EP3555666A1 - Method and device for ascertaining a navigation position of a navigation system for a motor vehicle, and navigation system - Google Patents

Method and device for ascertaining a navigation position of a navigation system for a motor vehicle, and navigation system

Info

Publication number
EP3555666A1
EP3555666A1 EP17811957.4A EP17811957A EP3555666A1 EP 3555666 A1 EP3555666 A1 EP 3555666A1 EP 17811957 A EP17811957 A EP 17811957A EP 3555666 A1 EP3555666 A1 EP 3555666A1
Authority
EP
European Patent Office
Prior art keywords
navigation
data
determining
inertial
determined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP17811957.4A
Other languages
German (de)
French (fr)
Inventor
Karsten Mattmüller
Helmut Schmidt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Continental Automotive Technologies GmbH
Original Assignee
Continental Automotive GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive GmbH filed Critical Continental Automotive GmbH
Publication of EP3555666A1 publication Critical patent/EP3555666A1/en
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/40Correcting position, velocity or attitude
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/20Integrity monitoring, fault detection or fault isolation of space segment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/396Determining accuracy or reliability of position or pseudorange measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/421Determining position by combining or switching between position solutions or signals derived from different satellite radio beacon positioning systems; by combining or switching between position solutions or signals derived from different modes of operation in a single system
    • G01S19/423Determining position by combining or switching between position solutions or signals derived from different satellite radio beacon positioning systems; by combining or switching between position solutions or signals derived from different modes of operation in a single system by combining or switching between position solutions derived from different satellite radio beacon positioning systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/421Determining position by combining or switching between position solutions or signals derived from different satellite radio beacon positioning systems; by combining or switching between position solutions or signals derived from different modes of operation in a single system
    • G01S19/426Determining position by combining or switching between position solutions or signals derived from different satellite radio beacon positioning systems; by combining or switching between position solutions or signals derived from different modes of operation in a single system by combining or switching between position solutions or signals derived from different modes of operation in a single system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/48Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system
    • G01S19/49Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system whereby the further system is an inertial position system, e.g. loosely-coupled
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/40Correcting position, velocity or attitude
    • G01S19/41Differential correction, e.g. DGPS [differential GPS]

Definitions

  • the invention relates to a method and a corresponding device for determining a navigation position of a navigation system for a motor vehicle, which in particular enables a so-called high-precision positioning with an accuracy of less than 3 m.
  • the invention further relates to a navigation system for a motor vehicle, which allows an accuracy of less than 3 m in determining the position.
  • GNSS global navigation satellite systems
  • GPS Global Positioning System
  • Glonass Glonass
  • Beidou Beidou
  • Galileo Galileo
  • further such systems may be provided which are used for position determination and navigation by receiving signals from navigation satellites and associated ground stations.
  • navigation satellite systems are used to determine the position of the motor vehicle and to determine a route to a given destination using a navigation system ⁇ .
  • a navigation satellite system Conventionally, by means of a navigation satellite system, an accuracy of 3 m or more can be achieved in the position determination.
  • the invention is characterized according to aspects by a method and a corresponding device for determining a navigation position of a navigation system for a motor vehicle.
  • respective position data of a plurality of mutually different navigation satellite systems are received.
  • position data are received from all available navigation satellite systems, ie GPS, Galileo, Glonass and Beidou.
  • a respective position of the navigation system is determined as a function of the position data.
  • a deviation of the respective positions is determined.
  • the navigation position is determined as a function of the respective positions if the deviation is smaller than a predetermined threshold value for the
  • Deviation is, for example, the deviation should be less than 5%.
  • the navigation position is in particular the value which is used by the navigation system for further subsequent calculations, for example for navigation and / or position determination.
  • An inertial position of the navigation system is determined by means of an inertial measuring unit.
  • a second deviation between the inertial position and at least one of the positions determined as a function of the position data is determined.
  • the navigation position is determined a position in response to the at least when the second differential is less than a predetermined threshold value for the second Ab ⁇ deviation, for example, the deviation should be less than 5%.
  • the inertial measuring unit is in particular a measuring unit independent of navigation satellite systems.
  • Respective correction data for the plurality of navigation satellite systems is received.
  • the navigation position is determined as a function of the received correction data.
  • the correction data is provided in particular by data providers.
  • Navigation system is dependent on the certified
  • data is encrypted and has high accuracy and reliability.
  • Probability also corresponds to the actual position of the navigation device.
  • a highly accurate position is a position with an accuracy of at most 3 m, in particular less than 1 m, for example, an accuracy of 30 cm or less. In conventional receivers for global navigation satellite systems, it is possible to determine such highly accurate positions. These positions are not secured and not reliable enough to be used for a motor vehicle. By means of the method according to the application, it is possible to secure the determined positions and to use them to determine the navigation position only if the determined positions have been validated accordingly.
  • the combination of different monitoring mechanisms for the validation of the determined position allows a high reliability in the determination of the navigation position.
  • the different levels of contribution to determining the high-accuracy navigation position will be different Associated with monitoring methods.
  • a sufficiently good system security is given, so that the highly accurate navigation ⁇ onspositionen can be reliably used.
  • the navigation position for automated driving in addition to conventional navigation applications.
  • a track determination for the motor vehicle is possible by means of the highly accurate navigation position.
  • the high-precision navigation position is possible in particular even with poor reception from the satellites, for example in the case of buildings or trees or other disturbances caused, for example, by the ionosphere, with sufficiently high accuracy.
  • a method of monitoring includes determining the position of the navigation system, depending on the ver ⁇ different available global navigation satellite systems. An individual position is determined by means of each navigation satellite system. All possible pairings are compared and the respective deviations in the determined positions are determined. All
  • Deviations are now checked as to whether one of the ⁇ passed threshold value is exceeded for the deviation. If this is the case, all Navigationssa ⁇ tellitensysteme used function normally and the respective determined positions are used to determine the navigation position.
  • Another method is to check the plausibility of the movement by means of the inertial measuring unit.
  • an expectation window is determined for the next position to be determined.
  • the expectation window is specified in particular around the inertial position.
  • the expectation window by means of already known However, this method is not used here to calculate a position in the event of satellite navigation failure, but to determine in advance an area in which the next determined position should lie. If the determined position in the expectation window, the determined position is validated and used for the determination of Na ⁇ vigationsposition.
  • correction data is received by a correction service.
  • the correction service provides information about the status of each satellite of the navigation satellite systems. Ins ⁇ particular this includes fixes for the present in the satellite clock and / or corrections to the trajectory data of the respective satellites.
  • several correction services are used, both to increase the reliability of the Cor ⁇ rektur schemes and each to validate the correction data of another correction service.
  • Another method is the adjustment by means of a certifi ⁇ ed position.
  • the certified position data are made available, for example, with the aid of the PRS band of the Galileo navigation satellite system by means of a data provider.
  • the certified position data has a higher accuracy than the normal position data.
  • the certified position is determined at specific operating conditions, for example when the system is started up and subsequently at variable times, in order to be able to use the certified position ensured by the public services as an absolutely exact reference. For example, this makes it possible to compensate for customary sensor drives.
