EP3555146A1 - Procédé de production de billes polymères uniformes par projection par vibrations au moyen d'une membrane superhydrophobe - Google Patents

Procédé de production de billes polymères uniformes par projection par vibrations au moyen d'une membrane superhydrophobe

Info

Publication number
EP3555146A1
EP3555146A1 EP17835627.5A EP17835627A EP3555146A1 EP 3555146 A1 EP3555146 A1 EP 3555146A1 EP 17835627 A EP17835627 A EP 17835627A EP 3555146 A1 EP3555146 A1 EP 3555146A1
Authority
EP
European Patent Office
Prior art keywords
volume
membrane
agarose
holes
polytetrafluoroethylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP17835627.5A
Other languages
German (de)
English (en)
Inventor
Serguei Rudolfovich Kosvintsev
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Purolite China Co Ltd
Original Assignee
Purolite China Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Purolite China Co Ltd filed Critical Purolite China Co Ltd
Priority to EP24164804.7A priority Critical patent/EP4378963A3/fr
Priority claimed from PCT/EP2017/082976 external-priority patent/WO2018109149A1/fr
Publication of EP3555146A1 publication Critical patent/EP3555146A1/fr
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0069Inorganic membrane manufacture by deposition from the liquid phase, e.g. electrochemical deposition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/022Metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/41Emulsifying
    • B01F23/411Emulsifying using electrical or magnetic fields, heat or vibrations
    • B01F23/4111Emulsifying using electrical or magnetic fields, heat or vibrations using vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/45Mixing liquids with liquids; Emulsifying using flow mixing
    • B01F23/451Mixing liquids with liquids; Emulsifying using flow mixing by injecting one liquid into another
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F31/00Mixers with shaking, oscillating, or vibrating mechanisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F31/00Mixers with shaking, oscillating, or vibrating mechanisms
    • B01F31/44Mixers with shaking, oscillating, or vibrating mechanisms with stirrers performing an oscillatory, vibratory or shaking movement
    • B01F31/441Mixers with shaking, oscillating, or vibrating mechanisms with stirrers performing an oscillatory, vibratory or shaking movement performing a rectilinear reciprocating movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/80Mixing plants; Combinations of mixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/02Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by dividing the liquid material into drops, e.g. by spraying, and solidifying the drops
    • B01J2/06Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by dividing the liquid material into drops, e.g. by spraying, and solidifying the drops in a liquid medium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/18Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic using a vibrating apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/10Making granules by moulding the material, i.e. treating it in the molten state
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0036Galactans; Derivatives thereof
    • C08B37/0039Agar; Agarose, i.e. D-galactose, 3,6-anhydro-D-galactose, methylated, sulfated, e.g. from the red algae Gelidium and Gracilaria; Agaropectin; Derivatives thereof, e.g. Sepharose, i.e. crosslinked agarose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/01Processes of polymerisation characterised by special features of the polymerisation apparatus used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/18Suspension polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/124Treatment for improving the free-flowing characteristics
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • C08L5/12Agar or agar-agar, i.e. mixture of agarose and agaropectin; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1651Two or more layers only obtained by electroless plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1655Process features
    • C23C18/1662Use of incorporated material in the solution or dispersion, e.g. particles, whiskers, wires
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/08Perforated or foraminous objects, e.g. sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2315/00Details relating to the membrane module operation
    • B01D2315/04Reciprocation, oscillation or vibration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/38Hydrophobic membranes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • C08J2305/12Agar-agar; Derivatives thereof

