EP3541632A1 - High-function heat transfer releases - Google Patents
High-function heat transfer releasesInfo
- Publication number
- EP3541632A1 EP3541632A1 EP16819380.3A EP16819380A EP3541632A1 EP 3541632 A1 EP3541632 A1 EP 3541632A1 EP 16819380 A EP16819380 A EP 16819380A EP 3541632 A1 EP3541632 A1 EP 3541632A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- heat transfer
- release
- release layer
- transfer label
- carrier
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000012546 transfer Methods 0.000 title claims abstract description 85
- 239000010410 layer Substances 0.000 claims description 52
- 239000000203 mixture Substances 0.000 claims description 31
- 238000013461 design Methods 0.000 claims description 29
- 238000007639 printing Methods 0.000 claims description 28
- 239000011159 matrix material Substances 0.000 claims description 24
- 239000011248 coating agent Substances 0.000 claims description 11
- 238000000576 coating method Methods 0.000 claims description 11
- 239000007790 solid phase Substances 0.000 claims description 11
- 239000006185 dispersion Substances 0.000 claims description 10
- 239000002985 plastic film Substances 0.000 claims description 8
- 229920001187 thermosetting polymer Polymers 0.000 claims description 6
- 238000009827 uniform distribution Methods 0.000 claims description 6
- 239000012790 adhesive layer Substances 0.000 claims description 4
- 229920006255 plastic film Polymers 0.000 claims description 4
- 239000000123 paper Substances 0.000 claims description 3
- 238000004891 communication Methods 0.000 claims description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims 1
- 229910052799 carbon Inorganic materials 0.000 claims 1
- 229910052757 nitrogen Inorganic materials 0.000 claims 1
- 229910052760 oxygen Inorganic materials 0.000 claims 1
- 239000001301 oxygen Substances 0.000 claims 1
- 229910052710 silicon Inorganic materials 0.000 claims 1
- 239000010703 silicon Substances 0.000 claims 1
- 239000000853 adhesive Substances 0.000 abstract description 20
- 230000001070 adhesive effect Effects 0.000 abstract description 20
- 239000004744 fabric Substances 0.000 abstract description 14
- 238000011109 contamination Methods 0.000 abstract description 10
- 230000010076 replication Effects 0.000 abstract description 5
- 239000000976 ink Substances 0.000 description 30
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 13
- 230000000694 effects Effects 0.000 description 9
- 239000002904 solvent Substances 0.000 description 9
- 239000004848 polyfunctional curative Substances 0.000 description 8
- 238000007650 screen-printing Methods 0.000 description 8
- 230000008859 change Effects 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 238000005406 washing Methods 0.000 description 6
- 239000000654 additive Substances 0.000 description 5
- 238000004132 cross linking Methods 0.000 description 5
- 230000007547 defect Effects 0.000 description 5
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000003607 modifier Substances 0.000 description 4
- 229920000058 polyacrylate Polymers 0.000 description 4
- 229920000728 polyester Polymers 0.000 description 4
- -1 polyethylene terephthalate Polymers 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 3
- 229920002799 BoPET Polymers 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 239000002216 antistatic agent Substances 0.000 description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 238000005034 decoration Methods 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 229920001296 polysiloxane Polymers 0.000 description 3
- 102000005962 receptors Human genes 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 238000009736 wetting Methods 0.000 description 3
- NOWKCMXCCJGMRR-UHFFFAOYSA-N Aziridine Chemical compound C1CN1 NOWKCMXCCJGMRR-UHFFFAOYSA-N 0.000 description 2
- 229920000742 Cotton Polymers 0.000 description 2
- 239000004971 Cross linker Substances 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 235000000177 Indigofera tinctoria Nutrition 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229920001730 Moisture cure polyurethane Polymers 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000002981 blocking agent Substances 0.000 description 2
- 230000009969 flowable effect Effects 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 238000007756 gravure coating Methods 0.000 description 2
- 238000013007 heat curing Methods 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 229940097275 indigo Drugs 0.000 description 2
- COHYTHOBJLSHDF-UHFFFAOYSA-N indigo powder Natural products N1C2=CC=CC=C2C(=O)C1=C1C(=O)C2=CC=CC=C2N1 COHYTHOBJLSHDF-UHFFFAOYSA-N 0.000 description 2
- 239000006115 industrial coating Substances 0.000 description 2
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 2
- 238000002372 labelling Methods 0.000 description 2
