EP3548744B1 - Appareil pour contrôler le pompage de fluide sous pression dans un conduit, et une méthode de commande d'un moteur - Google Patents

Appareil pour contrôler le pompage de fluide sous pression dans un conduit, et une méthode de commande d'un moteur Download PDF

Info

Publication number
EP3548744B1
EP3548744B1 EP17840454.7A EP17840454A EP3548744B1 EP 3548744 B1 EP3548744 B1 EP 3548744B1 EP 17840454 A EP17840454 A EP 17840454A EP 3548744 B1 EP3548744 B1 EP 3548744B1
Authority
EP
European Patent Office
Prior art keywords
prime mover
plant
fluid delivery
conduit
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17840454.7A
Other languages
German (de)
English (en)
Other versions
EP3548744A1 (fr
Inventor
Terje STOKKEVÅG
Oddgeir HUSØY
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Impact Solutions As
Original Assignee
Impact Solutions As
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Impact Solutions As filed Critical Impact Solutions As
Publication of EP3548744A1 publication Critical patent/EP3548744A1/fr
Application granted granted Critical
Publication of EP3548744B1 publication Critical patent/EP3548744B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/11Perforators; Permeators
    • E21B43/114Perforators using direct fluid action on the wall to be perforated, e.g. abrasive jets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/22Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by means of valves
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • E21B43/2607Surface equipment specially adapted for fracturing operations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B11/00Equalisation of pulses, e.g. by use of air vessels; Counteracting cavitation
    • F04B11/005Equalisation of pulses, e.g. by use of air vessels; Counteracting cavitation using two or more pumping pistons
    • F04B11/0058Equalisation of pulses, e.g. by use of air vessels; Counteracting cavitation using two or more pumping pistons with piston speed control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B17/00Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • F04B17/03Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B17/00Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • F04B17/05Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B17/00Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • F04B17/06Mobile combinations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B47/00Pumps or pumping installations specially adapted for raising fluids from great depths, e.g. well pumps
    • F04B47/02Pumps or pumping installations specially adapted for raising fluids from great depths, e.g. well pumps the driving mechanisms being situated at ground level
    • F04B47/04Pumps or pumping installations specially adapted for raising fluids from great depths, e.g. well pumps the driving mechanisms being situated at ground level the driving means incorporating fluid means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/08Regulating by delivery pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/20Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by changing the driving speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B9/00Piston machines or pumps characterised by the driving or driven means to or from their working members
    • F04B9/08Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid
    • F04B9/10Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid
    • F04B9/109Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid having plural pumping chambers
    • F04B9/117Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid having plural pumping chambers the pumping members not being mechanically connected to each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B9/00Piston machines or pumps characterised by the driving or driven means to or from their working members
    • F04B9/08Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid
    • F04B9/10Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid
    • F04B9/109Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid having plural pumping chambers
    • F04B9/117Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid having plural pumping chambers the pumping members not being mechanically connected to each other
    • F04B9/1172Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid having plural pumping chambers the pumping members not being mechanically connected to each other the movement of each pump piston in the two directions being obtained by a double-acting piston liquid motor