Definitions

  • the present invention relates generally to the preparation of spheroidal polymer beads, and more particularly, to the preparation of spheroidal polymer beads having a substantially uniform particle size by vibration jetting with a superhydrophobic membrane.
  • Spheroidal polymer beads in the size range from about 1 to 300 ⁇ in diameter are useful for a variety of applications.
  • such polymer beads have been employed for various chromatographic applications, as substrates for ion exchange resins, seeds for the preparation of larger sized polymer particles, calibration standards for blood cell counters, aerosol instruments, in pollution control equipment, and as spacers for photographic emulsions, among other uses.
  • polymer beads can be prepared by suspension polymerization by dispersing an organic monomer phase as droplets in a vessel equipped with an agitator and an aqueous phase in which the monomer and resulting polymer are essentially insoluble. The dispersed monomer droplets are subsequently polymerized under continuous agitation (see, for example, U.S. Pat. Nos. 3,728,318; 2,694,700; and 3,862,924). Polymer beads are also manufactured by "jetting" liquid organic monomer mixtures through capillary openings into an aqueous phase or gaseous phase.
  • the monomer droplets are then transported to a reactor where polymerization occurs, as described, for example, in U.S. Pat. Nos. 4,444,961; 4,666,673; 4,623,706; and 8,033,412.
  • these conventional methods such as stirred batch polymerization, often produce bead products exhibiting large particle size distributions, primarily due to problems of non-controllable coalescence and/or breakage of the suspended monomer droplets.
  • Existing jetting methods also suffer from high cost and low output for particle size products of less than 300 ⁇ . For example, plate jetting methods have low overall productivity and are limited by large energy losses during the vibration generation step.
  • methods which require jetting into a gaseous media demand very sophisticated equipment and complex methods for polymer formation.
  • cross-flow membranes for the generation of fine droplets using a metal or glass sintered or electro-formed membrane is appropriate for small scale applications but is unfeasible for commercial operation. Further, the low productivity per unit area of the cross flow membrane requires complex and bulky equipment which is unreliable and demands high capital and operating costs.
  • Metallic plate or can-shaped membranes, preferably of nickel or nickel-plated are desirable for use in vibration jetting. However, while such plates are relatively long-lived, over time they are known to experience wear during use. Such wear alters the configuration and geometry of the membrane pores (or "through holes"; as used herein the terms pores and through holes are interchangeable), and increases non-uniform drag on the monomer, resulting in inconsistent, nonuniform bead production and increased energy costs.
  • an object of the present invention is to provide a metallic membrane with a durable surface, providing a long service life without deterioration.
  • Other jetting method for producing polymer beads are described in U.S. Patents 9,028,730 and 9,415,530. SUMMARY OF THE INVENTION
  • An object of the invention is to provide a method for preparing uniform sized spheroidal polymer beads having a uniform particle size and narrow particle size distribution, using vibration jetting with a superhydrophobic membrane.
  • the polymer beads are made from water soluble (hydrophilic) substances such as agarose and other gelating natural hydrocolloids such as chitin, pectin, gelatin, gellan, cellulose, alginate, carrageenan, starch, xanthan gum, among others.
  • gelating synthetic polymers such as PVA, (polyvinyl acetate), PVP (polyvinyl pyrrolidone) and PEG (polyethylene glycol) may be employed.
  • polymerizable water soluble monomers such as acrylic among others may be used.
  • each of these starting materials are referred to interchangeably as forming "polymers” or "hydrocolloids".
  • agarose is preferred.
  • Agarose beads are useful as providing a base for example in chromatography media. Agarose is resistant to acid, base and solvents, is hydrophilic, has high porosity and a large number of hydroxyl groups for functionalization. See U.S. Patent 7,678,302.
  • one embodiment of the invention is directed to a method for preparing uniform spheroidal polymer beads having a volume mean particle diameter (D 50 ) of about 15 to about 200 ⁇ .
  • the method includes providing a double-walled cylindrically shaped apparatus having a metallic membrane containing a plurality of pores.
  • a first volume enters the annulus between two membrane walls, a second volume is in contact with two outer walls of the membrane enclosing the annulus.
  • the first volume includes a dispersed phase, for example a polymerizable monomer phase or hydrocolloid solution.
  • the second volume includes a suspension phase immiscible with the dispersed phase.
  • the first volume is dispersed through the pores into the second volume under conditions sufficient to form droplets of the dispersed phase.
  • a shear force is provided at a point of egression of the first volume into the second volume.
  • the direction of shear is substantially perpendicular to the direction of egression of the first volume.
  • the dispersed phase droplets dispersed in the second volume are then polymerized (or cross- linked or gelate), forming the desired polymer beads.
  • the invention provides a polymerization product in the form of polymer beads having a particle size of about 10 to about 300 ⁇ wherein at least about 70 percent of the beads possess a particle size from about 0.9 to about 1.1 times the average particle size of the beads.
  • the invention provides a membrane for use in producing uniform polymer beads by vibration jetting, the membrane including a metallic plate with a plurality of pores and coated with a superhydrophobic coating providing a durable wear surface for longer service life and also providing more uniform polymer bead characteristics.
  • FIG. 1 is a schematic representation illustrating a reactor unit of the invention.
  • FIG. 2 is a schematic representation illustrating a can-shaped membrane of the invention.
  • FIG. 3 is a schematic representation illustrating a membrane pore of the invention.
  • FIG. 4 is a graph illustrating particle size distribution of polymer beads according to an example of the invention.
  • FIG. 5 is a graph illustrating particle size distribution of polymer beads according to an example of the invention.
  • FIG. 6 is a graph illustrating particle size distribution of polymer beads according to an example of the invention.
  • FIG. 1 depicts reactor unit 20 having a jet-forming membrane 18 which connects with a feed tube 17 attached to a reservoir 2.
  • a shaker for vibrating the membrane 18 includes a vibrator 8 which incorporates the feed tube 17. The vibrator is connected by electrical contact to a variable frequency (oscillating) electrical signal generator (not shown) in a manner so that the vibrator 8 vibrates at the frequency generated by the oscillating signal generator.
  • membrane 18 includes an annulus 30 containing a dispersed phase (polymerizable monomer or hydrocolloid). Membrane 18 is supplied with the dispersed phase via feeding tube 17.
  • Membrane 18 is also suspended in a liquid phase 16 of a suspension medium containing a liquid immiscible with the dispersed phase.