- 230000000873 masking effect Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 239000004753 textile Substances 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 239000004606 Fillers/Extenders Substances 0.000 description 1
- 229920005933 JONCRYL® 587 Polymers 0.000 description 1
- 102000016979 Other receptors Human genes 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 229930188620 butyrolactone Natural products 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 239000002274 desiccant Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 238000005562 fading Methods 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 238000007646 gravure printing Methods 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- 238000004900 laundering Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000006224 matting agent Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- VPKDCDLSJZCGKE-UHFFFAOYSA-N methanediimine Chemical compound N=C=N VPKDCDLSJZCGKE-UHFFFAOYSA-N 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 239000012764 mineral filler Substances 0.000 description 1
- 238000007645 offset printing Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000013618 particulate matter Substances 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920001228 polyisocyanate Polymers 0.000 description 1
- 239000005056 polyisocyanate Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 239000004034 viscosity adjusting agent Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B44—DECORATIVE ARTS
- B44C—PRODUCING DECORATIVE EFFECTS; MOSAICS; TARSIA WORK; PAPERHANGING
- B44C1/00—Processes, not specifically provided for elsewhere, for producing decorative surface effects
- B44C1/16—Processes, not specifically provided for elsewhere, for producing decorative surface effects for applying transfer pictures or the like
- B44C1/165—Processes, not specifically provided for elsewhere, for producing decorative surface effects for applying transfer pictures or the like for decalcomanias; sheet material therefor
- B44C1/17—Dry transfer
- B44C1/1712—Decalcomanias applied under heat and pressure, e.g. provided with a heat activable adhesive
Definitions
- the present invention relates to a high-function heat stable release which strongly adheres to the carrier, offers a highly ink and adhesive wettable surface, stays intact under heat transfer bonding conditions, releases easily, leaves no contamination on the transfer or fabric, and enables durable replication of the release surface finish onto the resultant transfers. Accordingly, the present specification makes specific reference thereto. However, it is to be appreciated that aspects of the present inventive subject matter are also equally amenable to other like applications.
- Printed heat transfer labels are well-known and commonly used to transfer a graphic, such as text or a graphic design, onto an item, such as apparel or merchandise.
- a heat transfer label is usually pre-printed with a graphic, and then the graphic is transferred from the label to the item using a heated pad or iron or the like.
- Printing techniques such as gravure printing, offset printing, flexographic printing, screen printing and digital printing all can be used to create a heat transfer label.
- the graphic is formed on a web or substrate onto which a release layer is applied.
- the ink graphic is applied to the release layer, followed by an adhesive.
- the adhesive is applied to the top surface of the graphic.
- the present invention discloses a special heat stable release which strongly adheres to the carrier, offers a highly ink and adhesive wettable surface, stays intact under heat transfer bonding conditions, releases easily, leaves no contamination on the transfer or fabric, and enables durable replication of the release surface finish onto the resultant transfers.
- the subject matter disclosed and claimed herein in one aspect thereof, comprises a high-function release system comprising a heat stable, film forming organic composition which constitutes the matrix or body of the release.
- the heat stable, film forming organic composition is a thermoset or chemically crosslinked composition.
- the organic composition is in liquid form to allow various industrial coating and printing operations for flood or partem application to the carrier surface and to form a dense layer over the carrier surface.
- the release system also includes a surface active chemistry component which forms a structural linkage with the release matrix and has a uniform distribution over the surface or near-surface region of the release matrix or body.
- the release system includes a dispersion of fine, heat stable solid phase(s) components in the release matrix and its surface.
- FIG. 1 illustrates a schematic cross-sectional view of a heat transfer label in accordance with the disclosed architecture.
- FIG. 2 illustrates a schematic cross-sectional view of a heat transfer label cleanly transferred to a heat transfer item.