Definitions

  • the invention concerns a method of controlling a prime mover which is configured to drive one or more fluid delivery systems for delivering a fluid in a conduit, and an associated plant, as set out by the preambles in claims 1 and 6, respectively.
  • the invention is particularly useful in the extraction of shale oil and/or gas by means of pressure pumping equipment for well stimulation, commonly known as “hydraulic fracturing” or “fracking", but is not limited to such operations.
  • a typical pressure pump comprises two major parts: a "fluid end” and a “power end”.
  • the fluid end is the actual pressure pump, pressurizing the fracturing fluid. It is normally a plunger/piston pump, typically operating at 150-300 strokes per minute, and is an exchangeable unit.
  • the power end is part of the drivetrain, and it is connected to a multi-speed transmission.
  • the power end has a reduction gear box on the inlet, and is connected to the plunger on the fluid end via a crankshaft and a crosshead.
  • the power is normally provided by a reciprocating engine, although gas turbine engines are also used.
  • the prior art includes CN 104806220 A , which describes "fully-hydraulic driven" fracturing equipment with a power unit and a fracturing pump.
  • the power unit comprises an engine unit, a transfer case unit and a hydraulic pump unit. Three hydraulic pumps are installed on each transfer case, and the hydraulic pump unit is connected through hydraulic pipelines.
  • the fracturing pump comprises a left and a right pump head; three two-way hydraulic oil cylinders which are arranged in parallel are installed on the fracturing pump.
  • the fracturing pump is driven by the two-way hydraulic oil cylinders, so that the equipment power is increased, the equipment discharge flow is increased; the equipment weight and size are reduced.
  • the prior art also includes CN 104727797 A and CN 204552723 U , which describe a system where an engine, a transfer case, a plurality of variable displacement plunger pumps and a double-acting fracturing pump are arranged on a chassis.
  • the output end of the engine is connected with the input end of the transfer case, and the output end of the transfer case comprises a plurality of power take-off ports.
  • Each power take-off port is connected with one variable displacement plunger pump.
  • the plunger pumps drive the double-acting fracturing pump through a hydraulic system.
  • the prior art also includes CN 104728208 A , which describes a high-power hydraulic driving fracturing-pump pump station system, in which the hydraulic cylinders are connected with the fracturing cylinders.
  • Electric motor driven hydraulic pump provides high-pressure oil and fluid outlet manifold outputs a high-pressure fracturing fluid.
  • the prior art also includes CN 104453825 A , which describes a modularized fracturing pump set which comprises a power unit and a fracturing pump unit.
  • An auxiliary engine is arranged on the power unit and is connected to a hydraulic pump.
  • a torque converter is arranged in the fracturing pump, and the input end of the torque converter is connected to the main engine.
  • the output end of the torque converter is connected to a gearbox, and the output end of the gearbox is connected to the fracturing pump.
  • WO 2014/078236 A1 describes a turbo-shaft engine having a drive shaft and a high pressure, and a high-RPM centrifugal pump coupled to the drive shaft.
  • US 4470771 A discloses quadraplex pumping unit for use as a mud pump, an intensifier, or as a pump for abrasive fluids or the like.
  • the pumping unit includes four rams and four ram operating pistons.
  • a control valve arrangement provides for pressure equalization and energy transfer from a cylinder which has just extended in a working stroke to a companion cylinder which has just returned to its retracted to rest position, to conserve energy and reduce the thermal burden on the hydraulic system.
  • the valve arrangement further provides for prepressurization, after pressure equalization, prior to an extending stroke.
  • US 2005/006089 A1 discloses a method and apparatus for fracturing a subterranean formation.
  • a centrifugal pump is used to combine a fracture fluid, a sand suspension and liquid additive and discharge a mixture of these components into a high pressure pump that injects the mixture into the subterranean formation.
  • the apparatus employs a control pinch valve to precisely control the amount of sand suspension being added to the mixture.
  • US 3722595 A discloses a fracturing method wherein an emulsified fluid is injected into a subterranean formation under sufficient pressure to open a fracture in the formation.
  • the fracturing method is performed by continuously passing the liquid used as the external phase through a conduit to establish a turbulent flow stream, introducing the liquid used as the internal phase into the flow stream at a plurality of locations to progressively increase the concentration of the internal phase, and continuously injecting the emulsion into the formation under sufficient pressure to open a fracture therein.
  • the method can be employed in water external or oil external systems.
  • US 2014/010671 A1 discloses a hydraulic pump powering system which includes a mobile vehicle, a first electric current generator device, and one or more electric pump motors.
  • the mobile vehicle has first and second prime movers.
  • the first electric current generator device is disposed onboard the mobile vehicle and is configured to be mechanically coupled with the first prime mover to convert movement created by the first prime mover into first electric current.
  • the one or more electric pump motors are configured to receive the first electric current to power a hydraulic pump.
  • the second prime mover is configured to generate movement that is converted into a propulsive force that propels the mobile vehicle.
  • the one or more electric pump motors are configured to receive the first electric current in order to power the hydraulic pump to pump a fluid into a pumping location located off-board the mobile vehicle.
  • a plant for controlling the delivery of a pressurized fluid in a conduit comprising a prime mover which is configured to supply torque to one or more hydraulic pumps, characterized by each hydraulic pump configured to supply hydraulic pressure to respective positive displacement fluid delivery systems, each positive displacement fluid delivery system configured to deliver said fluid in the conduit, - first sensing means configured for sensing pressure variations in the conduit and connected to a first controller; the first controller being configured to provide control signals to the control valves for at least one fluid delivery system and to a control system for the prime mover, based on said sensed pressure variations.
  • the plant may comprise one or more hydraulic pumps configured to communicate with control means and to operate said fluid delivery systems and being driven by the prime mover, whereby the interaction between the hydraulic pumps and the prime mover is controlled based on sensed pressure variations in the conduit.
  • the plant further comprises valve outlet feedback pressure sensors connected to respective control valves, and a valve inlet pressure sensor connected to the control valve.
  • the plant may further comprise a valve controller configured for receiving signals from the pressure sensors and the first sensing means, position feedback from the positive displacement fluid delivery systems, and configured for providing control signals to the control valves.
  • the prime mover may be a gas turbine engine.
  • a gear unit may be arranged between the gas turbine engine and the hydraulic pump.
  • the prime mover is a reciprocating engine.
  • the at least one positive displacement fluid delivery system may comprise a positive displacement pump.
  • the method may further comprise determining an estimated power consumption.
  • the method comprises controlling the prime mover fuel supply by variations in the sensed pressure.
  • the at least one positive displacement fluid delivery system may be controlled based on a set-point (rate/pressure) identified and set by an operator or an overall control system.
  • a first controller may provide control signals to hydraulic pumps, configured to operate said fluid delivery systems and being driven by the prime mover, whereby the interaction between the hydraulic pumps and the prime mover is controlled based on sensed pressure variations in the conduit.
  • the invented plant may be placed on a mobile unit, for example a trailer.
  • the invention is particularly useful in hydraulic fracturing ("fracking") operations, it is also applicable for all positive displacement pumping processes in which control is based on a flow and pressure-setting an feedback pressures.
  • the invention shall therefore not be limited to fracking operations.
  • the invented plant is in this illustrated embodiment arranged as a mobile unit 18 on a trailer 19 and enclosed by a housing 20. Doors in the housing provide access to the plant, and rear doors allow the movable unit comprising the fluid end 21 with its double-acting cylinders 22 to be moved out and down (see figure 3 ) when the plant is in operation. Pipes 21a are configured for connection to well piping (not shown).
  • the mobile plant comprises in the illustrated embodiment a gas turbine 26, connected via a duct 27a to an air inlet 27, and an exhaust opening 26a.
  • the gas turbine receives fuel from the fuel tank 32.
  • Supply lines and hoses, power lines and control lines, etc., are not shown, as these components are commonly known in the art.
  • the gas turbine 26 is connected to a set of single or tandem-mounted hydraulic pumps 30 via a gearbox 28.
  • Reference numbers 31 and 29 denote a hydraulics tank and accumulator tanks, respectively.
  • Louvers and air filtration container 23 is arranged towards the read of the mobile unit, behind oil cooler gearbox 25 and hydraulics 24.
  • the hydraulic pumps 30 operate double-acting cylinders 22 in the plant's fluid ends 21. Each hydraulic cylinder operates one plunger, in each of the plant's two fluid ends.
  • figure 1 three systems are shown; denoted A, B, C, respectively. It should be understood that only system C is illustrated in detail in figure 1 , for clarity of illustration. The skilled person will understand that the components and functions illustrated and described with reference to system C, also can be applied to systems A and B. It should also be understood that the invention shall not be limited to the number of systems shown in figure 1 .
  • Reference number 1 denotes a power source, which comprises a prime mover 2.
  • the prime mover may be a gas turbine engine or a reciprocating engine, controlled via a throttle 3 (controlling fuel supply F and receiving information regarding rotation speed R).
  • the prime mover 2 is connected, and configured to transfer torque T, to a gear unit 8.
  • the gear unit 8 transfers torque T' to individual hydraulic pumps 9a-c; each pump having respective pump pressure sensors 13a-c.
  • the gear unit 8 may be configured to reduce high-rpm output from the turbine. If the prime mover is of another type of engine (e.g. a reciprocating engine), the hydraulic pumps may be driven directly by the engine, and the gear unit 8 may be omitted.
  • the prime mover is of another type of engine (e.g. a reciprocating engine)
  • the hydraulic pumps may be driven directly by the engine, and the gear unit 8 may be omitted.
  • Each hydraulic pump 9a-c supplies hydraulic pressure to respective positive displacement fluid delivery systems, in the illustrated embodiment double-acting hydraulic cylinders 34a-c, via respective control valves 36a-c, 37a-c.
  • a reservoir tank 11 and a cooler 17 are fluidly connected between the hydraulic pump 9c and the control valves 36c, 37c.
  • the circuit also comprises an accumulator 33, for mitigating pressure pulses.
  • Each hydraulic cylinder 34a-c is drivingly connected to respective sets of fluid plungers 35al-cl, 35a2-c2.
  • the fluid plungers 35al-cl, 35a2-c2 supply fluid to the well via the fluid supply line 10.
  • the invention shall, however, not be limited to such fluid plungers.
  • Reference number 12 denotes a suction line from a fluid blending system (not shown).
  • Well feedback pressure sensor 16 is connected to, and configured to sense the pressure in (and hence pressure variations), the supply line 10.
  • Valve outlet feedback pressure sensors 15 are connected to respective control valves 36c, 37c.
  • Valve inlet pressure sensor 14 is connected to control valve 36c.
  • a valve controller 7 typically a programmable logic controller - PLC receives signals from the pressure sensors 14, 15, 16, position feedback Cp from the hydraulic cylinders, and provides control signals Vf to the control valves 36c, 37c.
  • a main control system 4 controls the throttle 3 based on power request Pr and provides power feedback Pf.
  • the main control system 4 also receives transport security interlock feedback Ts from the gear unit 8, and estimated power consumption data EPC from the PLC 7, based on the sensed pressure variations by well feedback pressure sensor 16.
  • a louver controller 5 is also in communication with the main control system 4, to open and close louvers (for e.g. ventilation and fire control).
  • the main control system 4 receives data from a hydraulic pump controller 6 (e.g. a PLC) and provides a power command Ac to the hydraulic pump controller 6.
  • the hydraulic pump controller 6 in turn provides the required displacement command Dc to the hydraulic pump 9c based on pump pressure feedback Pp (from the pressure sensor 13c).
  • the main control system 4 also provides data regarding requested cylinder speed RCS to the valve controller 7, which in turn determines and provides the valve flow control signal Vf to the control valves 36c, 37c, as described above.
  • the invention thus comprises a hydraulic-pressure/flow-controlled power transmission, in which all power from the prime mover is transformed into hydraulic power by the hydraulic pumps.
  • the hydraulic pumps enable the prime mover to start against little or no load.
  • the prime mover 2 and the hydraulic pumps 9a-c operate the hydraulic cylinders 34a-c and fluid plungers 35al-cl, 35a2-c2 to supply pressurized fracturing fluid to the line 10 (and thus the subterranean well).
  • the hydraulic fracturing pressure generated in the well is a result of the well pressure and the hydraulic pressure generated by the plungers.
  • the well pressure (which is sensed by the sensor 16) is communicated to the valve controller PLC 7, which controls the control valves 36a-c, 37a-c and also determines the estimated power consumption EPC, which is transmitted to the main control system 4.
  • the prime mover fuel supply e.g.
  • the turbine fuel injection may thus be governed by the well pressure, or rather the variations in pressure, as sensed continuously by the sensor 16.
  • the blazing turbine fuel control receives pressure reading from the hydraulic control system, based on the pressure and rate reading from the hydraulic fracturing pressure.
  • the hydraulic control system then performs a control action based on a set-point (rate/pressure) identified and set by the operator.
  • the “delay” which is inherent in the hydraulic components, or as controlled by the main control system 4, provides sufficient time for the turbine fuel control to "predict” what is going to happen, and take action before it happens.
  • the prime mover can - before the requirement arises - either increase the fuel injection (open throttle) to be ready for the higher demand from the hydraulic pumps, or lower the fuel injection (restrict throttle) to adapt to the estimated future requirement of torque, and thereby accommodate the change in rate/pressure.
  • This function is particularly useful in embodiments where the prime mover is a gas turbine engine, as such turbines normally operate at high rotational speeds, and have low torque.
  • the control system may in this fashion prevent the gas turbine engine from over-speeding, and further give the gas turbine engine a head-start on a predicted increased torque demand.
  • valve controller 7 and pressure sensor 16 are sensing this, based on sensed pressure variations.
  • the set point may also be defined based on a prioritized list, defined by an overall control system, of how deviating conditions are to be handled. Based on rate/pressure difference between the set point and the actual pressure reading (as sensed by 16), there will occur a situation that the actual power command Ac (fed to main controller 4 by the pump controller 6) differs from (less or more) the estimated power consumption EPC (fed to the main controller 4 by the valve controller 7).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Claims (15)

  1. Installation pour commander la distribution d'un fluide sous pression dans un conduit (10), comprenant un moteur primaire (2; 26) qui est conçu pour fournir un couple (T, T') à une ou plusieurs pompes hydrauliques (9a-c; 30), caractérisée par :
    - chaque pompe hydraulique étant configurée de façon à fournir une pression hydraulique à des systèmes de distribution de fluide à déplacement positif respectifs (34a-c, 35a1-c1, 35a2-c2; 22) par l'intermédiaire de soupapes de commande respectives (36a-c; 37a-c) ;
    - chaque système de distribution de fluide à déplacement positif (34a-c, 35a1-c1, 35a2-c2) étant conçu pour distribuer ledit fluide dans le conduit (10) ;
    - des premiers moyens de détection (16) configurés pour détecter des variations de pression dans le conduit (10) et reliés à un premier contrôleur (7) ;
    - le premier contrôleur (7) étant configuré pour fournir des signaux de commande aux soupapes de commande (36a-c, 37a-c) pour au moins un système de distribution de fluide et à un système de commande (4, 3) pour le moteur primaire (2), sur la base desdites variations de pression détectées.
  2. Installation selon la revendication 1, comprenant en outre une ou plusieurs pompes hydrauliques (9a-c) configurées pour communiquer avec des moyens de commande (6, 7) et pour faire fonctionner lesdits systèmes de distribution de fluide (34a-c, 35a1-c1, 35a2-c2) et étant entraînées par le moteur primaire, l'interaction entre les pompes hydrauliques et le moteur primaire étant commandée sur la base des variations de pression détectées dans le conduit (10).
  3. Installation selon l'une quelconque des revendications 1 à 2 comprenant en outre des capteurs de pression de rétroaction de sortie de soupape (15) reliés à des soupapes de commande respectives (36c, 37c), et un capteur de pression d'entrée de soupape (14) relié à la soupape de commande (36c).
  4. Installation selon la revendication 3, comprenant en outre un contrôleur de soupape (7) configuré pour recevoir des signaux provenant des capteurs de pression (14, 15) et des premiers moyens de détection (16), d'une rétroaction de position (Cp) à partir des systèmes de distribution de fluide à déplacement positif, et configuré pour fournir des signaux de commande (Vf) aux soupapes de commande (36c, 37c).
  5. Installation selon l'une quelconque des revendications 1 à 4, dans laquelle le moteur primaire est un moteur à turbine à gaz.
  6. Installation selon la revendication 5, comprenant en outre une unité d'engrenage (8; 28) arrangée entre le moteur à turbine à gaz et la pompe hydraulique.
  7. Installation selon l'une quelconque des revendications 1 à 4, dans laquelle le moteur primaire est un moteur alternatif.
  8. Installation selon l'une quelconque des revendications 1 à 7, dans laquelle au moins un système de distribution de fluide à déplacement positif comprend une pompe à déplacement positif.
  9. Procédé de commande d'un moteur primaire (2) qui est configuré pour entraîner un ou plusieurs systèmes de distribution de fluide à déplacement positif (34a-c, 35a1-c1, 35a2-c2) pour délivrer un fluide dans un conduit (10) par l'installation selon l'une quelconque des revendications 1 à 8, caractérisé par
    - la détection (16) des variations de pression dans le fluide dans le conduit (10) ; et
    - sur la base des variations de pression détectées,
    -- la commande (36a-c, 37a-c) de l'au moins un dudit système de distribution de fluide à déplacement positif, et
    -- la commande (4) de la puissance de sortie du moteur primaire (2).
  10. Procédé selon la revendication 9, comprenant en outre la détermination d'une consommation électrique estimée (EPC).
  11. Procédé selon la revendication 9 ou la revendication 10, comprenant en outre la commande de l'alimentation en carburant du moteur primaire (2) par des variations de la pression détectée.
  12. Procédé selon l'une quelconque des revendications 9 à 11, dans lequel l'au moins un système de distribution de fluide à déplacement positif est commandé sur la base d'un point de consigne (débit / pression) identifié et défini par un opérateur ou un système de commande global.
  13. Procédé selon l'une quelconque des revendications 9 à 12, dans lequel un premier contrôleur (7) fournit des signaux de commande à des pompes hydrauliques (9a-c), configurées pour faire fonctionner lesdits systèmes de distribution de fluide (34a-c, 35a1-c1, 35a2-c2) et étant entraînées par le moteur primaire, l'interaction entre les pompes hydrauliques et le moteur primaire étant commandée sur la base des variations de pression détectées dans le conduit (10).
  14. Unité mobile (18), caractérisée en ce qu'elle comprend l'installation telle que définie par l'une quelconque des revendications 1 à 8.
  15. Unité mobile selon la revendication 14, dans laquelle l'installation est disposée sur une remorque (19).
EP17840454.7A 2016-11-30 2017-11-28 Appareil pour contrôler le pompage de fluide sous pression dans un conduit, et une méthode de commande d'un moteur Active EP3548744B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NO20161911A NO343276B1 (en) 2016-11-30 2016-11-30 A method of controlling a prime mover and a plant for controlling the delivery of a pressurized fluid in a conduit
PCT/NO2017/050307 WO2018101837A1 (fr) 2016-11-30 2017-11-28 Installation permettant de commander la distribution d'un fluide sous pression dans un conduit et procédé de commande d'un moteur principal

Publications (2)

Publication Number Publication Date
EP3548744A1 EP3548744A1 (fr) 2019-10-09
EP3548744B1 true EP3548744B1 (fr) 2020-08-26

Family

ID=61187799

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17840454.7A Active EP3548744B1 (fr) 2016-11-30 2017-11-28 Appareil pour contrôler le pompage de fluide sous pression dans un conduit, et une méthode de commande d'un moteur

Country Status (7)

Country Link
US (1) US20180266412A1 (fr)
EP (1) EP3548744B1 (fr)
CN (1) CN110088470A (fr)
CA (1) CA3048587A1 (fr)
MX (1) MX2019006134A (fr)
NO (1) NO343276B1 (fr)
WO (1) WO2018101837A1 (fr)

Families Citing this family (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9650879B2 (en) 2012-11-16 2017-05-16 Us Well Services Llc Torsional coupling for electric hydraulic fracturing fluid pumps
US9745840B2 (en) 2012-11-16 2017-08-29 Us Well Services Llc Electric powered pump down
US9970278B2 (en) 2012-11-16 2018-05-15 U.S. Well Services, LLC System for centralized monitoring and control of electric powered hydraulic fracturing fleet
US11959371B2 (en) 2012-11-16 2024-04-16 Us Well Services, Llc Suction and discharge lines for a dual hydraulic fracturing unit
US9410410B2 (en) 2012-11-16 2016-08-09 Us Well Services Llc System for pumping hydraulic fracturing fluid using electric pumps
US10232332B2 (en) 2012-11-16 2019-03-19 U.S. Well Services, Inc. Independent control of auger and hopper assembly in electric blender system
US10036238B2 (en) 2012-11-16 2018-07-31 U.S. Well Services, LLC Cable management of electric powered hydraulic fracturing pump unit
US10407990B2 (en) 2012-11-16 2019-09-10 U.S. Well Services, LLC Slide out pump stand for hydraulic fracturing equipment
US11449018B2 (en) 2012-11-16 2022-09-20 U.S. Well Services, LLC System and method for parallel power and blackout protection for electric powered hydraulic fracturing
US10119381B2 (en) 2012-11-16 2018-11-06 U.S. Well Services, LLC System for reducing vibrations in a pressure pumping fleet
US10020711B2 (en) 2012-11-16 2018-07-10 U.S. Well Services, LLC System for fueling electric powered hydraulic fracturing equipment with multiple fuel sources
US10254732B2 (en) 2012-11-16 2019-04-09 U.S. Well Services, Inc. Monitoring and control of proppant storage from a datavan
US10876523B2 (en) 2013-08-13 2020-12-29 Ameriforge Group Inc. Well service pump system
CA2987665C (fr) 2016-12-02 2021-10-19 U.S. Well Services, LLC Systeme de distribution d'alimentation en tension constante destine a un systeme de fracturation hydraulique electrique
CN106870317B (zh) * 2017-04-18 2019-04-05 黄山市汇润机械有限公司 一种液压驱动双作用泥浆泵
CN106870316B (zh) * 2017-04-18 2019-06-11 黄山市汇润机械有限公司 一种液压式双作用压裂泵橇
US11624326B2 (en) 2017-05-21 2023-04-11 Bj Energy Solutions, Llc Methods and systems for supplying fuel to gas turbine engines
WO2019071086A1 (fr) 2017-10-05 2019-04-11 U.S. Well Services, LLC Système et procédé d'écoulement de boue de fracturation instrumentée
CA3078879A1 (fr) 2017-10-13 2019-04-18 U.S. Well Services, LLC Systeme et procede de fracturation automatique
US10994614B2 (en) * 2017-11-16 2021-05-04 Monroe Truck Equipment, Inc. Pump system for vehicles
AR113611A1 (es) 2017-12-05 2020-05-20 U S Well Services Inc Bombas de émbolos múltiples y sistemas de accionamiento asociados
WO2019152981A1 (fr) 2018-02-05 2019-08-08 U.S. Well Services, Inc. Gestion de charge électrique de micro-réseau
WO2019204242A1 (fr) 2018-04-16 2019-10-24 U.S. Well Services, Inc. Parc de fracturation hydraulique hybride
WO2019210257A1 (fr) * 2018-04-27 2019-10-31 Ameriforge Group Inc. Système et procédés d'alimentation de pompe d'entretien de puits
WO2019241783A1 (fr) 2018-06-15 2019-12-19 U.S. Well Services, Inc. Unité d'alimentation mobile intégrée pour fracturation hydraulique
CA3115669A1 (fr) 2018-10-09 2020-04-16 U.S. Well Services, LLC Systeme de commutation modulaire et distribution d'energie pour equipement electrique de champ petrolifere
US11578577B2 (en) 2019-03-20 2023-02-14 U.S. Well Services, LLC Oversized switchgear trailer for electric hydraulic fracturing
US11728709B2 (en) 2019-05-13 2023-08-15 U.S. Well Services, LLC Encoderless vector control for VFD in hydraulic fracturing applications
US11560845B2 (en) 2019-05-15 2023-01-24 Bj Energy Solutions, Llc Mobile gas turbine inlet air conditioning system and associated methods
US11268501B1 (en) * 2019-06-04 2022-03-08 Hydraquip, Inc. Hydraulic system for high speed reciprocating cylinders
US11493060B2 (en) 2019-06-04 2022-11-08 Industries Mailhot Inc. Hydraulic powering system and method of operating a hydraulic powering system
CA3148987A1 (fr) 2019-08-01 2021-02-04 U.S. Well Services, LLC Systeme de stockage d'energie a haute capacite pour fracturation hydraulique electrique
CA3092829C (fr) 2019-09-13 2023-08-15 Bj Energy Solutions, Llc Methodes et systemes d`alimentation de turbines a gaz en carburant
US11002189B2 (en) 2019-09-13 2021-05-11 Bj Energy Solutions, Llc Mobile gas turbine inlet air conditioning system and associated methods
US10815764B1 (en) 2019-09-13 2020-10-27 Bj Energy Solutions, Llc Methods and systems for operating a fleet of pumps
US11015594B2 (en) 2019-09-13 2021-05-25 Bj Energy Solutions, Llc Systems and method for use of single mass flywheel alongside torsional vibration damper assembly for single acting reciprocating pump
US10989180B2 (en) 2019-09-13 2021-04-27 Bj Energy Solutions, Llc Power sources and transmission networks for auxiliary equipment onboard hydraulic fracturing units and associated methods
US11015536B2 (en) 2019-09-13 2021-05-25 Bj Energy Solutions, Llc Methods and systems for supplying fuel to gas turbine engines
CA3092868A1 (fr) 2019-09-13 2021-03-13 Bj Energy Solutions, Llc Systemes de gaine d`echappement de turbine et methodes d`insonorisation et d`attenuation du bruit
CA3197583A1 (en) 2019-09-13 2021-03-13 Bj Energy Solutions, Llc Fuel, communications, and power connection systems and related methods
CA3092865C (fr) 2019-09-13 2023-07-04 Bj Energy Solutions, Llc Sources d`alimentation et reseaux de transmission pour du materiel auxiliaire a bord d`unites de fracturation hydraulique et methodes connexes
US11604113B2 (en) 2019-09-13 2023-03-14 Bj Energy Solutions, Llc Fuel, communications, and power connection systems and related methods
US10895202B1 (en) 2019-09-13 2021-01-19 Bj Energy Solutions, Llc Direct drive unit removal system and associated methods
US11519395B2 (en) 2019-09-20 2022-12-06 Yantai Jereh Petroleum Equipment & Technologies Co., Ltd. Turbine-driven fracturing system on semi-trailer
CA3154906C (fr) 2019-09-20 2023-08-22 Yantai Jereh Petroleum Equipment & Technologies Co., Ltd. Systeme de fracturation hydraulique pour entrainer une pompe a piston plongeur avec un moteur a turbine
US11702919B2 (en) 2019-09-20 2023-07-18 Yantai Jereh Petroleum Equipment & Technologies Co., Ltd. Adaptive mobile power generation system
CN110500255A (zh) * 2019-09-20 2019-11-26 烟台杰瑞石油装备技术有限公司 一种压裂泵动力驱动系统
CN113047916A (zh) 2021-01-11 2021-06-29 烟台杰瑞石油装备技术有限公司 可切换设备、井场及其控制方法、设备以及存储介质
US11686187B2 (en) 2019-09-20 2023-06-27 Yantai Jereh Petroleum Equipment & Technologies Co., Ltd. Fracturing device
CN110485982A (zh) 2019-09-20 2019-11-22 烟台杰瑞石油装备技术有限公司 一种涡轮压裂设备
CN110469314A (zh) * 2019-09-20 2019-11-19 烟台杰瑞石油装备技术有限公司 一种利用涡轮发动机驱动柱塞泵的水力压裂系统
CN110485984A (zh) * 2019-09-20 2019-11-22 烟台杰瑞石油装备技术有限公司 一种半挂车载的涡轮压裂设备
US11009162B1 (en) 2019-12-27 2021-05-18 U.S. Well Services, LLC System and method for integrated flow supply line
CA3066536A1 (fr) * 2020-01-05 2021-07-05 Maoz Betser-Zilevitch Systeme et procede pour station de commande de ligne de ravitaillement interieure
US20210222691A1 (en) * 2020-01-16 2021-07-22 Jeffrey D. Baird Fluid pump assembly
WO2021230773A1 (fr) * 2020-05-12 2021-11-18 Общество с ограниченной ответственностью "Научно-производственное объединение Автоматика" Installation de pompage mobile pour pomper des liquides et des mélanges dans des puits
US11708829B2 (en) 2020-05-12 2023-07-25 Bj Energy Solutions, Llc Cover for fluid systems and related methods
US10968837B1 (en) 2020-05-14 2021-04-06 Bj Energy Solutions, Llc Systems and methods utilizing turbine compressor discharge for hydrostatic manifold purge
US11428165B2 (en) 2020-05-15 2022-08-30 Bj Energy Solutions, Llc Onboard heater of auxiliary systems using exhaust gases and associated methods
US11208880B2 (en) 2020-05-28 2021-12-28 Bj Energy Solutions, Llc Bi-fuel reciprocating engine to power direct drive turbine fracturing pumps onboard auxiliary systems and related methods
US10961908B1 (en) 2020-06-05 2021-03-30 Bj Energy Solutions, Llc Systems and methods to enhance intake air flow to a gas turbine engine of a hydraulic fracturing unit
US11109508B1 (en) 2020-06-05 2021-08-31 Bj Energy Solutions, Llc Enclosure assembly for enhanced cooling of direct drive unit and related methods
US11208953B1 (en) 2020-06-05 2021-12-28 Bj Energy Solutions, Llc Systems and methods to enhance intake air flow to a gas turbine engine of a hydraulic fracturing unit
US11111768B1 (en) 2020-06-09 2021-09-07 Bj Energy Solutions, Llc Drive equipment and methods for mobile fracturing transportation platforms
US11022526B1 (en) 2020-06-09 2021-06-01 Bj Energy Solutions, Llc Systems and methods for monitoring a condition of a fracturing component section of a hydraulic fracturing unit
US11066915B1 (en) 2020-06-09 2021-07-20 Bj Energy Solutions, Llc Methods for detection and mitigation of well screen out
US10954770B1 (en) 2020-06-09 2021-03-23 Bj Energy Solutions, Llc Systems and methods for exchanging fracturing components of a hydraulic fracturing unit
US11939853B2 (en) 2020-06-22 2024-03-26 Bj Energy Solutions, Llc Systems and methods providing a configurable staged rate increase function to operate hydraulic fracturing units
US11028677B1 (en) 2020-06-22 2021-06-08 Bj Energy Solutions, Llc Stage profiles for operations of hydraulic systems and associated methods
US11125066B1 (en) 2020-06-22 2021-09-21 Bj Energy Solutions, Llc Systems and methods to operate a dual-shaft gas turbine engine for hydraulic fracturing
US11933153B2 (en) 2020-06-22 2024-03-19 Bj Energy Solutions, Llc Systems and methods to operate hydraulic fracturing units using automatic flow rate and/or pressure control
US11466680B2 (en) 2020-06-23 2022-10-11 Bj Energy Solutions, Llc Systems and methods of utilization of a hydraulic fracturing unit profile to operate hydraulic fracturing units
US11473413B2 (en) 2020-06-23 2022-10-18 Bj Energy Solutions, Llc Systems and methods to autonomously operate hydraulic fracturing units
US11149533B1 (en) 2020-06-24 2021-10-19 Bj Energy Solutions, Llc Systems to monitor, detect, and/or intervene relative to cavitation and pulsation events during a hydraulic fracturing operation
US11220895B1 (en) 2020-06-24 2022-01-11 Bj Energy Solutions, Llc Automated diagnostics of electronic instrumentation in a system for fracturing a well and associated methods
US11193361B1 (en) 2020-07-17 2021-12-07 Bj Energy Solutions, Llc Methods, systems, and devices to enhance fracturing fluid delivery to subsurface formations during high-pressure fracturing operations
US11754060B2 (en) * 2020-09-01 2023-09-12 Fmc Technologies, Inc. Hydraulic fracturing pump system
US11661831B2 (en) * 2020-10-23 2023-05-30 Catalyst Energy Services LLC System and method for a frac system
US11506039B2 (en) 2021-01-26 2022-11-22 Yantai Jereh Petroleum Equipment & Technologies Co., Ltd. Fracturing device, firefighting method thereof and computer readable storage medium
US11891885B2 (en) 2021-01-26 2024-02-06 Yantai Jereh Petroleum Equipment & Technologies Co., Ltd. Connection device, control box component and fracturing apparatus
US11560779B2 (en) 2021-01-26 2023-01-24 Yantai Jereh Petroleum Equipment & Technologies Co., Ltd. Operation method of a turbine fracturing device and a turbine fracturing device
CN115288651B (zh) 2021-01-26 2023-06-06 烟台杰瑞石油装备技术有限公司 压裂设备
US11873704B2 (en) 2021-01-26 2024-01-16 Yantai Jereh Petroleum Equipment & Technologies Co., Ltd. Connection device, control box component and fracturing apparatus
US11639654B2 (en) 2021-05-24 2023-05-02 Bj Energy Solutions, Llc Hydraulic fracturing pumps to enhance flow of fracturing fluid into wellheads and related methods

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2942421A (en) * 1957-07-31 1960-06-28 Sundstrand Corp Hydraulic transmission
US3444689A (en) * 1967-02-02 1969-05-20 Weatherhead Co Differential pressure compensator control
US3722595A (en) * 1971-01-25 1973-03-27 Exxon Production Research Co Hydraulic fracturing method
US4037621A (en) * 1975-11-26 1977-07-26 Tadeusz Budzich Load responsive control valve with constant leakage device
US4047569A (en) * 1976-02-20 1977-09-13 Kurban Magomedovich Tagirov Method of successively opening-out and treating productive formations
US4070857A (en) * 1976-12-22 1978-01-31 Towmotor Corporation Hydraulic priority circuit
US4470771A (en) * 1982-08-20 1984-09-11 Towler Hydraulics, Inc. Quadraplex fluid pump
US4523431A (en) * 1984-02-16 1985-06-18 Caterpillar Tractor Co. Load responsive system
JP3697136B2 (ja) * 2000-03-31 2005-09-21 新キャタピラー三菱株式会社 ポンプ制御方法およびポンプ制御装置
US7090017B2 (en) * 2003-07-09 2006-08-15 Halliburton Energy Services, Inc. Low cost method and apparatus for fracturing a subterranean formation with a sand suspension
CN100451336C (zh) * 2006-03-07 2009-01-14 太原理工大学 低空转能耗液压动力源
US8655558B2 (en) * 2010-02-12 2014-02-18 Kayaba Industry Co., Ltd. Control system for hybrid construction machine
US9506222B2 (en) * 2011-08-26 2016-11-29 Volvo Construction Equipment Ab Drive control method and system for operating a hydraulic driven work machine
KR102015094B1 (ko) * 2012-01-04 2019-08-27 파커-한니핀 코포레이션 선회 구동 시스템
US8997904B2 (en) * 2012-07-05 2015-04-07 General Electric Company System and method for powering a hydraulic pump
WO2014078236A1 (fr) 2012-11-13 2014-05-22 Tucson Embedded Systems, Inc. Système de pompe pour applications à haute pression
US10024341B2 (en) * 2013-01-30 2018-07-17 Parker-Hannifin Corporation Hydraulic hybrid swing drive system for excavators
CN104453825B (zh) 2014-10-28 2017-04-19 宝鸡石油机械有限责任公司 一种模块化压裂泵组
CN104728208A (zh) 2015-03-17 2015-06-24 西南石油大学 一种大功率液力驱动压裂泵泵站系统
CN204552723U (zh) 2015-03-18 2015-08-12 烟台杰瑞石油装备技术有限公司 一种压裂传动和高压排出系统
CN104727797A (zh) 2015-03-18 2015-06-24 烟台杰瑞石油装备技术有限公司 一种压裂传动和高压排出系统
CN104806220A (zh) 2015-04-24 2015-07-29 山东科瑞机械制造有限公司 一种全液压驱动的压裂设备

Also Published As

Publication number Publication date
WO2018101837A1 (fr) 2018-06-07
NO20161911A1 (en) 2018-05-31
EP3548744A1 (fr) 2019-10-09
US20180266412A1 (en) 2018-09-20
CN110088470A (zh) 2019-08-02
NO343276B1 (en) 2019-01-14
MX2019006134A (es) 2019-10-09
CA3048587A1 (fr) 2018-06-07

Similar Documents

Publication Publication Date Title
EP3548744B1 (fr) Appareil pour contrôler le pompage de fluide sous pression dans un conduit, et une méthode de commande d'un moteur
CN102011767B (zh) 液压系统
CN101603527B (zh) 一种乳化液泵测试系统
CN104421229B (zh) 静液压驱动机构
CN101784773A (zh) 作业车辆及作业车辆的控制方法
CN102874087A (zh) 车辆、特别是移动式作业机械的驱动系
CN103758499A (zh) 压裂车及压裂设备组
US20140033692A1 (en) System and method to charge and discharge an accumulator
CN201433884Y (zh) 一种乳化液泵测试系统
CN103620126A (zh) 用于将辅助动力提供给动力传动系和液压回路的液压系统
CN210440005U (zh) 一种液压驱动的分体式固井撬
US9482246B2 (en) Hydrostatic drive
CN100523566C (zh) 用于机动车辆的液压传动装置
CN103742382B (zh) 压裂泵传动系统及压裂车
CN106762167A (zh) 一种lng车的智能供气控制系统
NO20181402A1 (en) A method of controlling a prime mover
RU167488U1 (ru) Передвижной горизонтальный насосный агрегат для нагнетательных скважин
CN202483996U (zh) 液压换向系统冷却保护装置
KR102289537B1 (ko) 유압 하이브리드 구동 장치의 내연기관용 제어 방법 및 유압 하이브리드 구동 장치의 내연기관용 전자 제어 장치 및 유압 하이브리드 구동 장치
CN112943205A (zh) 一种集混砂、压裂功能于一体的多功能设备
US20130205755A1 (en) Construction Equipment Equipped with an Energy Recovery Apparatus
CN102536968A (zh) 液压换向系统冷却保护装置
CN209892538U (zh) 用于作业机械的液压系统及作业机械
CN114753814B (zh) 一种无级变量泵注系统及相关设备
CN103410745A (zh) 一种矿用自卸车风扇驱动装置

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190613

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200327

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1306617

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017022540

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201126

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201127

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201126

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201228

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200826

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1306617

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602017022540

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602017022540

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201128

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

26N No opposition filed

Effective date: 20210527

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201128

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20211128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211128