  • the membrane 18 is configured in the shape of a double -walled can or cylinder comprising an outer cylindrical component with a continuous side wall, and an inner cylindrical component with a continuous side wall enclosing the annulus.
  • the side wall of the inner component is spaced inwardly from the side wall of the outer component and includes a constant diameter throughout the height of the outer wall.
  • the side wall of the inner component and the side wall of the outer component include continuous upper and bottom rims and the rims are joined to form an air tight compartment between the inner and outer components.
  • the inside and outside wall of membrane 18 includes through-holes (or pores) 32.
  • the cylindrical double- walled shape of membrane 18 ensures that equal force/acceleration is obtained in every pore 32 on the membrane 18. This is necessary to ensure uniform bead generation.
  • the dispersed phase includes a phase containing mixtures of one or more co-polymerizable monomers, or mixtures of one or more copolymerizable monomers or a hydrocolloid (such as dextrose and agarose, (polysaccharides)) or other gel forming compound (such as PEG, PVA) with a non-polymerizable material (e.g., an inert porogenic or pore-forming material, pre-polymer, or the like) is introduced to the feed tube 17 via the reservoir 2 and is deposited in (or fills) the annulus 30 in the membrane 18.
  • a hydrocolloid such as dextrose and agarose, (polysaccharides)
  • other gel forming compound such as PEG, PVA
  • a non-polymerizable material e.g., an inert porogenic or pore-forming material, pre-polymer, or the like
  • the dispersed phase is fed into the feed tube 17 at a rate such that the dispersed phase is forced through pores 32 of membrane 18 into liquid phase 16 at a rate sufficient to form jets having flow characteristics to form a plurality of dispersed phase droplets 21.
  • the dispersed phase droplets are generated directly into a reactor unit 20.
  • the jet As the dispersed phase jet flows into liquid phase 16, the jet is excited at a frequency which breaks the jet into droplets.
  • membrane 18 is excited using suitable conditions so that substantially uniform sized droplets are prepared.
  • substantially uniform is meant that droplets exhibit a particle size distribution having a coefficient of variance (i.e., the standard deviation of the population divided by the population mean) of less than about 30% or about 10, 15, 20, 25, or about 29%. A coefficient of variation of less than about 15% is preferred.
  • about 70 percent, or about 90 percent, of the beads possess a volume particle diameter from about 0.90 and about 1.1 times the average volume particle diameter of the beads.
  • the particular conditions at which the droplets are formed depend on a variety of factors, particularly the desired size and uniformity of the resulting droplets and the resulting spheroidal polymer beads.
  • the dispersed bead droplets are preferably prepared to have a coefficient of variance of particle size distribution of less than about 20%, more preferably less than about 15%. Most preferably, the coefficient of variance of the particle size of the monomer droplets is less than about 10%>.
  • the subsequent polymerization or gel formation of the dispersed phase is performed using conditions which do not cause significant coalescence or additional dispersion and that will result in the formation of spheroidal polymer beads having a particle size such that at least about 50 volume percent have a particle diameter from about 0.9 to about 1.1 times the average particle diameter of the beads.
  • at least about 60 volume percent, preferably 70 volume percent, more preferably at least about 75 volume percent of the beads exhibit such particle size.
  • the invention also provides spheroidal polymer beads having a volume average particle diameter (i.e., the mean diameter based on the unit volume of the particle) between about 1 ⁇ to about 300 ⁇ .
  • the average volume diameter of the polymer bead of the invention is preferably between about 1 um and about 300 um, more preferably between about 10 to about 180 um, or about 35 to about 180 ⁇ with additional preferred ranges of between about 40 ⁇ to about 180 ⁇ , about 100 to about 160 ⁇ .
  • the volume average particle diameter can be measured by any conventional method, for example, using optical imaging, laser diffraction or elecrozone sensing. Electrozone sensing involves the analysis of particle samples immersed in a conducting aqueous solution. Within the solution is an anode and a cathode formed in shape of an orifice. The particles are pumped through the orifice by pressure. Each particle displaces some amount of liquid as it passes through the orifice and causes a disruption in the electric field.
  • the extent of the disruption corresponds to the size of the particle, and by measuring the number and size of the changes in impedance, it is possible to track particle distribution.
  • the particle diameter may also be measured using optical microscopy or by employing other conventional techniques such as those described in U.S. Pat. No. 4,444,961.
  • jet-forming membrane 18 can include any means through which the dispersed phase can be passed under conditions such that a jet or plurality of jets of the dispersed phase is formed having laminar flow characteristics.
  • membrane 18 can consist of a plate or similar device having a plurality of pores, it is preferred that membrane 18 includes a double walled can- shape enclosing an annulus as shown in FIG. 2.
  • Using a can- shaped membrane allows a relatively small volume to be occupied in the reactor and also affords high productivity generation of uniform drops, ranging from 0.006 to 0.6 kg/hour per cm 2 of membrane. For example, for a can membrane of 6x16 cm, productivity can be from 3 kg/hr up to 300 kg/hour.
  • Membrane 18 may also be in the form of a candle, spiral wound, or flat.
  • the external walls enclosing the annulus of membrane 18 contains a plurality of through pores 32.
  • the membrane can include about 200 to about 40,000, preferably 1 ,500 to 4,000 pores per cm 2 throughout the surface of the membrane.
  • the shape of the membrane pores may vary.
  • the shape of the pores can be cylindrical, or conical.
  • FIG 3 is a schematic illustrating conical-shaped membrane pore 42 of the invention.
  • the pores are in the shape of a slot.
  • the slot includes an aspect ratio of slot width to slot length of at least 1 :2, preferably 1 :3.
  • the aspect ratio of slot width to slot length may be in the range of 1 :2 to 1 : 100.
  • the membrane pores may be fabricated by any conventional method.
  • the membrane pores may be fabricated by drilling or electro-forming.
  • the membrane pores are preferably electro-formed by electroplating or electroless plating of nickel on a suitable mandrel.
  • Use of electro-formed membranes enables a variety of pore sizes and shapes with virtually any pitch required. This gives the possibility of fine tuning drop sizes and achieving high production of polymer beads with well-defined particle size distributions.
  • Electro forming as opposed to mechanical drilling allows for the production of round pores with a higher number of pores per unit area.
  • the membrane pores are perpendicular to the surface.
  • the membrane pores are positioned at an angle, preferably at an angle from 40 to 50 degrees.
  • the diameter of pores 32 can range from less than about 1.0 ⁇ to about 100 ⁇ , preferably 10 ⁇ to 50 ⁇ , wherein diameter refers to the cross-section of the opening having the smallest diameter 42.