  • navigation satellite system receivers with a standard accuracy can be individually checked cyclically independently. This test is performed, for example, at intervals of several minutes distance. Thus, it is possible to ensure that the determined position within a given deviation from the certified position.
  • ⁇ telt in verifying the integrity of each navigation satellite systems always whether a navigation satellite systems is involved, when a deviation of each of two positions is greater than the predetermined threshold value for the deviation. If this is the case, it can be assumed that this one navigation satellite system is faulty. Consequently, the position data of this navigation satellite system is not used for determining the navigation position. Alternatively or additionally, a determined navigation position
  • the navigation position is determined without the position data of the navigation satellite system whose position data ⁇ have led to the determined position, which lies outside the expected window to the inertial position.
  • the expectation window is determined for each possible combination.
  • the reliability can be further increased.
  • a navigation system for a motor vehicle for determining a navigation position has a plurality of receivers for receiving respective position data of a plurality of mutually different navigation satellite systems.
  • An inertial measuring unit for determining an inertial position of the navigation system is provided.
  • the navigation system points at least one receiving unit for receiving correction data.
  • the navigation system has a further receiving unit for receiving certified position data.
  • the navigation system comprises a device signally coupled to the plurality of receivers, the inertial measurement unit, the receiver unit and the further receiver unit, the device is designed, depending on the Po ⁇ sitions stylist, the inertial position of the correction data and the certified Position data to determine the navigation position.
  • the device is designed to carry out the method according to the application.
  • the navigation device is designed to perform a method according to the application.
  • the method according to the application can be carried out in particular by the navigation device.
  • the advantages and features of the method described apply correspondingly for the navigation system ⁇ and vice versa. Further advantages, features and developments emerge from the following, explained in conjunction with Figures 1 and 2 examples.
  • Figure 1 is a schematic representation of a navigation ⁇ system according to an embodiment
  • Figure 2 is a schematic representation of a method according to an embodiment.
  • FIG. 1 shows a navigation system 100, in particular the navigation system 100 of a motor vehicle.
  • a navigation position determined by means of the navigation system 100 is used in particular for the navigation of the motor vehicle and for an autonomized driving of the motor vehicle.
  • the navigation position which by means of the Navigation system 100 has been determined, so accurate that the motor vehicle can be assigned on the lane of a lane.
  • the accuracy is in particular at least 1 m and in particular better than 30 cm.
  • An antenna 102 for receiving the position data of a plurality of mutually different navigation satellite systems is provided.
  • the antenna 102 is adapted to receive position data of the known navigation satellite systems GPS, Galileo, Glonass and Beidu.
  • a splitter 114 in particular a GNSS splitter, is arranged downstream of the antenna 102.
  • filters 115, 116 and 117 are provided.
  • the filter 115 is for example a L1 / B2 / E5 filter that filters the entspre ⁇ sponding frequencies.
  • the filter 116 is, for example, a Ll / Bl filter.
  • the filter 117 is, for example, a so-called multi-constellation filter.
  • a receiver 108 to 111 is provided.
  • the receiver 108 is a GPS receiver
  • the receiver 109 is a Glonass receiver
  • the receiver 110 is a Galileo receiver
  • the receiver 111 is a Beidu receiver.
  • the navigation system 100 has a high-precision inertial measurement unit 105 with six degrees of freedom. There may be provided further inertial measuring units 106, which are also used in conventional motor vehicles. For example, information of an information unit 118 for determining the navigation position is also used, which includes, for example, information about the speed of the motor vehicle and / or other information that can be used to ascertain and check the plausibility of the navigation position.
  • a telematics control unit 104 is provided, the data from
  • Data providers 101 and 107 can receive.
  • the data provider 101 supplies, for example, certified position data. That one- For example, provider 107 provides correction data for the respective navigation satellite systems.
  • the navigation system 100 has a device 200 with a processor 103.
  • the device 100 is set up to process data of the various elements of the navigation system and other input variables and to determine the navigation position.
  • the device 200 has different hardware and software modules. Different functions of the navigation system according to the application can be implemented in hardware and / or software of the device 200.
  • a receiving unit 112 is realized as software in the device 200, which further processes the correction data and certified position data of the data providers 101 and 107.
  • the navigation system has a further receiving unit 113, which can also receive and process further certified position data directly from the navigation satellite system, in particular from Galileo.
  • step 201 position data are respectively received by the available navigation satellite systems.
  • the device 200 determines a respective position by means of the received position data.
  • an individual position for the navigation system is determined by means of each available navigation satellite system.
  • step 203 all possible pairings of the determined positions are compared and the respective deviations within the pairings are determined. Will be there determines that the position, which always deviates more than a predetermined threshold from the other positions by means of position data of a particular navigation satellite system, is based on an error in the position determination by means of this particular navigation satellite system.
  • the device 200 determines in step 204, the navigation ⁇ gationsposition in function of the other determined positions and independently of the determined position of the certain navigation satellite system. For example, an average of the determined positions is determined and determined as a navigation position for further use.
  • step 205 it is determined whether a navigation position has already been used as a function of a determined position of the particular navigation satellite system. If this is the case, this navigation position is invalidated. Thus, the device 200 determines a highly accurate Navigationspo ⁇ sition with the additional information, whether these highly accurate navigation position is reliable enough to be used.
  • the positions determined in step 202 are plausibilized in a step 206 with the values of the inertial measurement unit 105 and possibly additionally the second inertial measurement units 106. If detected positions deviate more than a predefined threshold value from the inertial positions determined by means of the inertial measurement unit 105, these determined positions are not used to determine the navigation position. Alternatively or additionally, it is checked whether a navigation position has already been determined as a function of this determined position. If this is the case, this navigation position is invalidated. Thus, it is possible to plausibilize and validate the navigation position determined by the device 200 also by means of a satellite-independent system.
  • correction data of a plurality of mutually different correction services 107 are received in a step 207 and included in the calculation of the navigation position or the individual determined positions of the navigation satellite systems.
  • the certified positional data of the PRS belt (E5) of the Galileo Navigationssa ⁇ tellitensystems be used.
  • the data are used directly by means of the further receiver unit 113 and via one or more of the data provider 101.
  • the verification of the ER mediated reckoning position with the certified position is in particular not for each identified navigation ⁇ position, but in regular or irregular intervals of, say, several minutes. In particular, at startup, a reliable reference position is thus determined, which is ensured that it lies within a predetermined frame and the actual position.
  • the highly accurate and reliable navigation position is determined from all variables determined by means of the steps 201 to 208, which will then be passed on to other systems of the motor vehicle, for example for calculating a route or for controlling an automated driving.
  • the apparatus 200 is thus arranged to detect the navigation ⁇ position with an accuracy of less than 1 m to the actual position around.
  • the high-precision intertial measurement unit 105 and the highly accurate navigation satellite systems and the correction services ver ⁇ applies.
  • the device 200 is set up to check the integrity of the determined navigation position.
  • information from the electronic stability program and the further inertial measurement units 106 are used to determine an expected corridor for the position determined by means of the satellite data.
  • positions are determined independently of each other by means of mutually different navigation satellite systems, so that errors in individual navigation satellite systems can be noticed and possibly hidden.
  • the device 200 is set up to match the determined navigation position with certified positions and thus to determine absolute references. Overall, therefore, the determination of a highly accurate navigation position is realized with sufficiently high surveillance that the determined navigation position is within a predetermined deviation of, for example, less than 1 m from the actual position.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Security & Cryptography (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Navigation (AREA)