- FIG. 3 illustrates a schematic cross-sectional view of a heat transfer label with release contamination to the label and item surfaces in accordance with the disclosed architecture.
- FIG. 4 illustrates a schematic cross-sectional view of the heat transfer label construction in accordance with the present invention.
- FIG. 5A - FIG. 5E illustrate schematic cross-sectional views of the various high- function release surfaces and constructions in accordance with the present invention.
- FIG. 6 illustrates a perspective view of a heat transfer decoration with combined gloss and matte finish effect in accordance with the present invention.
- FIG. 7 illustrates a perspective view of a structured release surface of the heat transfer label in accordance with the present invention.
- FIG. 8A and FIG. 8B illustrate improved print quality on a release surface of the present invention.
- FIG. 9 illustrates a transfer on a polyester fabric surface with sharp pixel dots and a semi-gloss finish.
- a heat transfer label (HTL) 100 for application to an item typically includes a carrier 102 (plastic film or paper), a release layer 104 on or overlying the carrier surface, a single color or multicolor ink design layer(s) 106, and an adhesive layer 108 in alignment with the ink design layer 106.
- a carrier 102 plastic film or paper
- release layer 104 on or overlying the carrier surface
- a single color or multicolor ink design layer(s) 106 typically includes a single color or multicolor ink design layer(s) 106, and an adhesive layer 108 in alignment with the ink design layer 106.
- adhesive layer 108 in alignment with the ink design layer 106.
- the HTL 100 can be used to decorate textiles or other receptor materials by placing the HTL design face down over the receptor item 110 (i.e., heat transfer item) and applying sufficient heat and pressure to adhere the ink design 106 and adhesive 108 onto the item surface. The carrier 102 is then peeled away to complete the transfer, as shown in FIG. 2.
- the receptor item 110 i.e., heat transfer item
- the carrier 102 is then peeled away to complete the transfer, as shown in FIG. 2.
- the present invention discloses a special heat stable release 400 which strongly adheres to the carrier, offers a highly ink 404 and adhesive 406 wettable surface, stays intact under heat transfer bonding conditions, releases easily, leaves no contamination on the transfer or fabric, and enables durable replication of the release surface finish (gloss, semi-gloss, matte, or combined gloss and matte) onto the resultant transfers.
- the carrier 402 used in the high function release system can be plastic sheets, films, or paper stocks.
- clear or translucent plastic films such as (PET) polyethylene terephthalate or polycarbonate (PC) of about 2 mils to 5 mils in thickness, with smooth, non-contaminated surfaces for release layer application are utilized.
- PET polyethylene terephthalate
- PC polycarbonate
- the carrier 402 also prefers to have low heat shrinkage or expansion to allow printing registration.
- the high-function release system comprises the below critical three components: (1) A heat stable, film forming organic composition which constitutes the matrix or body of the release. It is a thermoset or chemically crosslinked composition. Initially, the organic composition is in liquid form to allow various industrial coating and printing operations for flood or pattern application to the carrier surface and to form a dense layer over the carrier surface. [0025] (2) A surface active chemistry component which forms structural linkage with the release matrix and has a uniform distribution over the surface or near-surface region of the release matrix or body. (3) And, a dispersion of fine, heat stable solid phase(s) components in the release matrix and its surface. A combination of (1) and (2), or the above (3) components into an integrated structure enables the release to perform very successfully across a broad range of heat transfer labeling or decorating applications, and to introduce new functions and unique effects.
- Catalyst preferably organo tin free, such as Zn or Bi based to speed up the reaction rate of the above cross-linking.
- cross-linker or hardener, such as isocyanate, aziridine, carbodimide, polyamine, etc., to react with the reactive groups in the organic resin.
- the film forming organic composition is a thermoplastic resin with glass transition temperature (Tg) above about 40°C before cross-linking, and after cross-linking reaction is having heat stability or melting point above 160°C.
- the organic matrix composition is preferably a polyacrylate or polyester based resin with Tg above 40°C, and with -OH number above 80 mg KOH/g resin, and optionally additional -COOH, -silanol, -epoxide etc. contents.