  • the diameter of each opening is primarily determined by the desired size of the dispersed phase droplets. Typically, the desired droplet size will vary from about 5 to about 300 ⁇ , more typically from about 25 to about 120 ⁇ , most typically from about 40 to about 110 ⁇ .
  • pore diameter which will produce this size droplet is dependent on a variety of factors including the physical properties, e.g., viscosity, density and surface tension of the dispersed phase, and the conditions of the vibrational excitation, typically, pore diameters from about 1 to about 100 ⁇ , more typically from about 10 to about 45 ⁇ are employed.
  • the plurality of pores 32 in membrane 18 are spaced at a distance apart from each other so that the formation of the uniformly sized monomer droplets and the stability of the resulting droplets are not affected by the laminar jet and droplet formation of an adjacent jet.
  • interactions between the droplets formed from adjacent jets are not significant when a passage is spaced at a distance of at least about 1.2-5 times the diameter of each opening apart from the nearest passage, when the distance is measured from the center of each passage.
  • membrane 18 can be prepared from a variety of materials including metal, glass, plastic or rubber, a perforated metal membrane is preferably employed.
  • the membrane may be substantially metallic, or wholly metallic.
  • the membrane may also contain a chemically-resistant metal such as a noble metal or stainless steel or may be pretreated with chemical reagents. Suitable materials and membrane configurations for use in this invention are disclosed, for example, in International Publication No. WO 2007/144658, which is incorporated herein by reference in its entirety.
  • the membrane may be made from nickel or be nickel-plated, and coated with a super-hydrophobic coating.
  • a super-hydrophobic coating may be applied to the surfaces of the membrane
  • PTFE polytetrafluroethylene submicron (e.g., nanometer) beads in a nickel plating solution and applied to the membrane by electroless deposition.
  • a coating may optionally be further coated with an amorphous fluoroplastic such as Teflon ® AF 1600 (CAS 37626-13-4).
  • the vibration is provided by any means which oscillates or vibrates at a frequency capable of exciting the dispersed phase jet so that the dispersed phase jet is broken into droplets, preferably, droplets of a general uniform size. Vibrational excitation causes a uniform shear force across the membrane at a point of egression of the dispersed phase into the suspension phase. The shear force is thought to interrupt the dispersed phase flow through the membrane
  • the shear force may be provided by rapidly displacing the membrane by vibrating, rotating, pulsing or oscillating movement.
  • the direction of shear is substantially perpendicular to the direction of egression of the dispersed phase. Having the pore opening transverse to the oscillating force provides sufficient vibration acceleration to break the jets formed at the pore opening into droplets.
  • the frequency of vibration of the membrane can be from 10 Hz to 20,000 Hz using commercially available vibratory exciters, and as high as 500,000 Hz if piezoelectric exciters are used, as supplied by Electro Dynamic shaker, Permanent magnet shaker or Piezo electro-cell. Typical frequencies of vibration are from 10 Hz-20000 Hz, preferably 20 - 100 Hz. Suitable amplitude values are in the range of about 0. 001 to about 70 mm.
  • the dispersed phase includes one or more polymerizable monomers which forms a discontinuous phase dispersed throughout the suspension medium upon the formation of droplets through the membrane.
  • Polymerizable monomers of the invention are polymerizable monomers or mixtures of two or more copolymerizable monomers that are sufficiently insoluble in a liquid (or a liquid containing a surfactant) to form droplets upon the dispersion of the monomer in the liquid.
  • the polymerizable monomers are monomers polymerizable using suspension polymerization techniques. Such monomers are well known in the art and are described in, for example, E. Trommsdoff et al, Polymer Processes, 69-109 (Calvin E. Schildknecht, 1956).
  • Water soluble polymerizable monomers are also included in the scope of the present invention.
  • the invention contemplates the use of monomers that form an aqueous solution in water, where the resulting solution is sufficiently insoluble in one or more other suspension liquids, generally a water-immiscible oil or the like, such that the monomer solution forms droplets upon its dispersion in the liquid.
  • Representative water soluble monomers include monomers which can be polymerized using conventional water-in-oil suspension (i.e., inverse suspension) polymerization techniques such as described by U.S. Patent No.
  • 2,982,749 including ethylenically unsaturated carboxamides such as acrylamide, methacrylamide, fumaramide and ethacrylamide; aminoalkyl esters of unsaturated carboxylic acids and anhydrides; ethylenically unsaturated carboxylic acids, e.g., acrylic or methacrylic acid, and the like.
  • Preferred monomers for use herein are ethylenically unsaturated carboxamides, particularly acrylamide, and ethylenically unsaturated carboxylic acids, such as acrylic or methacrylic acid.
  • HydrocoUoids and gel forming compounds are also included in the scope of the present invention.
  • the invention contemplates the use of agarose that forms an aqueous solution in water, where the resulting solution is sufficiently insoluble in one or more other suspension liquids, generally a water-immiscible oil or the like, such that the agarose or gel forming compound solution forms droplets upon its dispersion in the liquid.
  • Representative water soluble hydrocoUoids include dispersed phase which can be formed into a gel using any means well described in the literature and using techniques well known in the art. Subsequent crosslinking of the gel beads formed as above is accomplished as per available publications and using techniques well known in the art.
  • the amount of monomer present in the dispersed phase will vary.
  • the dispersed phase includes sufficient liquid to solubilize the monomer.
  • the monomer includes less than about 50 weight percent of the total monomer dispersed in the aqueous phase.
  • the monomer includes from about 30 to 50 weight percent of the monomer dispersed in the aqueous phase for gel polymers.
  • the monomer when a porogen is present, includes less than about 30 weight percent of the total monomer/aqueous phase. Preferably, the monomer includes from about 20 to 35 weight percent of the monomer dispersed in an aqueous phase for macroporous polymer.
  • the monomers can be polymerized using free radical initiation by UV light or heat, or a combination of these methods, in general, chemical radical initiators are preferably used in the present invention.
  • Free radical initiators such as persulfates, hydrogen peroxides or hydroperoxides can also be used.
  • the ratio of organic initiator to dry monomer is about 0.1 to about 8%, or about 0.5 to about 2% by weight, preferably about 0.8 to about 1.5% by weight.
  • the liquid or suspension phase is a medium containing a suspending liquid immiscible with the polymerizable monomer or dispersed phase.
  • a water-immiscible oil is used as the suspension phase.
  • water-immiscible oils include, but are not limited to, halogenated hydrocarbons such as methylene chloride, liquid hydrocarbons, preferably having about 4 to about 15 carbon atoms, including aromatic and aliphatic hydrocarbons, or mixtures thereof such as heptane, benzene, xylene, cyclohexane, toluene, mineral oils and liquid paraffins.