Abstract

The invention relates to a navigation system for a motor vehicle for ascertaining a navigation position, having the following: a plurality of receivers (108, 109, 110, 111) for receiving respective position data of a plurality of different navigation satellite systems, an inertial measuring unit (105, 106) for ascertaining the inertial position of the navigation system, a receiving unit (112) for receiving correction data, an additional receiving unit (113) for receiving certified position data, and a device (200) which is coupled to the plurality of receivers (108, 109, 110, 111), the inertial measuring unit (105, 106), the receiving unit (112), and the additional receiving unit (113) so as to transmit signals, wherein the device (200) is designed to ascertain the navigation position on the basis of the position data, the inertial position, the correction data, and the certified position data. The invention additionally relates to a method which can be carried out by the navigation device in particular.

Description

Beschreibung description
Verfahren und Vorrichtung zum Ermitteln einer Navigationsposition eines Navigationssystems für ein Kraftfahrzeug sowie Navigationssystem Method and device for determining a navigation position of a navigation system for a motor vehicle and navigation system
Die Erfindung betrifft ein Verfahren und eine korrespondierende Vorrichtung zum Ermitteln einer Navigationsposition eines Navigationssystems für ein Kraftfahrzeug, das insbesondere eine sogenannte hochgenaue Positionierung mit einer Genauigkeit von unter 3 m ermöglicht. Die Erfindung betrifft weiterhin ein Navigationssystem für ein Kraftfahrzeug, das eine Genauigkeit von unter 3 m bei der Ermittlung der Position ermöglicht. Es sind eine Mehrzahl von globalen Navigationssatellitensystemen (sogenannte GNSS) bekannt, beispielsweise das sogenannte Global Positioning System (GPS), Glonass, Beidou und Galileo . Zukünftig können weitere derartige Systeme bereitgestellt werden, die zur Positionsbestimmung und Navigation durch den Empfang von Signalen von Navigationssatelliten und zugehörigen Bodenstationen genutzt werden. Insbesondere in Kraftfahrzeugen werden die Navigationssatellitensysteme genutzt, um die Position des Kraftfahrzeugs zu ermitteln und mit Hilfe eines Navigations¬ systems eine Route zu einem vorgegebenen Ziel zu ermitteln. Herkömmlich ist mittels eines Navigationssatellitensystems eine Genauigkeit von 3 m oder mehr bei der Positionsbestimmung erreichbar . The invention relates to a method and a corresponding device for determining a navigation position of a navigation system for a motor vehicle, which in particular enables a so-called high-precision positioning with an accuracy of less than 3 m. The invention further relates to a navigation system for a motor vehicle, which allows an accuracy of less than 3 m in determining the position. There are a number of global navigation satellite systems known as GNSS, such as Global Positioning System (GPS), Glonass, Beidou and Galileo. In the future, further such systems may be provided which are used for position determination and navigation by receiving signals from navigation satellites and associated ground stations. Particularly in motor vehicles navigation satellite systems are used to determine the position of the motor vehicle and to determine a route to a given destination using a navigation system ¬. Conventionally, by means of a navigation satellite system, an accuracy of 3 m or more can be achieved in the position determination.
Es ist wünschenswert, ein Verfahren zum Ermitteln einer Na- vigationsposition anzugeben, das zuverlässig eine hohe Ge¬ nauigkeit ermöglicht. Es ist weiterhin wünschenswert, eine Vorrichtung anzugeben, die dazu ausgebildet ist, das Verfahren durchzuführen. Weiterhin ist es wünschenswert, ein Navigati¬ onssystem anzugeben, das zuverlässig eine hohe Genauigkeit aufweist. Die Erfindung zeichnet sich gemäß Aspekten aus durch ein Verfahren und eine korrespondierende Vorrichtung zum Ermitteln einer Navigationsposition eines Navigationssystems für ein Kraftfahrzeug . It is desirable to provide a method for determining a Na vigationsposition that enables reliable high Ge ¬ accuracy. It is further desirable to provide a device adapted to perform the method. It is further desirable to provide a Navigati ¬ onssystem that reliably has a high accuracy. The invention is characterized according to aspects by a method and a corresponding device for determining a navigation position of a navigation system for a motor vehicle.
Gemäß einer Ausführungsform werden jeweilige Positionsdaten einer Mehrzahl von zueinander verschiedenen Navigationssatellitensystemen empfangen. Insbesondere werden Positionsdaten von allen zur Verfügung stehenden Navigationssatellitensystemen empfangen, also GPS, Galileo, Glonass und Beidou. Eine jeweilige Position des Navigationssystems wird in Abhängigkeit von den Positionsdaten ermittelt. Eine Abweichung der jeweiligen Positionen zueinander wird ermittelt. Die Navigationsposition wird in Abhängigkeit von den jeweiligen Positionen ermittelt, wenn die Abweichung kleiner als ein vorgegebener Schwellwert für dieAccording to one embodiment, respective position data of a plurality of mutually different navigation satellite systems are received. In particular, position data are received from all available navigation satellite systems, ie GPS, Galileo, Glonass and Beidou. A respective position of the navigation system is determined as a function of the position data. A deviation of the respective positions is determined. The navigation position is determined as a function of the respective positions if the deviation is smaller than a predetermined threshold value for the
Abweichung ist, beispielweise soll die Abweichung kleiner als 5% sein. Die Navigationsposition ist insbesondere der Wert, der von dem Navigationssystem für weitere nachfolgende Berechnungen verwendet wird, beispielsweise zur Navigation und/oder zur Positionsbestimmung. Deviation is, for example, the deviation should be less than 5%. The navigation position is in particular the value which is used by the navigation system for further subsequent calculations, for example for navigation and / or position determination.
Eine inertiale Position des Navigationssystems wird mittels einer inertialen Messeinheit ermittelt. Eine zweite Abweichung zwischen der inertialen Position und mindestens einer der in Abhängigkeit der Positionsdaten ermittelten Positionen wird ermittelt. Die Navigationsposition wird in Abhängigkeit von der mindestens einen Position ermittelt, wenn die zweite Abweichung kleiner als ein vorgegebener Schwellwert für die zweite Ab¬ weichung ist, beispielweise soll die Abweichung kleiner als 5% sein. Die inertiale Messeinheit ist insbesondere eine von Navigationssatellitensystemen unabhängige Messeinheit. An inertial position of the navigation system is determined by means of an inertial measuring unit. A second deviation between the inertial position and at least one of the positions determined as a function of the position data is determined. The navigation position is determined a position in response to the at least when the second differential is less than a predetermined threshold value for the second Ab ¬ deviation, for example, the deviation should be less than 5%. The inertial measuring unit is in particular a measuring unit independent of navigation satellite systems.
Jeweilige Korrekturdaten für die Mehrzahl von Navigationssatellitensystemen werden empfangen. Die Navigationsposition wird in Abhängigkeit von den empfangenen Korrekturdaten ermittelt. Die Korrekturdaten werden insbesondere von Datenanbietern zur Verfügung gestellt. Navigationssystems wird in Abhängigkeit von den zertifizierten Respective correction data for the plurality of navigation satellite systems is received. The navigation position is determined as a function of the received correction data. The correction data is provided in particular by data providers. Navigation system is dependent on the certified
daten sind insbesondere verschlüsselt und weisen eine hohe Genauigkeit und Zuverlässigkeit auf. In particular, data is encrypted and has high accuracy and reliability.
Aufgrund der Mehrzahl von unterschiedlichen Plausibilisie- rungsschritten ist eine hochgenaue Navigationsposition ermittelbar, die noch dazu mit einer hohen statistischenDue to the large number of different plausibility steps, a highly accurate navigation position can be determined, which, in addition, has a high statistical position
Wahrscheinlichkeit auch der tatsächlichen Position des Navigationsgeräts entspricht. Eine hochgenaue Position ist eine Position mit einer Genauigkeit von höchstens 3 m, insbesondere weniger als 1 m, beispielsweise eine Genauigkeit von 30 cm oder weniger. Bei herkömmlichen Empfängern für globale Navigationssatellitensystemen ist es möglich, derartig hochgenaue Positionen zu ermitteln. Diese Positionen sind aber nicht abgesichert und nicht zuverlässig genug, um für ein Kraftfahrzeug verwendet zu werden. Mittels dem anmeldungsgemäßen Verfahren ist es möglich, die ermittelten Positionen abzusichern und nur dann zur Ermittlung der Navigationsposition zu verwenden, wenn die ermittelten Positionen entsprechend validiert sind. Probability also corresponds to the actual position of the navigation device. A highly accurate position is a position with an accuracy of at most 3 m, in particular less than 1 m, for example, an accuracy of 30 cm or less. In conventional receivers for global navigation satellite systems, it is possible to determine such highly accurate positions. These positions are not secured and not reliable enough to be used for a motor vehicle. By means of the method according to the application, it is possible to secure the determined positions and to use them to determine the navigation position only if the determined positions have been validated accordingly.
Zusätzlich ist es möglich, eine Information weiterzugeben, dass eine ermittelte Position zumindest momentan nicht verlässlich ist, wenn eine entsprechende Validierung nicht möglich ist. In addition, it is possible to pass on information that a determined position is at least currently not reliable if a corresponding validation is not possible.
