EP3543493B1 - Procédé et dispositif de surveillance d'un dispositif de traitement de gaz d'échappement par scr - Google Patents

Procédé et dispositif de surveillance d'un dispositif de traitement de gaz d'échappement par scr Download PDF

Info

Publication number
EP3543493B1
EP3543493B1 EP19163337.9A EP19163337A EP3543493B1 EP 3543493 B1 EP3543493 B1 EP 3543493B1 EP 19163337 A EP19163337 A EP 19163337A EP 3543493 B1 EP3543493 B1 EP 3543493B1
Authority
EP
European Patent Office
Prior art keywords
nitrogen oxide
reducing agent
fluid
ammonia
scr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19163337.9A
Other languages
German (de)
English (en)
Other versions
EP3543493A1 (fr
Inventor
Thomas Grünbeck
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAN Truck and Bus SE
Original Assignee
MAN Truck and Bus SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAN Truck and Bus SE filed Critical MAN Truck and Bus SE
Publication of EP3543493A1 publication Critical patent/EP3543493A1/fr
Application granted granted Critical
Publication of EP3543493B1 publication Critical patent/EP3543493B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • F01N3/208Control of selective catalytic reduction [SCR], e.g. dosing of reducing agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9418Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/02Catalytic activity of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/021Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting ammonia NH3
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/14Exhaust systems with means for detecting or measuring exhaust gas components or characteristics having more than one sensor of one kind
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/14Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/18Ammonia
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1616NH3-slip from catalyst