  • the viscosity of the suspension phase is advantageously selected such that the monomer droplets can easily move throughout the suspension phase.
  • droplet formation is readily achieved, and movement of the droplets throughout the suspension medium is facilitated, when the viscosity of the suspension phase is higher or substantially similar to (e.g., of the same order of magnitude) as the viscosity of the dispersed phase.
  • the suspension medium has a viscosity of less than about 50 centipoise units (cps) at room
  • Viscosity values of less than 10 cps are preferred. In one embodiment, the viscosity of the suspension phase is from about 0.1 to about 2 times the viscosity of the dispersed phase.
  • Examples of viscosity modifiers suitable for use with a water immiscible oil suspension phase of the invention include, but are not limited to, ethyl cellulose.
  • the suspension phase also contains a suspending agent.
  • suspending agents known to those skilled in the art are surfactants with an HLB (hydrophilic- lipophilic balance) of below 5
  • HLB hydrophilic- lipophilic balance
  • the total amount of suspending agent in the aqueous phase is from 0.05% to 4%, and more preferably, from 0.5% to 2%.
  • the polymerizable monomer droplets are formed by dispersing the monomer phase through the plurality of pores 32 of membrane into the suspension phase.
  • the linear monomer flow rates through the membrane can vary from 1-50 cm/s, preferably 40, 30, 20, or less than 10 cm/s.
  • the monomer droplets may be directed into the suspension phase by pumping or applying a pressure (or combination of pressurizing and pumping) to direct the dispersed phase into the suspension, preferably by pumping.
  • the applied pressure is in the range of 0.01 to 4 bar and preferably 0.1 to 1.0 bar.
  • a piston, or similar means such as a diaphragm is used for directing the dispersed phase into the suspension.
  • the polymerization reaction vessel 20 is advantageously agitated or stirred to prevent significant coalescence or additional dispersion of the monomer droplets during the polymerization.
  • the conditions of agitation are selected such that the monomer droplets are not significantly resized by the agitation, the monomer droplets do not significantly coalesce in the reaction vessel, no significant temperature gradients develop in the suspension and pools of monomer, which may polymerize to form large masses of polymer, are substantially prevented from forming in the reaction vessel.
  • these conditions can be achieved by using an agitator (paddle) such as described in Bates et al, "Impeller Characteristics and Power," Mixing, Vol. I, V. W. Uhl and J. B.
  • the agitator is of the anchor or gate types, as described on pp. 116-118 of Bates et al., or is of the "loop" or "egg beater” types. More preferably, the agitator bars extend up through the surface of the suspension as shown in FIG. 1, thereby preventing the formation of monomer pools on the surface of the suspension.
  • the resulting polymer beads may be recovered by conventional techniques such as filtration. The recovered beads can then be further processed.
  • the rate of cooling of the polymer beads can affect the porosity of the finished beads.
  • the beads are piped in suspension to pulsating flow pump 22.
  • the suspension is then transported through plug flow reactor 24, which reduces the temperature and thereby hardening of the beads in over a predetermined time period.
  • the hardened beads 26 exiting plug flow reactor 24 are collected in collection vessel 28.
  • the method and compositions of the present invention provides a highly efficient and productive method for preparing uniform sized spheroidal polymer particles from polymerizable monomers, particularly monomers that are polymerizable using suspension polymerization techniques.
  • the can was then cleaned by soaking in 10% sodium hydroxide solution for 30 minutes, followed by a water wash.
  • the can was then soaked in 5% citric acid solution for 30 minutes, followed by a water wash.
  • the cleaned can was then soaked in a phosphorous nickel water solution (nickel 80 g/1 (70-90 g/1)
  • the can was transferred to a tank containing PTFE electroless nickel plating solution held at 85° C and the plating maintained for 10-30 minutes, (from Caswell Europe).
  • the can was then washed with sonication in an ultrasonic water bath, and dried at 160° C. for 2 hours.
  • the can was then washed in a toluene bath 3 times, and then dried at 60° C. for 1 hour.
  • the PFTE-coated can was then soaked in 0.5 % Teflon AF solution (Sigma Aldrich CAS 37626-13-4) in Fluorinert FC-70, electronic liquid (obtained from 3M Performance Materials, St. Paul, MN) for 2 hours at ambient temperature.
  • the Teflon AF-coated can was then flushed with pure Fluorinert FC-70, and finally dried at 160° C. for 2 hours.
  • the continuous (suspension) phase consists of mineral oil SIPMED 15 with 1.5 % SPAN 80 non-ionic surfactant (sorbitan oleate) in it.
  • the dispersed monomer phase was prepared in a 3 liter jacketed reactor with paddle overhead stirrer by suspension of agarose in water at room temperature. The temperature was increased to 90° C. and stirred at this temperature for 90 minutes. The temperature was then reduced to 80 ° C. (which was the injection temperature). The dispersed phase was then fed to the membrane at a flow rate of 16 ml/min.
  • the membrane used in this Example was a 4x4 cm (L/d) nickel-based superhydrophobic membrane (pure nickel) containing around 250,000 16 ⁇ conical through holes connecting the suspension and disperse phases.
  • the disperse phase was then directed through the membrane into the suspension phase at a rate of 16 ml/min using a gear pump.
  • the membrane was vibrationally excited to a frequency of 21 Hz and amplitude 2.6 mm as the agarose phase was dispersed in the suspension phase, forming a plurality of agarose droplets in the suspension phase.
  • the resultant droplet emulsion was fed into a 5 liter glass reactor flask under agitation sufficient to suspend the droplets without resizing the droplets.
  • the reactor was then cooled to 20° C. After separating the agarose beads from the oil phase and washing the beads, the following properties were noted: the volume mean particle diameter was 82 ⁇ ; uniformity coefficient was 1.28; and SPAN of distribution was 0.44. SPAN is defined as (D90 - D10)/D50 or the diameter of a bead at 90% volume minus the diameter at 10% volume divided by the diameter of the bead at 50% volume, to provide a dimensionless normalized to mean size distribution spread or yield.
  • Example 2 was repeated except that the frequency of membrane vibration was
  • Example 2 was repeated except that the frequency of membrane vibration was 21
  • Example 2 was repeated except that the frequency of membrane vibration was
  • One 40x40 mm can was used after hydrophobic treatment and superhydrophobic treatment. Initially pure Nickel membrane was soaked in 0.5 % Teflon AF solution (Sigma Aldrich CAS 37626-13-4) in Fluorinert FC-70 electronic liquid (obtained from 3M Performance Materials, St. Paul, MN) for 2 hours at ambient temperature. The Teflon AF-coated can was then flushed with pure Fluorinert FC-70, and finally dried at 160° C. for 2 hours.
  • the membrane was stripped from Teflon AF, and superhydrophobic treatment performed as described in Example 1. [00044] The same vibrational condition was used (24 Hz, amplitude 3 mm, and injection rate 14 ml/min) for emulsification by the hydrophobic and superhydrophobic membranes.
  • Fig. 4 of the drawings discloses:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