Die Kombination unterschiedlicher Überwachungsmechanismen zur Validierung der ermittelten Position ermöglicht eine hohe Zuverlässigkeit bei der Ermittlung der Navigationsposition. Die unterschiedlichen Ebenen des Beitrags zur Bestimmung der hochgenauen Navigationsposition werden unterschiedlichen Überwachungsmethoden zugeordnet. Somit ist eine ausreichend gute Systemsicherheit gegeben, sodass die hochgenauen Navigati¬ onspositionen verlässlich weiterverwendet werden können. Somit ist es beispielsweise auch möglich, zusätzlich zu herkömmlichen Navigationsanwendungen die Navigationsposition für ein automatisiertes Fahren zu verwenden. Beispielsweise ist mittels der hochgenauen Navigationsposition eine Spurbestimmung für das Kraftfahrzeug möglich. Mittels des anmeldungsgemäßen Verfahrens ist es möglich, die Verlässlichkeit der ermittelten Positionen zu überprüfen und festzustellen, ob die ermittelten Positionen nutzbar sind oder nicht. Die hochgenaue Navigationsposition ist insbesondere auch bei schlechtem Empfang von den Satelliten, beispielsweise bei Bebauung oder durch Bäume oder andere Störungen, die beispielsweise durch die Ionosphäre verursacht werden, mit einer ausreichend hohen Genauigkeit möglich. The combination of different monitoring mechanisms for the validation of the determined position allows a high reliability in the determination of the navigation position. The different levels of contribution to determining the high-accuracy navigation position will be different Associated with monitoring methods. Thus, a sufficiently good system security is given, so that the highly accurate navigation ¬ onspositionen can be reliably used. Thus, for example, it is also possible to use the navigation position for automated driving in addition to conventional navigation applications. For example, a track determination for the motor vehicle is possible by means of the highly accurate navigation position. By means of the method according to the application, it is possible to check the reliability of the determined positions and to determine whether the determined positions can be used or not. The high-precision navigation position is possible in particular even with poor reception from the satellites, for example in the case of buildings or trees or other disturbances caused, for example, by the ionosphere, with sufficiently high accuracy.
Eine Methode zur Überwachung beinhaltet das Ermitteln der Position des Navigationssystems in Abhängigkeit der ver¬ schiedenen zur Verfügung stehenden globalen Navigationssatellitensystemen. Mittels jedem Navigationssatellitensystem wird eine individuelle Position ermittelt. Alle möglichen Paarungen werden gegenübergestellt und die jeweiligen Abwei- chungen in den ermittelten Positionen ermittelt. SämtlicheA method of monitoring includes determining the position of the navigation system, depending on the ver ¬ different available global navigation satellite systems. An individual position is determined by means of each navigation satellite system. All possible pairings are compared and the respective deviations in the determined positions are determined. All
Abweichungen werden nun dahingehend überprüft, ob der vorge¬ gebene Schwellwert für die Abweichung unterschritten wird. Ist dies der Fall, funktionieren alle verwendeten Navigationssa¬ tellitensysteme normal und die jeweiligen ermittelten Positionen werden zur Ermittlung der Navigationsposition verwendet. Deviations are now checked as to whether one of the ¬ passed threshold value is exceeded for the deviation. If this is the case, all Navigationssa ¬ tellitensysteme used function normally and the respective determined positions are used to determine the navigation position.
Eine weitere Methode ist die Überprüfung der Plausibilität der Bewegung mittels der inertialen Messeinheit. Mittels der intertialen Messeinheit wird ein Erwartungsfenster für die nächste zu ermittelnde Position ermittelt. Das Erwartungsfenster ist insbesondere um die inertiale Position vorgegeben. Bei¬ spielsweise wird das Erwartungsfenster mittels bereits bekannten Verfahren der Koppelnavigation ermittelt, die hier aber nicht zum Einsatz kommt, um bei Ausfall der Satellitennavigation eine Position zu berechnen, sondern um im Vorhinein einen Bereich zu bestimmen, in dem die nächste ermittelte Position liegen sollte. Liegt die ermittelte Position in dem Erwartungsfenster, wird die ermittelte Position validiert und für die Ermittlung der Na¬ vigationsposition verwendet. Another method is to check the plausibility of the movement by means of the inertial measuring unit. By means of the intertial measuring unit, an expectation window is determined for the next position to be determined. The expectation window is specified in particular around the inertial position. In ¬ example, the expectation window by means of already known However, this method is not used here to calculate a position in the event of satellite navigation failure, but to determine in advance an area in which the next determined position should lie. If the determined position in the expectation window, the determined position is validated and used for the determination of Na ¬ vigationsposition.
Eine weitere Methode ist die Verwendung von Korrekturdaten. Die Korrekturdaten werden von einem Korrekturdienst empfangen. Der Korrekturdienst liefert Informationen über den Status jedes einzelnen Satelliten der Navigationssatellitensysteme. Ins¬ besondere umfasst dies Korrekturen für die in den Satelliten befindlichen Uhren und/oder Korrekturen für die Bahndaten der jeweiligen Satelliten. Insbesondere werden mehrere Korrekturdienste genutzt, um sowohl die Verlässlichkeit der Kor¬ rekturdaten zu erhöhen als auch jeweils die Korrekturdaten eines anderen Korrekturdienstes zu validieren. Eine weitere Methode ist der Abgleich mittels einer zertifi¬ zierten Position. Die zertifizierten Positionsdaten werden beispielsweise mit Hilfe des PRS-Bandes des Gali¬ leo-Navigationssatellitensystems mittels eines Datenanbieters zur Verfügung gestellt. Die zertifizierten Positionsdaten weisen eine höhere Genauigkeit auf als die normalen Positionsdaten. Beispielsweise wird die zertifizierte Position zu bestimmten Betriebszuständen ermittelt, beispielsweise beim Starten des Systems und nachfolgend zu veränderlichen Zeitpunkten, um die durch die öffentlichen Dienste sichergestellte zertifizierte Position als absolut genaue Referenz nutzen zu können. Beispielsweise ist es dadurch möglich, übliche Sensordriften auszugleichen. Zudem können Navigationssatellitensystememp- fänger mit einer Standardgenauigkeit zyklisch unabhängig jeweils einzeln überprüft werden. Diese Prüfung wird beispielsweise in Intervallen von mehreren Minuten Abstand durchgeführt. Somit ist es möglich, sicherzustellen, dass die ermittelte Position innerhalb einer vorgegebenen Abweichung von der zertifizierten Position liegt. Another method is the use of correction data. The correction data is received by a correction service. The correction service provides information about the status of each satellite of the navigation satellite systems. Ins ¬ particular this includes fixes for the present in the satellite clock and / or corrections to the trajectory data of the respective satellites. In particular, several correction services are used, both to increase the reliability of the Cor ¬ rekturdaten and each to validate the correction data of another correction service. Another method is the adjustment by means of a certifi ¬ ed position. The certified position data are made available, for example, with the aid of the PRS band of the Galileo navigation satellite system by means of a data provider. The certified position data has a higher accuracy than the normal position data. For example, the certified position is determined at specific operating conditions, for example when the system is started up and subsequently at variable times, in order to be able to use the certified position ensured by the public services as an absolutely exact reference. For example, this makes it possible to compensate for customary sensor drives. In addition, navigation satellite system receivers with a standard accuracy can be individually checked cyclically independently. This test is performed, for example, at intervals of several minutes distance. Thus, it is possible to ensure that the determined position within a given deviation from the certified position.
Gemäß weiteren Ausführungsformen wird bei der Überprüfung der Integrität der einzelnen Navigationssatellitensysteme ermit¬ telt, ob stets eines der Navigationssatellitensysteme beteiligt ist, wenn eine Abweichung von jeweils zwei Positionen größer als der vorgegebene Schwellwert für die Abweichung ist. Ist dies der Fall, kann davon ausgegangen werden, dass dieses eine Navi- gationssatellitensystem fehlerhaft ist. Folglich werden die Positionsdaten dieses Navigationssatellitensystems nicht zur Ermittlung der Navigationsposition verwendet. Alternativ oder zusätzlich wird eine ermittelte Navigationsposition According to further embodiments, it will ermit ¬ telt in verifying the integrity of each navigation satellite systems always whether a navigation satellite systems is involved, when a deviation of each of two positions is greater than the predetermined threshold value for the deviation. If this is the case, it can be assumed that this one navigation satellite system is faulty. Consequently, the position data of this navigation satellite system is not used for determining the navigation position. Alternatively or additionally, a determined navigation position
invalidiert, wenn die Navigationsposition in Abhängigkeit von den Positionsdaten ermittelt wurde, die von dem fehlerhaften Navigationssatellitensystem empfangen wurden. invalidated when the navigation position has been determined in accordance with the position data received from the failed navigation satellite system.
Alternativ oder zusätzlich ist es möglich, die ermittelte Navigationsposition zu invalidieren, wenn die mittels der inertialen Position ermittelte zweite Abweichung größer als der Schwellwert für die zweite Abweichung ist. Alternativ oder zusätzlich wird die Navigationsposition ohne die Positionsdaten des Navigationssatellitensystems ermittelt, deren Positions¬ daten zu der ermittelten Position geführt haben, die außerhalb des Erwartungsfensters um die inertiale Position liegt. Alternatively or additionally, it is possible to invalidate the determined navigation position if the second deviation determined by means of the inertial position is greater than the threshold value for the second deviation. Alternatively or additionally, the navigation position is determined without the position data of the navigation satellite system whose position data ¬ have led to the determined position, which lies outside the expected window to the inertial position.