- the corresponding cross- linker is preferably N containing as listed above, to create a highly heat stable release matrix with measurable N content on the surface by XPS or related analytical tools.
- Additives such as deformer, leveling agent, anti-static agent, hardener blocking agent, pot-life extender, retarder, solvent drying agent etc. can also be included in an as needed basis.
- Multi-segmented or branched macromer, pre-polymer or polymer with both matrix-compatible and matrix-incompatible sections The matrix-compatible sections provide strong interaction or anchorage to the heat stable matrix, whereas the matrix- incompatible sections provide effective surface modification capacity.
- These surface modifiers preferably low or medium MW surface active chemicals, are key to control the quality and physical/chemical properties of the liquid release formulation and the resultant solid release surface.
- the design of this chemical component enables good control of the release surface to enhance heat transfer label quality and its heat transfer performance. Examples include polyacrylate with ether (EO and/or PO) side branches, acrylate with -OH reactive group and silicone side branches, linear hydrocarbons or olefins with reactive isocyanate end group, etc.
- the listed surface active components when distributed on the physically and chemically linked structure of (1) and (2) after solvent drying and cross-link will exhibit measurable O content on the surface by XPS or related analytical tools. Presence of component (2) in the release also enables the surface energy as measured by dyne ink or pen to reach 40 dyne/cm or higher level. Additives based on silicone typically will decrease the surface energy and cause poor wetting or poor printability. Component (2) utilized in the present invention is found to be effective for maintaining high surface energy while allowing for the use of certain silicone for surface leveling, defoaming, and anti-blocking functions.
- the release chemistry in (3) involves the below key components: a heat stable, solid state particulate matter of the inorganic (such as silica, or mineral filler) or organic (such as high melting point or thermoset polymer powder) types.
- Particle size is preferably about 1 ⁇ to 50 ⁇ which allows easy dispersion and uniform distribution over the release surface.
- Organic type solid phase is preferred based on its ease of handling, low moisture sensitivity, high stability against settling, and excellent linkage to components (1) and (2).
- Additives, such as dispersing enhancers, foam-controlling agents, anti-static agents, viscosity modifiers, etc. may also be included in formulating component (3) into the system.
- Organic type solid phase preferably has heat stability above 160°C to suit for the disclosed heat transfer release application.
- the present release chemistry can be prepared as 1-pack or 2-pack systems.
- the pot life is about 2-8 hours at room temperature, and a hardener blocking agent can be used for long term storage, and later hardened by heat cure after application.
- Part A typically includes the reactive resin, catalyst, and surface modifier with any needed additives
- Part B typically is the hardener with any needed medium or viscosity adjusters.
- the preparation of Part A usually needs a high or medium shear mixer, such as a Cowles type, to ensure complete dispersion and homogenization of all the chemical components. Care should be taken to avoid using low purity components or exposure to contamination, moisture, dust, etc.
- Part B if it is flowable, can be packed in a closed container, if not flowable, can use a proper, non-reactive solvent to dilute to the desired viscosity level.
- Part A is to mix with Part B at a specified amount ratio based on the related contents of the reactive components, with any needed solvent or additional additives.
- Methods of applying the high-function release system on a carrier surface include sheet-fed printing or coating and web printing or coating.
- the former can be flat-bed screen printing, the latter can be reverse gravure coating.
- the sheet or web is subject to a heating/drying process to remove the solvent, and initiate the cross-linking reaction to form the release coated carrier sheets or web. Additional aging or annealing may also be used to further improve dimensional stability of the carrier.
- the release coated sheets or web can be further slit down or precision cut to fit a special printer format for the subsequent ink and adhesive application.
- Heat transfer labels can be prepared by analog or digital printing of the one-color or multi-color design onto the release surface in sheet-fed or web format. Then apply the adhesive in communication with the ink design by analog printing or a powder scattering process. The printed material is further slit or cut into a narrower web or single labels and packaged for storage or transportation.
- Transfer of the printed design on the HTL onto the receptor item surface is done by a heat bonding press, with heated platen, pneumatic pressure control, sensor or operator activated operation.
- Typical bond settings are 120-160 °C, 0.2-2.0b, l-15s to suit for various fabric types and bonder configurations. Removal of the carrier from the heat transfer on the receptor item after bonding can be done immediately or while still hot, semi-hot or when cold.
- one special feature of the present invention is enabling surface texture of the release surface to be transferred to the final heat transfer design and has high resistance against fading due to washing, abrasion etc., as compared to conventional releases.
- Gloss finish 500 on the heat transfer can be done with smooth surface release of the present invention, as shown in FIG. 5A.
- Semi-gloss finish 502 can be done with lightly textured release of the present invention, as shown in FIG. 5B.
- Matte finish 504 can be done with highly texture release of the present invention, as shown in FIG. 5C.
- Surface finish 506 with both matte and gloss together can also be accomplished by a patterned release structure of the present invention, as shown in FIG. 5D.
- the opposite surface of the carrier can also be covered by the present release structure to offer double-side release, anti-backing, slip or friction controls 508, as shown in FIG. 5E.
- the present invention may more clearly be understood by reference to the following examples, it being understood that such examples are illustrative and not to be considered as limiting of the invention.
- gloss release composition and application to carrier surface by screen printing.
- gloss release compositions of the present invention is:
- CAStat 308 is an anti-static agent (by Lubrizol®)
- Joncryl-587 is polyacrylate with -OH and -COOH function groups (by BASF®)
- BLO is butyrolactone solvent (by Ashland®)
- BYKTM 3560 is surface modifier agent with polyether function (by Byk®)
- XK-635 is cross-linking catalyst (by King Industries®)
- Tego® Protect 5001 is another reactive surface modifier agent (by Evonik®)
- STI-95 hydrocarbon with isocyanate function (by Lanxess®)
- XR-2500 is aziridine hardener (by Avery Dennison®)
- TolonateTM HDT-90 is a polyisocyanate hardener (by Vencorex®).
- the carrier film used was 100 ⁇ thick PET film in sheet form of 550mm x 700mm.
- Print screen was #460 mesh flood screen, mounted on an Avery Dennison cylinder screen print press for auto-feeding release printing.
- the printed sheets then drying through the HT-003 conveyor tunnel by both thermal and IR heating at set temperature of 130 °C for about 40s.
- the sheets then went through a short cooling section before being stacked at the end.
- the release coated carrier sheets can further be heat aged at a temperature from about 30 °C to about 120 °C as an option to further stabilize the carrier.
- the obtained release film has the layer structure as illustrated in FIG. 5A.
- Ceraflour 920 is an organic powder based matting agent (by Byk), JoncrylTM-550 is polyacrylate with -OH function group. Printing was conducted the same way as in Example 1. The obtained release film has the layer structure illustrated as Fig. 5C.
- the Gloss+Matte release printed sheets were then printed on a flat-bed screen print press using a water based red ink (AQ red), a water based white backer (AQ white), and water based adhesive (AG adhesive). Dryer settings were 120 °C with IR on for the inks, and 85 °C with IR off for the adhesive, the heating time in the HT004 tunnel conveyor was about 45s.
- the printed design arts obtained on the 550mm x 700mm sheets were cut into proper label size, and was then heat bonded to a white polyester fabric, under conditions of 140 °C, 10s, 1.5b, and tested for ease of peel under Hot, Tepid and Cold peel conditions.
- the printed design prepared on the above Gloss+Matte release carrier when being transferred to a fabric surface is able to create the special "water mark” pattern across the color design, 600 as in Figure 6, where a single color (red) is having both gloss and the wave shape patterned matte finishes.
- Such texture replication on the label was wash durable and the "water mark” effect stayed after repeated laundry.
- the solvent used is a 1 : 1 volume ratio of methyl ethyl ketone with toluene
- the release composition was compounded by a Cowles type high shear mixer without the hardener.
- the hardener was blended in with optionally additional solvent before coating.
- the coating was run on the a gravure coating line using a web of 20" or 40" width PET of 100 um thickness (The coating mode was reverse-gravure with chrome faced cylinder of designed cell structure (85 lpi, mechanically engraved PQCH cell pattern, cell volume 33.30 bcm).
- the coating was run at a line speed of 150 ft/min, with the 3-zone heating section set at an average temperature of 200F.
- the web after heating, about 10s, was air cooled and rewound into roll form.
- the coated sheets were measured to have a dry coat weight of 3.0 gsm (g/m A 2) with uniform coverage on the PET surface, and no blockage due to rewinding.
- the coated roll was then silted into proper size, and placed in a Blue-M oven for further heat cure at 90 °C for about 72 hours.
- the structured release surface 700 as viewed under SEM is shown in FIG. 7.
- the surface as shown is dense and uniformly dispersed with heat stable solid phase particles securely linked to the matrix structure.
- the chemical composition of the obtained release surface was determined by XPS (x-ray photoelectron spectroscopy) as shown in the table below.
- Heat transfer labels with designed artwork were made on Atma screen printing line using a water based screen printing inks (Adf black, ADM, Adf clear, etc. from Avery Dennison) and a water based screen print adhesives (AG or QL from Avery Dennison) or scatter applied powder adhesives (e.g. A23 from Avery Dennison).
- Exemplary screens suitable for the printing are 230 mesh for the inks, and 123 mesh for the adhesives.
- Each layer printed on the SG.IR release surface was heat and IR dried through HT-004 tunnel oven at temperatures of around 95 °C-115 °C, typical heating time in tunnel oven is 40-45s.
- Print ink wet-out on the release surface was found to be closely related to the surface energy of the release film. Surface energy as measured by dyne pen for the current release vs. a comparison KP44LMTCGR4812 (by Hanse®) is shown in the below table. Ink wet-out comparison was made by printing a single layer of a water based ink, e.g. Avery Dennison' s ADF black screen ink, on the release film surface and measure the defect counts by an image analyzer, or an optical microscope under uniform back-lighting, Figure 8. Release Sample Release surface energy Print defect counts
- FIG. 8 illustrates micrographs of ink coverage over release surfaces with different surface energies, 32 dyne/cm vs 42 dyne/cm.
- Left For KP44LMTCGR4812 release (32 dyne/cm), the ink coverage was not smooth with high print defect count.
- Light For SG.IR release (42 dyne/cm), the coverage was smooth with very low print defect count.
- the screen printed test design was cut into strips and heat bonded to heavy weight cotton fabric (Interlock cotton) by a heat transfer bonder at 320F, 8s, 1.5b.
- the obtained heat laminates were allowed to cool to room temperature then tested on the Instron tensile tester by the T-peel mode at a constant peel rate of 12'7min with a 50N load cell.
- the peel force was averaged over at least 8" extension range for each specimen, and was done on at least 3 specimens for each tested release film.
- the present release performed well for heat transfer label printing as well as easy heat transfer with low peel forces.
- the present release as illustrated in the above examples was further primed with a thin layer of primer to successfully accept HP Indigo Electrolnks for making digital color design HTL.
- One example of compatible primer to use with the present release system is DigiPrime 5000 (by Michelman®).
- the primed release is then fed through a HP Indigo 5500 press for the color printing, followed by screen printing a white backing ink layer and the printed or scattered adhesive.
- the resultant digital print heat transfer label was applied to target substrates using the heat transfer methods described above.
- Fig. 9 shows the obtained transfer on a polyester fabric surface with sharp pixel dots and a semi-gloss finish replicated from the texture on the SG.IR release sheet surface. The surface finish was wash durable, not changed after laundering.
- the release made according to the present invention was wash tested against a wax based release reference (Avery Dennison release 3.04.)
- the two types of releases were screen printed on 4 mil PET sheets, then pattern printed with water based black ink and adhesive.
- the printed design was then heat transferred to a polyester fabric under 140 °C, 10s, 1.5b setting and peeled away the carrier immediately after the bonder platen disengaged, i.e. hot peel.
- the resultant transfer pieces were measured for gloss and color before wash, and re-measured after 1 cycle of 40 °C wash, then after 5 cycles of 40 °C wash, and finally after additional 5 wash cycles at 60 °C.
- the below Table compares the gloss change of the current gloss release sample G-1 versus a wax based 3.04 release sample.
- the G-1 sample retained most of its initial gloss throughout the washing cycles, whereas the wax release sample had huge gloss change even after 1 cycle of wash. The same occurred with color change, the heat transfer made with G-1 release showed very little color change after washing, whereas the comparison had significant color change.
- Carrier with release on each surface as illustrated in Figure 5E.
- the front surface is used for accepting the printing inks and adhesives, the opposite side can optionally be release covered to serve additional functions, such as slip control, anti-blocking, anti-curling etc.
- the front surface semi-gloss release was applied on a gravure coater as Example 4. The dried film web was loaded on the coater for the second pass using the below Gloss Backing composition on the back side of the film.
- the double side coated carrier thus prepared has the semi-gloss release on the top surface of the carrier and a gloss release on the opposite surface for ease of handling and prevention of blockage throughout printing, stacking and cutting operations.
- the difference of the gloss and surface tension between the two release surfaces is shown below.
- the high surface tension of the front release enables easy wetting and printing of inks and adhesives, and the low surface tension and high gloss back release ensures blocking resistance.
Landscapes
- Decoration By Transfer Pictures (AREA)
- Adhesive Tapes (AREA)
- Laminated Bodies (AREA)
Abstract
Description
Claims
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US2016/062254 WO2018093362A1 (en) | 2016-11-16 | 2016-11-16 | High-function heat transfer releases |
Publications (1)
Publication Number | Publication Date |
---|---|
EP3541632A1 true EP3541632A1 (en) | 2019-09-25 |
Family
ID=57629678
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16819380.3A Withdrawn EP3541632A1 (en) | 2016-11-16 | 2016-11-16 | High-function heat transfer releases |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP3541632A1 (en) |
JP (1) | JP2020500739A (en) |
CN (1) | CN109982857A (en) |
AU (1) | AU2016429697A1 (en) |
BR (1) | BR112019009251A2 (en) |
WO (1) | WO2018093362A1 (en) |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03121884A (en) * | 1989-10-04 | 1991-05-23 | Nakajima Kogyo Kk | Thermal transfer foil for high grade mat pattern finish |
US5284588A (en) * | 1992-01-08 | 1994-02-08 | Trustees Of Boston University | Method and system for allowing increased migration across a lipid bilayer |
US5284688A (en) * | 1992-04-16 | 1994-02-08 | Unique Label Systems, Inc. | Pressure sensitive adhesive labels and manufacture thereof |
JPH11208193A (en) * | 1998-01-26 | 1999-08-03 | Dainippon Printing Co Ltd | Transfer sheet |
US6096408A (en) * | 1998-06-08 | 2000-08-01 | Avery Dennison Corporation | Heat-transfer label and method of decorating polyethylene-coated glass using same |
US6998213B2 (en) * | 2001-09-18 | 2006-02-14 | Dai Nippon Printing Co., Ltd. | Thermal transfer film, thermal transfer recording medium, and method for image formation using the same |
ES2599061T3 (en) * | 2002-12-02 | 2017-01-31 | Avery Dennison Corporation | Heat transfer label |
US20050196607A1 (en) * | 2003-06-09 | 2005-09-08 | Shih Frank Y. | Multi-layer dry paint decorative laminate having discoloration prevention barrier |
US7361247B2 (en) * | 2003-12-31 | 2008-04-22 | Neenah Paper Inc. | Matched heat transfer materials and method of use thereof |
US8372232B2 (en) * | 2004-07-20 | 2013-02-12 | Neenah Paper, Inc. | Heat transfer materials and method of use thereof |