Selon l'invention, des billes polymères sphéroïdales de taille uniforme sont préparées par polymérisation de gouttelettes monomères de taille uniforme, formées par dispersion d'une phase monomère polymérisable sur une membrane à flux transversal cylindrique à deux parois, dans une phase de suspension. Une force de cisaillement est appliquée au niveau du point de sortie de la phase monomère polymérisable dans la phase de suspension, la direction de cisaillement étant essentiellement perpendiculaire à la direction de sortie de la phase monomère. La membrane est métallique et comprend un revêtement superhydrophobe.
EP17835627.5A 2016-12-16 2017-12-15 Procédé de production de billes polymères uniformes par projection par vibrations au moyen d'une membrane superhydrophobe Pending EP3555146A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP24164804.7A EP4378963A3 (fr) 2016-12-16 2017-12-15 Procédé de production de billes polymères uniformes par projection par vibrations au moyen d'une membrane superhydrophobe

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201662435499P 2016-12-16 2016-12-16
CN201710096177.XA CN108203514B (zh) 2016-12-16 2017-02-22 使用超疏水膜通过振动喷射生产均匀的聚合物珠粒的方法
PCT/EP2017/082976 WO2018109149A1 (fr) 2016-12-16 2017-12-15 Procédé de production de billes polymères uniformes par projection par vibrations au moyen d'une membrane superhydrophobe