Bei der Verwendung von mehreren inertialen Messeinheiten wird für jede mögliche Kombination das Erwartungsfenster bestimmt. Somit ist die Zuverlässigkeit noch weiter erhöhbar. When using several inertial measurement units, the expectation window is determined for each possible combination. Thus, the reliability can be further increased.
Gemäß einer weiteren Ausführungsform der Erfindung weist ein Navigationssystem für ein Kraftfahrzeug zum Ermitteln einer Navigationsposition eine Mehrzahl von Empfängern zum Empfangen von jeweiligen Positionsdaten einer Mehrzahl von zueinander verschiedenen Navigationssatellitensystemen auf . Eine inertiale Messeinheit zum Ermitteln einer inertialen Position des Navigationssystems ist vorgesehen. Das Navigationssystem weist mindestens eine Empfangseinheit zum Empfangen von Korrekturdaten auf. Das Navigationssystem weist eine weitere Empfangseinheit zum Empfangen von zertifizierten Positionsdaten auf. Das Navigationssystem weist eine Vorrichtung auf, die mit der Mehrzahl von Empfängern, der inertialen Messeinheit, der Empfängereinheit und der weiteren Empfängereinheit signaltechnisch gekoppelt ist, Die Vorrichtung ist ausgebildet, in Abhängigkeit von den Po¬ sitionsdaten, der inertialen Position, der Korrekturdaten und den zertifizierten Positionsdaten die Navigationsposition zu ermitteln. Insbesondere ist die Vorrichtung dazu ausgebildet, das anmeldungsgemäß Verfahren auszuführen. According to a further embodiment of the invention, a navigation system for a motor vehicle for determining a navigation position has a plurality of receivers for receiving respective position data of a plurality of mutually different navigation satellite systems. An inertial measuring unit for determining an inertial position of the navigation system is provided. The navigation system points at least one receiving unit for receiving correction data. The navigation system has a further receiving unit for receiving certified position data. The navigation system comprises a device signally coupled to the plurality of receivers, the inertial measurement unit, the receiver unit and the further receiver unit, the device is designed, depending on the Po ¬ sitionsdaten, the inertial position of the correction data and the certified Position data to determine the navigation position. In particular, the device is designed to carry out the method according to the application.
Beispielsweise ist das Navigationsgerät dazu ausgebildet, ein anmeldungsgemäßes Verfahren durchzuführen. Zudem ist das an- meldungsgemäße Verfahren insbesondere von dem Navigationsgerät durchführbar. Die beschriebenen Vorteile und Merkmale des Verfahrens gelten korrespondierend auch für das Navigations¬ system und umgekehrt. Weitere Vorteile, Merkmale und Weiterbildungen ergeben sich aus den nachfolgenden, in Verbindung mit den Figuren 1 und 2 erläuterten Beispielen. For example, the navigation device is designed to perform a method according to the application. In addition, the method according to the application can be carried out in particular by the navigation device. The advantages and features of the method described apply correspondingly for the navigation system ¬ and vice versa. Further advantages, features and developments emerge from the following, explained in conjunction with Figures 1 and 2 examples.
Es zeigen: Show it:
Figur 1 eine schematische Darstellung eines Navigations¬ systems gemäß einer Ausführungsform, und Figure 1 is a schematic representation of a navigation ¬ system according to an embodiment, and
Figur 2 eine schematische Darstellung eines Verfahrens gemäß einer Ausführungsform. Figure 2 is a schematic representation of a method according to an embodiment.
Figur 1 zeigt ein Navigationssystem 100, insbesondere das Navigationssystem 100 eines Kraftfahrzeugs. Eine mittels des Navigationssystems 100 ermittelte Navigationsposition wird insbesondere für die Navigation des Kraftfahrzeugs verwendet sowie für ein autonomisiertes Fahren des Kraftfahrzeugs. FIG. 1 shows a navigation system 100, in particular the navigation system 100 of a motor vehicle. A navigation position determined by means of the navigation system 100 is used in particular for the navigation of the motor vehicle and for an autonomized driving of the motor vehicle.
Insbesondere ist die Navigationsposition, die mittels des Navigationssystems 100 ermittelt wurde, so genau, dass das Kraftfahrzeug auf der Fahrbahn einer Fahrspur zugewiesen werden kann. Die Genauigkeit ist insbesondere mindestens 1 m und insbesondere besser als 30 cm. In particular, the navigation position, which by means of the Navigation system 100 has been determined, so accurate that the motor vehicle can be assigned on the lane of a lane. The accuracy is in particular at least 1 m and in particular better than 30 cm.
Eine Antenne 102 zum Empfangen der Positionsdaten einer Mehrzahl von zueinander verschiedenen Navigationssatellitensystemen ist vorgesehen. Insbesondere ist die Antenne 102 eingerichtet, Positionsdaten der bekannten Navigationssatellitensysteme GPS, Galileo, Glonass und Beidu zu empfangen. Ein Splitter 114, insbesondere ein GNSS Splitter ist der Antenne 102 nachgeordnet. Nachfolgend sind Filter 115, 116 und 117 vorgesehen. Der Filter 115 ist beispielsweise ein L1/B2/E5 Filter, der die entspre¬ chenden Frequenzen filtert. Der Filter 116 ist beispielsweise ein Ll/Bl Filter. Der Filter 117 ist beispielsweise ein sogenannter Multikonstellationsfilter (engl, multi constellation filter) . An antenna 102 for receiving the position data of a plurality of mutually different navigation satellite systems is provided. In particular, the antenna 102 is adapted to receive position data of the known navigation satellite systems GPS, Galileo, Glonass and Beidu. A splitter 114, in particular a GNSS splitter, is arranged downstream of the antenna 102. Subsequently, filters 115, 116 and 117 are provided. The filter 115 is for example a L1 / B2 / E5 filter that filters the entspre ¬ sponding frequencies. The filter 116 is, for example, a Ll / Bl filter. The filter 117 is, for example, a so-called multi-constellation filter.
Zu jedem Navigationssatellitensystem ist ein Empfänger 108 bis 111 vorgesehen. Beispielsweise ist der Empfänger 108 ein GPS Empfänger, der Empfänger 109 ein Glonass Empfänger, der Empfänger 110 ein Galileo Empfänger und der Empfänger 111 ein Beidu Empfänger . For each navigation satellite system, a receiver 108 to 111 is provided. For example, the receiver 108 is a GPS receiver, the receiver 109 is a Glonass receiver, the receiver 110 is a Galileo receiver, and the receiver 111 is a Beidu receiver.
Das Navigationssystem 100 weist eine hochgenaue inertiale Messeinheit 105 mit sechs Freiheitsgraden auf. Es können weitere inertiale Messeinheiten 106 vorgesehen sein, die auch in herkömmlichen Kraftfahrzeugen Verwendung finden. Beispielsweise werden auch Informationen einer Informationseinheit 118 zur Ermittlung der Navigationsposition verwendet, die beispiels- weise Informationen über die Geschwindigkeit des Kraftfahrzeugs und/oder andere Informationen umfassen, die zur Ermittlung und Plausibilisierung der Navigationsposition verwendet werden können . Ein Telematiksteuergerät 104 ist vorgesehen, das Daten vonThe navigation system 100 has a high-precision inertial measurement unit 105 with six degrees of freedom. There may be provided further inertial measuring units 106, which are also used in conventional motor vehicles. For example, information of an information unit 118 for determining the navigation position is also used, which includes, for example, information about the speed of the motor vehicle and / or other information that can be used to ascertain and check the plausibility of the navigation position. A telematics control unit 104 is provided, the data from
Datenanbietern 101 und 107 empfangen kann. Der Datenanbieter 101 liefert beispielsweise zertifizierte Positionsdaten. Der Da- tenanbieter 107 stellt beispielsweise Korrekturdaten zu den jeweiligen Navigationssatellitensystemen zur Verfügung. Data providers 101 and 107 can receive. The data provider 101 supplies, for example, certified position data. That one- For example, provider 107 provides correction data for the respective navigation satellite systems.
Das Navigationssystem 100 weist eine Vorrichtung 200 mit einem Prozessor 103 auf. Die Vorrichtung 100 ist eingerichtet, Daten der verschiedenen Elemente des Navigationssystems und weitere Eingangsgrößen zu verarbeiten und die Navigationsposition zu ermitteln. Die Vorrichtung 200 weist unterschiedliche Hardware und Software Module auf. Unterschiedliche Funktionen des an- meldungsgemäßen Navigationssystems können in Hardware und/oder Software der Vorrichtung 200 realisiert sein. Beispielsweise ist eine Empfangseinheit 112 als Software in der Vorrichtung 200 realisiert, die die Korrekturdaten und zertifizierten Positionsdaten der Datenanbieter 101 und 107 weiter verarbeitet. The navigation system 100 has a device 200 with a processor 103. The device 100 is set up to process data of the various elements of the navigation system and other input variables and to determine the navigation position. The device 200 has different hardware and software modules. Different functions of the navigation system according to the application can be implemented in hardware and / or software of the device 200. For example, a receiving unit 112 is realized as software in the device 200, which further processes the correction data and certified position data of the data providers 101 and 107.
Das Navigationssystem weist eine weitere Empfangseinheit 113 auf, die ebenfalls zertifizierte Positionsdaten direkt von dem Navigationssatellitensystem, insbesondere von Galileo, empfangen und weiterverarbeiten kann. The navigation system has a further receiving unit 113, which can also receive and process further certified position data directly from the navigation satellite system, in particular from Galileo.
Nachfolgend wird der Betrieb des Navigationssystems 100 in Verbindung mit dem Flussdiagramm der Figur 2 erläutert. Hereinafter, the operation of the navigation system 100 will be explained in conjunction with the flowchart of FIG.
In Schritt 201 werden von den zur Verfügung stehenden Navi- gationssatellitensystemen jeweils Positionsdaten empfangen.In step 201, position data are respectively received by the available navigation satellite systems.
Insbesondere werden mittels des Empfängers 108 bis 111 hochgenaue Positionsdaten empfangen. In particular, 108 to 111 highly accurate position data are received by the receiver.
In einem Schritt 202 ermittelt die Vorrichtung 200 mittels der empfangenen Positionsdaten eine jeweilige Position. Somit ist mittels jedem zur Verfügung stehenden Navigationssatellitensystem eine individuelle Position für das Navigationssystem ermittelt . In Schritt 203 werden jeweils alle möglichen Paarungen der ermittelten Positionen gegenübergestellt und die jeweiligen Abweichungen innerhalb der Paarungen bestimmt. Wird dabei ermittelt, dass die Position, die mittels Positionsdaten eines bestimmten Navigationssatellitensystems stets mehr als ein vorgegebener Schwellwert von den anderen Positionen abweicht, wird von einem Fehler bei der Positionsbestimmung mittels diesem bestimmten Navigationssatellitensystem ausgegangen. In a step 202, the device 200 determines a respective position by means of the received position data. Thus, an individual position for the navigation system is determined by means of each available navigation satellite system. In step 203, all possible pairings of the determined positions are compared and the respective deviations within the pairings are determined. Will be there determines that the position, which always deviates more than a predetermined threshold from the other positions by means of position data of a particular navigation satellite system, is based on an error in the position determination by means of this particular navigation satellite system.
Die Vorrichtung 200 ermittelt dann in Schritt 204 die Navi¬ gationsposition in Abhängigkeit der übrigen ermittelten Positionen und unabhängig von der ermittelten Position des be- stimmten Navigationssatellitensystems. Beispielsweise wird ein Mittelwert der ermittelten Positionen bestimmt und als Navigationsposition zur weiteren Verwendung ermittelt. The device 200 then determines in step 204, the navigation ¬ gationsposition in function of the other determined positions and independently of the determined position of the certain navigation satellite system. For example, an average of the determined positions is determined and determined as a navigation position for further use.
In Schritt 205 wird ermittelt, ob bereits eine Navigations- position in Abhängigkeit einer ermittelten Position des bestimmten Navigationssatellitensystems verwendet wurde. Ist dies der Fall, wird diese Navigationsposition invalidiert. Somit ermittelt die Vorrichtung 200 eine hochgenaue Navigationspo¬ sition mit der zusätzlichen Information, ob diese hochgenaue Navigationsposition verlässlich genug ist, um weiter verwendet zu werden. In step 205, it is determined whether a navigation position has already been used as a function of a determined position of the particular navigation satellite system. If this is the case, this navigation position is invalidated. Thus, the device 200 determines a highly accurate Navigationspo ¬ sition with the additional information, whether these highly accurate navigation position is reliable enough to be used.
Zusätzlich werden die in Schritt 202 ermittelten Positionen in einem Schritt 206 mit den Werten der inertialen Messeinheit 105 und gegebenenfalls zusätzlich der zweiten inertialen Messeinheiten 106 plausibilisiert . Weichen ermittelte Positionen mehr als ein vorgegebener Schwellwert von den inertialen Positionen ab, die mittels der inertialen Messeinheit 105 ermittelt wurde, werden diese ermittelten Positionen nicht zur Ermittlung der Navigationsposition weiter verwendet. Alternativ oder zusätzlich wird geprüft, ob bereits eine Navigationsposition in Abhängigkeit dieser ermittelten Position ermittelt wurde. Ist dies der Fall, wird diese Navigationsposition invalidiert. Somit ist es möglich, die von der Vorrichtung 200 ermittelte Navi- gationsposition auch mittels eines von Satelliten unabhängigen Systems zu plausibilisieren und zu validieren. Weiterhin werden in einem Schritt 207 Korrekturdaten einer Mehrzahl von zueinander verschiedenen Korrekturdiensten 107 empfangen und in die Berechnung der Navigationsposition beziehungsweise der einzelnen ermittelten Positionen der Navi- gationssatellitensysteme miteinbezogen. Somit ist es möglich, einen genauere Navigationsposition und auch eine verlässlichere Navigationsposition zu ermitteln. Zudem ist es möglich, die einzelnen Datensätze der Korrekturdaten der unterschiedlichen Korrekturdienste gegeneinander zu validieren. Für den Fall, dass keine Gültigkeit eines resultierenden Datensatzes bestimmt werden kann, wird eine Navigationsposition, die unter Nutzung dieses nicht final zu überprüfenden Datensatzes ermittelt wurde, invalidiert . In einem weiteren Schritt 208 werden die zertifizierten Positionsdaten des PRS Bandes (E5) des Galileo Navigationssa¬ tellitensystems verwendet. Insbesondere werden die Daten direkt mittels der weiteren Empfangseinheit 113 verwendet und über einen oder mehreren der Datenanbieter 101. Die Überprüfung der er- mittelten Navigationsposition mit der zertifizierten Position erfolgt insbesondere nicht für jede ermittelte Navigations¬ position, sondern in regelmäßigen oder unregelmäßigen Abständen von beispielsweise mehreren Minuten. Insbesondere beim Start wird somit eine verlässliche Referenzposition ermittelt, für die sichergestellt ist, dass sie innerhalb eines vorgegebenen Rahmens und die tatsächliche Position liegt. In addition, the positions determined in step 202 are plausibilized in a step 206 with the values of the inertial measurement unit 105 and possibly additionally the second inertial measurement units 106. If detected positions deviate more than a predefined threshold value from the inertial positions determined by means of the inertial measurement unit 105, these determined positions are not used to determine the navigation position. Alternatively or additionally, it is checked whether a navigation position has already been determined as a function of this determined position. If this is the case, this navigation position is invalidated. Thus, it is possible to plausibilize and validate the navigation position determined by the device 200 also by means of a satellite-independent system. Furthermore, correction data of a plurality of mutually different correction services 107 are received in a step 207 and included in the calculation of the navigation position or the individual determined positions of the navigation satellite systems. Thus, it is possible to determine a more accurate navigation position and also a more reliable navigation position. In addition, it is possible to validate the individual data sets of the correction data of the different correction services against each other. In the event that no validity of a resulting record can be determined, a navigation position, which was determined using this non-final record to be checked invalidated. In a further step 208, the certified positional data of the PRS belt (E5) of the Galileo Navigationssa ¬ tellitensystems be used. In particular, the data are used directly by means of the further receiver unit 113 and via one or more of the data provider 101. The verification of the ER mediated reckoning position with the certified position is in particular not for each identified navigation ¬ position, but in regular or irregular intervals of, say, several minutes. In particular, at startup, a reliable reference position is thus determined, which is ensured that it lies within a predetermined frame and the actual position.
In einem Schritt 209 wird aus allen Größen, die mittels der Schritte 201 bis 208 ermittelt wurden, die hochgenaue und verlässliche Navigationsposition ermittelt, die dann an weitere Systeme des Kraftfahrzeugs weitergeben wird, beispielsweise zum Berechnen einer Route oder zum Steuern eines automatisierten Fahrens . Die Vorrichtung 200 ist somit eingerichtet, die Navigations¬ position mit einer Genauigkeit von weniger als 1 m um die tatsächliche Position herum zu ermitteln. Hierfür wird die hochgenaue intertiale Messeinheit 105 sowie die hochgenauen Navigationssatellitensysteme und die Korrekturdienste ver¬ wendet . Zudem ist die Vorrichtung 200 eingerichtet, die Integrität der ermittelten Navigationsposition zu überprüfen. Hierfür werden beispielsweise Informationen aus dem elektronischen Stabilitätsprogramm und der weiteren inertialen Messeinheiten 106 verwendet, um einen Erwartungskorridor für die mittels der Satellitendaten ermittelte Position zu ermitteln. Weiterhin werden Positionen mittels zueinander verschiedener Navigationssatellitensysteme unabhängig voneinander ermittelt, sodass Fehler bei einzelnen Navigationssatellitensystemen auffallen und gegebenenfalls ausgeblendet werden können. In a step 209, the highly accurate and reliable navigation position is determined from all variables determined by means of the steps 201 to 208, which will then be passed on to other systems of the motor vehicle, for example for calculating a route or for controlling an automated driving. The apparatus 200 is thus arranged to detect the navigation ¬ position with an accuracy of less than 1 m to the actual position around. For this purpose, the high-precision intertial measurement unit 105 and the highly accurate navigation satellite systems and the correction services ver ¬ applies. In addition, the device 200 is set up to check the integrity of the determined navigation position. For this purpose, for example, information from the electronic stability program and the further inertial measurement units 106 are used to determine an expected corridor for the position determined by means of the satellite data. Furthermore, positions are determined independently of each other by means of mutually different navigation satellite systems, so that errors in individual navigation satellite systems can be noticed and possibly hidden.
Weiterhin ist die Vorrichtung 200 eingerichtet die ermittelte Navigationsposition mit zertifizierten Positionen abzugleichen und somit absolute Referenzen zu ermitteln. Insgesamt wird somit die Ermittlung einer hochgenauen Navigationsposition bei einer ausreichend hohen Überwachung realisiert, dass die ermittelte Navigationsposition innerhalb einer vorgegebenen Abweichung von beispielsweise weniger als 1 m um die tatsächliche Position liegt. Furthermore, the device 200 is set up to match the determined navigation position with certified positions and thus to determine absolute references. Overall, therefore, the determination of a highly accurate navigation position is realized with sufficiently high surveillance that the determined navigation position is within a predetermined deviation of, for example, less than 1 m from the actual position.

Claims

Patentansprüche claims
Verfahren zum Ermitteln einer Navigationsposition eines Navigationssystems (100) für ein Kraftfahrzeug, umfassend:A method for determining a navigation position of a navigation system (100) for a motor vehicle, comprising:
- Empfangen von jeweiligen Positionsdaten einer Mehrzahl von zueinander verschiedenen Navigationssatellitensystemen,Receiving respective position data of a plurality of mutually different navigation satellite systems,
- Ermitteln einer jeweiligen Position des Navigationssystems- Determining a respective position of the navigation system
(100) in Abhängigkeit von den Positionsdaten, (100) depending on the position data,
- Ermitteln einer Abweichung der jeweiligen Positionen zueinander,  Determining a deviation of the respective positions from each other,
- Ermitteln der Navigationsposition in Abhängigkeit von den jeweiligen Positionen, wenn die Abweichung kleiner als ein vorgegebener Schwellwert für die Abweichung ist,  Determining the navigation position as a function of the respective positions, if the deviation is smaller than a predefined threshold value for the deviation,
- Ermitteln einer inertialen Position des Navigationssystems - Determining an inertial position of the navigation system
(100) mittels einer inertialen Messeinheit (105, 106),(100) by means of an inertial measuring unit (105, 106),
- Ermitteln einer zweiten Abweichung mindestens einer der in Abhängigkeit der Positionsdaten ermittelten Positionen von der inertialen Position, Determining a second deviation of at least one of the positions determined as a function of the position data from the inertial position,
- Ermitteln der Navigationsposition in Abhängigkeit von der mindestens einen Position, wenn die zweite Abweichung kleiner als ein vorgegebener Schwellwert für die zweiten Abweichung ist,  Determining the navigation position as a function of the at least one position if the second deviation is smaller than a predefined threshold value for the second deviation,
- Empfangen von jeweiligen Korrekturdaten für die Mehrzahl von NavigationsSatellitenSystemen,  Receiving respective correction data for the plurality of navigation satellite systems,
- Ermitteln der Navigationsposition in Abhängigkeit von den empfangenen Korrekturdaten,  Determining the navigation position in dependence on the received correction data,
- Empfangen von zertifizierten Positionsdaten eines der NavigationsSatellitensysteme,  Receiving certified position data of one of the navigation satellite systems,
- Ermitteln einer zertifizierten Position des Navigationssystems (100) in Abhängigkeit von den zertifizierten Positionsdaten,  Determining a certified position of the navigation system (100) in dependence on the certified position data,
- Ermitteln der Navigationsposition in Abhängigkeit von der  Determining the navigation position depending on the
2. Verfahren nach Anspruch 1, bei dem das Ermitteln der Navigationsposition in Abhängigkeit von den jeweiligen Positionen weiterhin umfasst: - Ermitteln von jeweiligen Abweichungen von jeweils zwei Positionen der jeweiligen Positionen, 2. The method of claim 1, wherein determining the navigation position depending on the respective positions further comprises: Determining deviations from two positions of the respective positions,
- wenn die jeweilige Abweichung größer als der vorgegebene Schwellwert für die Abweichung ist:  - if the deviation is greater than the specified deviation threshold:
- Ermitteln der jeweiligen zwei Navigationssatellitensys¬ teme, von denen die zwei Positionsdaten empfangen wurden, aus den die jeweils zwei Positionen ermittelt wurden,- determining the respective two Navigationssatellitensys ¬ systems, of which the two position data has been received from each of two positions were determined,
- wenn ein erstes Navigationssatellitensystem der Naviga tionssatellitensysteme stets eines der zwei Navigati¬ onssatellitensysteme ist, - when a first navigation satellite system Naviga tion satellite systems is always one of the two Navigati ¬ onssatellitensysteme,
- Ermitteln der Navigationsposition unabhängig von den P ositionsdaten, die von dem ersten Navigationssatellitensystem empfangen werden.  Determining the navigation position independently of the location data received from the first navigation satellite system.
3. Verfahren nach Anspruch 2, umfassend: 3. The method of claim 2, comprising:
- Invalideren der Navigationsposition, wenn die Navigationsposition in Abhängigkeit von den Positionsdaten er mittelt wurde, die von dem ersten Navigationssatelli¬ tensystem empfangen wurden. - Invalideren the navigation position when the navigation position was averaged in response to the position data he received from the first Navigationsssatelli ¬ tensystem.
4. Verfahren nach einem der Ansprüche 1 bis 3, bei dem das Ermitteln der inertialen Position umfasst: 4. The method of claim 1, wherein determining the inertial position comprises:
- Ermitteln eines Verlaufs von inertialen Positionen mittels der inertialen Messeinheit (105, 106).  - Determining a course of inertial positions by means of the inertial measuring unit (105, 106).
5. Verfahren nach einem der Ansprüch 1 bis 4, umfassend: 5. The method according to any one of claims 1 to 4, comprising:
- wenn die zweite Abweichung größer als der Schwellwert für die zweiten Abweichung ist,  if the second deviation is greater than the threshold for the second deviation,
- Ermitteln der Navigationsposition unabhängig von den  - Determine the navigation position independently of the
Positionsdaten, aus denen die mindestens eine Position ermittelt wurde.  Position data from which the at least one item was determined.
6. Verfahren nach einem der Ansprüche 1 bis 5, umfassend: 6. The method according to any one of claims 1 to 5, comprising:
- Invalideren der Navigationsposition, wenn die Navigationsposition in Abhängigkeit von den Positionsdaten er mittelt wurde, aus denen die mindestens eine Position ermittelt wurde. Verfahren nach einem der Ansprüche 1 bis 6, - Invalidating the navigation position if the navigation position was determined in accordance with the position data from which the at least one position was determined. Method according to one of claims 1 to 6,
- Ermitteln einer Mehrzahl von inertialen Positionen des Navigationssystems (100) mittels einer Mehrzahl von inertialen Messeinheiten (105, 106),  Determining a plurality of inertial positions of the navigation system (100) by means of a plurality of inertial measuring units (105, 106),
- Ermitteln einer Mehrzahl von zweiten Abweichungen jeweils mindestens einer der in Abhängigkeit der Positionsdaten ermittelten Positionen zu den jeweiligen inertialen Positionen der Mehrzahl von inertialen Positionen,  Determining a plurality of second deviations of at least one of the positions determined as a function of the position data relative to the respective inertial positions of the plurality of inertial positions,
- Ermitteln der Navigationsposition in Abhängigkeit von der mindestens einen Position, wenn die zweite Abweichung jeweils kleiner als der vorgegebene Schwellwert für die zweite Abweichung sind.  Determining the navigation position as a function of the at least one position if the second deviations are each smaller than the predefined threshold value for the second deviation.
Verfahren nach einem der Ansprüche 1 bis 7, umfassend: Method according to one of claims 1 to 7, comprising:
- Empfangen von jeweiligen Korrekturdaten von mindestens einem ersten und einem zweiten zueinander verschiedenen Datenanbieter (107),  Receiving respective correction data from at least a first and a second mutually different data provider (107),
- Vergleichen der Korrekturdaten des ersten Datenanbieters (107) mit den Korrekturdaten des zweiten Datenanbieters (107) ,  Comparing the correction data of the first data provider (107) with the correction data of the second data provider (107),
- wenn die Korrekturdaten mehr als eine vorgegebenen Toleranz voneinander abweichen:  - if the correction data deviates from one another by more than a specified tolerance:
- Invalideren der Navigationsposition, wenn die Navigationsposition in Abhängigkeit von den Korrekturdaten ermittelt wurde, die von dem ersten und/oder dem zweiten Datenanbieter (107) empfangen wurden und/oder  - Invalideren the navigation position when the navigation position has been determined in response to the correction data received from the first and / or the second data provider (107) and / or
- Ermitteln der Navigationsposition unabhängig von den  - Determine the navigation position independently of the
Korrekturdaten von dem ersten und/oder dem zweiten Datenanbieter (107).  Correction data from the first and / or the second data provider (107).
9. Vorrichtung für ein Kraftfahrzeug, die dazu ausgebildet ist, ein Verfahren nach einem der Ansprüche 1 bis 7 auszuführen. 10. Navigationssystem für ein Kraftfahrzeug zum Ermitteln einer Navigationsposition, aufweisend: - eine Mehrzahl von Empfängern (108, 109, 110, 111) zum Empfangen von jeweiligen Positionsdaten einer Mehrzahl von zueinander verschiedenen Navigationssatellitensystemen,9. A device for a motor vehicle, which is adapted to carry out a method according to one of claims 1 to 7. 10. A navigation system for a motor vehicle for determining a navigation position, comprising: a plurality of receivers (108, 109, 110, 111) for receiving respective position data of a plurality of mutually different navigation satellite systems,
- eine inertiale Messeinheit (105, 106) zum Ermitteln einer inertialen Position des Navigationssystems, an inertial measuring unit (105, 106) for determining an inertial position of the navigation system,
- eine Empfangseinheit (112) zum Empfangen von Korrekturdaten,  a receiving unit (112) for receiving correction data,
- eine weitere Empfangseinheit (113) zum Empfangen von zertifizierten Positionsdaten,  a further receiving unit (113) for receiving certified position data,
- eine Vorrichtung (200) , die mit der Mehrzahl von Empfängern a device (200) associated with the plurality of receivers
(108, 109, 110, 111), der inertialen Messeinheit (105, 106), der Empfängereinheit (112) und der weiteren Emp¬ fängereinheit (113) signaltechnisch gekoppelt ist, wobei die Vorrichtung (200) ausgebildet ist, in Abhängigkeit von den Positionsdaten, der inertialen Position, der Korrekturdaten und den zertifizierten Positionsdaten die Navigationsposition zu ermitteln. (108, 109, 110, 111), the inertial measuring unit (105, 106), the receiver unit (112) and the other Emp ¬ catcher unit (113) is signal-technically coupled, wherein the device (200) is formed, depending on the Position data, the inertial position, the correction data and the certified position data to determine the navigation position.
EP17811957.4A 2016-12-16 2017-12-11 Method and device for ascertaining a navigation position of a navigation system for a motor vehicle, and navigation system Ceased EP3555666A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016225282.8A DE102016225282A1 (en) 2016-12-16 2016-12-16 Method and device for determining a navigation position of a navigation system for a motor vehicle and navigation system
PCT/EP2017/082177 WO2018108787A1 (en) 2016-12-16 2017-12-11 Method and device for ascertaining a navigation position of a navigation system for a motor vehicle, and navigation system

