrason, à une fréquence généralement comprise entre 20kHz et 40 kHz, et restitue l'énergie vibratoire dans son extrémité en contact avec les matériaux à souder.
La sonotrode comprend une extrémité lui permettant de souder deux éléments en matière plastique en contact l'un avec l'autre. La restitution de l'énergie vibratoire provoque localement l'excitation des molécules de la matière, dégageant de l'énergie et entraînant une montée en température permettant de faire fondre les deux éléments en matière plastique au niveau de la zone de contact avec la sonotrode afin de souder les deux éléments entre eux. Après arrêt des ultrasons, il est nécessaire d'attendre que la matière plastique commence à refroidir avant de retirer la sonotrode sous peine de nuire à la qualité de la soudure.
Le nombre important d'éléments à souder les uns aux autres sur certaines pièces de véhicule automobile conduit à devoir réaliser un nombre de soudures important tout en respectant une cadence de production la plus rapide possible. Cependant, la répétition des soudures conduit à un échauffement progressif de la sonotrode. Lorsque la sonotrode a accumulé une certaine quantité de chaleur, il est nécessaire de la laisser plus longtemps en place au niveau d'une zone de soudure. En effet, en cas de retrait trop rapide et surtout si la température est encore élevée localement, la matière fondue générerait des fils. Ce temps d'attente nuit au rendement.
II est alors intéressant de mettre en place un dispositif permettant de refroidir la sonotrode et l'empêchant de monter en température.
Il a été proposé dans l'art antérieur d'équiper le dispositif de soudure d'un tube alimenté en air comprimé et orienté vers l'extrémité libre de la sonotrode, c'est-à-dire l'extrémité comprenant la partie qui sera en contact avec la matière à souder.
Cependant, un tel dispositif ne permet qu'un refroidissement local de la sonotrode, au niveau de la sortie de l'air comprimé, avec par conséquent une surface d'échange restreinte. Les régions de la sonotrode n'étant pas reliées au tube alimenté en air comprimé, mais dans lesquelles la chaleur de la matière à souder se diffuse, vont alors subir un échauffement. Cette solution n'a alors qu'un faible intérêt en terme de refroidissement de la sonotrode.
Une autre solution envisagée consiste à percer un ensemble de trous linéaires dans le corps de la sonotrode afin de créer un circuit de fluide à l'intérieur de la sonotrode, circuit alimenté en air comprimé.
Cependant, un tel dispositif comprend plusieurs inconvénients.
Premièrement, il est difficile de forer la sonotrode sur une grande longueur du fait de la difficulté de réalisation de grands forages. De plus, de tels forages peuvent avoir pour conséquence de fragiliser la sonotrode. Enfin, cette méthode ne permet de créer qu'un circuit dont les canaux sont rectilignes. Dans ce cas, soit le circuit est présent uniquement dans une zone limitée de la sonotrode, soit les canaux rectilignes doivent être organisés pour faire un cheminement, avec ajout de bouchons sur certaines ouvertures ce qui complique le maintien de l'étanchéité avec les vibrations. Le refroidissement de la sonotrode n'est alors pas optimal.
Une solution permettant de créer un circuit ayant une structure complexe (c'est-à-dire composée de canaux non rectilignes) consiste à réaliser une sonotrode en plusieurs blocs qui sont forés selon des angles de forage différents puis à assembler les différents blocs pour créer la sonotrode. Cependant cela nécessite de réaliser un alignement parfait des différents blocs sous peine d'obturer partiellement voire totalement le circuit de fluide. De plus, la sonotrode étant un dispositif traversé par des vibrations, cette structure en plusieurs blocs peut conduire à une fragilisation de la sonotrode.
Un but de l'invention est de supprimer, ou tout au moins, de limiter notablement tout ou partie des inconvénients précités.
Dans ce but, l'invention a pour objet une sonotrode pour soudage de deux pièces en matière plastique caractérisé en ce que la sonotrode est réalisée d'un seul tenant, et en ce qu'elle comprend :
- au moins un orifice d'entrée,
- au moins un orifice de sortie, et
au moins un conduit formant un canal interne communiquant avec les orifices d'entrée et de sortie de sorte que la sonotrode comprend au moins un circuit de fluide s'étendant depuis l'orifice d'entrée, à travers le canal interne et jusqu'à l'orifice de sortie, le canal interne ayant une forme non linéaire apte à optimiser l'échange thermique avec le fluide le parcourant.
Ainsi, on obtient une sonotrode comprenant une capacité de refroidissement supérieure à l'art antérieur du fait que la forme du circuit va permettre un meilleur échange thermique entre la sonotrode et le fluide de refroidissement et ainsi engendrer le refroidissement d'un plus grand volume de la sonotrode, et aussi facilitera la création et le maintien d'un régime turbulent du fluide de refroidissement, ce qui améliore les échanges thermiques et donc le refroidissement par rapport à un régime d'écoulement laminaire. Il est même envisageable que la sonotrode ne chauffe pas du tout malgré la répétition des soudures.
De plus, cette sonotrode est réalisée en un seul bloc, ce qui permet de conserver une structure solide et ce malgré la présence d'un circuit de refroidissement interne d'une forme apte à générer et maintenir des turbulences dans le fluide le parcourant.
Optionnellement, la sonotrode selon l'invention peut comprendre une ou plusieurs des caractéristiques suivantes :
- le conduit est apte à générer et maintenir des turbulences au niveau du fluide le parcourant ;
- le conduit a une forme choisie parmi la forme en double-hélice ou la forme en treillis ;
- la sonotrode comprend un volume creux compris entre 5% et 60% du volume total de la sonotrode, préférentiellement entre 8% et 40%, encore plus préférentiellement entre 20% et 34% ;
- la sonotrode comprend une surface d'échange comprise entre 5 000 et 50 000 mm2, préférentiellement entre 6 500 et 35 000 mm2, encore plus préférentiellement entre 11 000 et 25 000 mm2 ;
- le conduit est apte à être traversé par un gaz, de préférence de l'air ;
- la sonotrode est réalisée par fabrication additive, et ;
- la sonotrode est réalisée en titane, aluminium ou acier, avec ou sans traitement thermique.
Nous allons maintenant présenter trois modes de réalisation de l'invention à l'appui des figures annexées, pour les mêmes dimensions extérieures de sonotrode, qui sont fournies à titre d'exemples et ne présentent aucun caractère limitatif, dans lesquelles :
- la figure 1 est une vue en perspective d'une sonotrode selon l'invention ;
- la figure 2 est une vue en perspective d'un conduit selon un premier mode de réalisation de l'invention;
- les figures 3 est une vue en perspective d'une variante du conduit de la figure 2 ;
- les figures 4 et 5 sont des vues en perspective d'un conduit selon un second mode de réalisation de l'invention, et ;
- les figures 6 et 7 sont des vues en perspective d'un conduit selon un troisième mode de réalisation de l'invention ;
On se réfère maintenant aux figures 1 et 2 qui représentent une sonotrode 2 comprenant un corps principal 4 et deux extrémités 6 et 8. La sonotrode peut être réalisée en métal, par exemple en titane, aluminium ou acier, ou dans toute autre matériau adapté à sa fonction, avec ou sans traitement thermique.
Une extrémité supérieure 6 de la sonotrode 2 est apte à relier la sonotrode avec un générateur d'ultrasons. Une extrémité inférieure 8 de la sonotrode 2 est apte à être en contact avec des éléments en matière plastique à souder. Pour cela, l'extrémité inférieure 8 peut être en V ou en cornière permettant à la sonotrode de recouvrir les zones à souder, ou bien, comme cela est représentée à la figure 2, comprendre plusieurs rangées (dont le nombre peut varier) de dents 10 permettant à la sonotrode de traverser la première épaisseur de matière plastique au niveau des zones à souder.
La sonotrode 2 peut comprendre deux conduits 1 2 et 14 formant canaux internes permettant la circulation d'un fluide de refroidissement, par exemple de l'air comprimé, à l'intérieur de la sonotrode 2, comme illustré sur la figure 2. Le conduit 12 comprend un orifice d'entrée 1 6 et un orifice de sortie 18. Le conduit 14 comprend un orifice d'entrée 20 et un orifice de sortie 22. Ces orifices peuvent évidemment être inversés, les orifices 1 8 et 22 devenant des orifices d'entrée et les orifices 16 et 20 devenant des orifices de sortie. Ces orifices peuvent déboucher sur les parois latérales du corps principal 4 de la sonotrode 2.
Les deux conduits 1 2 et 14 sont enroulés l'un autour de l'autre afin de former une structure en forme de double-hélice, chacune des hélices ayant un pas identique à l'autre. Cette identité de pas est visible sur la figure 2, mais également sur la figure 3, sur laquelle on voit que le pas Pi de l'hélice 12 est identique au pas P2 de l'hélice 14. Cette identité permet de répartir les conduits 1 2 et 14 uniformément sur la longueur de la sonotrode 2. Les pas des hélices peuvent être différents. Cette structure en double-hélice permet de répartir largement les conduits 12 et 14 dans le volume de la sonotrode, engendrant ainsi une surface d'échange qui peut refroidir une grande partie du volume de la sonotrode et cette géométrie avec des courbures permet aussi de créer plus facilement des turbulences dans le fluide de refroidissement, par exemple l'air comprimé, circulant dans les conduits 12 et 14. De plus, pour un même débit de fluide, le canal interne peut avoir un diamètre plus petit qu'une sonotrode selon l'art antérieur (dans l'art antérieur le diamètre minimal est imposé par la contrainte de devoir forer profondément, i.e. avec un foret d'un diamètre suffisamment important) et le régime d'écoulement est par conséquent plus facilement turbulent.
Afin de pouvoir réaliser une sonotrode 2 comprenant des canaux ayant la structure illustrée à la figure 2, la sonotrode 2 peut être, à l'instar de toutes les sonotrodes décrites ci-après, réalisée par impression en trois dimension (3D), technique permettant de construire la sonotrode 2 couche après couches et ainsi créer une sonotrode 2 d'un seul tenant et comprenant les conduits 12 et 14. Ces conduits 12 et 14 s'étendent sur environ 70% de la longueur de la sonotrode 2 et en moyenne 40% de sa largeur.
Dans ce mode de réalisation, le volume vide de la sonotrode 2 est égal à 8 265 mm3 pour un volume total de 100 428 mm3, soit un pourcentage de zones creuses égal à 9% du volume total de la sonotrode. La surface d'échange thermique est quant à elle égale à 6 609 mm2.
La figure 3 représente une variante de réalisation du conduit de la figure 2. La sonotrode selon cette variante ne comprend qu'un seul conduit 24 formant canal interne et par conséquent un seul orifice d'entrée 26 et un seul orifice de sortie 28. Le conduit 24 forme, à l'instar des conduits 12 et 14 de la figure 2, une structure en forme de double hélice. Une boucle terminale 30 remplace alors les extrémités des conduits 12 et 14 débouchant sur les orifices 18 et 22.
Dans cette variante de réalisation, le volume vide de la sonotrode 2 est égal à 8 869 mm3 pour un volume total de 100 428 mm3, soit un pourcentage de zones creuses égal à 9,7% du volume total de la sonotrode. La surface d'échange thermique est quant à elle égale à 7 093 mm2.
Le canal 24 s'étend sur environ 70% de la longueur de la sonotrode 2 et en moyenne sur 40% de sa largeur.
Dans ce qui va suivre, on décrira deux autres modes de réalisation de l'invention en se référant aux figures 4 à 7. Sur ces figures, les éléments analogues à ceux des figures précédentes sont désignés par des références numériques identiques.
Dans un second mode de réalisation illustré aux figures 4 et 5, la sonotrode 2 peut comprendre un conduit 32 formant un canal interne relié à deux orifices 36 et 38 d'entrée et de sortie de fluide de refroidissement.
Le conduit 32 comprend une pluralité de portions rectilignes 33 s'étendant parallèlement les unes aux autres dans une direction parallèle à un axe longitudinal A. Les portions 33 sont situées à égale distance les unes des autres et forment un cercle dans un plan de coupe parallèle à un axe transversal B. Cette disposition, qui peut varier par rapport à celle des figures 4 et 5, permet de répartir uniformément les zones creuses dans la sonotrode 2 afin d'optimiser le refroidissement de cette dernière. Les portions 33 sont reliées les unes aux autres par l'intermédiaire de deux portions circulaires 34 situées sensiblement au niveau des orifices 36 et 38 et s'étendant dans une direction perpendiculaire à l'axe longitudinal A. Le circuit de fluide s'étend sur environ 80% de la longueur de la sonotrode 2 et en moyenne sur 60% de sa largeur.
Dans ce mode de réalisation, le volume vide de la sonotrode est égal à 17 259 mm3 pour un volume total de 100 428 mm3, soit un pourcentage de zones creuses égal à 20,8% du volume total de la sonotrode. La surface d'échange thermique est quant à elle égale à 11 828 mm2.
Dans un troisième mode de réalisation de l'invention illustré aux figures 6 et 7, la sonotrode peut comprendre un conduit 40 en forme treillis relié à deux orifices d'entrée et de sortie (non représentés), conduit formant un circuit interne de diffusion de fluide de refroidissement.
A l'instar du conduit 32, le conduit 40 comprend une pluralité de portions rectilignes 42 s'étendant parallèlement les unes aux autres dans une direction parallèle à l'axe longitudinal A. Les portions 42 sont situées à égale distance les unes des autres et forment un réseau ayant une forme adaptée à la région de la sonotrode dans laquelle ils sont situés. Par exemple, dans la partie supérieure de la sonotrode proche de l'extrémité 6, les portions 42 forment un réseau de forme cylindrique. Dans la partie inférieure de la sonotrode proche de l'extrémité 8, les portions 42 forment un réseau dont la section dans un plan parallèle à l'axe B a la forme d'un parallélépipède rectangle. Cette disposition, qui peut varier par rapport à celle des figures 6 et 7, permet de répartir uniformément les zones creuses dans la sonotrode 2 afin d'optimiser le refroidissement de cette dernière.
Les portions rectilignes 42 sont reliées les unes aux autres par l'intermédiaire de portions de liaison 44 s'étendant dans des directions formant un angle compris entre 30° et 60° , de préférence sensiblement égal à 45° aveda direction dans laquelle s'étendent les portions rectilignes 42. Les angles formés au niveau de la jonction entre les portions 42 et 44 permettent de produire plus facilement la sonotrode en fabrication additive et présentent aussi l'avantage de générer plus facilement de grandes turbulences du fluide de refroidissement parcourant le conduit 40.
Dans ce mode de réalisation, le conduit s'étend sur environ 80% de la longueur de la sonotrode 2 et environ 80% de sa largeur.
Dans ce mode de réalisation, le volume vide de la sonotrode 2 est égal à 25 352 mm3 pour un volume total de 100 428 mm3, soit un pourcentage de zones creuses égal à 33,8% du volume total de la sonotrode. La surface d'échange thermique est quant à elle égale à 19 078 mm2.
En fonctionnement, de l'air comprimé (ou tout autre fluide de refroidissement) est injecté dans le ou les conduits de la sonotrode lors de son fonctionnement. Le fait d'avoir d'une part un ou des conduits s'étendant sur une longueur comprise entre 70% et 80% de la longueur de la sonotrode 2 et sur une largeur comprise entre 40% et 80% de la largeur de la sonotrode 2 et d'autre part une structure de conduit permettant de générer et de maintenir des turbulences dans le flux de fluide le long de son parcours permet de refroidir efficacement la sonotrode 2 voire d'éviter un échauffement de cette dernière en fonctionnement. Cela permet de maintenir une cadence très élevée concernant la fabrication de pièce en matière plastique comprenant des éléments à souder les uns aux autres.
L'invention n'est pas limitée aux modes de réalisation présentés et d'autres modes de réalisation apparaîtront clairement à l'homme du métier.
Il est par exemple envisageable d'avoir des formes de conduit différentes de celles décrites ci-dessus tout en conservant des propriétés de refroidissement similaires.
Nomenclature
1 er mode de réalisation
2 : sonotrode
4 : corps principal
6 : extrémité supérieure
8 : extrémité inférieure
10 : dents
12 : 1 er conduit
14 : 2ème conduit
16 : 1 er orifice du 1 er conduit
18 : 2ème orifice du premier conduit
20 : 1 er orifice du 2ème conduit
22 : 2ème orifice du 2ème conduit
24 : conduit unique
26 : 1 er orifice du conduit unique
28 : 2ème orifice du conduit unique
30 : boucle terminale
Pi : pas du conduit 12
P2 : pas du conduit 14
2ème mode de réalisation
32 : conduit
33 : portions rectilignes
34 : portions circulaires
36 : 1 er orifice du conduit
38 : 2ème orifice du conduit
A : axe longitudinal
B : axe transversal
3ème mode de réalisation
40 : conduit
42 : portions rectilignes
44 : portions de liaison
A : axe longitudinal
B : axe transversal