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP24164804.7A Division EP4378963A3 (fr) 2016-12-16 2017-12-15 Procédé de production de billes polymères uniformes par projection par vibrations au moyen d'une membrane superhydrophobe

Publications (1)

Publication Number Publication Date
EP3555146A1 true EP3555146A1 (fr) 2019-10-23

Family

ID=62603398

Family Applications (2)

Application Number Title Priority Date Filing Date
EP17835627.5A Pending EP3555146A1 (fr) 2016-12-16 2017-12-15 Procédé de production de billes polymères uniformes par projection par vibrations au moyen d'une membrane superhydrophobe
EP24164804.7A Pending EP4378963A3 (fr) 2016-12-16 2017-12-15 Procédé de production de billes polymères uniformes par projection par vibrations au moyen d'une membrane superhydrophobe

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP24164804.7A Pending EP4378963A3 (fr) 2016-12-16 2017-12-15 Procédé de production de billes polymères uniformes par projection par vibrations au moyen d'une membrane superhydrophobe

Country Status (9)

Country Link
EP (2) EP3555146A1 (fr)
JP (1) JP7106570B2 (fr)
KR (1) KR102446737B1 (fr)
CN (1) CN108203514B (fr)
AU (1) AU2017378089B2 (fr)
CA (1) CA3044128A1 (fr)
MX (2) MX2019007087A (fr)
RU (1) RU2736821C1 (fr)
UA (1) UA124813C2 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109283852A (zh) * 2018-11-28 2019-01-29 上海置信节能环保有限公司 利用声场控制超疏水表面滴状冷凝传热性能的装置
CN109692126B (zh) * 2019-03-01 2021-10-22 深圳万和制药有限公司 制备高均匀度滴丸的方法和使用的设备
CN112588201B (zh) * 2020-12-30 2022-11-15 重庆长江造型材料(集团)股份有限公司 一种浆料的固结造粒方法
CN113000081B (zh) * 2021-03-08 2022-01-04 张贵海 单反应高通量微流控组件、核酸扩增自动化poct系统及液滴生成方法
WO2022202467A1 (fr) * 2021-03-25 2022-09-29 Jsr株式会社 Procédé de production de support pour une utilisation chromatographique, procédé de production de colonne de chromatographie, et support pour une utilisation chromatographique
WO2022202466A1 (fr) * 2021-03-25 2022-09-29 Jsr株式会社 Procédé de production d'un vecteur chromatographique, procédé de production d'une colonne de chromatographie et vecteur chromatographique