Publications (1)

Publication Number Publication Date
EP3555666A1 true EP3555666A1 (en) 2019-10-23

Family

ID=60654977

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17811957.4A Ceased EP3555666A1 (en) 2016-12-16 2017-12-11 Method and device for ascertaining a navigation position of a navigation system for a motor vehicle, and navigation system

Country Status (5)

Country Link
US (1) US11294069B2 (en)
EP (1) EP3555666A1 (en)
CN (1) CN110050202B (en)
DE (1) DE102016225282A1 (en)
WO (1) WO2018108787A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019187905A1 (en) * 2018-03-26 2019-10-03 アルプスアルパイン株式会社 Position estimation device, position estimation system, position estimation method, and program
CN113971846B (en) * 2020-07-22 2023-05-09 宇通客车股份有限公司 Positioning failure detection method and device for automatic driving vehicle
CN114236573B (en) * 2022-02-24 2022-08-02 浙江时空道宇科技有限公司 Positioning accuracy monitoring method and device, electronic equipment and storage medium
DE102022122508A1 (en) * 2022-09-06 2024-03-07 Sick Ag System and procedure with a system

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5884220A (en) * 1996-07-16 1999-03-16 Trimble Navigation Limited Method and apparatus to improve overall performance of a DGPS receiver
DE19836966A1 (en) 1998-08-14 2000-02-17 Bosch Gmbh Robert Method and data receiver for receiving radio signals containing correction data for a global navigation satellite system
US7667644B2 (en) 2007-10-09 2010-02-23 Honeywell International Inc. GPS receiver RAIM with slaved precision clock
JP5785814B2 (en) * 2011-08-18 2015-09-30 ローム株式会社 Switching power supply control circuit, control method, and switching power supply and electronic device using the same
US9182495B2 (en) * 2011-09-21 2015-11-10 Lockheed Martin Corporation System and method for monitoring integrity of a global navigation satellite system
US8825397B2 (en) 2011-11-03 2014-09-02 Texas Instruments Incorporated Vehicle navigation system with dead reckoning
US9507026B2 (en) * 2013-05-04 2016-11-29 Trimble Navigation Limited Apparatus for verified antispoofing navigation
US9784844B2 (en) 2013-11-27 2017-10-10 Honeywell International Inc. Architectures for high integrity multi-constellation solution separation
DE102014215570B4 (en) * 2014-08-06 2021-12-30 Elektrobit Automotive Gmbh Vehicle navigation system
FR3030058B1 (en) * 2014-12-11 2016-12-09 Airbus Helicopters REDUNDANT DEVICE FOR STEERING SENSORS FOR ROTATING CAR AIRCRAFT

Also Published As

Publication number Publication date
US20200225362A1 (en) 2020-07-16
CN110050202A (en) 2019-07-23
DE102016225282A1 (en) 2018-06-21
US11294069B2 (en) 2022-04-05
CN110050202B (en) 2023-06-16
WO2018108787A1 (en) 2018-06-21

Similar Documents

Publication Publication Date Title
EP3555666A1 (en) Method and device for ascertaining a navigation position of a navigation system for a motor vehicle, and navigation system
EP3374799B1 (en) Method and apparatus for estimating a position of a vehicle, particularly according to an asil safety level
DE102018202223A1 (en) A method and apparatus for providing integrity information for checking atmospheric correction parameters for correcting atmospheric disturbances in a satellite navigation for a vehicle
EP1870669A2 (en) Method for checking the inert measuring unit of vehicles, in particular aircraft, in a stationary state
WO2019063266A1 (en) Method for locating a vehicle with advanced automated functions (had), in particular a highly automated vehicle, and a vehicle system
DE102014211175A1 (en) Method and system for initializing a sensor fusion system
DE102018206788A1 (en) Method and device for checking ionosphere correction parameters for satellite navigation for a vehicle
EP3499269B1 (en) Assembly and method for positioning
EP3155373A1 (en) Method and system for adapting a navigation system
WO2015189204A1 (en) Method and system for the improved detection and/or compensation of error values
DE102019124301A1 (en) Device and method for ensuring the fail-safe function of an autonomous driving system
EP1043600B1 (en) Method and apparatus for determining the position of a vehicle
EP3155454B1 (en) Method and system for adapting a navigation system
WO2017080555A1 (en) System for plausibilizing satellite signals of global navigation systems
DE102018220793A1 (en) Detection of incorrect position determinations
EP2153172B1 (en) Map matching for security applications
DE112017007937T5 (en) Communication device, control method and control program
WO2021245058A2 (en) Method for selecting a satellite combination for a position determination
DE102012213754A1 (en) Method for adjusting sensor signal of sensor in vehicle, involves comparing waveform of sensor signal with reference value of sensor signal at position of vehicle to obtain difference, where signal waveform is recorded on trip to position
EP4147943A1 (en) Measuring assembly
DE102016004370A1 (en) Method for determining the position of vehicles
EP3295126B1 (en) Method for determining states of a system using an estimation filter
DE102018220543A1 (en) Method for calibrating an at least biaxial sensor
DE102022212249A1 (en) Method for locating a networked motor vehicle
DE102021115032A1 (en) Determination of a position of a vehicle

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190716

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210218

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CONTINENTAL AUTOMOTIVE TECHNOLOGIES GMBH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20230330