Claims

Revendications
Sonotrode (2) pour soudage de deux pièces en matière plastique caractérisé en ce que la sonotrode est réalisée d'un seul tenant, et en ce qu'elle comprend :
- au moins un orifice d'entrée (16, 20, 26 ; 36 ; 46),
- au moins un orifice de sortie (18, 22, 28 ; 38 ; 48), et
au moins un conduit (12, 14, 24 ; 32 ; 40) formant un canal interne communiquant avec les orifices d'entrée et de sortie de sorte que la sonotrode comprend au moins un circuit de fluide s'étendant depuis l'orifice d'entrée, à travers le canal interne et jusqu'à l'orifice de sortie, le canal interne ayant une forme non linéaire apte à optimiser l'échange thermique avec le fluide le parcourant.
Sonotrode (2) selon la revendication 1 , dans laquelle le conduit (12, 14, 24 ; 32 ; 480) est apte à générer et maintenir des turbulences au niveau du fluide le parcourant.
Sonotrode (2) selon l'une quelconque des revendications précédentes, dans laquelle le conduit (12, 14, 24 ; 40) a une forme choisie parmi la forme en double- hélice ou la forme en treillis.
Sonotrode (2) selon l'une quelconque des revendications précédentes, comprenant un volume creux compris entre 5% et 60% du volume total de la sonotrode, préférentiellement entre 8% et 40%, encore plus préférentiellement entre 20% et 34%.
Sonotrode (2) selon l'une quelconque des revendications précédentes comprenant une surface d'échange comprise entre 5 000 et 50 000 mm2, préférentiellement entre 6 500 et 35 000 mm2, encore plus préférentiellement entre 11 000 et 25 000 mm2.
Sonotrode (2) selon l'une quelconque des revendications précédentes, dans lequel le conduit (12, 14, 24 ; 32 ; 40) est apte à être traversé par un gaz, de préférence de l'air.
Sonotrode (2) selon l'une quelconque des revendications précédentes, la sonotrode étant réalisée par fabrication additive.
Sonotrode (2) selon l'une quelconque des revendications précédentes, la sonotrode étant réalisée en titane, aluminium ou acier, avec ou sans traitement thermique.
EP17816974.4A 2016-12-22 2017-12-04 Sonotrode à canaux de refroidissement non linéaires Withdrawn EP3558645A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1663174A FR3061063A1 (fr) 2016-12-22 2016-12-22 Sonotrode a canaux de refroidissement non lineaires
PCT/FR2017/053363 WO2018115619A1 (fr) 2016-12-22 2017-12-04 Sonotrode à canaux de refroidissement non linéaires

Publications (1)

Publication Number Publication Date
EP3558645A1 true EP3558645A1 (fr) 2019-10-30

Family

ID=58737656

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17816974.4A Withdrawn EP3558645A1 (fr) 2016-12-22 2017-12-04 Sonotrode à canaux de refroidissement non linéaires

Country Status (4)

Country Link
EP (1) EP3558645A1 (fr)
FR (1) FR3061063A1 (fr)
MA (1) MA47065A (fr)
WO (1) WO2018115619A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020006062A1 (fr) * 2018-06-26 2020-01-02 Db Sonics, Inc. Sonotrode et procédé de fabrication

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB952042A (en) * 1961-12-29 1964-03-11 Cho Onpa Kogyo Kabushiki Kaish Improvements in or relating to plastics bonding apparatus utilizing ultrasonic vibration
GB1200305A (en) * 1966-11-24 1970-07-29 Grace W R & Co Improvements relating to the shaping of thermoplastic materials
JPH11129331A (ja) * 1997-10-31 1999-05-18 Sekisui Chem Co Ltd 超音波接合方法
DE10250741B4 (de) * 2002-10-31 2004-08-26 Kunststoff-Zentrum in Leipzig gemeinnützige Gesellschaft mbH Beheiztes Schwingwerkzeug zum Einsatz in schwingenden Systemen
DE102008029769A1 (de) * 2008-06-25 2009-12-31 Sonotronic Nagel Gmbh Sonotrodenwerkzeug mit Kühleinrichtung

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020006062A1 (fr) * 2018-06-26 2020-01-02 Db Sonics, Inc. Sonotrode et procédé de fabrication

Also Published As

Publication number Publication date
MA47065A (fr) 2019-10-30
FR3061063A1 (fr) 2018-06-29
WO2018115619A1 (fr) 2018-06-28

Similar Documents

Publication Publication Date Title
EP1012522B1 (fr) Echangeur de chaleur, et faisceau d'echange de chaleur, ainsi que procedes de soudage et de realisation s'y rapportant
EP2601429B1 (fr) Manchon tubulaire de jonction en matiere plastique pour conduite comportant un chemisage interne
EP3445949B1 (fr) Dispositif de refroidissement par jets d'air d'un carter de turbine
EP0565397A1 (fr) Filet formant résistance, son application au soudage de tubes aboutés et au raccordement transversal de canalisations, ensembles ainsi et prise de branchement électrosoudable ainsi équipée
EP3352968B1 (fr) Methode d'assemblage d'un manchon tubulaire de jonction et d'un tube de chemisage de conduite par soudage laser
WO2018115619A1 (fr) Sonotrode à canaux de refroidissement non linéaires
EP3365591B1 (fr) Procédé d'assemblage d'une conduite rigide et conduite associée
FR2938782A1 (fr) Dispositif de soudage a double epaulement
EP3080503B1 (fr) Bande composite, et procédés pour former une jonction entre deux conduites
EP3443131B1 (fr) Nez de lance de soufflage
FR2992716A1 (fr) Structure poreuse pour fluide incorporant un conduit
EP3443132B1 (fr) Nez de lance de soufflage
FR2962493A1 (fr) Chambre de propulsion de moteur-fusee et procede de fabrication d'une telle chambre
EP3847342B1 (fr) Boîtier d'alimentation en air sous pression d'un dispositif de refroidissement par jets d'air
WO2011048323A2 (fr) Dispositif d'absorption acoustique
WO2022248315A1 (fr) Appareil de chauffage pour réaliser une activation thermique localisée d'une pièce composite
FR2679468A1 (fr) Buse engendrant un jet a ecoulement en regime laminaire.
FR2927988A1 (fr) Couvercle pour boitier de distribution d'un echangeur de chaleur a tubes, boitier de distribution comprenant un tel couvercle et echangeur de chaleur comprenant un tel boitier de distribution
FR3106157A1 (fr) Composant de turbomachine comportant des orifices de refroidissement ameliores
WO2014096689A1 (fr) Dispositif de génération de glace, en particulier sous forme d'écailles, mettant en œuvre un échangeur cylindrique à double paroi présentant une pluralité de liaisons
FR3141553A1 (fr) Panneau d’attenuation acoustique optimise pour une turbomachine d’aeronef
FR3100570A1 (fr) Panneau structural et/ou acoustique comprenant une bride de fermeture en U orientée vers l’intérieur du panneau, et procédé de fabrication d’un tel panneau
OA18571A (fr) Méthode d'assemblage d'un manchon tubulaire de jonction et d'un tube de chemisage de conduite par soudage laser.
FR2916833A1 (fr) Rampe d'alimentation en carburant d'une chambre de combustion de turbomachine et son procede de fabrication.
FR2818568A1 (fr) Tete de soudage a l'arc electrique avec metal d'apport et procede de soudage de deux pieces utilisant la tete de soudage

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190710

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
RAV Requested validation state of the european patent: fee paid

Extension state: MA

Effective date: 20190710

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20200713