JP5587000B2 (en) * | 2010-03-23 | 2014-09-10 | ジャパンポリマーク株式会社 | Transfer label with surface slipperiness |
JP5903942B2 (en) * | 2012-03-12 | 2016-04-13 | 凸版印刷株式会社 | Decorative transfer film |
CN202685576U (en) * | 2012-07-07 | 2013-01-23 | 云南玉溪驰骋化工有限公司 | Full-transfer anti-counterfeiting adhesive tape |
CN202685575U (en) * | 2012-07-07 | 2013-01-23 | 云南玉溪驰骋化工有限公司 | Bi-color anti-fake transfer adhesive tape |
EP3689632A1 (en) * | 2012-09-26 | 2020-08-05 | Dai Nippon Printing Co., Ltd. | Intermediate transfer medium |
JP6163925B2 (en) * | 2013-07-12 | 2017-07-19 | 凸版印刷株式会社 | Matte-like transfer film and molded product using the same |
JP2015214031A (en) * | 2014-05-07 | 2015-12-03 | 凸版印刷株式会社 | Transfer film and decorative molding |
JP2015217517A (en) * | 2014-05-13 | 2015-12-07 | 凸版印刷株式会社 | Transfer film and transfer-molded article |
-
2016
- 2016-11-16 AU AU2016429697A patent/AU2016429697A1/en not_active Abandoned
- 2016-11-16 BR BR112019009251A patent/BR112019009251A2/en not_active IP Right Cessation
- 2016-11-16 CN CN201680090852.1A patent/CN109982857A/en active Pending
- 2016-11-16 JP JP2019526216A patent/JP2020500739A/en active Pending
- 2016-11-16 EP EP16819380.3A patent/EP3541632A1/en not_active Withdrawn
- 2016-11-16 WO PCT/US2016/062254 patent/WO2018093362A1/en unknown
Also Published As
Publication number | Publication date |
---|---|
AU2016429697A1 (en) | 2019-05-30 |
CN109982857A (en) | 2019-07-05 |
WO2018093362A1 (en) | 2018-05-24 |
JP2020500739A (en) | 2020-01-16 |
BR112019009251A2 (en) | 2019-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR960010124B1 (en) | Improvements relating to adherent surfaces | |
US5480700A (en) | Label, and label sheet and ink therefor | |
EP3184692B1 (en) | Textile printing method | |
EP2180998B1 (en) | Selective heat-transfer imaging system and method of using the same | |
EP2334499B1 (en) | Heat transfer methods and sheets for applying an image to a colored substrate | |
CN100491120C (en) | Stretched resin film and label comprising the same | |
AU2015231096A1 (en) | Faceless labels and related systems and methods | |
US8172974B2 (en) | Heat transfer methods of applying a coated image on a substrate where the unimaged areas are uncoated | |
CN116872637A (en) | Thermal sublimation retransfer film and method for realizing non-contact printing effect by using thermal sublimation retransfer film | |
KR20110001310A (en) | Transfer foil | |
US10434817B2 (en) | High-function heat transfer releases | |
CA2850088C (en) | Solvent resistant printable substrates and their methods of manufacture and use | |
EP3541632A1 (en) | High-function heat transfer releases | |
KR102191794B1 (en) | The method of silicone heat transfer cutting film and the silicone heat transfer cutting film made thereby | |
CA2437142A1 (en) | System for transferring images to dark textiles | |
WO2006129604A1 (en) | Sublimation transfer print coated leather product and process for producing the same | |
CN110869999B (en) | Color-changing heat transfer label | |
US6683026B2 (en) | Opaque transfer material | |
KR100258725B1 (en) | Stamping foil | |
KR102038873B1 (en) | Method of heat transfer using thermoplastic polyurethane heating-transfer sheet | |
KR102328313B1 (en) | Ink composition for silcon cutting sheet and process for preparing the same | |
JP3805821B2 (en) | Pattern transfer method to substrate surface and pattern transfer sheet used in the transfer method | |
KR100490884B1 (en) | Release film for automatic labeller and preparing method thereof | |
JP3120431B2 (en) | Transparent film for offset printing | |
JP2594568B2 (en) | Transfer printing film and transfer printing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20190509 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20200701 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
RAP3 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: AVERY DENNISON RETAIL INFORMATION SERVICES LLC |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20240601 |