Definitions

  • the invention relates to a method and a device for monitoring an SCR exhaust gas aftertreatment device with regard to the occurrence of an ammonia slip state.
  • So-called SCR exhaust gas aftertreatment devices can be used to reduce nitrogen oxides in exhaust gases from internal combustion engines, for example.
  • a urea water solution is typically injected into the exhaust gas flow.
  • a hydrolysis reaction can produce ammonia and CO2 from the urea water solution.
  • the ammonia can react with the nitrogen oxides present in the exhaust gas to reduce the nitrogen oxides.
  • diatomic nitrogen and water can be formed here.
  • the urea-water solution must be dosed in such a way that no ammonia is overdosed. If ammonia is overdosed, so-called ammonia slip can occur, with ammonia still being carried along in the exhaust gas downstream of the SCR catalytic converter.
  • the U.S. 2017/0306827 A1 discloses a system consisting of an exhaust system with a selective catalytic reduction (SCR) catalyst and a controller.
  • An ammonia to NOx ratio (ANR) value for the exhaust gas flowing through the exhaust system is determined.
  • An NH3 slip value, indicative of NH3 slip through the exhaust system after the SCR catalyst, is determined using an NH3 sensor downstream of the SCR catalyst.
  • the U.S. 2005/0282285 A1 discloses a method for controlling the feed rate of ammonia to an SCR catalyst, consisting of adjusting an ammonia feed rate and providing a discrete pulse in the ammonia feed rate. An output of a NOx sensor after the SCR catalyst is analyzed to determine if ammonia slip is occurring.
  • the WO 2011/112985 A1 discloses a method for operating an SCR aftertreatment system at a range of reduced ammonia to NOx ratio operating points (ANR) provides.
  • the method further includes determining a deNOx efficiency that corresponds to each of the ANR operating points.
  • the method further includes determining a derate correction value responsive to the deNOx efficiency values corresponding to each of the ANR operating points and providing a derate injection command responsive to the derate correction value.
  • the invention is based on the object of providing an alternative and/or improved method for monitoring an SCR exhaust gas aftertreatment device.
  • one task is to recognize whether a value measured by a nitrogen oxide sensor, which has a cross-sensitivity to ammonia, also has ammonia components.
  • the method is used to monitor an SCR exhaust gas aftertreatment device.
  • the nitrogen oxide conversion is recorded or determined with a cross-sensitivity to ammonia.
  • the method further includes determining an ammonia slip condition based on the monitored reductant amount-nitrous oxide conversion ratio.
  • the nitrogen oxide conversion is determined with a cross-sensitivity to ammonia, it can be recognized that ammonia slip is occurring if the ratio of reducing agent quantity to nitrogen oxide conversion is abnormal, in particular if it is too high.
  • the method is easy to carry out and implement in a simple manner, since it expediently only requires the parameters of reducing agent quantity and nitrogen oxide conversion to carry out the monitoring. Thus, little or no additional equipment is required to carry out the method. Due to the simplicity of the method, it is also comparatively robust.
  • the recorded or determined nitrogen oxide conversion which is included as a divisor in the ratio of reducing agent quantity to nitrogen oxide conversion, becomes smaller or relatively small in particular in a short time due to the cross-sensitivity to ammonia.
  • the ratio of reducing agent quantity to nitrogen oxide conversion can become relatively large or larger, particularly in a short time. This abnormal behavior can be detected during monitoring and identified as ammonia slip.
  • the present method prevents more reducing agent from being metered in when ammonia slip occurs, since the recorded or determined nitrogen oxide conversion incorrectly indicates too low a nitrogen oxide conversion due to the cross-sensitivity to ammonia, to which an increase in the amount of reducing agent would normally react.
  • determining an ammonia slip condition may be based solely on the monitored reductant amount-nitrogen oxide conversion ratio. It is also possible, for example, to include other operating parameters of the internal combustion engine and/or the SCR exhaust gas aftertreatment device, in order to rule out, for example, that the change in the monitored ammonia quantity/nitrogen oxide conversion ratio can be attributed to changed operating parameters (e.g. increased exhaust gas quantity, increased reducing agent quantity, etc.). .
  • reducing agent can refer, for example, to a fluid (e.g. urea water solution) which can be injected to reduce nitrogen oxides in exhaust gas, to a component located in the fluid (e.g. urea) and/or refer to ammonia that may form from the fluid, for example, after injection.
  • a fluid e.g. urea water solution
  • ammonia that may form from the fluid, for example, after injection.
  • the nitrogen oxide conversion is obtained as a difference between a first nitrogen oxide value in the exhaust gas upstream of an SCR catalytic converter and a second nitrogen oxide value in the exhaust gas downstream of the SCR catalytic converter, the second nitrogen oxide value being recorded with a cross-sensitivity to ammonia.
  • the amount of reducing agent and the nitrogen oxide conversion can relate to the same period of time, so that the monitored reducing agent amount-nitrogen oxide conversion ratio can be used to determine which amount of reducing agent led to which nitrogen oxide conversion.
  • SCR SCR catalytic converter and SCR exhaust gas aftertreatment device
  • SCR selective catalytic reduction
  • nitrous oxide nitrous oxide value, nitrous oxide sensor, nitrous oxide content, nitric oxide fraction, nitric oxide turnover, etc.
  • they may refer to a combination of nitric oxide and ammonia due to ammonia cross-sensitivity, particularly when ammonia slip is occurring.
  • the ratio of the amount of reducing agent to the nitrogen oxide conversion can be expediently monitored continuously during the operation of the SCR exhaust gas aftertreatment device.
  • an ammonia slip state is determined when the ratio of the reducing agent quantity to the nitrogen oxide conversion is outside a permissible range, in particular a predetermined one.
  • an ammonia slip state is determined if the ratio of the reducing agent quantity to the nitrogen oxide conversion is outside of a, in particular, predetermined, permissible range for a predetermined period of time.
  • the permissible range and/or the period of time can be predetermined and stored, for example, in a monitoring device. Taking the time period into account means that temporary outliers and measurement errors do not lead to an incorrect determination of an ammonia slip state.
  • an ammonia slip state is detected when the ratio of the reducing agent quantity to the nitrogen oxide conversion is greater than a predetermined limit value.
  • an ammonia slip state is determined if the ratio of the reducing agent quantity to the nitrogen oxide conversion is greater than a predetermined limit value for a predetermined period of time.
  • the limit value and/or the period of time can be predetermined and stored, for example, in a monitoring device. Taking the time period into account means that temporary outliers and measurement errors do not lead to an incorrect determination of an ammonia slip state.
  • the nitrogen oxide conversion and/or the nitrogen oxide values used to determine the nitrogen oxide conversion may be used as average values for a number of measurements, in particular measurements carried out in succession.
  • the method includes determining or estimating an amount of ammonia slip based on the monitored reducing agent amount-nitrogen oxide conversion ratio. For example, the greater the monitored reduction agent quantity-nitrogen oxide conversion ratio, the greater the amount of ammonia slip can be determined or estimated. For this purpose, for example, empirically determined data in the form of tables, formulas, etc. can be used. Estimating the amount of ammonia slip can be used to initiate appropriate countermeasures that are appropriately adjusted.
  • the quantity of reducing agent in particular the quantity of ammonia, is detected or determined on the basis of a determination of a composition of a fluid that is or is to be supplied to a reducing agent injector for injection, in particular a urea/water solution.
  • a water content, a water content, a urea content and/or a urea content of the fluid is recorded. For example, based on a detection of a urea content in the fluid, it can be determined how much ammonia can be formed with it. It is also possible, for example, to detect a proportion of water and to deduce a proportion of urea (e.g. 1 - proportion of water).
  • the composition is recorded in a fluid tank, in particular for an aqueous urea solution.
  • the quantity of reducing agent in particular the quantity of ammonia, is detected or determined based on a detection of a fluid quantity of a fluid, in particular a urea-water solution, that is supplied or injected to a reducing agent injector for injection.
  • the fluid quantity is detected by detecting an operating parameter of a fluid pump (e.g. urea water solution pump), by detecting an operating parameter of a reducing agent injector, by means of a flow rate sensor (e.g. urea water solution flow rate sensor) and/or by means of a fill level sensor of a Fluid tanks (e.g. urea water tank).
  • a fluid pump e.g. urea water solution pump
  • a flow rate sensor e.g. urea water solution flow rate sensor
  • a fill level sensor of a Fluid tanks e.g. urea water tank
  • the fluid tank can be in fluid communication with the reducing agent injector via the fluid pump. It is possible for the flow rate sensor to be located somewhere in or on the fluid connection between the fluid tank and the reducing agent injector.
  • the amount of reducing agent can take place as a combination of detecting the amount of fluid and detecting the composition of the fluid.
  • the quantity of reducing agent in particular the quantity of ammonia, is determined (e.g. calculated) based on a pump speed of a fluid pump, a delivery pressure of the fluid pump and/or an opening time of a reducing agent injector.
  • the method further includes (eg, physically or virtually) detecting a first nitrogen oxide value (eg, nitrogen oxide content, nitrogen oxide quantity, etc. in the exhaust gas) upstream of an SCR catalytic converter of the SCR exhaust gas aftertreatment device.
  • the method further includes (e.g., physically) detecting a second nitrogen oxide value (e.g., nitrogen oxide content, nitrogen oxide amount, etc. in the exhaust gas) downstream of an SCR catalyst, which is detected with a cross-sensitivity to ammonia.
  • the method includes determining the nitrogen oxide conversion as the difference between the first nitrogen oxide value and the second nitrogen oxide value.
  • the method includes initiating measures to reduce ammonia slip when the ammonia slip condition has been determined.
  • a quantity of reducing agent injected or to be injected can be reduced when the ammonia slip state has been determined.
  • the invention is also aimed at a device for exhaust gas aftertreatment, in particular an SCR exhaust gas aftertreatment device.
  • the device has a reducing agent injector and an SCR catalytic converter which is arranged downstream of the reducing agent injector.
  • the device has a monitoring device set up to carry out a method as disclosed herein.
  • the device offers the same advantages as the method disclosed herein.
  • the device has a first nitrogen oxide sensor (e.g. physical nitrogen oxide sensor or virtual nitrogen oxide sensor) which is arranged upstream of the SCR catalytic converter (and/or the reducing agent injector) and detects a first nitrogen oxide value.
  • a second nitrogen oxide sensor e.g. physical nitrogen oxide sensor
  • the monitoring device determines the nitrogen oxide conversion as the difference between the first nitrogen oxide value and the second nitrogen oxide value.
  • the device has a first fluid sensor for detecting a composition of a fluid to be supplied or supplied to the reducing agent injector for injection.
  • the device has a (second) fluid sensor (e.g. fluid tank fill level sensor, fluid flow rate sensor) and/or a fluid pump for detecting a fluid quantity of a fluid to be supplied or supplied to the reducing agent injector for injection.
  • the monitoring device determines the amount of reducing agent, in particular the amount of ammonia, based on the detected composition and the detected amount of fluid. It is also possible for the monitoring device to determine the amount of reducing agent, in particular the amount of ammonia, based on a predetermined composition of the fluid and the detected amount of fluid.
  • the monitoring device can expediently be in communication with the first nitrogen oxide sensor, the second nitrogen oxide sensor, the first fluid sensor, the second fluid sensor, the fluid pump and/or the reducing agent injector.
  • the invention is also aimed at a motor vehicle, in particular a utility vehicle (for example a truck or bus), with a device as disclosed herein.
  • a motor vehicle in particular a utility vehicle (for example a truck or bus), with a device as disclosed herein.
  • upstream and downstream herein may refer to a direction of exhaust gas flow in an exhaust line. If, for example, a component A is arranged upstream of a component B, the exhaust gas can first reach component A and only then component B.
  • ammonia slip may refer to a situation where ammonia is present in the exhaust gas downstream of an SCR catalyst.
  • FIG 1 An exhaust aftertreatment system 10 is shown.
  • the exhaust gas aftertreatment system 10 is used to treat exhaust gas from an internal combustion engine.
  • exhaust gas (arrow A) flows through exhaust gas aftertreatment system 10 .
  • the exhaust gas aftertreatment system 10 can be included in a motor vehicle, in particular a commercial vehicle.
  • the utility vehicle can be a truck or a bus, for example.
  • the exhaust gas aftertreatment system 10 can in particular be arranged downstream of an internal combustion engine of the motor vehicle.
  • the exhaust gas aftertreatment system 10 has an SCR exhaust gas aftertreatment device 12 .
  • the SCR exhaust gas aftertreatment device 12 serves to reduce nitrogen oxides (NOx) in the exhaust gas.
  • the SCR exhaust gas aftertreatment device 12 has an SCR catalytic converter 14 and a reducing agent injector (fluid injector) 16 .
  • the reducing agent injector 16 is in fluid connection with a fluid tank 18.
  • the fluid tank 18 is filled with a fluid, for example with an aqueous urea solution.
  • a fluid pump 20 can deliver the fluid from the fluid tank 18 to the reducing agent injector 16 .
  • the reducing agent injector 16 can inject or meter the fluid into an exhaust pipe region upstream of the SCR catalytic converter 14 .
  • Ammonia can form from the injected urea-water solution in the hot exhaust gas flow, and this ammonia is used to reduce the nitrogen oxides in the area of the SCR catalytic converter 14 by means of selective catalytic reduction. It is also possible that additional hydrolysis catalysts are used.
  • the exhaust gas aftertreatment system 10 can have further exhaust gas aftertreatment devices.
  • the exhaust aftertreatment system 10 may include an oxidation catalyst (e.g., diesel oxidation catalyst) 22 and a particulate filter (e.g., diesel particulate filter) 24 .
  • the oxidation catalyst 22 and the particulate filter 24 can for example, be arranged upstream of the SCR catalytic converter 14 and/or the reducing agent injector 16 .
  • the exhaust gas aftertreatment system 10 may have, for example, an ammonia oxidation catalytic converter (not shown) downstream of the SCR catalytic converter 14 . In the event of ammonia slip, the ammonia oxidation catalyst can convert overdosed ammonia into nitrogen and water.
  • the ammonia oxidation catalytic converter can also generate NOx again, which can then be detected by means of a nitrogen oxide sensor (e.g. nitrogen oxide sensor 30).
  • a nitrogen oxide sensor e.g. nitrogen oxide sensor 30.
  • the function of the ammonia oxidation catalytic converter can depend on the operating point (e.g. temperature, exhaust gas mass flow). It is possible that the ammonia oxidation catalyst is not able to convert the entire amount of ammonia into nitrogen and water if the ammonia slip is too high.
  • a monitoring device 26 for monitoring the SCR exhaust gas aftertreatment device 12 is also provided.
  • the monitoring device 26 can be provided, for example, as a separate monitoring device or can be integrated into a controller of the SCR exhaust gas aftertreatment device 12 .
  • the monitoring device 26 can be in communication with various sensors, so that in particular it is possible for the monitoring device 26 to be able to determine a ratio of the amount of reducing agent to the nitrogen oxide conversion.
  • the monitoring device 26 can be communicatively connected to a first nitrogen oxide sensor 28 .
  • the first nitrogen oxide sensor 28 may be arranged upstream of the reductant injector 16 and the SCR catalytic converter 14 .
  • the first nitrogen oxide sensor 28 can also be arranged upstream of the oxidation catalytic converter 22 and the particle filter 24 .
  • the first nitrogen oxide sensor 28 can measure a first nitrogen oxide value, for example a nitrogen oxide content or a proportion of nitrogen oxides, in the exhaust gas flowing by, upstream of the reductant injector 16 and the SCR catalytic converter 14 .
  • the first nitrogen oxide sensor 28 can output a corresponding signal to the monitoring device 26 . It is possible that the first nitrogen oxide sensor 28 is cross-sensitive to ammonia.
  • the first nitrogen oxide sensor 28 can be a physical sensor or a virtual sensor.
  • a model can be provided as a virtual sensor, for example, which calculates the nitrogen oxide emissions based on recorded or known operating parameters, e.g. B. the internal combustion engine is calculated.
  • the monitoring device 26 can be communicatively connected to a second nitrogen oxide sensor 30 .
  • the second nitrogen oxide sensor 30 can be downstream of the SCR catalytic converter 14 can be arranged.
  • the second nitrogen oxide sensor 30 can be designed to measure a second nitrogen oxide value, for example a nitrogen oxide content or a proportion of nitrogen oxides in the exhaust gas flowing past downstream of the SCR catalytic converter 14 .
  • the second nitrogen oxide sensor 30 can have a cross-sensitivity to ammonia.
  • the second nitrogen oxide sensor 30 can be cross-sensitive to ammonia in such a way that 3/3-4/3 NH3 molecules (ammonia molecules) can be measured per NOx molecule measured, in particular depending on the ratio of NO and NO2. This may result in the nitrous oxide value measured by the second nitrous oxide sensor 30 actually being a combined value of measured nitrous oxide and ammonia when ammonia slip occurs.
  • the second nitrogen oxide sensor 30 can expediently be a physical sensor.
  • the monitoring device 26 can also be designed to detect or determine a quantity of reducing agent injected by the reducing agent injector 16 .
  • the monitoring device 26 can be in communication with the fluid pump 20, for example.
  • the fluid pump 20 can expediently send an operating parameter (for example an electrical power consumed) to the monitoring device 26 which indicates a delivery quantity of a fluid to the reducing agent injector 16 . It is also possible to take into account any leakage currents that may occur.
  • a separate fluid sensor can also be provided, which detects the delivery quantity directly or indirectly.
  • a flow rate sensor may be provided in a fluid connection between the fluid pump 20 and the reductant injector 16 .
  • the monitoring device 26 can detect the delivery quantity, for example by means of a fill level sensor (not shown), which detects a fill level in the fluid tank 18 .
  • the monitoring device 26 can be connected to a further fluid sensor 32 .
  • the additional fluid sensor 32 can detect a quality of the fluid in the fluid tank 18 and output it as a corresponding signal.
  • the further fluid sensor 32 can detect a proportion of urea, a proportion of urea, a proportion of water and/or a water content of a urea/water solution in the fluid tank 18 . It is also possible that no further fluid sensor 32 is necessary since only a standardized urea solution with, for example, 32.5% pure urea in demineralized water is used.
  • FIG 2 Below is reference to figure 2 an example method for monitoring an SCR aftertreatment device with reference to the example components the SCR exhaust aftertreatment device 12 from figure 1 described. The method can be carried out at least partially by the monitoring device 26 in particular.
  • a first nitrogen oxide value upstream of the SCR catalytic converter 14 is detected.
  • the first nitrous oxide value may be sensed by the first nitrous oxide sensor 28 .
  • a second nitrogen oxide value is detected downstream of the SCR catalytic converter 14 by means of the second nitrogen oxide sensor 30, for example.
  • the first and second nitrogen oxide values can be recorded in relation to one another over time, for example simultaneously or within a predetermined time window, etc. It is also possible for the first nitrogen oxide value and the second nitrogen oxide value to be nitrogen oxide values averaged over a number of individual measurements.
  • a nitrogen oxide conversion of the SCR catalytic converter 14 can be calculated by the monitoring device 26, for example, as the difference between the first nitrogen oxide value recorded in step S10 and the second nitrogen oxide value recorded in step S12. For a given first nitrogen oxide value, the smaller the second nitrogen oxide value, the greater the calculated nitrogen oxide conversion.
  • a fluid quantity injected by the reducing agent injector 16 can be detected, for example, as a detected delivery quantity of the fluid pump 20.
  • a step S18 it can be detected how the fluid injected by the reducing agent injector 16 is composed.
  • the fluid sensor 32 can directly or indirectly detect the proportion of urea in the fluid in the fluid tank 18 .
  • a reducing agent quantity injected by the reducing agent injector 16 can be determined in a step S20. In particular, it can be determined in step S20 how much ammonia (NH3) is formed by the injected quantity of urea-water solution in the exhaust system.
  • NH3 ammonia
  • Step S20 can, for example be carried out by the monitoring device 26.
  • the amount of reducing agent and the nitrogen oxide conversion are expediently related to one another over time, that is to say they relate, for example, to the same monitoring period.
  • a reducing agent quantity-nitrogen oxide conversion ratio can be determined from the nitrogen oxide conversion determined in step S14 and the reducing agent quantity determined in step S20.
  • step S24 a check can be made as to whether the determined reducing agent quantity/nitrogen oxide conversion ratio from step S22 is outside a predetermined permissible tolerance range.
  • step S24 it can be checked whether the determined reducing agent quantity/nitrogen oxide conversion ratio from step S22 is greater than a predetermined limit value. For example, it can be checked whether the limit value has been exceeded for a predetermined period of time.
  • the background to step S24 is that the determined nitrogen oxide conversion decreases when ammonia slip increases. This is because the second nitrogen oxides sensor 30 cross-sensitive to ammonia outputs a larger second nitrogen oxides value when ammonia slip occurs. If the nitrogen oxide conversion decreases, the quotient of the amount of reducing agent and the nitrogen oxide conversion increases.
  • the permissible tolerance range or limit value is selected in such a way that, if it is exceeded, it can be assumed that there is a degree of ammonia slip that requires a reaction.
  • step S24 If the determined reducing agent quantity-nitrogen oxide conversion ratio according to step S24 is within the predetermined permissible tolerance range (+), the monitoring can be continued with steps S10, S12, S16 and S18. If, on the other hand, the determined reducing agent quantity/nitrogen oxide conversion ratio according to step S24 is outside the predetermined permissible tolerance range ( ⁇ ), then it is determined that an ammonia slip state is present. In step S26, further measures can be initiated in response to this.
  • measures to reduce the ammonia slip can be initiated in step S26.
  • an amount of fluid injected by the reducing agent injector 16 can be reduced. It is possible that, based on the determined reduction agent quantity/nitrogen oxide conversion ratio, an estimate is made with regard to the extent of the ammonia slip that has occurred. For example, based on the estimation, the countermeasure for reducing the ammonia slip can be adjusted accordingly.
  • the method can be continued with steps S10, S12, S16 and S20, for example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Exhaust Gas After Treatment (AREA)

Claims (13)

  1. Procédé de surveillance d'un système de post-traitement de gaz d'échappement SCR (12), le procédé comprenant les étapes suivantes :
    détecter une première valeur d'oxyde d'azote dans les gaz d'échappement en amont d'un injecteur d'agent réducteur (16) et d'un convertisseur catalytique SCR (14) du système de post-traitement de gaz d'échappement SCR (12) ;
    détecter une deuxième valeur d'oxyde d'azote dans les gaz d'échappement en aval du convertisseur catalytique SCR (14), la deuxième valeur d'oxyde d'azote étant détectée avec une sensibilité croisée à l'ammoniac ;
    déterminer une conversion d'oxyde d'azote comme différence entre la première valeur d'oxyde d'azote et la deuxième valeur d'oxyde d'azote ;
    surveiller un rapport quantité d'agent réducteur/ conversion d'oxyde d'azote, en particulier un rapport quantité d'ammoniac/conversion d'oxyde d'azote, du système de post-traitement de gaz d'échappement SCR (12), la quantité d'agent réducteur, notamment la quantité d'ammoniac, étant détectée ou déterminée sur la base d'une détection d'une quantité de fluide, en particulier d'une solution aqueuse d'urée, qui est amenée à l'injecteur d'agent réducteur (16), ou injectée dans celui-ci, en vue de l'injection, et
    définir un état de fuite d'ammoniac sur la base du rapport quantité d'agent réducteur/conversion d'oxyde d'azote surveillé.
  2. Procédé selon la revendication 1 :
    un état de fuite d'ammoniac étant défini lorsque le rapport de conversion quantité d'agent réducteur/oxyde d'azote est à l'extérieur d'une zone admissible, en particulier prédéterminée ; et/ou
    un état de fuite d'ammoniac étant défini lorsque le rapport quantité d'agent réducteur/conversion d'oxyde d'azote est à l'extérieur d'une zone admissible, en particulier prédéterminée, pendant un intervalle de temps prédéterminé.
  3. Procédé selon la revendication 1 ou la revendication 2 :
    un état de fuite d'ammoniac étant défini lorsque le rapport quantité d'agent réducteur/conversion d'oxyde d'azote est supérieur à une valeur limite prédéterminée ; et/ou
    un état de fuite d'ammoniac étant défini lorsque le rapport quantité d'agent réducteur/conversion d'oxyde d'azote est supérieur à une valeur limite prédéterminée pendant un intervalle de temps prédéterminé.
  4. Procédé selon l'une des revendications précédentes, comprenant en outre l'étape suivante :
    déterminer ou estimer une quantité de fuite d'ammoniac sur la base du rapport quantité d'agent réducteur/conversion d'oxyde d'azote surveillé.
  5. Procédé selon l'une des revendications précédentes :
    la quantité d'agent réducteur, en particulier la quantité d'ammoniac, étant détectée ou déterminée sur la base d'une détection d'une composition d'un fluide, notamment d'une solution aqueuse d'urée, amené ou à amener à un injecteur d'agent réducteur (16) en vue de l'injection.
  6. Procédé selon la revendication 5 :
    une proportion d'eau, une teneur en eau, une proportion d'urée et/ou une teneur en urée du fluide étant détectée ; et/ou
    la détection de la composition dans un réservoir de fluide (18), destiné en particulier à une solution aqueuse d'urée, étant effectuée.
  7. Procédé selon l'une des revendications précédentes,
    la détection de la quantité de fluide étant effectuée par détection d'un paramètre de fonctionnement d'une pompe à fluide (20), par détection d'un paramètre de fonctionnement d'un injecteur d'agent réducteur, au moyen d'un capteur de débit et/ou au moyen d'un capteur de niveau d'un réservoir de fluide (18).
  8. Procédé selon l'une des revendications précédentes :
    la quantité d'agent réducteur, en particulier la quantité d'ammoniac, étant déterminée sur la base d'une vitesse de rotation d'une pompe à fluide, d'une pression de refoulement de la pompe à fluide et d'un temps d'ouverture d'un injecteur d'agent réducteur.
  9. Procédé selon l'une des revendications précédentes, comprenant en outre les étapes suivantes :
    prendre des mesures pour réduire la fuite d'ammoniac si l'état de fuite d'ammoniac a été défini ; et/ou
    réduire une quantité d'agent réducteur injecté ou à injecter, lorsque l'état de fuite d'ammoniac est défini.
  10. Dispositif de post-traitement de gaz d'échappement, notamment système de post-traitement de gaz d'échappement SCR (12), comprenant :
    un injecteur d'agent réducteur (16) ;
    un catalyseur SCR (14) disposé en aval de l'injecteur d'agent réducteur (16) ; et
    un système de surveillance (26) qui est conçu pour mettre en œuvre un procédé selon l'une des revendications précédentes.
  11. Dispositif selon la revendication 10, comprenant en outre :
    un premier capteur d'oxyde d'azote (28) qui est disposé en amont du convertisseur catalytique SCR (14) et qui détecte une première valeur d'oxyde d'azote ; et
    un deuxième capteur d'oxyde d'azote (30) qui est disposé en aval du catalyseur SCR (14) et qui détecte une deuxième valeur d'oxyde d'azote, en particulier avec une sensibilité croisée à l'ammoniac,
    le système de surveillance (26) déterminant la conversion d'oxyde d'azote comme différence entre la première valeur d'oxyde d'azote et la deuxième valeur d'oxyde d'azote.
  12. Dispositif selon la revendication 10 ou 11, comprenant en outre :
    un premier capteur de fluide (32) destiné à détecter une composition d'un fluide amené ou à amener à l'injecteur d'agent réducteur (16) en vue de l'injection ; et
    un deuxième capteur de fluide et/ou une pompe à fluide (20) destinés à détecter une quantité d'un fluide amené ou à amener à l'injecteur d'agent réducteur (16) en vue de l'injection ;
    le système de surveillance (26) déterminant la quantité d'agent réducteur, en particulier la quantité d'ammoniac, sur la base de la composition détectée et de la quantité de fluide détectée.
  13. Véhicule automobile, notamment véhicule utilitaire, comprenant un dispositif selon l'une des revendications 10 à 12.
EP19163337.9A 2018-03-23 2019-03-18 Procédé et dispositif de surveillance d'un dispositif de traitement de gaz d'échappement par scr Active EP3543493B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102018106952.9A DE102018106952A1 (de) 2018-03-23 2018-03-23 Verfahren und Vorrichtung zum Überwachen einer SCR-Abgasnachbehandlungseinrichtung

Publications (2)

Publication Number Publication Date
EP3543493A1 EP3543493A1 (fr) 2019-09-25
EP3543493B1 true EP3543493B1 (fr) 2022-02-16

Family

ID=65818269

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19163337.9A Active EP3543493B1 (fr) 2018-03-23 2019-03-18 Procédé et dispositif de surveillance d'un dispositif de traitement de gaz d'échappement par scr

Country Status (5)

Country Link
US (1) US11092059B2 (fr)
EP (1) EP3543493B1 (fr)
CN (1) CN110295973B (fr)
BR (1) BR102019005747A2 (fr)
DE (1) DE102018106952A1 (fr)

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050282285A1 (en) 2004-06-21 2005-12-22 Eaton Corporation Strategy for controlling NOx emissions and ammonia slip in an SCR system using a nonselective NOx/NH3
EP1983336A1 (fr) * 2006-01-30 2008-10-22 Mitsui Mining and Smelting Co., Ltd Dispositif d'identification de fluide et procédé d'identification de fluide
US8225595B2 (en) * 2008-12-05 2012-07-24 Cummins Ip, Inc. Apparatus, system, and method for estimating an NOx conversion efficiency of a selective catalytic reduction catalyst
DE102009030674A1 (de) * 2009-06-26 2010-12-30 Emitec Gesellschaft Für Emissionstechnologie Mbh Entnahmerohr für einen Tank und Verfahren zu dessen Herstellung
US9631538B2 (en) * 2009-07-10 2017-04-25 GM Global Technology Operations LLC Identifying ammonia slip conditions in a selective catalytic reduction application
US8915062B2 (en) * 2009-10-09 2014-12-23 GM Global Technology Operations LLC Method and apparatus for monitoring a reductant injection system in an exhaust aftertreatment system
JP5503277B2 (ja) * 2009-12-15 2014-05-28 ボッシュ株式会社 還元剤噴射弁の制御装置
US8893475B2 (en) 2010-03-11 2014-11-25 Cummins Inc. Control system for doser compensation in an SCR system
US9234447B2 (en) * 2010-12-10 2016-01-12 GM Global Technology Operations LLC System and method for determining selective catalytic reduction dosing system performance using an ammonia sensor
WO2012151442A1 (fr) * 2011-05-03 2012-11-08 Cummins Inc. Techniques de commande destinées à un système de post-traitement par réduction catalytique sélective
DE102011108019A1 (de) 2011-07-19 2013-01-24 Daimler Ag Verfahren zur Ermittlung einer Qualität einer zur Stickoxidverminderung eingesetzten, Ammoniak enthaltenden Reduktionsmittellösung
US9492788B2 (en) * 2012-03-29 2016-11-15 Volvo Construction Equipment Ab Method for diagnosing a selective catalytic reduction catalyst
JP5559230B2 (ja) * 2012-04-03 2014-07-23 本田技研工業株式会社 内燃機関の排気浄化システム
CN104603412B (zh) * 2012-08-31 2017-06-09 沃尔沃卡车集团 用于估计反应剂质量的方法和系统
WO2015095332A1 (fr) 2013-12-18 2015-06-25 Cummins Inc. Techniques de commande d'un système de traitement après scr en réaction à des conditions de glissement vers nh3
FR3015558B1 (fr) 2013-12-20 2019-02-01 Renault S.A.S Detection et quantification des fuites d'ammoniac en aval d'un systeme de reduction catalytique selective d'oxydes d'azote
WO2015108541A1 (fr) * 2014-01-20 2015-07-23 Cummins Inc. Techniques de commande d'un système de post-traitement à scr en réaction à un état de dégagement d'ammoniac
SE540265C2 (sv) * 2014-01-31 2018-05-15 Scania Cv Ab Förfarande och system vid tillförsel av tillsatsmedel till en avgasström
US9238984B2 (en) * 2014-02-03 2016-01-19 Caterpillar, Inc. Exhaust emission prediction system and method
US20150218993A1 (en) * 2014-02-03 2015-08-06 Caterpillar Inc. Exhaust treatment system and method
US9845716B2 (en) * 2014-02-13 2017-12-19 Cummins Inc. Techniques for control of an SCR aftertreatment system
WO2016018886A1 (fr) 2014-07-29 2016-02-04 Cummins, Inc. Système et procédé de diagnostic d'un catalyseur à réduction catalytique sélective et oxydation d'ammoniac lors de son utilisation
DE112014007113B4 (de) * 2014-10-28 2022-09-22 Cummins Emission Solutions Inc. System, Verfahren und nicht-flüchtiges computerlesbares Medium zur Diagnose eines SCR-Umwandlungswirkungsgrads
US9879580B2 (en) * 2015-08-19 2018-01-30 Cummins, Inc. Diagnostic methods for a high efficiency exhaust aftertreatment system
SE539133C2 (sv) * 2015-08-27 2017-04-11 Scania Cv Ab Avgasbehandlingssystem och förfarande för behandling av en avgasström
DE102015216656A1 (de) * 2015-09-01 2017-03-02 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Betrieb einer Abgasreinigungsanlage
EP3165736A1 (fr) * 2015-11-03 2017-05-10 Plastic Omnium Advanced Innovation and Research Procédé de surveillance de qualité d'urée d'un système scr
WO2017127283A1 (fr) * 2016-01-22 2017-07-27 Cummins, Inc. Système et procédé pour déterminer des performances de délivrance d'agent de réduction
US9790835B1 (en) 2016-04-25 2017-10-17 Cummins Emission Solutions Inc. Catalyst failure detection based combined ammonia to NOx ratios, conversion inefficiency values and ammonia slip values
DE102016209533A1 (de) * 2016-06-01 2017-12-07 Ford Global Technologies, Llc Erfassen des Alterungszustands eines SCR-Katalysators

Also Published As

Publication number Publication date
US20190292968A1 (en) 2019-09-26
EP3543493A1 (fr) 2019-09-25
CN110295973A (zh) 2019-10-01
BR102019005747A2 (pt) 2020-01-28
US11092059B2 (en) 2021-08-17
DE102018106952A1 (de) 2019-09-26
CN110295973B (zh) 2022-06-24

Similar Documents

Publication Publication Date Title
EP2181258B1 (fr) Procédé de fonctionnement et de diagnostic d'un système scr de retraitement des gaz d'échappement
DE102005062120B4 (de) Verfahren und Vorrichtung zur Überwachung eines Abgasnachbehandlungssystems
EP2832965B1 (fr) Procédé et dispositif de détermination du rendement d'un dispositif de nettoyage des gaz d'échappement
EP2734718B1 (fr) Procédé permettant de déterminer la qualité d'une solution d'agent de réduction contenant de l'ammoniac et utilisée pour diminuer l'oxyde d'azote
DE102012202671B4 (de) Verfahren zur Diagnose eines SCR-Katalysatorsystems
EP2307676A1 (fr) Procédé de fonctionnement d'un système de traitement des gaz d'échappement comportant un catalyseur scr
DE112018007221T5 (de) Verbesserte Russbeladungsschätzung unter Verwendung von dualen Differenzdrucksensoren
EP2156024B1 (fr) Procédé de diagnostic pour un réactif devant être introduit dans la zone des gaz d'échappement d'un moteur à combustion interne et dispositif permettant de mettre en oeuvre ce procédé
DE102013203580A1 (de) Verfahren zur Überwachung eines Abgasnachbehandlungssystems
DE102016211575A1 (de) Fehlererkennung in einem SCR-System mittels eines Ammoniak-Füllstands
DE102012220151A1 (de) Verfahren zur Überprüfung eines Ammoniaksensors oder eines NH3-querempfindlichen Sensors
DE102012211705A1 (de) Verfahren zur Überprüfung eines Stickoxidsensors
DE102016203227A1 (de) Verfahren zur Diagnose eines Abgasnachbehandlungssystems für eine Brennkraftmaschine
DE102007063940B4 (de) Verfahren zur Diagnose eines eine Abgasbehandlungsvorrichtung enthaltenden Abgasbereichs einer Brennkraftmaschine und Vorrichtung zur Durchführung des Verfahrens
AT521118A1 (de) Verfahren zur Funktionsüberprüfung einer Abgasnachbehandlungsanlage
DE102015207670A1 (de) Verfahren zur Überwachung eines SCR-Katalysators
DE102012211703A1 (de) Verfahren zur Überprüfung eines Stickoxidsensors
DE102013203578A1 (de) Verfahren zur Überwachung eines Abgasnachbehandlungssystems
AT521669B1 (de) Verfahren und Verbrennungskraftmaschine zur Effizienzverbesserung eines SCR-Systems
DE102014019483A1 (de) Verfahren zum Ermitteln von Ammoniak-Schlupf einer Katalysatoreinrichtung einer Verbrennungskraftmaschine
EP3543493B1 (fr) Procédé et dispositif de surveillance d'un dispositif de traitement de gaz d'échappement par scr
EP3430248B1 (fr) Procédé d'adaptation de la courbe caractéristique d'un capteur des oxydes d'azotes dans un moteur à combustion
AT521760A1 (de) Frequenzbasiertes NH3-Schlupferkennungverfahren
DE102008064606A1 (de) Funktionsanpassung einer Abgasreinigungsvorrichtung
DE112017003233T5 (de) NH3-Schlupferkennung unter Verwendung eines NOx-Sensors

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200317

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200513

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20211028

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019003419

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1469009

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220616

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220516

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220517

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019003419

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220331

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20221117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220318

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220318

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230318

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240326

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240328

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20190318

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20240326

Year of fee payment: 6

Ref country code: IT

Payment date: 20240321

Year of fee payment: 6

Ref country code: FR

Payment date: 20240326

Year of fee payment: 6