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2694700A (en) 1950-01-21 1954-11-16 Peter L Shanta Process of suspension polymerization
US2982749A (en) 1957-07-15 1961-05-02 Dow Chemical Co Inverse suspension polymerization of water soluble unsaturated monomers
US3728318A (en) 1971-03-04 1973-04-17 Rohm & Haas Suspension polymerization of uniform polymer beads
US3862924A (en) 1973-11-07 1975-01-28 Rohm & Haas Suspension polymerization in brine of uniform spherical polymer beads
CA1166413A (fr) * 1980-10-30 1984-05-01 Edward E. Timm Methode et dispositif pour la preparation de perles de polymere dimensionnellement uniformes
US4666673A (en) 1980-10-30 1987-05-19 The Dow Chemical Company Apparatus for preparing large quantities of uniform size drops
US4623706A (en) 1984-08-23 1986-11-18 The Dow Chemical Company Process for preparing uniformly sized polymer particles by suspension polymerization of vibratorily excited monomers in a gaseous or liquid stream
JP2875389B2 (ja) * 1990-11-30 1999-03-31 昭和電工株式会社 ポリマービーズの製造方法
ATE485886T1 (de) * 2003-06-18 2010-11-15 Asahi Glass Co Ltd Verfahren und vorrichtung zur herstellung von anorganischen sphären
JP2005194425A (ja) * 2004-01-08 2005-07-21 Sekisui Chem Co Ltd 微粒子の製造方法及び微粒子
JP2007023141A (ja) * 2005-07-15 2007-02-01 Showa Denko Kk ポリマービーズ及びその製造方法並びにポリマービーズ製造用液滴生成装置
SG131015A1 (en) 2005-09-15 2007-04-26 Millipore Corp Method and apparatus for making porous agarose beads
GB0611888D0 (en) 2006-06-15 2006-07-26 Micropore Technologies Ltd An apparatus and method for membrane emulsification
JP5231189B2 (ja) * 2008-01-09 2013-07-10 ローム アンド ハース カンパニー 均一なサイズのポリマービーズを製造する方法
US8033412B2 (en) 2008-09-11 2011-10-11 The Mainstreet Collection, Inc. Double-wall decorative drinking vessel
US8926065B2 (en) * 2009-08-14 2015-01-06 Advanced Liquid Logic, Inc. Droplet actuator devices and methods
EP2661456B1 (fr) * 2011-01-07 2016-07-13 Purolite Corporation Procédé de production de billes de polymère
MX2014004107A (es) * 2011-10-06 2014-07-11 Basf Corp Métodos para la aplicación de un recubrimiento absorbente en un sustrato, un soporte, y/o un sustrato recubierto con un soporte.
US8816026B2 (en) * 2012-09-20 2014-08-26 Thermax Limited Method and apparatus for preparing polymer beads of uniform particle size by suspension polymerisation
KR20150095688A (ko) * 2012-12-17 2015-08-21 롬 앤드 하스 캄파니 단량체 소적의 생성방법
US9028730B2 (en) * 2013-03-15 2015-05-12 Purolite Corporation Method of producing uniform polymer beads of various sizes
RU2690346C2 (ru) * 2014-10-09 2019-05-31 Иллюмина, Инк. Способ и устройство для разделения несмешиваемых жидкостей с целью эффективного отделения по меньшей мере одной из жидкостей

Also Published As

Publication number Publication date
UA124813C2 (uk) 2021-11-24
CN108203514B (zh) 2022-11-22
MX2024004069A (es) 2024-04-29
JP2020504776A (ja) 2020-02-13
AU2017378089A1 (en) 2019-06-06
CN108203514A (zh) 2018-06-26
JP7106570B2 (ja) 2022-07-26
KR20190097073A (ko) 2019-08-20
RU2736821C1 (ru) 2020-11-20
KR102446737B1 (ko) 2022-09-22
EP4378963A3 (fr) 2024-08-21
EP4378963A2 (fr) 2024-06-05
CA3044128A1 (fr) 2018-06-21
MX2019007087A (es) 2019-10-15
AU2017378089B2 (en) 2022-05-12

Similar Documents

Publication Publication Date Title
AU2017378089B2 (en) Method of producing uniform polymer beads by vibration jetting with superhydrophobic membrane
US9028730B2 (en) Method of producing uniform polymer beads of various sizes
JP5987218B2 (ja) 種々のサイズの均一なポリマービーズの製造方法
EP0173518B1 (fr) Procédé de préparation de particules de polymères de grandeur uniforme
US10526710B2 (en) Method of producing uniform polymer beads by vibration jetting with superhydrophobic membrane
JPH05194611A (ja) 均一な大きさのポリマービーズを製造するための装置
US9393532B2 (en) Swept membrane emulsification
EP2917010A1 (fr) Procédé de production de gouttelettes de monomère
WO2013148746A1 (fr) Produit et procédé de fabrication de billes polymères acryliques, sphériques, uniformes
JP2875389B2 (ja) ポリマービーズの製造方法

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190715

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200528

REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 40016536

Country of ref document: HK

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS