EP3536961B1 - Sealing element vacuum pump - Google Patents

Sealing element vacuum pump Download PDF

Info

Publication number
EP3536961B1
EP3536961B1 EP19161064.1A EP19161064A EP3536961B1 EP 3536961 B1 EP3536961 B1 EP 3536961B1 EP 19161064 A EP19161064 A EP 19161064A EP 3536961 B1 EP3536961 B1 EP 3536961B1
Authority
EP
European Patent Office
Prior art keywords
rotor
rotary pump
axial
drive shaft
sealing element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19161064.1A
Other languages
German (de)
French (fr)
Other versions
EP3536961A3 (en
EP3536961A2 (en
EP3536961C0 (en
Inventor
Roman Ickert
Stefan Küchle
Volker Stöhr
Tobias Iser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schwaebische Huettenwerke Automotive GmbH
Original Assignee
Schwaebische Huettenwerke Automotive GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schwaebische Huettenwerke Automotive GmbH filed Critical Schwaebische Huettenwerke Automotive GmbH
Publication of EP3536961A2 publication Critical patent/EP3536961A2/en
Publication of EP3536961A3 publication Critical patent/EP3536961A3/en
Application granted granted Critical
Publication of EP3536961B1 publication Critical patent/EP3536961B1/en
Publication of EP3536961C0 publication Critical patent/EP3536961C0/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C27/00Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids
    • F04C27/005Axial sealings for working fluid
    • F04C27/006Elements specially adapted for sealing of the lateral faces of intermeshing-engagement type pumps, e.g. gear pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/0003Sealing arrangements in rotary-piston machines or pumps
    • F04C15/0007Radial sealings for working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C11/00Combinations of two or more machines or pumps, each being of rotary-piston or oscillating-piston type; Pumping installations
    • F04C11/001Combinations of two or more machines or pumps, each being of rotary-piston or oscillating-piston type; Pumping installations of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/30Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C2/32Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having both the movement defined in groups F04C2/02 and relative reciprocation between co-operating members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C25/00Adaptations of pumps for special use of pumps for elastic fluids
    • F04C25/02Adaptations of pumps for special use of pumps for elastic fluids for producing high vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C27/00Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids
    • F04C27/001Radial sealings for working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C27/00Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids
    • F04C27/008Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids for other than working fluid, i.e. the sealing arrangements are not between working chambers of the machine
    • F04C27/009Shaft sealings specially adapted for pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/005Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions
    • F04C29/0071Couplings between rotors and input or output shafts acting by interengaging or mating parts, i.e. positive coupling of rotor and shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2230/00Manufacture
    • F04C2230/60Assembly methods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/50Bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/60Shafts
    • F04C2240/605Shaft sleeves or details thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/17Tolerance; Play; Gap

Definitions

  • the invention relates to a rotary pump, in particular a vacuum pump for a motor vehicle, with a delivery chamber which has an inlet on a low-pressure side and an outlet on a high-pressure side, with at least one rotor which is arranged in the delivery chamber and delivers a fluid from the inlet into the delivery chamber to the outlet from the delivery chamber, and with a drive shaft which is drive-connected to the rotor.
  • a rotary pump in particular a vacuum pump, for example a vacuum pump for a motor vehicle, according to independent claim 1.
  • this pump has a delivery chamber which has an inlet on a low-pressure side and an outlet on a high-pressure side, at least one rotor which is arranged in the delivery chamber and delivers a fluid from the inlet into the delivery chamber to the outlet from the delivery chamber, and a drive shaft which is connected to the rotor in terms of drive technology.
  • the rotary pump also has a housing part which at least axially delimits the delivery chamber.
  • the rotary pump comprises at least one sealing element which forms a radial sealing gap with the housing part in a sealing region.
  • the sealing element and the housing part together also form an axial gap.
  • the axial gap is larger than the radial sealing gap.
  • axial and radial are related to the axis of rotation of the drive shaft and/or the rotor, so that the term “axial” refers to a direction that runs parallel or coaxial to the axis of rotation. Furthermore, the term “radial” refers to a direction that runs perpendicular to the axis of rotation.
  • a “radial extension” is to be understood as an extension along or parallel to a radial direction.
  • An “axial extension” is to be understood as an extension along or parallel to an axial direction.
  • the documents EN 20 2009 010890 U1 , EN 10 2015 216104 B3 , US 3 565 558 A , WO 2016/150505 A1 , US 1 719 135 A show designs of rotary pumps with a basic structure similar to the present case.
  • the rotary pump from the latter document shows a bearing as an axial extension of a conveying element carrier, but no sealing element with sealing gaps.
  • the rotor has a conveying element carrier with at least one rotor slot and at least one conveying element guided axially and radially in the rotor slot, which divides the conveying space into at least two conveying cells.
  • the conveying element carrier is advantageously formed in one piece with the drive shaft.
  • the at least one sealing element is connected to the drive shaft and the conveyor element carrier in a displacement- and rotation-proof manner.
  • the at least one sealing element is formed in one piece by the drive shaft and the conveyor element carrier.
  • the term "one piece” is to be understood in particular as formed in one piece, such as by production from a cast, in a sintering process and/or by production in a single or multi-component injection process or advantageously from a single blank.
  • the sealing element is advantageously formed from the material of the drive shaft and/or the rotor, in particular the conveyor element carrier.
  • the at least one sealing element is preferably formed from a blank or from a material, for example a metal powder in a sintering process or a plastic or metal in an injection molding process, together with the rotor, in particular the conveyor element carrier, or with the drive shaft or with the rotor, in particular the conveyor element carrier, and the drive shaft.
  • the sealing element can be connected in a material-locking manner to the drive shaft and/or the rotor, in particular the conveyor element carrier, for example by a welding process, an adhesive process, an injection-molding process or the like.
  • the sealing element is connected in a force-fitting and/or form-fitting manner to the drive shaft and/or the rotor, in particular the conveying element carrier, for example by pressing on, toothing or the like.
  • the drive shaft is preferably mounted in the housing part in at least one bearing area, in particular in a plain bearing area.
  • the bearing area is advantageously designed as a plain bearing area.
  • an outer peripheral surface of the drive shaft can form a radial bearing gap with an inner peripheral surface of an opening or bore in the housing part, which serves, for example, to lubricate the bearing area.
  • a mean distance between the outer peripheral surface of the drive shaft and the Inner circumferential surface of the opening in the housing part is smaller than an average dimension of the radial sealing gap that the sealing element forms with the housing part. This means that the radial bearing gap is smaller or narrower in the radial direction than the radial sealing gap that the Sealing element is formed.
  • the sealing element is preferably arranged without contact with the housing part.
  • the radially directed outer circumferential surface of the sealing element preferably has no contact with the housing part. Preferably, there is no radial and/or axial guidance of the sealing element in the housing part.
  • An axial extension of the bearing area or the radial bearing gap is at least twice as large, advantageously at least three times as large and particularly advantageously at least four times as large as an axial extension of the sealing area or the radial sealing gap.
  • the bearing area (and thus the radial bearing gap) and the sealing area (and thus the radial sealing gap) are formed completely outside the delivery chamber of the rotary pump.
  • the radial sealing gap can extend to an axial end face of the delivery chamber.
  • the radial sealing gap is formed in the axial direction of the rotary pump between the delivery chamber and the radial bearing gap.
  • the axial gap between the sealing element and the housing part is preferably arranged axially between the radial sealing gap and the radial bearing gap.
  • the drive shaft is preferably mounted in the housing part in at least two bearing areas that are axially spaced apart from one another, in particular in a plain bearing.
  • the radial bearing gap in the bearing areas is preferably smaller in the radial direction than the radial sealing gap.
  • the axial extent of the bearing areas is advantageously at least twice as large, advantageously at least three times as large and particularly advantageously at least four times as large as the axial extent of the radial sealing gap.
  • the sealing element seals the rotary pump radially on an axial end face so that no or as little fluid as possible can escape from the pumping chamber.
  • the sealing element can form a compensation device that can compensate for manufacturing tolerances along the drive shaft.
  • the sealing element has an outer diameter that is larger than or equal to an outer diameter of the conveyor element carrier.
  • the sealing element has an outer diameter that is larger than an outer diameter of the drive shaft, in particular larger than the outer diameter of the drive shaft in the bearing area.
  • the conveying element carrier preferably has a sealing element on each of its two axial end faces, the axial extent of a bearing region being greater than the sum of the axial extents of the radial sealing gaps of both sealing elements.
  • the rotor can comprise a separate conveying element carrier or form this conveying element carrier, which can be connected to the drive shaft in a form-fitting, force-fitting and/or material-fitting manner such that the rotor or conveying element carrier cannot rotate relative to the drive shaft and preferably cannot be moved linearly relative to the drive shaft either.
  • the rotor or conveying element carrier can be pressed and/or welded or screwed onto the drive shaft, for example.
  • the conveying element carrier can be one-piece with a central opening, or consist of two half-shells that are joined together and, for example, connected to the drive shaft in a form-fitting, force-fitting and/or material-fitting manner.
  • the conveying element carrier forms the at least one sealing element.
  • the rotor forms conveying cells, for example with another rotor or with the help of conveying elements such as vanes, pendulum slides, etc., which convey the fluid from the inlet into the conveying chamber to the outlet from the conveying chamber.
  • the fluid can be compressed in the conveying chamber, for example, if the rotor is arranged eccentrically, or the pressure in the fluid can be increased if the fluid is not very compressible.
  • the rotor, or at least a part of the rotor, in particular the conveyor element carrier in a rotary pump designed as a vane pump or pendulum slide pump, and the sealing element can be formed in one piece with the drive shaft.
  • the drive shaft can, for example, only form the part of the rotor or the conveying element carrier that can accommodate the vanes, pendulums, etc., which are then guided along an inner peripheral wall of the conveying chamber during operation of the rotary pump and together with the inner peripheral wall form the conveying cells.
  • the rotor is formed by the conveying element carrier and the said conveying elements, such as vanes or pendulums.
  • the conveying element carrier is preferably formed in one piece with the drive shaft.
  • the rotor can be arranged eccentrically in the conveying chamber, which then leads to conveying cells with a changing volume when the rotor rotates.
  • the housing part that axially limits the conveying chamber such as a base
  • a cover which axially closes the conveying chamber forms a surface facing axially towards the conveying chamber.
  • a surface facing axially towards the conveying chamber In this surface, a
  • An immersion pocket can be formed into which the at least one sealing element extends.
  • An axial extent or depth of the immersion pocket is preferably greater than the axial extent of the sealing element, so that, for example, manufacturing tolerances of the drive shaft can be compensated for via the sealing element, since it has an outer diameter that corresponds to or is larger than an outer diameter of the conveyor element carrier.
  • the immersion pocket is advantageously a recess that is made in the housing part and into which the sealing element extends axially when the rotary pump is assembled or in which it is arranged.
  • the sealing element is advantageously not guided in the immersion pocket.
  • the immersion pocket is arranged in the housing part adjacent to the conveying chamber and in front of the opening that forms the bearing area for the drive shaft, so that a circumferential groove is formed in the housing part that is directly adjacent to the conveying chamber.
  • the immersion pocket is designed to be open axially to the conveying chamber and radially to the drive shaft.
  • the immersion pocket can be cover and/or in the floor of the conveying chamber.
  • the immersion pocket is smaller than an outer diameter of the conveying chamber.
  • the outer diameter of the immersion pocket should preferably be understood here as the distance between two points in the radially outer circumferential surface of the immersion pocket that are opposite one another in relation to a longitudinal center axis of the conveying chamber.
  • An axial extension of the immersion pocket should in particular be greater than a maximum axial play of the drive shaft, which is determined, for example, by manufacturing and/or assembly tolerances of the housing and/or the connection between the rotor and the drive shaft.
  • the axial extension of the immersion pocket is advantageously at least twice and particularly advantageously at least three times as large as the axial extension of the bearing area.
  • the housing of the rotary pump can, for example, have a cover that closes off the delivery chamber on a first axial side or a first axial end, and a base that is arranged axially opposite the cover in relation to the delivery chamber and closes off a second axial side of the delivery chamber.
  • the base can be formed as a unit with the housing, so that the delivery chamber is pot-shaped and can be closed with the cover.
  • the immersion pocket can be incorporated in the cover and/or in the base, which axially delimit the conveying chamber. If each axial end comprises an immersion pocket, the immersion pockets in the base and cover and the sealing elements protruding into them or arranged on them can have identical or different diameters and identical or different axial extensions. It is preferred if in this case both sealing elements are identical.
  • the radial sealing gap which is formed by a radial outer circumferential surface of the sealing element and a radial inner circumferential surface of the immersion pocket facing the sealing element, can be filled with a fluid, for example, in order to radially seal the conveying chamber.
  • the inflow of the fluid into the immersion pocket can, for example, be a leakage flow along the drive shaft in the bearing gap and/or a fluid, in particular a fluid conveyed by a fluid conveying pump, can be guided directly into the immersion pocket via at least one channel.
  • the drive shaft can have an axial groove to support the supply of fluid into the immersion pocket.
  • the sealing gap can have the same radial extent or gap thickness over its axial extent, i.e. the radial outer circumferential surface of the sealing element and the radial inner circumferential surface of the immersion pocket run parallel to one another.
  • the sealing gap can have a radial gap thickness that changes over its axial extent, for example it can be wedge-shaped, have areas of decreasing and increasing gap thickness, or have different gap thicknesses in other ways.
  • At least the radial outer circumferential surface of the sealing element can be roughened at least in a circumferential axial partial area or have a profile that can be advantageous for radial sealing.
  • the drive shaft is mounted in the housing, or in the housing part outside the conveying chamber, in particular in a sliding bearing.
  • the drive shaft has at least one bearing area.
  • the sealing element is preferably arranged axially between a bearing area and the conveying chamber in the immersion pocket.
  • An axial extension of the bearing area of the drive shaft is preferably significantly larger than an axial extension of the sealing element, in particular than an axial extension of the immersion pocket.
  • the axial extension of the bearing area of the drive shaft is advantageously at least twice, particularly advantageously at least three times and very particularly advantageously at least four times as large as the axial extension of the sealing element, in particular as the axial extension of the immersion pocket.
  • the rotor slot of the conveying element carrier preferably extends axially into the drive shaft, so that the rotor slot axially overlaps the sealing element in the region of the rotor slot.
  • the rotor slot advantageously extends axially out of the conveying chamber at least on one axial side.
  • the rotor slot advantageously extends axially into a bearing region of the drive shaft at least on one axial side. This allows a lubricant and/or sealing agent, in particular a liquid such as oil, to pass from the bearing region of the drive shaft into the conveying chamber, for example to lubricate moving parts of the rotor and/or to seal the conveying cells of the conveying chamber against one another.
  • the rotor slot may have an axial extent or length that is at least as long as the axial extent or length of the rotor plus the axial extent of the at least one sealing element or the immersion pocket.
  • the axial extent or length of the rotor slot is preferably greater.
  • An axial fit extent or fit length of the rotor is preferably at least as long as the axial extent of the rotor plus a maximum axial play of the drive shaft.
  • the fit extent or fit length here is preferably the area of the rotor slot in which, for example, a blade of the rotor can be moved unhindered transversely to the axis of rotation in the rotor slot, regardless of, for example, an axial play of the drive shaft.
  • the sealing element is formed as an axial extension of the conveying element carrier, which extends axially from the conveying chamber into the housing part.
  • This extension preferably does not undergo any guidance and/or bearing and/or centering in the housing part.
  • Guidance and/or bearing and/or centering of the drive shaft advantageously only takes place in the at least one bearing area and not in the sealing area provided as an extension by the at least one sealing element.
  • a second aspect of the invention relates to a pump unit with a first rotary pump with a delivery chamber in which at least one rotor is arranged, which delivers a first fluid from an inlet into the delivery chamber on a low-pressure side of the first rotary pump to an outlet from the delivery chamber on a high-pressure side of the first rotary pump, with a second rotary pump with a delivery chamber in which at least one rotor is arranged, which delivers a second fluid from an inlet into the delivery chamber on a low-pressure side of the second rotary pump to an outlet from the delivery chamber on a high-pressure side of the second rotary pump, and with a drive shaft for driving both rotary pumps, wherein the rotor of the first rotary pump and the rotor of the second rotary pump are connected to the drive shaft in an axially displaceable and rotationally fixed manner.
  • the drive shaft is a one-piece drive shaft with a continuous axis of rotation. This means that the drive shaft extends through the delivery chamber of the first rotary pump and through the delivery chamber of the second rotary pump, wherein preferably at least one axial end of the drive shaft can extend out of a housing of the pump unit in order to be connected to a drive.
  • the drive shaft can form at least part of the rotor of the first rotary pump and/or part of the rotor of the second rotary pump in one piece. form as was described for the first aspect.
  • At least a part of at least one of the rotors can be pressed onto the rotor shaft or connected to the rotor in another way in a rotationally fixed manner and preferably also in a linear manner in the axial direction so as not to be movable or adjustable, see also the description of the drive shaft for the first aspect.
  • the first fluid and the second fluid are preferably different fluids.
  • the fluid of the first rotary pump which can be a liquid feed pump, for example, can be a lubricating oil with which the first rotary pump and/or the second rotary pump and/or at least one unit, for example a drive motor, such as an internal combustion engine, a hybrid or electric motor of a motor vehicle, are supplied with lubricating oil.
  • the second fluid of the second rotary pump which can be a gas pump or vacuum pump, can be a gas which is extracted from a unit, in particular a brake booster of a motor vehicle, for example, to generate a vacuum.
  • the second rotary pump is a rotary pump according to the first aspect.
  • the sealing element or sealing elements can compensate in particular for a manufacturing tolerance in a distance between the rotor of the first rotary pump and the rotor of the second rotary pump, which is introduced into the system or arrangement, for example, by pressing at least one of the rotors, in particular one of the conveying element carriers, onto the drive shaft.
  • the sealing element engaging in the immersion pocket can form a compensation device in the assembled pump or pump unit, with which an axial play in the system along the drive shaft due to manufacturing tolerances, for example, can be compensated without this eliminating the seal of the conveying chamber.
  • An immersion pocket can be formed, for example, in a base of the second feed pump, whereby the base generally seals the feed chamber from the environment of the pump unit. Additionally or alternatively, one or more immersion pockets can be formed in at least one cover of the second rotary pump.
  • the cover can be a housing part that Discharge chamber of the first rotary pump from the discharge chamber of the second rotary pump and has an opening through which the drive shaft can pass.
  • the immersion pocket is formed as a radial widening of the opening in the cover facing the conveying chamber.
  • the rotor shaft or drive shaft can have a fluid groove in the area of the immersion pocket in the cover and/or base of the rotary pump.
  • the fluid groove can preferably be designed to run all the way around the shaft. For example, fluid can flow from the immersion pocket into the rotor slot via the fluid groove in order to lubricate the moving parts of the rotor and/or to seal the conveying cells of a conveying chamber against one another.
  • the fluid or liquid conveying pump can in particular be an internal-axis pump, such as a vane pump or a pendulum slide pump.
  • the gas or vacuum pump can in particular be an internal-axis pump, such as a rotary piston pump, a piston pendulum pump, a vane pump, a pendulum slide pump, an internal gear pump or an internal-axis pump known in the prior art, or an external-axis pump, such as an external gear pump.
  • an internal-axis pump such as a rotary piston pump, a piston pendulum pump, a vane pump, a pendulum slide pump, an internal gear pump or an internal-axis pump known in the prior art, or an external-axis pump, such as an external gear pump.
  • the pump unit which consists of at least one fluid feed pump and at least one vacuum pump, can be attached to an engine, in particular an internal combustion engine of a motor vehicle, for example, or can be intended for attachment to this engine.
  • the drive shaft of the pump unit can be connected to the engine in terms of drive technology, so that the pump unit is driven or controlled or regulated at least temporarily as a function of the engine or a characteristic map with engine-dependent parameters.
  • the pump unit can be driven by its own drive, such as an electric motor.
  • the Figure 1 shows a longitudinal section through an embodiment of a pump unit according to the invention.
  • the pump unit comprises a first rotary pump 1, which serves as Fluid feed pump, and a second rotary pump 2, which is designed as a vacuum pump.
  • the pump unit can be referred to as a tandem pump.
  • the pump unit is provided for a motor vehicle, wherein the first rotary pump 1 is used to lubricate an internal combustion engine of the motor vehicle, and the second rotary pump 2 is used to provide a vacuum for a brake booster of the motor vehicle.
  • the rotary pump 1 comprises a delivery chamber 11 in which a rotor 12 is arranged.
  • the rotary pump 2 comprises a delivery chamber 21 in which a rotor 22 is arranged.
  • the rotor 12 and the rotor 22 are connected in terms of drive technology to a common continuous drive shaft 3.
  • the rotors 12, 22 are driven in rotation by the drive shaft 3.
  • the rotor 12 is arranged completely in the conveying chamber 11.
  • the rotor 12 comprises a conveying element carrier 6 and a plurality of conveying elements which are accommodated in a radially displaceable manner by the conveying element carrier 6.
  • the conveying element carrier 6 has a plurality of rotor slots for displaceably accommodating the conveying elements.
  • the conveying element carrier 6 is connected to the drive shaft 3 in a rotationally fixed and displacement-proof manner.
  • the conveying element carrier 6 is pressed onto the drive shaft 3.
  • the conveying elements are designed as vanes.
  • the first rotary pump 1 is designed as a vane pump.
  • the rotor 22 is arranged completely in the conveying chamber 21.
  • the rotor 22 comprises a conveying element carrier 5 and a conveying element 4, which is accommodated in a radially displaceable manner by the conveying element carrier 5.
  • the conveying element carrier 5 has a rotor slot 32, which is in the Figures 3 to 6 clearly shown and described in detail.
  • the rotor slot 32 extends axially into the drive shaft 3.
  • the conveying element carrier 5 is connected to the drive shaft 3 in a rotationally fixed and displacement-proof manner.
  • the conveying element carrier 5 is formed in one piece with the drive shaft 3.
  • the drive shaft 3 forms the conveying element carrier 5 in one piece.
  • the conveying element 4 is designed as a vane.
  • the second rotary pump 2 is designed as a vane pump.
  • the rotor 12, 22 together with an inner peripheral wall of the respective conveying chamber 11, 21 forms conveying cells in which the fluid, whether liquid or gas, is fed from an inlet into the Conveying chamber 11, 21 to an outlet from this conveying chamber 11, 21 and, with an eccentric arrangement of the rotor 12, 22 in the conveying chamber 11, 21, can be compressed and/or raised to a higher pressure level.
  • the rotary pumps 1, 2 comprise a common pump housing.
  • the pump housing has the housing parts 13, 14, 23, 24.
  • the two housing parts 13, 23 are combined in one housing part. They are formed by a single housing part.
  • the housing part 24 forms a bottom of the delivery chamber 21 of the second rotary pump 2 with a central opening through which the drive shaft 3 can be connected to a drive (not shown).
  • the housing part 24 closes an axial end face of the delivery chamber 21 on the side facing away from the first rotary pump 1.
  • the delivery chamber 21 is closed by the housing part 23, which simultaneously forms the housing part 13 for an axial end face of the delivery chamber 11 of the first rotary pump 1 and comprises an opening through which the drive shaft 3 extends from the delivery chamber 21 into the delivery chamber 11.
  • the second axial end face of the conveying chamber 11 is closed by the housing part 14.
  • the drive shaft 3 is mounted in the pump housing by means of three axially spaced plain bearings.
  • the drive shaft 3 has three axially spaced bearing areas 7, 8, 9.
  • the drive shaft 3 is slide-mounted in the bearing area 9 in the housing part 14, in the bearing area 7 in the common housing part 13, 23 and in the bearing area 8 in the housing part 24.
  • the outer peripheral surface of the drive shaft 3 and the radially opposite inner peripheral surfaces of the housing parts 14, 13, 23, 24 form a bearing gap S L .
  • the delivery chamber 11 of the first rotary pump 1 is arranged axially between the bearing area 9 and the bearing area 7.
  • the delivery chamber 21 of the second rotary pump 2 is arranged axially between the bearing area 7 and the bearing area 8.
  • the second rotary pump 2 comprises two axially spaced sealing elements 26, 27 which extend outside the delivery chamber 21 into immersion pockets 28, 29 which are introduced into the housing part 24 and into the housing part 23.
  • the delivery chamber 21 is arranged axially between the sealing elements 26, 27.
  • the sealing element 26 is arranged axially between the bearing area 7 and the delivery chamber 21.
  • the sealing element 27 is arranged axially between the bearing area 8 and the delivery chamber 21.
  • the radial outer surfaces of the sealing elements 26, 27 form a radial sealing gap S D with radial peripheral surfaces of the immersion pockets 28, 29, which is so large in the radial direction that the sealing elements 26, 27 do not receive any radial and/or axial guidance in the immersion pockets 28, 29.
  • the radial sealing gap S D is larger or has a larger radial extent than the bearing gap S L .
  • the immersion pockets 28, 29 each have an outer diameter that is larger than an outer diameter of the conveying element carrier 5 of the rotor 22.
  • the Figure 1 comprises a circularly encircled section X, which in an enlargement in the Figure 2 is shown.
  • the Figure 2 shows section X of the Figure 1 , which shows a section of the second rotary pump 2, with the delivery chamber 21, the delivery element carrier 5 formed by the drive shaft 3 and the delivery element 4, the housing part 24, the housing part 23 and the drive shaft 3.
  • an immersion pocket 28, 29 is formed which is open to the delivery chamber 21 and into which the sealing elements 26, 27 extend.
  • the sealing elements 26, 27 are formed in one piece with the conveying element carrier 5 of the rotor 22 and the drive shaft 3. They seal the conveying chamber 21 radially.
  • the sealing elements 26, 27 have the same outer diameter as the conveying element carrier 5.
  • the sealing elements 26, 27 are formed as or by axial extensions of the conveying element carrier 5, which extend axially from the conveying chamber 21 into the immersion pockets 28, 29.
  • the extensions have an outer diameter that is larger than an outer diameter of the drive shaft 3.
  • the extensions extend into the housing parts 23, 24 that axially delimit the conveying chamber 21.
  • An axial extension of the sealing elements 26, 27 is smaller than the axial extension or depth of the immersion pockets 28, 29, so that an axial play of the drive shaft 3 can be compensated via the sealing elements 26, 27.
  • the length difference in the axial direction between the axial depth of the immersion pockets 28, 29 and the axial extension of the sealing elements 26, 27 is greater than a maximum axial play of the drive shaft 3.
  • An axial extension of the radial sealing gap S D is significantly smaller than an axial extension of the radial bearing gap S L .
  • the radial sealing gap So can be supplied with fluid via a leakage flow which flows from the first conveying chamber 11 along the drive shaft 3 to the immersion pocket 28, 29.
  • the immersion pockets 28, 29 can be supplied with fluid via a channel (not shown) that opens into the immersion pocket 28, 29.
  • the fluid forms a barrier in the radial sealing gap S D and thus prevents fluid, in this case gas, from escaping from the conveying chamber 21.
  • the Figure 3 shows another longitudinal section through the pump unit, which in comparison to the Figure 1 the pump unit with respect to a longitudinal axis L or rotation axis of the drive shaft 3 in a view rotated by a quarter turn or by 90°.
  • the area of the second rotary pump 2 is marked by a circular cutout Y.
  • the cutout Y is in the Figure 4 to be seen in a magnifying glass view.
  • the Figure 3 shows nothing other than the Figure 1 , just from a different angle.
  • the first rotary pump 1, the second rotary pump 2 and the drive shaft 3 can be seen.
  • the rotor slot 32 is formed in the drive shaft 3 in the area of the conveying element carrier 5 of the second rotary pump 2, which is formed by the drive shaft 3.
  • the conveying element 4 can move in the rotor slot 3 transversely to the longitudinal axis L in order to form conveying cells together with an inner peripheral wall 25 of the conveying chamber 21, with which the fluid can be conveyed from an inlet into the conveying chamber 21 to an outlet from the conveying chamber 21.
  • An immersion pocket 28, 29 is introduced into each of the immersion pockets 28, 29.
  • a sealing element 26, 27 extends into each of the immersion pockets 28, 29 and radially seals the conveying chamber 21 in the area of the transition from the rotor 22 into the housing part 23 and into the housing part 24. Because the sealing element 26, 27 is dimensioned smaller in the axial direction than the immersion pocket 28, 29, an axial gap SA is formed between the axial end face of the sealing element 26, 27 facing away from the rotor 22 and the base surface of the immersion pocket 28, 29 facing the rotor 22. As a result, the immersion pockets 28, 29 in conjunction with the sealing elements 26, 27 together form a compensation device with which manufacturing tolerances in the axial direction, which can be introduced into the pump unit, for example when the conveying element carrier 6 of the first rotary pump 1 is pressed onto it, can be compensated.
  • the Figure 4 shows a magnifying glass view of an area of the Figure 3 , which in particular comprises the rotor slot 32.
  • the rotor slot 32 has an axial extension L RS and extends axially through the conveyor element carrier 5 of the rotor 22, through both sealing elements 26, 27 into the drive shaft 3.
  • the rotor slot 32 extends axially into the bearing areas 7, 8.
  • the axial extent or axial length L RS of the rotor slot 32 shown is greater than the axial extent or axial length L R of the rotor 22 plus the axial extent L V of the two sealing elements 26, 27 in total.
  • a further dimension is an axial fit extent or fit length L P , which is smaller than the axial length L RS of the rotor slot 32, but greater than the axial length L R of the rotor 22.
  • the axial fit length L P refers to the area of the rotor slot 32 in which the conveying element 4 can move unhindered, for example without jamming, transversely to the longitudinal axis L of the rotary pump 2, and in which the conveying element 4 is not pressed against one of the housing parts 23, 24 when the rotor slot 32 is shifted in the direction of the longitudinal axis L, for example to compensate for axial play in the drive shaft 3.
  • a circumferential groove 31 is also formed in the drive shaft 3.
  • the circumferential groove 31 is connected to the corresponding immersion pocket 28, 29 and the corresponding bearing area 7, 8.
  • the groove 31 is connected to the rotor slot 32.
  • the rotor slot 32 extends into the circumferential groove 31.
  • the groove 31 is split in two and opens into the rotor slot 32. This allows fluid from the immersion pocket 28, 29 and the bearing area 7, 8 to reach the rotor slot 32, where the fluid can be used, for example, to lubricate the conveying element 4 and to seal the conveying cells in the conveying chamber.
  • the circumferential groove 31 is particularly suitable for Figures 5 and 6 recognizable.
  • the drive shaft 3 of the pump unit is shown uncut.
  • the housing parts 23, 24 are also shown in a sectional view.
  • the Figure 6 is section Z from the Figure 5 shown enlarged.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)

Description

Die Erfindung betrifft eine Rotationspumpe, insbesondere eine Vakuumpumpe für ein Kraftfahrzeug, mit einem Förderraum, der einen Einlass auf einer Niederdruckseite und einen Auslass auf einer Hochdruckseite aufweist, mit wenigstens einem Rotor, der in dem Förderraum angeordnet ist und ein Fluid von dem Einlass in den Förderraum zu dem Auslass aus dem Förderraum fördert, und mit einer Antriebswelle, die antriebstechnisch mit dem Rotor verbunden ist.The invention relates to a rotary pump, in particular a vacuum pump for a motor vehicle, with a delivery chamber which has an inlet on a low-pressure side and an outlet on a high-pressure side, with at least one rotor which is arranged in the delivery chamber and delivers a fluid from the inlet into the delivery chamber to the outlet from the delivery chamber, and with a drive shaft which is drive-connected to the rotor.

Es ist eine Aufgabe der Erfindung, die Rotationspumpe zu verbessern.It is an object of the invention to improve the rotary pump.

Ein Aspekt der Erfindung betrifft eine Rotationspumpe, insbesondere eine Vakuumpumpe, zum Beispiel eine Vakuumpumpe für ein Kraftfahrzeug, gemäß dem unabhängigen Anspruch 1. Diese Pumpe hat neben den weiteren in diesem Anspruch definierten Merkmalen einen Förderraum, der einen Einlass auf einer Niederdruckseite und einen Auslass auf einer Hochdruckseite aufweist, wenigstens einem Rotor, der in dem Förderraum angeordnet ist und ein Fluid von dem Einlass in den Förderraum zu dem Auslass aus dem Förderraum fördert, und einer Antriebswelle, die antriebstechnisch mit dem Rotor verbunden ist. Die Rotationspumpe weist ferner ein den Förderraum wenigstens axial begrenzendes Gehäuseteil auf. Zur Abdichtung des Förderraums umfasst die Rotationspumpe wenigstens ein Dichtelement, das mit dem Gehäuseteil in einem Dichtbereich einen radialen Dichtspalt bildet. Erfindungsgemäß bilden das Dichtelement und das Gehäuseteil zusammen auch einen Axialspalt. Erfindungsgemäß ist der Axialspalt größer als der radiale Dichtspalt.One aspect of the invention relates to a rotary pump, in particular a vacuum pump, for example a vacuum pump for a motor vehicle, according to independent claim 1. In addition to the further features defined in this claim, this pump has a delivery chamber which has an inlet on a low-pressure side and an outlet on a high-pressure side, at least one rotor which is arranged in the delivery chamber and delivers a fluid from the inlet into the delivery chamber to the outlet from the delivery chamber, and a drive shaft which is connected to the rotor in terms of drive technology. The rotary pump also has a housing part which at least axially delimits the delivery chamber. To seal the delivery chamber, the rotary pump comprises at least one sealing element which forms a radial sealing gap with the housing part in a sealing region. According to the invention, the sealing element and the housing part together also form an axial gap. According to the invention, the axial gap is larger than the radial sealing gap.

Die Begriffe "axial" und "radial" sind auf die Rotationsachse der Antriebswelle und/oder des Rotors bezogen, so dass der Ausdruck "axial" eine Richtung bezeichnet, die parallel oder koaxial zu der Rotationsachse verläuft. Ferner bezeichnet der Ausdruck "radial" eine Richtung, die senkrecht zu der Rotationsachse verläuft. Unter einer "radialen Erstreckung" soll eine Erstreckung entlang oder parallel zu einer Radialrichtung verstanden werden. Unter einer "axialen Erstreckung" soll eine Erstreckung entlang oder parallel zu einer Axialrichtung verstanden werden.The terms "axial" and "radial" are related to the axis of rotation of the drive shaft and/or the rotor, so that the term "axial" refers to a direction that runs parallel or coaxial to the axis of rotation. Furthermore, the term "radial" refers to a direction that runs perpendicular to the axis of rotation. A "radial extension" is to be understood as an extension along or parallel to a radial direction. An "axial extension" is to be understood as an extension along or parallel to an axial direction.

Die Dokumente DE 20 2009 010890 U1 , DE 10 2015 216104 B3 , US 3 565 558 A , WO 2016/150505 A1 , US 1 719 135 A zeigen Ausführungen von Rotationspumpen mit einem zum vorliegenden Fall ähnlichen Grundaufbau. Die Rotationspumpe aus letztgenanntem Dokument zeigt dabei eine Lagerung als axiale Verlängerung eines Förderelementträgers, jedoch kein Dichtelement mit Dichtspalten.The documents EN 20 2009 010890 U1 , EN 10 2015 216104 B3 , US 3 565 558 A , WO 2016/150505 A1 , US 1 719 135 A show designs of rotary pumps with a basic structure similar to the present case. The rotary pump from the latter document shows a bearing as an axial extension of a conveying element carrier, but no sealing element with sealing gaps.

Erfindungsgemäß weist der Rotor einen Förderelementträger mit wenigstens einem Rotorschlitz und wenigstens ein axial und radial in dem Rotorschlitz geführtes Förderelement auf, das den Förderraum in wenigstens zwei Förderzellen unterteilt. Der Förderelementträger ist vorteilhaft einteilig mit der Antriebswelle ausgebildet.According to the invention, the rotor has a conveying element carrier with at least one rotor slot and at least one conveying element guided axially and radially in the rotor slot, which divides the conveying space into at least two conveying cells. The conveying element carrier is advantageously formed in one piece with the drive shaft.

Das wenigstens eine Dichtelement ist verschiebe- und drehfest mit der Antriebswelle und dem Förderelementträger verbunden. Bevorzugt ist das wenigstens eine Dichtelement von der Antriebswelle und dem Förderelementträger einteilig gebildet. Unter "einteilig" soll insbesondere in einem Stück geformt verstanden werden, wie beispielsweise durch eine Herstellung aus einem Guss, in einem Sinterverfahren und/oder durch eine Herstellung in einem Ein- oder Mehrkomponentenspritzverfahren oder vorteilhaft aus einem einzelnen Rohling. Das Dichtelement ist vorteilhaft durch das Material der Antriebswelle und/oder des Rotors, insbesondere des Förderelementträgers, gebildet. Das wenigstens eine Dichtelement ist bevorzugt aus einem Rohling oder aus einem Material, zum Beispiel einem Metallpulver in einem Sinterverfahren oder einem Kunststoff oder Metall in einem Spritzgussverfahren, gemeinsam mit dem Rotor, insbesondere dem Förderelementträger, oder mit der Antriebswelle oder mit dem Rotor, insbesondere dem Förderelementträger, und der Antriebswelle gebildet. Grundsätzlich kann das Dichtelement stoffschlüssig mit der Antriebswelle und/oder dem Rotor, insbesondere dem Förderelementträger, verbunden sein, beispielsweise durch einen Schweißprozess, einen Klebeprozess, einen Anspritzprozess oder dergleichen. Ferner ist es grundsätzlich denkbar, dass das Dichtelement kraft- und/oder formschlüssig mit der Antriebswelle und/oder dem Rotor, insbesondere dem Förderelementträger, verbunden ist, beispielsweise durch ein Aufpressen, eine Verzahnung oder dergleichen.The at least one sealing element is connected to the drive shaft and the conveyor element carrier in a displacement- and rotation-proof manner. Preferably, the at least one sealing element is formed in one piece by the drive shaft and the conveyor element carrier. The term "one piece" is to be understood in particular as formed in one piece, such as by production from a cast, in a sintering process and/or by production in a single or multi-component injection process or advantageously from a single blank. The sealing element is advantageously formed from the material of the drive shaft and/or the rotor, in particular the conveyor element carrier. The at least one sealing element is preferably formed from a blank or from a material, for example a metal powder in a sintering process or a plastic or metal in an injection molding process, together with the rotor, in particular the conveyor element carrier, or with the drive shaft or with the rotor, in particular the conveyor element carrier, and the drive shaft. In principle, the sealing element can be connected in a material-locking manner to the drive shaft and/or the rotor, in particular the conveyor element carrier, for example by a welding process, an adhesive process, an injection-molding process or the like. Furthermore, it is fundamentally conceivable that the sealing element is connected in a force-fitting and/or form-fitting manner to the drive shaft and/or the rotor, in particular the conveying element carrier, for example by pressing on, toothing or the like.

Die Antriebswelle ist bevorzugt in dem Gehäuseteil in wenigstens einem Lagerbereich gelagert, insbesondere gleitgelagert. Der Lagerbereich ist vorteilhaft als ein Gleitlagerbereich ausgebildet. In dem Lagerbereich kann eine Außenumfangsfläche der Antriebswelle mit einer Innenumfangsfläche einer Öffnung oder Bohrung in dem Gehäuseteil einen radialen Lagerspalt bilden, der zum Beispiel der Schmierung des Lagerbereichs dient. Bevorzugt ist ein mittlerer Abstand zwischen der Außenumfangsfläche der Antriebswelle und der Innenumfangsfläche der Öffnung in dem Gehäuseteil kleiner als ein mittleres Maß des radialen Dichtspalts, den das Dichtelement mit dem Gehäuseteil bildet. Das heißt, der radiale Lagerspalt ist in Radialrichtung kleiner oder enger als der radiale Dichtspalt, den das Dichtelement bildet. Das Dichtelement ist zum Gehäuseteil vorzugsweise kontaktlos angeordnet. Der radial gerichteten äußeren Umfangsfläche des Dichtelements fehlt vorzugsweise ein Kontakt mit dem Gehäuseteil. Vorzugsweise fehlt eine radiale und/oder axiale Führung des Dichtelements im Gehäuseteil.The drive shaft is preferably mounted in the housing part in at least one bearing area, in particular in a plain bearing area. The bearing area is advantageously designed as a plain bearing area. In the bearing area, an outer peripheral surface of the drive shaft can form a radial bearing gap with an inner peripheral surface of an opening or bore in the housing part, which serves, for example, to lubricate the bearing area. A mean distance between the outer peripheral surface of the drive shaft and the Inner circumferential surface of the opening in the housing part is smaller than an average dimension of the radial sealing gap that the sealing element forms with the housing part. This means that the radial bearing gap is smaller or narrower in the radial direction than the radial sealing gap that the Sealing element is formed. The sealing element is preferably arranged without contact with the housing part. The radially directed outer circumferential surface of the sealing element preferably has no contact with the housing part. Preferably, there is no radial and/or axial guidance of the sealing element in the housing part.

Eine axiale Erstreckung des Lagerbereichs oder des radialen Lagerspalts ist mindestens doppelt so groß, vorteilhaft mindestens dreimal so groß und besonders vorteilhaft mindestens viermal so groß wie eine axiale Erstreckung des Dichtbereichs oder des radialen Dichtspalts.An axial extension of the bearing area or the radial bearing gap is at least twice as large, advantageously at least three times as large and particularly advantageously at least four times as large as an axial extension of the sealing area or the radial sealing gap.

Bevorzugt sind der Lagerbereich (und damit der radiale Lagerspalt) und der Dichtbereich (und damit der radiale Dichtspalt) vollständig außerhalb des Förderraums der Rotationspumpe gebildet. Der radiale Dichtspalt kann bis an eine axiale Stirnseite des Förderraums reichen. Vorzugsweise ist der radiale Dichtspalt in Axialrichtung der Rotationspumpe zwischen dem Förderraum und dem radialen Lagerspalt gebildet. Der Axialspalt zwischen dem Dichtelement und dem Gehäuseteil ist vorzugsweise axial zwischen dem radialen Dichtspalt und dem radialen Lagerspalt angeordnet.Preferably, the bearing area (and thus the radial bearing gap) and the sealing area (and thus the radial sealing gap) are formed completely outside the delivery chamber of the rotary pump. The radial sealing gap can extend to an axial end face of the delivery chamber. Preferably, the radial sealing gap is formed in the axial direction of the rotary pump between the delivery chamber and the radial bearing gap. The axial gap between the sealing element and the housing part is preferably arranged axially between the radial sealing gap and the radial bearing gap.

Vorzugsweise ist die Antriebswelle in zumindest zwei voneinander axial beabstandeten Lagerbereichen in dem Gehäuseteil gelagert, insbesondere gleitgelagert. Der radiale Lagerspalt in den Lagerbereichen ist in Radialrichtung vorzugsweise jeweils kleiner als der radiale Dichtspalt. Vorteilhaft ist die axiale Erstreckung der Lagerbereiche jeweils mindestens doppelt so groß, vorteilhaft mindestens dreimal so groß und besonders vorteilhaft mindestens viermal so groß wie die axiale Erstreckung des radialen Dichtspalts.The drive shaft is preferably mounted in the housing part in at least two bearing areas that are axially spaced apart from one another, in particular in a plain bearing. The radial bearing gap in the bearing areas is preferably smaller in the radial direction than the radial sealing gap. The axial extent of the bearing areas is advantageously at least twice as large, advantageously at least three times as large and particularly advantageously at least four times as large as the axial extent of the radial sealing gap.

Das Dichtelement dichtet die Rotationspumpe radial an einer axialen Stirnseite ab, so dass kein oder möglichst wenig Fluid aus dem Förderraum austreten kann. Das Dichtelement kann eine Kompensationseinrichtung bilden, die Fertigungstoleranzen entlang der Antriebswelle ausgleichen kann.The sealing element seals the rotary pump radially on an axial end face so that no or as little fluid as possible can escape from the pumping chamber. The sealing element can form a compensation device that can compensate for manufacturing tolerances along the drive shaft.

Das Dichtelement weist erfindungsgemäß einer Außendurchmesser auf, der größer ist als oder gleich ist wie ein Außendurchmesser des Förderelementträgers. Grundsätzlich ist denkbar, insbesondere wenn der Außendurchmesser des Dichtelements größer ist als der Außendurchmesser Förderelementträgers, dass das Dichtelement axial den Förderraum begrenzt. Erfindungsgemäß weist das Dichtelement einen Außendurchmesser auf, der größer ist als ein Außendurchmesser der Antriebswelle, insbesondere größer als der Außendurchmesser der Antriebswelle im Lagerbereich.According to the invention, the sealing element has an outer diameter that is larger than or equal to an outer diameter of the conveyor element carrier. In principle, it is conceivable, especially if the outer diameter of the sealing element is larger than the outer diameter of the conveyor element carrier, that the Sealing element axially delimits the conveying chamber. According to the invention, the sealing element has an outer diameter that is larger than an outer diameter of the drive shaft, in particular larger than the outer diameter of the drive shaft in the bearing area.

Vorzugsweise weist der Förderelementträger an beiden axialen Stirnseiten je ein Dichtelement auf, wobei die axiale Erstreckung eines Lagerbereichs größer ist als die Summe der axialen Erstreckungen der radialen Dichtspalte beider Dichtelemente. Der Rotor kann einen separaten Förderelementträger umfassen oder diesen Förderelementträger bilden, der mit der Antriebswelle form-, kraft- und/oder stoffschlüssig so verbunden werden kann, dass sich der Rotor oder Förderelementträger relativ zur Antriebswelle nicht drehen und bevorzugt relativ zur Antriebswelle auch nicht linear verschoben werden kann. Dazu kann der Rotor oder Förderelementträger zum Beispiel auf die Antriebswelle aufgepresst und/oder verschweißt oder verschraubt sein. Der Förderelementträger kann einteilig sein mit einer zentralen Öffnung, oder aus zwei Halbschalen bestehen, die miteinander gefügt und dabei beispielsweise form-, kraft- und/oder stoffschlüssig mit der Antriebswelle verbunden werden. Der Förderelementträger bildet das wenigstens eine Dichtelement mit.The conveying element carrier preferably has a sealing element on each of its two axial end faces, the axial extent of a bearing region being greater than the sum of the axial extents of the radial sealing gaps of both sealing elements. The rotor can comprise a separate conveying element carrier or form this conveying element carrier, which can be connected to the drive shaft in a form-fitting, force-fitting and/or material-fitting manner such that the rotor or conveying element carrier cannot rotate relative to the drive shaft and preferably cannot be moved linearly relative to the drive shaft either. For this purpose, the rotor or conveying element carrier can be pressed and/or welded or screwed onto the drive shaft, for example. The conveying element carrier can be one-piece with a central opening, or consist of two half-shells that are joined together and, for example, connected to the drive shaft in a form-fitting, force-fitting and/or material-fitting manner. The conveying element carrier forms the at least one sealing element.

Vorzugsweise bildet der Rotor zum Beispiel mit einem weiteren Rotor oder mit Hilfe von Förderelementen, wie Flügeln, Pendelschiebern, etc., Förderzellen, die das Fluid vom Einlass in den Förderraum zum Auslass aus dem Förderraum fördern. Dabei kann das Fluid zum Beispiel bei einer exzentrischen Anordnung des Rotors im Förderraum verdichtet oder bei einem wenig komprimierbaren Fluid der Druck im Fluid erhöht werden.Preferably, the rotor forms conveying cells, for example with another rotor or with the help of conveying elements such as vanes, pendulum slides, etc., which convey the fluid from the inlet into the conveying chamber to the outlet from the conveying chamber. The fluid can be compressed in the conveying chamber, for example, if the rotor is arranged eccentrically, or the pressure in the fluid can be increased if the fluid is not very compressible.

Der Rotor, respektive wenigstens ein Teil des Rotors, insbesondere der Förderelementträger bei einer als Flügelzellenpumpe oder Pendelschieberpumpe ausgebildeten Rotationspumpe, und das Dichtelement können einstückig mit der Antriebswelle ausgebildet sein. Das heißt, die Antriebswelle kann zum Beispiel nur den Teil des Rotors oder den Förderelementträger mit bilden, der die Flügel, Pendel, etc. aufnehmen kann, die dann im Betrieb der Rotationspumpe entlang einer Innenumfangswand des Förderraums geführt werden und zusammen mit der Innenumfangswand die Förderzellen bilden. In diesem Fall wird der Rotor vom Förderelementträger und den besagten Förderelementen, wie beispielweise Flügeln oder Pendeln, gebildet. Dabei ist der Förderelementträger vorzugsweise einstückig mit der Antriebswelle ausgebildet.The rotor, or at least a part of the rotor, in particular the conveyor element carrier in a rotary pump designed as a vane pump or pendulum slide pump, and the sealing element can be formed in one piece with the drive shaft. This means that the drive shaft can, for example, only form the part of the rotor or the conveying element carrier that can accommodate the vanes, pendulums, etc., which are then guided along an inner peripheral wall of the conveying chamber during operation of the rotary pump and together with the inner peripheral wall form the conveying cells. In this case, the rotor is formed by the conveying element carrier and the said conveying elements, such as vanes or pendulums. The conveying element carrier is preferably formed in one piece with the drive shaft.

Wird das Fluid beim Transport im Förderraum vom Einlass zum Auslass nicht nur gefördert, sondern gleichzeitig verdichtet bzw. ein Druckniveau des Fluids angehoben, kann der Rotor im Förderraum exzentrisch angeordnet sein, was dann bei einer Drehung des Rotors zu Förderzellen mit sich änderndem Volumen führt. Das Gehäuseteil, das die Förderkammer axial begrenzt, wie beispielsweise ein BodenIf the fluid is not only conveyed during transport in the conveying chamber from the inlet to the outlet, but is simultaneously compressed or the pressure level of the fluid is increased, the rotor can be arranged eccentrically in the conveying chamber, which then leads to conveying cells with a changing volume when the rotor rotates. The housing part that axially limits the conveying chamber, such as a base

und/oder ein Deckel, der die Förderkammer axial abschließt, bildet eine der Förderkammer axial zugewandte Fläche. In dieser Fläche kann eine zum Förderraum axial offeneand/or a cover which axially closes the conveying chamber forms a surface facing axially towards the conveying chamber. In this surface, a

Eintauchtasche gebildet sein, in die sich das wenigstens eine Dichtelement erstreckt. Eine axiale Erstreckung oder Tiefe der Eintauchtasche ist bevorzugt größer als die axiale Erstreckung des Dichtelements, so dass über das Dichtelement, da es einen Außendurchmesser hat, der einem Außendurchmesser des Förderelementträgers entspricht oder größer ist, zum Beispiel Fertigungstoleranzen der Antriebswelle ausgeglichen werden können.An immersion pocket can be formed into which the at least one sealing element extends. An axial extent or depth of the immersion pocket is preferably greater than the axial extent of the sealing element, so that, for example, manufacturing tolerances of the drive shaft can be compensated for via the sealing element, since it has an outer diameter that corresponds to or is larger than an outer diameter of the conveyor element carrier.

Bei der Eintauchtasche handelt es sich vorteilhaft um eine Vertiefung, die in das Gehäuseteil eingebracht ist und in die sich das Dichtelement bei zusammengebauter Rotationspumpe axial erstreckt oder in der es angeordnet ist. Das Dichtelement erfährt in der Eintauchtasche vorteilhaft keine Führung. Die Eintauchtasche ist in dem Gehäuseteil angrenzend an den Förderraum und vor der Öffnung, die den Lagerbereich für die Antriebswelle bildet, angeordnet, so dass sich im Gehäuseteil eine umlaufende Nut ergibt, die unmittelbar an den Förderraum angrenzt. Die Eintauchtasche ist axial zum Förderraum und radial zur Antriebswelle offen ausgeführt. Die Eintauchtasche kann im Deckel und/oder im Boden des Förderraums eingebracht sein. Ein Außendurchmesser derThe immersion pocket is advantageously a recess that is made in the housing part and into which the sealing element extends axially when the rotary pump is assembled or in which it is arranged. The sealing element is advantageously not guided in the immersion pocket. The immersion pocket is arranged in the housing part adjacent to the conveying chamber and in front of the opening that forms the bearing area for the drive shaft, so that a circumferential groove is formed in the housing part that is directly adjacent to the conveying chamber. The immersion pocket is designed to be open axially to the conveying chamber and radially to the drive shaft. The immersion pocket can be cover and/or in the floor of the conveying chamber. An outer diameter of the

Eintauchtasche ist kleiner als ein Außendurchmesser des Förderraums. Als Außendurchmesser der Eintauchtasche soll hier vorzugsweise der Abstand zweier sich bezogen auf eine Längsmittelachse des Förderraums gegenüberliegender Punkte in der radial äußere Umfangsfläche der Eintauchtasche verstanden werden.The immersion pocket is smaller than an outer diameter of the conveying chamber. The outer diameter of the immersion pocket should preferably be understood here as the distance between two points in the radially outer circumferential surface of the immersion pocket that are opposite one another in relation to a longitudinal center axis of the conveying chamber.

Eine axiale Erstreckung der Eintauchtasche soll insbesondere größer sein als ein maximales Axialspiel der Antriebswelle, welches beispielsweise durch Fertigungs- und/oder Montagetoleranzen vom Gehäuse und/oder der Verbindung von Rotor und Antriebswelle bestimmt wird. Die axiale Erstreckung der Eintauchtasche ist vorteilhaft mindestens doppelt und besonders vorteilhaft mindestens dreimal so groß wie die axiale Erstreckung des Lagerbereichs.An axial extension of the immersion pocket should in particular be greater than a maximum axial play of the drive shaft, which is determined, for example, by manufacturing and/or assembly tolerances of the housing and/or the connection between the rotor and the drive shaft. The axial extension of the immersion pocket is advantageously at least twice and particularly advantageously at least three times as large as the axial extension of the bearing area.

Das Gehäuse der Rotationspumpe kann beispielsweise einen Deckel, der den Förderraum an einer ersten axialen Seite oder einem ersten axialen Ende abschließt, und einen Boden, der dem Deckel bezogen auf den Förderraum axial gegenüberliegend angeordnet ist und eine zweite axiale Seite des Förderraums abschließt, aufweisen. Dabei kann der Boden mit dem Gehäuse als Einheit gebildet sein, so dass der Förderraum topfförmig ist und mit dem Deckel verschlossen werden kann.The housing of the rotary pump can, for example, have a cover that closes off the delivery chamber on a first axial side or a first axial end, and a base that is arranged axially opposite the cover in relation to the delivery chamber and closes off a second axial side of the delivery chamber. The base can be formed as a unit with the housing, so that the delivery chamber is pot-shaped and can be closed with the cover.

Die Eintauchtasche kann, wie bereits erwähnt, im Deckel und/oder im Boden, die die Förderkammer axial begrenzen, eingebracht sein. Umfasst jedes axiale Ende jeweils eine Eintauchtasche, so können die Eintauchtaschen im Boden und Deckel und die in sie hineinragenden oder an ihnen angeordneten Dichtelemente identische oder unterschiedliche Durchmesser und identische oder unterschiedliche axiale Erstreckungen aufweisen. Bevorzugt ist es, wenn in diesem Fall beide Dichtelemente identisch ausgebildet sind.As already mentioned, the immersion pocket can be incorporated in the cover and/or in the base, which axially delimit the conveying chamber. If each axial end comprises an immersion pocket, the immersion pockets in the base and cover and the sealing elements protruding into them or arranged on them can have identical or different diameters and identical or different axial extensions. It is preferred if in this case both sealing elements are identical.

Der radiale Dichtspalt, der durch eine radiale Außenumfangsfläche des Dichtelements und eine dem Dichtelement zugewandte radiale Innenumfangsfläche der Eintauchtasche gebildet wird, kann beispielsweise mit einem Fluid gefüllt werden, um die Förderkammer radial abzudichten. Der Zufluss des Fluids in die Eintauchtasche kann beispielsweise ein Leckagefluss entlang der Antriebswelle im Lagerspalt sein und/oder ein Fluid, insbesondere ein von einer Fluidförderpumpe gefördertes Fluid, kann über wenigstens einen Kanal direkt in die Eintauchtasche geleitet werden.The radial sealing gap, which is formed by a radial outer circumferential surface of the sealing element and a radial inner circumferential surface of the immersion pocket facing the sealing element, can be filled with a fluid, for example, in order to radially seal the conveying chamber. The inflow of the fluid into the immersion pocket can, for example, be a leakage flow along the drive shaft in the bearing gap and/or a fluid, in particular a fluid conveyed by a fluid conveying pump, can be guided directly into the immersion pocket via at least one channel.

Die Antriebswelle kann eine axiale Nut aufweisen, um die Zuführung des Fluids in die Eintauchtasche zu unterstützen. Der Dichtspalt kann über seine axiale Erstreckung eine überall gleiche radiale Erstreckung oder Spaltdicke aufweisen, das heißt, die radiale Außenumfangsfläche des Dichtelements und die radiale Innenumfangsfläche der Eintauchtasche verlaufen parallel zueinander. Alternativ kann der Dichtspalt eine sich über seine axiale Erstreckung ändernde radiale Spaltdicke aufweisen, zum Beispiel keilförmig sein, Bereiche sich verkleinernder und vergrößernder Spaltdicke aufweisen, oder anderweitig unterschiedliche Spaltdicken aufweisen. Zumindest die radiale Außenumfangsfläche des Dichtelements kann zumindest in einem umlaufenden axialen Teilbereich aufgeraut sein oder ein Profil aufweisen, das vorteilhaft für die radiale Abdichtung sein kann.The drive shaft can have an axial groove to support the supply of fluid into the immersion pocket. The sealing gap can have the same radial extent or gap thickness over its axial extent, i.e. the radial outer circumferential surface of the sealing element and the radial inner circumferential surface of the immersion pocket run parallel to one another. Alternatively, the sealing gap can have a radial gap thickness that changes over its axial extent, for example it can be wedge-shaped, have areas of decreasing and increasing gap thickness, or have different gap thicknesses in other ways. At least the radial outer circumferential surface of the sealing element can be roughened at least in a circumferential axial partial area or have a profile that can be advantageous for radial sealing.

Die Antriebswelle ist im Gehäuse, respektive im Gehäuseteil außerhalb des Förderraums gelagert, insbesondere gleitgelagert. Die Antriebswelle weist zumindest einen Lagerbereich auf. Das Dichtelement ist vorzugsweise axial zwischen einem Lagerbereich und dem Förderraum in der Eintauchtasche angeordnet. Eine axiale Erstreckung des Lagerbereichs der Antriebswelle ist vorzugsweise wesentlich größer als eine axiale Erstreckung des Dichtelements, insbesondere als eine axiale Erstreckung der Eintauchtasche. Die axiale Erstreckung des Lagerbereichs der Antriebswelle ist vorteilhaft mindestens zweimal, besonders vorteilhaft mindestens dreimal und ganz besonders vorteilhaft mindestens viermal so groß wie die axiale Erstreckung des Dichtelements, insbesondere wie die axiale Erstreckung der Eintauchtasche.The drive shaft is mounted in the housing, or in the housing part outside the conveying chamber, in particular in a sliding bearing. The drive shaft has at least one bearing area. The sealing element is preferably arranged axially between a bearing area and the conveying chamber in the immersion pocket. An axial extension of the bearing area of the drive shaft is preferably significantly larger than an axial extension of the sealing element, in particular than an axial extension of the immersion pocket. The axial extension of the bearing area of the drive shaft is advantageously at least twice, particularly advantageously at least three times and very particularly advantageously at least four times as large as the axial extension of the sealing element, in particular as the axial extension of the immersion pocket.

Der Rotorschlitz des Förderelementträgers erstreckt sich vorzugsweise axial in die Antriebswelle hinein, so dass der Rotorschlitz das Dichtelement im Bereich des Rotorschlitzes axial überlappt. Der Rotorschlitz erstreckt sich vorteilhaft zumindest an einer Axialseite axial aus dem Förderraum hinaus. Der Rotorschlitz erstreckt sich vorteilhaft zumindest an einer Axialseite axial in einen Lagerbereich der Antriebswelle hinein. Dadurch kann ein Schmier- und/oder Dichtmittel, insbesondere eine Flüssigkeit, wie beispielsweise Öl, aus dem Lagerbereich der Antriebswelle in den Förderraum gelangen, um beispielsweise sich bewegende Teile des Rotors zu schmieren und/oder die Förderzellen des Förderraums gegeneinander abzudichten.The rotor slot of the conveying element carrier preferably extends axially into the drive shaft, so that the rotor slot axially overlaps the sealing element in the region of the rotor slot. The rotor slot advantageously extends axially out of the conveying chamber at least on one axial side. The rotor slot advantageously extends axially into a bearing region of the drive shaft at least on one axial side. This allows a lubricant and/or sealing agent, in particular a liquid such as oil, to pass from the bearing region of the drive shaft into the conveying chamber, for example to lubricate moving parts of the rotor and/or to seal the conveying cells of the conveying chamber against one another.

Der Rotorschlitz kann eine axiale Erstreckung oder Länge aufweisen, die wenigstens so lang ist wie die axiale Erstreckung oder Länge des Rotors plus die axiale Erstreckung des wenigstens einen Dichtelements oder der Eintauchtasche. Bevorzugt ist die axiale Erstreckung oder Länge des Rotorschlitzes größer. Eine axiale Passerstreckung oder Passlänge des Rotors ist bevorzugt wenigstens so lang wie die axiale Erstreckung des Rotors plus ein maximales Axialspiel der Antriebswelle. Als Passerstreckung oder Passlänge soll hier vorzugsweise der Bereich des Rotorschlitzes gelten, in dem beispielsweise ein Flügel des Rotors ungehindert quer zur Rotationsachse in dem Rotorschlitz bewegt werden kann, unabhängig zum Beispiel eines axialen Spiels der Antriebswelle.The rotor slot may have an axial extent or length that is at least as long as the axial extent or length of the rotor plus the axial extent of the at least one sealing element or the immersion pocket. The axial extent or length of the rotor slot is preferably greater. An axial fit extent or fit length of the rotor is preferably at least as long as the axial extent of the rotor plus a maximum axial play of the drive shaft. The fit extent or fit length here is preferably the area of the rotor slot in which, for example, a blade of the rotor can be moved unhindered transversely to the axis of rotation in the rotor slot, regardless of, for example, an axial play of the drive shaft.

Erfindungsgemäß ist das Dichtelement als eine axiale Verlängerung des Förderelementträgers gebildet, die sich aus dem Förderraum axial in das Gehäuseteil erstreckt. Diese Verlängerung erfährt in dem Gehäuseteil vorzugsweise keine Führung und/oder Lagerung und/oder Zentrierung. Eine Führung und/oder Lagerung und/oder Zentrierung der Antriebswelle erfolgt vorteilhaft lediglich in dem zumindest einem Lagerbereich und nicht in dem durch das zumindest eine Dichtelement als Verlängerung bereitgestellten Dichtbereich.According to the invention, the sealing element is formed as an axial extension of the conveying element carrier, which extends axially from the conveying chamber into the housing part. This extension preferably does not undergo any guidance and/or bearing and/or centering in the housing part. Guidance and/or bearing and/or centering of the drive shaft advantageously only takes place in the at least one bearing area and not in the sealing area provided as an extension by the at least one sealing element.

Ein zweiter Aspekt der Erfindung betrifft eine Pumpeinheit mit einer ersten Rotationspumpe mit einem Förderraum, in dem wenigstens ein Rotor angeordnet ist, der ein erstes Fluid von einem Einlass in den Förderraum auf einer Niederdruckseite der ersten Rotationspumpe zu einem Auslass aus dem Förderraum auf einer Hochdruckseite der ersten Rotationspumpe fördert, mit einer zweiten Rotationspumpe mit einem Förderraum, in dem wenigstens ein Rotor angeordnet ist, der ein zweites Fluid von einem Einlass in den Förderraum auf einer Niederdruckseite der zweiten Rotationspumpe zu einem Auslass aus dem Förderraum auf einer Hochdruckseite der zweiten Rotationspumpe fördert, und mit einer Antriebswelle zum Antrieb beider Rotationspumpen, wobei der Rotor der ersten Rotationspumpe und der Rotor der zweiten Rotationspumpe axial verschiebe- und drehfest mit der Antriebswelle verbunden sind.A second aspect of the invention relates to a pump unit with a first rotary pump with a delivery chamber in which at least one rotor is arranged, which delivers a first fluid from an inlet into the delivery chamber on a low-pressure side of the first rotary pump to an outlet from the delivery chamber on a high-pressure side of the first rotary pump, with a second rotary pump with a delivery chamber in which at least one rotor is arranged, which delivers a second fluid from an inlet into the delivery chamber on a low-pressure side of the second rotary pump to an outlet from the delivery chamber on a high-pressure side of the second rotary pump, and with a drive shaft for driving both rotary pumps, wherein the rotor of the first rotary pump and the rotor of the second rotary pump are connected to the drive shaft in an axially displaceable and rotationally fixed manner.

Bei der Antriebswelle handelt es sich um eine einteilige Antriebswelle mit einer durchgängigen Rotationsachse. Das heißt, die Antriebswelle erstreckt sich durch den Förderraum der ersten Rotationspumpe und durch den Förderraum der zweiten Rotationspumpe, wobei bevorzugt wenigstens ein axiales Ende der Antriebswelle sich bis aus einem Gehäuse der Pumpeinheit heraus erstrecken kann, um mit einem Antrieb verbunden zu werden. Die Antriebswelle kann wenigstens einen Teil des Rotors der ersten Rotationspumpe und/oder einen Teil des Rotors der zweiten Rotationspumpe einteilig ausbilden, wie dies zum ersten Aspekt beschrieben wurde. Wenigstens ein Teil zumindest eines der Rotoren kann auf die Rotorwelle aufgepresst oder auf andere Weise mit dem Rotor drehfest und bevorzugt auch linear in Axialrichtung nicht bewegbar oder verstellbar verbunden sein, siehe hierzu auch die Beschreibung der Antriebswelle zum ersten Aspekt. Bevorzugt handelt es sich bei dem ersten Fluid und dem zweiten Fluid um unterschiedliche Fluide. Das Fluid der ersten Rotationspumpe, die beispielsweise eine Flüssigkeitsförderpumpe sein kann, kann ein Schmieröl sein, mit dem die erste Rotationspumpe und/oder die zweite Rotationspumpe und/oder wenigstens ein Aggregat zum Beispiel ein Antriebsmotor, wie ein Verbrennungs-, ein Hybrid- oder Elektromotor eines Kraftfahrzeugs, mit Schmieröl versorgt werden. Das zweite Fluid der zweiten Rotationspumpe, die eine Gaspumpe oder Vakuumpumpe sein kann, kann ein Gas sein, das zur Erzeugung eines Vakuums zum Beispiel aus einem Aggregat, insbesondere einem Bremskraftverstärker eines Kraftfahrzeugs, entzogen wird.The drive shaft is a one-piece drive shaft with a continuous axis of rotation. This means that the drive shaft extends through the delivery chamber of the first rotary pump and through the delivery chamber of the second rotary pump, wherein preferably at least one axial end of the drive shaft can extend out of a housing of the pump unit in order to be connected to a drive. The drive shaft can form at least part of the rotor of the first rotary pump and/or part of the rotor of the second rotary pump in one piece. form as was described for the first aspect. At least a part of at least one of the rotors can be pressed onto the rotor shaft or connected to the rotor in another way in a rotationally fixed manner and preferably also in a linear manner in the axial direction so as not to be movable or adjustable, see also the description of the drive shaft for the first aspect. The first fluid and the second fluid are preferably different fluids. The fluid of the first rotary pump, which can be a liquid feed pump, for example, can be a lubricating oil with which the first rotary pump and/or the second rotary pump and/or at least one unit, for example a drive motor, such as an internal combustion engine, a hybrid or electric motor of a motor vehicle, are supplied with lubricating oil. The second fluid of the second rotary pump, which can be a gas pump or vacuum pump, can be a gas which is extracted from a unit, in particular a brake booster of a motor vehicle, for example, to generate a vacuum.

Bei der zweiten Rotationspumpe handelt es sich um eine Rotationspumpe nach dem ersten Aspekt.The second rotary pump is a rotary pump according to the first aspect.

Durch das Dichtelement oder die Dichtelemente kann bei dieser Anordnung insbesondere eine Fertigungstoleranz in einem Abstand zwischen dem Rotor der ersten Rotationspumpe und dem Rotor der zweiten Rotationspumpe ausgeglichen werden, die beispielweise durch das Aufpressen wenigstens eines der Rotoren, insbesondere eines der Förderelementträger, auf die Antriebswelle in das System oder die Anordnung eingetragen wird. Das heißt mit anderen Worten, das in die Eintauchtasche eingreifende Dichtelement kann bei der zusammengebauten Pumpe oder Pumpeinheit eine Kompensationsvorrichtung bilden, mit der ein axiales Spiel im System entlang der Antriebswelle aufgrund von zum Beispiel Fertigungstoleranzen ausgeglichen werden kann, ohne dass dadurch die Abdichtung des Förderraums aufgehoben wird.In this arrangement, the sealing element or sealing elements can compensate in particular for a manufacturing tolerance in a distance between the rotor of the first rotary pump and the rotor of the second rotary pump, which is introduced into the system or arrangement, for example, by pressing at least one of the rotors, in particular one of the conveying element carriers, onto the drive shaft. In other words, the sealing element engaging in the immersion pocket can form a compensation device in the assembled pump or pump unit, with which an axial play in the system along the drive shaft due to manufacturing tolerances, for example, can be compensated without this eliminating the seal of the conveying chamber.

Eine Eintauchtasche kann beispielsweise in einem Boden der zweiten Förderpumpe gebildet sein, wobei der Boden den Förderraum im Regelfall gegenüber der Umgebung der Pumpeinheit abdichtet. Zusätzlich oder alternativ kann eine oder eine weitere Eintauchtasche in wenigstens einem Deckel der zweiten Rotationspumpe gebildet sein. Bei der Pumpenanordnung kann der Deckel ein Gehäuseteil sein, das den Förderraum der ersten Rotationspumpe von dem Förderraum der zweiten Rotationspumpe trennt und eine Öffnung aufweist, die von der Antriebswelle durchgriffen werden kann. Die Eintauchtasche ist in diesem Fall als eine dem Förderraum zugewandte radiale Aufweitung der Öffnung in dem Deckel gebildet.An immersion pocket can be formed, for example, in a base of the second feed pump, whereby the base generally seals the feed chamber from the environment of the pump unit. Additionally or alternatively, one or more immersion pockets can be formed in at least one cover of the second rotary pump. In the pump arrangement, the cover can be a housing part that Discharge chamber of the first rotary pump from the discharge chamber of the second rotary pump and has an opening through which the drive shaft can pass. In this case, the immersion pocket is formed as a radial widening of the opening in the cover facing the conveying chamber.

Die Rotorwelle oder Antriebswelle kann im Bereich der Eintauchtasche im Deckel und/oder Boden der Rotationspumpe eine Fluidnut aufweisen. Die Fluidnut kann in der Welle bevorzugt umlaufend ausgebildet sein. Über die Fluidnut kann zum Beispiel Fluid aus der Eintauchtasche in den Rotorschlitz fließen, um die sich bewegenden Teile des Rotors zu schmieren und/oder die Förderzellen eines Förderraums gegeneinander abzudichten.The rotor shaft or drive shaft can have a fluid groove in the area of the immersion pocket in the cover and/or base of the rotary pump. The fluid groove can preferably be designed to run all the way around the shaft. For example, fluid can flow from the immersion pocket into the rotor slot via the fluid groove in order to lubricate the moving parts of the rotor and/or to seal the conveying cells of a conveying chamber against one another.

Bei der Fluid- oder Flüssigkeitsförderpumpe kann es sich insbesondere um eine innenachsige Pumpe, wie eine Flügelzellenpumpe oder eine Pendelschieberpumpe handeln.The fluid or liquid conveying pump can in particular be an internal-axis pump, such as a vane pump or a pendulum slide pump.

Bei der Gas- oder Vakuumpumpe kann es sich insbesondere um eine innenachsige Pumpe, wie zum Beispiel eine Rotationskolbenpumpe, eine Kolbenpendelpumpe, eine Flügelzellenpumpe, eine Pendelschieberpumpe, eine Innenzahnradpumpe oder eine im Stand der Technik bekannte innenachsige Pumpe, oder um eine außenachsige Pumpe, wie etwa eine Außenzahnradpumpe, handeln.The gas or vacuum pump can in particular be an internal-axis pump, such as a rotary piston pump, a piston pendulum pump, a vane pump, a pendulum slide pump, an internal gear pump or an internal-axis pump known in the prior art, or an external-axis pump, such as an external gear pump.

Die Pumpeneinheit, die aus wenigstens einer Fluidförderpumpe und wenigstens einer Vakuumpumpe besteht, kann zum Beispiel an einen Motor, insbesondere einen Verbrennungsmotor eines Kraftfahrzeugs angebracht oder kann für den Anbau an diesen Motor vorgesehen sein. Die Antriebswelle der Pumpeneinheit kann antriebstechnisch mit dem Motor verbunden sein, so dass die Pumpeneinheit zumindest zeitweise in Anhängigkeit vom Motor oder von einem Kennfeld mit motorabhängigen Parametern angetrieben respektive gesteuert oder geregelt wird. Alternativ kann die Pumpeneinheit über einen eigenen Antrieb, wie beispielsweise einen Elektromotor, angetrieben werden.The pump unit, which consists of at least one fluid feed pump and at least one vacuum pump, can be attached to an engine, in particular an internal combustion engine of a motor vehicle, for example, or can be intended for attachment to this engine. The drive shaft of the pump unit can be connected to the engine in terms of drive technology, so that the pump unit is driven or controlled or regulated at least temporarily as a function of the engine or a characteristic map with engine-dependent parameters. Alternatively, the pump unit can be driven by its own drive, such as an electric motor.

Ein Ausführungsbeispiel der Erfindung wird jetzt anhand von Figuren näher erläutert.An embodiment of the invention will now be explained in more detail with reference to figures.

Die Figuren zeigen im Einzelnen:

Figur 1:
Pumpeinheit mit Flüssigkeitspumpe und Gaspumpe in einer ersten Schnittansicht.
Figur 2:
vergrößerter Ausschnitt eines Bereichs der Gaspumpe aus Figur 1.
Figur 3:
Pumpeinheit mit Flüssigkeitspumpe und Gaspumpe in einer zweiten Schnittansicht.
Figur 4:
vergrößerter Ausschnitt eines Bereichs der Gaspumpe aus Figur 3.
Figur 5:
Antriebswelle der Pumpeinheit, mit einem Förderelementträger zur Aufnahme von Förderelementen der Flüssigkeitspumpe und einem Förderelementträger der Gaspumpe, in dem ein Förderelement verschieblich angeordnet ist, wobei das Gehäuse der Gaspumpe geschnitten dargestellt ist.
Figur 6:
vergrößerter Ausschnitt der Antriebswelle mit dem Rotor der Gaspumpe der Figur 5.
The figures show in detail:
Figure 1:
Pump unit with liquid pump and gas pump in a first sectional view.
Figure 2:
enlarged section of a section of the gas pump from Figure 1 .
Figure 3:
Pump unit with liquid pump and gas pump in a second sectional view.
Figure 4:
enlarged section of a section of the gas pump from Figure 3 .
Figure 5:
Drive shaft of the pump unit, with a conveying element carrier for receiving conveying elements of the liquid pump and a conveying element carrier of the gas pump, in which a conveying element is movably arranged, wherein the housing of the gas pump is shown in section.
Figure 6:
enlarged section of the drive shaft with the rotor of the gas pump of the Figure 5 .

Die Figur 1 zeigt einen Längsschnitt durch ein Ausführungsbeispiel einer Pumpeinheit gemäß der Erfindung. Die Pumpeinheit umfasst eine erste Rotationspumpe 1, die als Flüssigkeitsförderpumpe ausgebildet ist, und eine zweite Rotationspumpe 2, die als Vakuumpumpe ausgebildet ist. Die Pumpeinheit kann als Tandempumpe bezeichnet werden. Die Pumpeinheit ist für ein Kraftfahrzeug vorgesehen, wobei die erste Rotationspumpe 1 zur Schmierung eines Verbrennungsmotors des Kraftfahrzeugs genutzt wird, und die zweite Rotationspumpe 2 zur Bereitstellung eines Vakuums für einen Bremskraftverstärker des Kraftfahrzeugs genutzt wird.The Figure 1 shows a longitudinal section through an embodiment of a pump unit according to the invention. The pump unit comprises a first rotary pump 1, which serves as Fluid feed pump, and a second rotary pump 2, which is designed as a vacuum pump. The pump unit can be referred to as a tandem pump. The pump unit is provided for a motor vehicle, wherein the first rotary pump 1 is used to lubricate an internal combustion engine of the motor vehicle, and the second rotary pump 2 is used to provide a vacuum for a brake booster of the motor vehicle.

Die Rotationspumpe 1 umfasst einen Förderraum 11, in dem ein Rotor 12 angeordnet ist. Die Rotationspumpe 2 umfasst einen Förderraum 21, in dem ein Rotor 22 angeordnet ist. Der Rotor 12 und der Rotor 22 sind antriebstechnisch mit einer gemeinsamen durchgehenden Antriebswelle 3 verbunden. Die Rotoren 12, 22 werden durch die Antriebswelle 3 rotatorisch angetrieben.The rotary pump 1 comprises a delivery chamber 11 in which a rotor 12 is arranged. The rotary pump 2 comprises a delivery chamber 21 in which a rotor 22 is arranged. The rotor 12 and the rotor 22 are connected in terms of drive technology to a common continuous drive shaft 3. The rotors 12, 22 are driven in rotation by the drive shaft 3.

Der Rotor 12 ist vollständig in dem Förderraum 11 angeordnet. Der Rotor 12 umfasst einen Förderelementträger 6 und mehrere Förderelemente, die radial verschieblich von dem Förderelementträger 6 aufgenommen sind. Zur verschieblichen Aufnahme der Förderelemente weist der Förderelementträger 6 mehrere Rotorschlitze auf. Der Förderelementträger 6 ist drehfest und verschiebefest mit der Antriebswelle 3 verbunden. Der Förderelementträger 6 ist auf die Antriebswelle 3 aufgepresst. Die Förderelemente sind als Flügel ausgebildet. Die erste Rotationspumpe 1 ist als eine Flügelzellenpumpe ausgebildet.The rotor 12 is arranged completely in the conveying chamber 11. The rotor 12 comprises a conveying element carrier 6 and a plurality of conveying elements which are accommodated in a radially displaceable manner by the conveying element carrier 6. The conveying element carrier 6 has a plurality of rotor slots for displaceably accommodating the conveying elements. The conveying element carrier 6 is connected to the drive shaft 3 in a rotationally fixed and displacement-proof manner. The conveying element carrier 6 is pressed onto the drive shaft 3. The conveying elements are designed as vanes. The first rotary pump 1 is designed as a vane pump.

Der Rotor 22 ist vollständig in dem Förderraum 21 angeordnet. Der Rotor 22 umfasst einen Förderelementträger 5 und ein Förderelement 4, das radial verschieblich von dem Förderelementträger 5 aufgenommen ist. Zur verschieblichen Aufnahme des Förderelements 4 weist der Förderelementträger 5 einen Rotorschlitz 32 auf, der in den Figuren 3 bis 6 deutlich gezeigt und detailliert beschrieben wird. Der Rotorschlitz 32 erstreckt sich axial in die Antriebswelle 3 hinein. Der Förderelementträger 5 ist drehfest und verschiebefest mit der Antriebswelle 3 verbunden. Der Förderelementträger 5 ist einteilig mit der Antriebswelle 3 ausgebildet. Die Antriebswelle 3 bildet den Förderelementträger 5 einteilig aus. Das Förderelement 4 ist als ein Flügel ausgebildet. Die zweite Rotationspumpe 2 ist als eine Flügelzellenpumpe ausgebildet.The rotor 22 is arranged completely in the conveying chamber 21. The rotor 22 comprises a conveying element carrier 5 and a conveying element 4, which is accommodated in a radially displaceable manner by the conveying element carrier 5. For the displaceable accommodation of the conveying element 4, the conveying element carrier 5 has a rotor slot 32, which is in the Figures 3 to 6 clearly shown and described in detail. The rotor slot 32 extends axially into the drive shaft 3. The conveying element carrier 5 is connected to the drive shaft 3 in a rotationally fixed and displacement-proof manner. The conveying element carrier 5 is formed in one piece with the drive shaft 3. The drive shaft 3 forms the conveying element carrier 5 in one piece. The conveying element 4 is designed as a vane. The second rotary pump 2 is designed as a vane pump.

Der Rotor 12, 22 bildet gemeinsam mit einer Innenumfangswand des jeweiligen Förderraums 11, 21 Förderzellen, in denen das Fluid, ob Flüssigkeit oder Gas, von einem Einlass in den Förderraum 11, 21 zu einem Auslass aus diesem Förderraum 11, 21 transportiert wird und dabei bei einer exzentrischen Anordnung des Rotors 12, 22 im Förderraum 11, 21 verdichtet und/oder auf ein höheres Druckniveau gehoben werden kann.The rotor 12, 22 together with an inner peripheral wall of the respective conveying chamber 11, 21 forms conveying cells in which the fluid, whether liquid or gas, is fed from an inlet into the Conveying chamber 11, 21 to an outlet from this conveying chamber 11, 21 and, with an eccentric arrangement of the rotor 12, 22 in the conveying chamber 11, 21, can be compressed and/or raised to a higher pressure level.

Die Rotationspumpen 1, 2 umfassen ein gemeinsames Pumpengehäuse. Das Pumpengehäuse weist die Gehäuseteile 13, 14, 23, 24 auf. Die zwei Gehäuseteile 13, 23 sind in einem Gehäuseteil vereint. Sie sind durch ein einziges Gehäuseteil gebildet. Das Gehäuseteil 24 bildet einen Boden des Förderraums 21 der zweiten Rotationspumpe 2 mit einer zentralen Öffnung, durch den die Antriebswelle 3 mit einem nicht gezeigten Antrieb verbunden werden kann. Das Gehäuseteil 24 verschließt eine axiale Stirnseite des Förderraums 21 auf der der ersten Rotationspumpe 1 abgewandten Seite. Auf der der ersten Rotationspumpe 1 zugewandten Stirnseite wird der Förderraum 21 durch das Gehäuseteil 23 verschlossen, das gleichzeitig das Gehäuseteil 13 für eine axiale Stirnseite des Förderraums 11 der ersten Rotationspumpe 1 bildet und eine Öffnung umfasst, durch die sich die Antriebswelle 3 vom Förderraum 21 in den Förderraum 11 erstreckt. Die zweite axiale Stirnseite des Förderraums 11 wird durch das Gehäuseteil 14 verschlossen.The rotary pumps 1, 2 comprise a common pump housing. The pump housing has the housing parts 13, 14, 23, 24. The two housing parts 13, 23 are combined in one housing part. They are formed by a single housing part. The housing part 24 forms a bottom of the delivery chamber 21 of the second rotary pump 2 with a central opening through which the drive shaft 3 can be connected to a drive (not shown). The housing part 24 closes an axial end face of the delivery chamber 21 on the side facing away from the first rotary pump 1. On the end face facing the first rotary pump 1, the delivery chamber 21 is closed by the housing part 23, which simultaneously forms the housing part 13 for an axial end face of the delivery chamber 11 of the first rotary pump 1 and comprises an opening through which the drive shaft 3 extends from the delivery chamber 21 into the delivery chamber 11. The second axial end face of the conveying chamber 11 is closed by the housing part 14.

Die Antriebswelle 3 ist mittels drei axial beabstandeter Gleitlager im Pumpengehäuse gelagert. Die Antriebswelle 3 weist drei axial beabstandete Lagerbereiche 7, 8, 9 auf. Die Antriebswelle 3 ist in dem Lagerbereich 9 in dem Gehäuseteil 14, in dem Lagerbereich 7 in dem gemeinsamen Gehäuseteil 13, 23 und in dem Lagerbereich 8 in dem Gehäuseteil 24 gleitgelagert. In den Lagerbereichen 7, 8, 9 bilden die Außenumfangsfläche der Antriebswelle 3 und die ihr radial gegenüberliegenden Innenumfangsflächen der Gehäuseteile 14, 13, 23, 24 einen Lagerspalt SL. Der Förderraum 11 der ersten Rotationspumpe 1 ist axial zwischen dem Lagerbereich 9 und dem Lagerbereich 7 angeordnet. Der Förderraum 21 der zweiten Rotationspumpe 2 ist axial zwischen dem Lagerbereich 7 und dem Lagerbereich 8 angeordnet.The drive shaft 3 is mounted in the pump housing by means of three axially spaced plain bearings. The drive shaft 3 has three axially spaced bearing areas 7, 8, 9. The drive shaft 3 is slide-mounted in the bearing area 9 in the housing part 14, in the bearing area 7 in the common housing part 13, 23 and in the bearing area 8 in the housing part 24. In the bearing areas 7, 8, 9, the outer peripheral surface of the drive shaft 3 and the radially opposite inner peripheral surfaces of the housing parts 14, 13, 23, 24 form a bearing gap S L . The delivery chamber 11 of the first rotary pump 1 is arranged axially between the bearing area 9 and the bearing area 7. The delivery chamber 21 of the second rotary pump 2 is arranged axially between the bearing area 7 and the bearing area 8.

Die zweite Rotationspumpe 2 umfasst zwei axial beabstandete Dichtelemente 26, 27, die sich außerhalb des Förderraums 21 in Eintauchtaschen 28, 29 erstrecken, die in das Gehäuseteil 24 und in das Gehäuseteil 23 eingebracht sind. Der Förderraum 21 ist axial zwischen den Dichtelementen 26, 27 angeordnet. Das Dichtelement 26 ist axial zwischen dem Lagerbereich 7 und dem Förderraum 21 angeordnet. Das Dichtelement 27 ist axial zwischen dem Lagerbereich 8 und dem Förderraum 21 angeordnet.The second rotary pump 2 comprises two axially spaced sealing elements 26, 27 which extend outside the delivery chamber 21 into immersion pockets 28, 29 which are introduced into the housing part 24 and into the housing part 23. The delivery chamber 21 is arranged axially between the sealing elements 26, 27. The sealing element 26 is arranged axially between the bearing area 7 and the delivery chamber 21. The sealing element 27 is arranged axially between the bearing area 8 and the delivery chamber 21.

Die radialen Außenflächen der Dichtelemente 26, 27 bilden mit radialen Umfangsflächen der Eintauchtaschen 28, 29 einen radialen Dichtspalt SD, der in Radialrichtung so groß ist, dass die Dichtelemente 26, 27 in den Eintauchtaschen 28, 29 keine radiale und/oder axiale Führung erhalten. Der radiale Dichtspalt SD ist größer oder hat eine größere radiale Erstreckung als der Lagerspalt SL. Die Eintauchtaschen 28, 29 weisen jeweils einen Außendurchmesser auf, der größer ist als ein Außendurchmesser des Förderelementträgers 5 des Rotors 22.The radial outer surfaces of the sealing elements 26, 27 form a radial sealing gap S D with radial peripheral surfaces of the immersion pockets 28, 29, which is so large in the radial direction that the sealing elements 26, 27 do not receive any radial and/or axial guidance in the immersion pockets 28, 29. The radial sealing gap S D is larger or has a larger radial extent than the bearing gap S L . The immersion pockets 28, 29 each have an outer diameter that is larger than an outer diameter of the conveying element carrier 5 of the rotor 22.

Die Figur 1 umfasst einen kreisförmig eingezirkelten Abschnitt X, der in einer Vergrößerung in der Figur 2 gezeigt ist. Die Figur 2 zeigt den Abschnitt X der Figur 1, der einen Ausschnitt der zweiten Rotationspumpe 2 zeigt, mit dem Förderraum 21, dem von der Antriebswelle 3 gebildeten Förderelementträger 5 und dem Förderelement 4, dem Gehäuseteil 24, dem Gehäuseteil 23 und der Antriebswelle 3. In dem Gehäuseteil 23 und dem Gehäuseteil 24 ist jeweils eine zu dem Förderraum 21 offene Eintauchtasche 28, 29 gebildet, in die sich die Dichtelemente 26, 27 erstrecken.The Figure 1 comprises a circularly encircled section X, which in an enlargement in the Figure 2 is shown. The Figure 2 shows section X of the Figure 1 , which shows a section of the second rotary pump 2, with the delivery chamber 21, the delivery element carrier 5 formed by the drive shaft 3 and the delivery element 4, the housing part 24, the housing part 23 and the drive shaft 3. In the housing part 23 and the housing part 24, an immersion pocket 28, 29 is formed which is open to the delivery chamber 21 and into which the sealing elements 26, 27 extend.

Die Dichtelemente 26, 27 sind einstückig mit dem Förderelementträger 5 des Rotors 22 und der Antriebswelle 3 gebildet. Sie dichten den Förderraum 21 radial ab. Die Dichtelemente 26, 27 weisen den gleichen Außendurchmesser auf wie der Förderelementträger 5. Die Dichtelemente 26, 27 sind als oder durch axiale Verlängerungen des Förderelementträgers 5 gebildet, die sich aus dem Förderraum 21 axial in die Eintauchtaschen 28, 29 erstrecken. Die Verlängerungen weisen dabei einen Außendurchmesser auf, der größer ist als ein Außendurchmesser der Antriebswelle 3. Die Verlängerungen erstrecken sich in die den Förderraum 21 axial begrenzenden Gehäuseteile 23, 24.The sealing elements 26, 27 are formed in one piece with the conveying element carrier 5 of the rotor 22 and the drive shaft 3. They seal the conveying chamber 21 radially. The sealing elements 26, 27 have the same outer diameter as the conveying element carrier 5. The sealing elements 26, 27 are formed as or by axial extensions of the conveying element carrier 5, which extend axially from the conveying chamber 21 into the immersion pockets 28, 29. The extensions have an outer diameter that is larger than an outer diameter of the drive shaft 3. The extensions extend into the housing parts 23, 24 that axially delimit the conveying chamber 21.

Eine axiale Erstreckung der Dichtelemente 26, 27 ist kleiner als die axiale Erstreckung oder Tiefe der Eintauchtaschen 28, 29, so dass über die Dichtelemente 26, 27 ein Axialspiel der Antriebswelle 3 ausgeglichen werden kann. Bevorzugt ist der Längenunterschied in Axialrichtung zwischen der axialen Tiefe der Eintauchtaschen 28, 29 und der axialen Erstreckung der Dichtelemente 26, 27 größer als ein maximales Axialspiel der Antriebswelle 3. Eine axiale Erstreckung des radialen Dichtspalts SD ist wesentlich kleiner als eine axiale Erstreckung des radialen Lagerspalts SL.An axial extension of the sealing elements 26, 27 is smaller than the axial extension or depth of the immersion pockets 28, 29, so that an axial play of the drive shaft 3 can be compensated via the sealing elements 26, 27. Preferably, the length difference in the axial direction between the axial depth of the immersion pockets 28, 29 and the axial extension of the sealing elements 26, 27 is greater than a maximum axial play of the drive shaft 3. An axial extension of the radial sealing gap S D is significantly smaller than an axial extension of the radial bearing gap S L .

Der radiale Dichtspalt So kann über einen Leckagefluss, der aus dem ersten Förderraum 11 entlang der Antriebswelle 3 zu der Eintauchtasche 28, 29 fließt, mit Fluid versorgt werden.The radial sealing gap So can be supplied with fluid via a leakage flow which flows from the first conveying chamber 11 along the drive shaft 3 to the immersion pocket 28, 29.

Alternativ können die Eintauchtaschen 28, 29 über einen nicht gezeigten Kanal, der in die Eintauchtasche 28, 29 mündet, mit Fluid versorgt werden. Das Fluid bildet eine Barriere im radialen Dichtspalt SD und verhindert so, dass Fluid, in dem Fall Gas, aus dem Förderraum 21 austreten kann.Alternatively, the immersion pockets 28, 29 can be supplied with fluid via a channel (not shown) that opens into the immersion pocket 28, 29. The fluid forms a barrier in the radial sealing gap S D and thus prevents fluid, in this case gas, from escaping from the conveying chamber 21.

Die Figur 3 zeigt einen weiteren Längsschnitt durch die Pumpeinheit, der im Vergleich zur Figur 1 die Pumpeinheit bezüglich einer Längsachse L oder Rotationsachse der Antriebswelle 3 in einer um eine Vierteldrehung oder um 90° gedrehten Ansicht zeigt. In der Figur 3 ist der Bereich der zweiten Rotationspumpe 2 durch einen kreisrunden Ausschnitt Y gekennzeichnet. Der Ausschnitt Y ist in der Figur 4 in einer Lupenansicht zu sehen.The Figure 3 shows another longitudinal section through the pump unit, which in comparison to the Figure 1 the pump unit with respect to a longitudinal axis L or rotation axis of the drive shaft 3 in a view rotated by a quarter turn or by 90°. In the Figure 3 the area of the second rotary pump 2 is marked by a circular cutout Y. The cutout Y is in the Figure 4 to be seen in a magnifying glass view.

Die Figur 3 zeigt nichts anderes als die Figur 1, nur aus einem anderen Blickwinkel. Zu sehen sind die erste Rotationspumpe 1, die zweite Rotationspumpe 2 und die Antriebswelle 3. In der Antriebswelle 3 ist im Bereich des von der Antriebswelle 3 mit gebildeten Förderelementträgers 5 der zweiten Rotationspumpe 2 der Rotorschlitz 32 ausgebildet, in dem sich das Förderelement 4 quer zur Längsachse L bewegen kann, um gemeinsam mit einer Innenumfangswand 25 des Förderraums 21 Förderzellen zu bilden, mit denen das Fluid von einem Einlass in den Förderraum 21 zu einem Auslass aus dem Förderraum 21 gefördert werden kann. Im Gehäuseteil 24 und im Gehäuseteil 23 der zweiten Rotationspumpe 2 ist je eine Eintauchtasche 28, 29 eingebracht. In jede der Eintauchtaschen 28, 29 erstreckt sich ein Dichtelement 26, 27, das den Förderraum 21 im Bereich des Übergangs vom Rotor 22 in das Gehäuseteil 23 und in das Gehäuseteil 24 radial abdichtet. Dadurch, dass das Dichtelement 26, 27 in Axialrichtung kleiner dimensioniert ist als die Eintauchtasche 28, 29, ist zwischen der dem Rotor 22 abgewandten axialen Stirnseite des Dichtelements 26, 27 und der dem Rotor 22 zugewandten Grundfläche der Eintauchtasche 28, 29 ein Axialspalt SA gebildet. Dadurch bilden die Eintauchtaschen 28, 29 in Verbindung mit den Dichtelementen 26, 27 gemeinsam eine Kompensationseinrichtung, mit der Fertigungstoleranzen in Axialrichtung, die beispielweise beim Aufpressen des Förderelementträgers 6 der ersten Rotationspumpe 1, in die Pumpeinheit eingetragen werden können, ausgleichbar sind.The Figure 3 shows nothing other than the Figure 1 , just from a different angle. The first rotary pump 1, the second rotary pump 2 and the drive shaft 3 can be seen. The rotor slot 32 is formed in the drive shaft 3 in the area of the conveying element carrier 5 of the second rotary pump 2, which is formed by the drive shaft 3. The conveying element 4 can move in the rotor slot 3 transversely to the longitudinal axis L in order to form conveying cells together with an inner peripheral wall 25 of the conveying chamber 21, with which the fluid can be conveyed from an inlet into the conveying chamber 21 to an outlet from the conveying chamber 21. An immersion pocket 28, 29 is introduced into each of the immersion pockets 28, 29. A sealing element 26, 27 extends into each of the immersion pockets 28, 29 and radially seals the conveying chamber 21 in the area of the transition from the rotor 22 into the housing part 23 and into the housing part 24. Because the sealing element 26, 27 is dimensioned smaller in the axial direction than the immersion pocket 28, 29, an axial gap SA is formed between the axial end face of the sealing element 26, 27 facing away from the rotor 22 and the base surface of the immersion pocket 28, 29 facing the rotor 22. As a result, the immersion pockets 28, 29 in conjunction with the sealing elements 26, 27 together form a compensation device with which manufacturing tolerances in the axial direction, which can be introduced into the pump unit, for example when the conveying element carrier 6 of the first rotary pump 1 is pressed onto it, can be compensated.

Die Figur 4 zeigt eine Lupenansicht eines Bereichs der Figur 3, der insbesondere den Rotorschlitz 32 umfasst. Der Rotorschlitz 32 weist eine axiale Erstreckung LRS auf und erstreckt sich axial durch den Förderelementträger 5 des Rotors 22, durch beide Dichtelemente 26, 27 bis in die Antriebswelle 3 hinein. Der Rotorschlitz 32 erstreckt sich axial in die Lagerbereiche 7, 8. Die gezeigte axiale Erstreckung oder axiale Länge LRS des Rotorschlitzes 32 ist größer als die axiale Erstreckung oder axiale Länge LR des Rotors 22 plus die axiale Erstreckung LV der beiden Dichtelemente 26, 27 in Summe. Als weiteres Maß ist eine axiale Passerstreckung oder Passlänge LP angegeben, die kleiner ist als die axiale Länge LRS des Rotorschlitzes 32, aber größer als die axiale Länge LR des Rotors 22. Mit der axialen Passlänge LP ist der Bereich des Rotorschlitzes 32 gemeint, in dem sich das Förderelement 4 ungehindert, ohne zum Beispiel zu klemmen, quer zur Längsachse L der Rotationspumpe 2 bewegen kann, und in dem das Förderelement 4 bei einer Verschiebung des Rotorschlitzes 32 in Richtung der Längsachse L, zum Beispiel zur Kompensation eines Axialspiels der Antriebswelle 3, nicht gegen eines der Gehäuseteile 23, 24 gedrückt wird.The Figure 4 shows a magnifying glass view of an area of the Figure 3 , which in particular comprises the rotor slot 32. The rotor slot 32 has an axial extension L RS and extends axially through the conveyor element carrier 5 of the rotor 22, through both sealing elements 26, 27 into the drive shaft 3. The rotor slot 32 extends axially into the bearing areas 7, 8. The axial extent or axial length L RS of the rotor slot 32 shown is greater than the axial extent or axial length L R of the rotor 22 plus the axial extent L V of the two sealing elements 26, 27 in total. A further dimension is an axial fit extent or fit length L P , which is smaller than the axial length L RS of the rotor slot 32, but greater than the axial length L R of the rotor 22. The axial fit length L P refers to the area of the rotor slot 32 in which the conveying element 4 can move unhindered, for example without jamming, transversely to the longitudinal axis L of the rotary pump 2, and in which the conveying element 4 is not pressed against one of the housing parts 23, 24 when the rotor slot 32 is shifted in the direction of the longitudinal axis L, for example to compensate for axial play in the drive shaft 3.

In der Antriebswelle 3 ist ferner eine umlaufende Nut 31 gebildet. Die umlaufende Nut 31 ist mit der entsprechenden Eintauchtasche 28, 29 und dem entsprechenden Lagerbereich 7, 8 verbunden. Des Weiteren ist die Nut 31 mit dem Rotorschlitz 32 verbunden. Der Rotorschlitz 32 erstreckt sich in die umlaufende Nut 31. Im Ausführungsbeispiel ist die Nut 31 zweigeteilt und mündet in den Rotorschlitz 32. So kann Fluid aus der Eintauchtasche 28, 29 und dem Lagerbereich 7, 8 in den Rotorschlitz 32 gelangen, wo das Fluid zum Beispiel zur Schmierung des Förderelements 4 und zur Dichtung der Förderzellen im Förderraum dienen kann.A circumferential groove 31 is also formed in the drive shaft 3. The circumferential groove 31 is connected to the corresponding immersion pocket 28, 29 and the corresponding bearing area 7, 8. Furthermore, the groove 31 is connected to the rotor slot 32. The rotor slot 32 extends into the circumferential groove 31. In the exemplary embodiment, the groove 31 is split in two and opens into the rotor slot 32. This allows fluid from the immersion pocket 28, 29 and the bearing area 7, 8 to reach the rotor slot 32, where the fluid can be used, for example, to lubricate the conveying element 4 and to seal the conveying cells in the conveying chamber.

Die umlaufende Nut 31 ist besonders in den Figuren 5 und 6 erkennbar. In der Figur 5 ist die Antriebswelle 3 der Pumpeinheit ungeschnitten dargestellt. In der Figur 5 sind ferner die Gehäuseteile 23, 24 in einer Schnittansicht dargestellt. In der Figur 6 ist der Ausschnitt Z aus der Figur 5 vergrößert gezeigt.The circumferential groove 31 is particularly suitable for Figures 5 and 6 recognizable. In the Figure 5 the drive shaft 3 of the pump unit is shown uncut. In the Figure 5 The housing parts 23, 24 are also shown in a sectional view. In the Figure 6 is section Z from the Figure 5 shown enlarged.

Claims (12)

  1. A rotary pump, preferably a vacuum pump, featuring:
    a delivery space (21) comprising an inlet on a low-pressure side and an outlet on a high-pressure side of the pump (2);
    a rotor (22) which is arranged in the delivery space (21) and delivers a fluid from the inlet into the delivery space (21) to the outlet from the delivery space (21);
    at least one housing part (23, 24) which delineates the delivery space (21) at least axially;
    a sealing element (26, 27); and
    a drive shaft (3) which is connected in drive terms to the rotor (22), wherein
    the rotor (22) comprises: a delivery element support (5) featuring at least one rotor slot (32); and at least one delivery element (4) which is axially and radially guided in the rotor slot (32) and which sub-divides the delivery space (21) into at least two delivery cells,
    the sealing element (26, 27) is formed as an axial extension of the delivery element support (5), which extends axially out of the delivery space (21) into the housing part (23, 24), wherein
    the sealing element (26, 27) and the housing part (23, 24) form an axial gap (GA) together,
    the at least one sealing element (26, 27) is connected, secured against shifting and rotating, to the drive shaft (3) and the delivery element support (5), and
    the sealing element (26, 27) exhibits an outer diameter which is larger than or equal to an outer diameter of the delivery element support (5),
    characterised in that
    the sealing element (26, 27) forms a radial sealing gap (Gs) with the housing part (23, 24), and
    the axial gap (GA) is larger than the radial sealing gap (Gs).
  2. The rotary pump according to claim 1, characterised in that the sealing element (26, 27) is integrally formed by the drive shaft (3) and the rotor (22).
  3. The rotary pump according to any one of the preceding claims, wherein the drive shaft (3) is mounted in at least one bearing region (7, 8) in the housing part (23, 24) and forms a radial bearing gap (GB) with the housing part (23, 24) in the bearing region (7, 8), wherein the radial bearing gap (GB) is smaller in the radial direction than the radial sealing gap (Gs).
  4. The rotary pump according to any one of the preceding claims, wherein the drive shaft (3) is mounted in at least one bearing region (7, 8) in the housing part (23, 24), wherein the bearing region (7, 8) exhibits an axial extent which is at least twice as large as an axial extent of the radial sealing gap (Gs).
  5. The rotary pump according to any one of the preceding claims, wherein an immersion pocket (28, 29) which is axially open towards the delivery space (21) and in which the sealing element (26, 27) is arranged is incorporated in the housing part (23, 24).
  6. The rotary pump according to claim 5, wherein the difference in length in the axial direction between an axial depth of the immersion pocket (28, 29) and an axial extent of the sealing element (26, 27) is larger than a maximum axial clearance of the drive shaft (3).
  7. The rotary pump according to any one of the preceding claims, wherein the rotor (22) comprises a sealing element (26, 27) on each of its two axial end-facing sides, and the sealing elements (26, 27) exhibit identical or different outer diameters and/or identical or different axial extents (Lv).
  8. The rotary pump according to at least claims 4 and 7, wherein the axial extent of the bearing region (7, 8) is larger than the sum of the axial extents of the radial sealing gaps (Gs).
  9. The rotary pump according to at least claim 5, wherein the immersion pocket/s (28, 29) is/are supplied with lubricant and/or sealant by an inward flow of a lubricant and/or sealant via the radial bearing gap (GB) with or without a lubricant and/or sealant groove, or a lubricant and/or sealant supplying bore emerges into the immersion pocket/s (28, 29).
  10. The rotary pump according to any one of the preceding claims, wherein the rotor slot (32) exhibits an axial extent (LRS) which is at least as large as and preferably larger than the axial extent (LR) of the rotor (22) plus the axial extent (Lv) of the at least one sealing element (26, 27).
  11. The rotary pump according to any one of the preceding claims, wherein the rotor slot (32) exhibits an axial fitting extent (LF) which is at least as large as the axial extent (LR) of the rotor (22) plus a maximum axial clearance of the drive shaft (3).
  12. A pump unit for a motor vehicle, comprising:
    a first rotary pump (1) featuring a delivery space (11) in which at least one rotor (12) is arranged which delivers a fluid from an inlet into the delivery space (11) on a low-pressure side of the first rotary pump (1) to an outlet from the delivery space (11) on a high-pressure side of the first rotary pump (1);
    a second rotary pump (2) according to any one of claims 1 to 11, featuring a delivery space (21) in which at least one rotor (22) is arranged which delivers a fluid from an inlet into the delivery space (21) on a low-pressure side of the second rotary pump (2) to an outlet from the delivery space (21) on a high-pressure side of the second rotary pump (2); and
    a drive shaft (3) for driving the rotary pumps (1, 2), wherein the rotor (12) of the first rotary pump (1) and the rotor (22) of the second rotary pump (2) are connected, secured against axially shifting, to the drive shaft (3).
EP19161064.1A 2018-03-06 2019-03-06 Sealing element vacuum pump Active EP3536961B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102018105142.5A DE102018105142A1 (en) 2018-03-06 2018-03-06 Sealing element vacuum pump

Publications (4)

Publication Number Publication Date
EP3536961A2 EP3536961A2 (en) 2019-09-11
EP3536961A3 EP3536961A3 (en) 2019-12-04
EP3536961B1 true EP3536961B1 (en) 2024-05-01
EP3536961C0 EP3536961C0 (en) 2024-05-01

Family

ID=65717917

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19161064.1A Active EP3536961B1 (en) 2018-03-06 2019-03-06 Sealing element vacuum pump

Country Status (4)

Country Link
US (1) US11286929B2 (en)
EP (1) EP3536961B1 (en)
CN (1) CN110230596B (en)
DE (1) DE102018105142A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1719135A (en) * 1923-02-10 1929-07-02 Rotary Machine & Engineering C Rotary pump
WO2016150505A1 (en) * 2015-03-25 2016-09-29 Pierburg Pump Technology Gmbh Vacuum pump

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2439258A (en) * 1942-12-05 1948-04-06 Gen Electric Vacuum pump
US2929550A (en) * 1955-03-04 1960-03-22 N G N Electrical Ltd Rotary pumps and valves therefor
US2935023A (en) * 1957-09-23 1960-05-03 Gen Motors Corp Steering and air compressor lubrication system
US3237851A (en) * 1964-07-22 1966-03-01 Cenco Instr Corp Mechanical vacuum pump
US3565558A (en) * 1969-01-31 1971-02-23 Airborne Mfg Co Rotary pump with sliding vanes
US3695789A (en) * 1970-04-13 1972-10-03 Case Co J I Balancing mechanism for fluid translating device
US3778192A (en) * 1972-04-07 1973-12-11 Davey Compressor Method and apparatus for unloading a rotary compressor
JPS49146395U (en) * 1973-04-16 1974-12-17
JPS54158706A (en) 1978-06-06 1979-12-14 Nippon Piston Ring Co Ltd Rotary type fluid-handling pump
JPS59145384A (en) * 1983-02-08 1984-08-20 Nippon Soken Inc Auxiliary machine for automobile
EP0128969B1 (en) * 1983-06-18 1986-10-01 Vickers Systems GmbH Double pump
US4497618A (en) * 1983-09-12 1985-02-05 General Motors Corporation Combined vacuum pump and power steering pump assembly
US5472327A (en) * 1995-04-06 1995-12-05 Ford Motor Company Rotary compressor with improved fluid inlet porting
JPH09126157A (en) * 1995-08-29 1997-05-13 Aisin Seiki Co Ltd Tandem pump device
US6579070B1 (en) * 1998-12-24 2003-06-17 Bosch Rexroth Ag Pump assembly comprising two hydraulic pumps
DE10150015A1 (en) * 2001-10-11 2003-04-17 Leybold Vakuum Gmbh Multiple chamber plant used for degassing, coating or etching substrates comprises an evacuating system connected to chambers
EP1597459B1 (en) * 2003-02-14 2008-01-02 ixetic Hückeswagen GmbH Pump combination
US6945759B2 (en) * 2003-04-01 2005-09-20 Timothy H. Henderson Engine driven dry air pump with a flange mounted oil drain
ATE488697T1 (en) * 2003-04-16 2010-12-15 O M P Officine Mazzocco Pagnoni S R L OIL AND VACUUM PUMP UNIT FOR AN VEHICLE COMBUSTION ENGINE
DE102005008887A1 (en) * 2005-02-26 2006-08-31 Leybold Vacuum Gmbh Single-shaft vacuum displacement pump has two pump stages each with pump rotor and drive motor supported by the shaft enclosed by a stator housing
ITTO20060673A1 (en) * 2006-09-21 2008-03-22 Vhit Spa PALETTE ROTARY PUMP
US7959421B2 (en) * 2007-09-11 2011-06-14 Emerson Climate Technologies, Inc. Compressor having a shutdown valve
JP2010249130A (en) * 2009-03-27 2010-11-04 Sanden Corp Fluid machine
DE202009010890U1 (en) * 2009-08-10 2009-12-03 Joma-Polytec Kunststofftechnik Gmbh vacuum pump
US9897336B2 (en) * 2009-10-30 2018-02-20 Gilbert S. Staffend High efficiency air delivery system and method
US8961148B2 (en) * 2011-07-19 2015-02-24 Douglas G. Hunter Unified variable displacement oil pump and vacuum pump
DE102011086175B3 (en) * 2011-11-11 2013-05-16 Schwäbische Hüttenwerke Automotive GmbH Rotary pump with improved sealing
EP2626510B1 (en) * 2012-02-13 2017-11-15 Pierburg Pump Technology GmbH Motor vehicle auxiliary power unit vacuum pump
DE102012222753B4 (en) * 2012-12-11 2016-08-04 Schwäbische Hüttenwerke Automotive GmbH Gas pump with sealing oil groove
JP6083408B2 (en) * 2014-03-25 2017-02-22 株式会社豊田自動織機 Vane type compressor
DE102015216104B3 (en) * 2015-08-24 2016-12-29 Magna Powertrain Bad Homburg GmbH Vacuum pump in lightweight construction
US10760575B2 (en) * 2016-11-07 2020-09-01 Hanon Systems Electric compressor having electrical connection unit, and stator assembly for the same
DE102016222288A1 (en) * 2016-11-14 2018-05-17 Mahle International Gmbh pump means

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1719135A (en) * 1923-02-10 1929-07-02 Rotary Machine & Engineering C Rotary pump
WO2016150505A1 (en) * 2015-03-25 2016-09-29 Pierburg Pump Technology Gmbh Vacuum pump

Also Published As

Publication number Publication date
EP3536961A3 (en) 2019-12-04
US20190277282A1 (en) 2019-09-12
CN110230596A (en) 2019-09-13
EP3536961A2 (en) 2019-09-11
US11286929B2 (en) 2022-03-29
DE102018105142A1 (en) 2019-09-12
EP3536961C0 (en) 2024-05-01
CN110230596B (en) 2021-10-19

Similar Documents

Publication Publication Date Title
DE102005009470B4 (en) bearings
EP2921703B1 (en) Engine-pump unit
EP3014149B1 (en) Radial shaft seal
DE4305791C2 (en) Radial piston pump, in particular fuel pump for internal combustion engines
DE102015002353A1 (en) Oil pump and method for its production
DE102011116869B4 (en) Vane machine
EP2743506A2 (en) Gas pump with a sealing oil groove
DE202013102506U1 (en) Internal gear machine with inclined bores for connecting hydrostatic bearings for a ring gear with a pressure main channel
DE202013103826U1 (en) Internal gear machine with filler retainer
DE102012209622A1 (en) Gear machine with hydrodynamic and hydrostatically mounted journal
DE102015210004A1 (en) Gear machine with load-reducing pressure field on the bearing bodies
EP3536961B1 (en) Sealing element vacuum pump
DE102012209152A1 (en) Gear machine e.g. pump is formed with recess with two portions extended in different directions, such that pressurized fluid pass into recess in direct contact with bearing sleeve and tooth space of associated gearwheel
DE10247518A1 (en) Vane pump, especially for hydraulic oil at a power assisted steering system, has grooves at the suction kidneys for an additional flow path to the pressure zone
EP2872771B1 (en) High-pressure pump
DE102012212154A1 (en) High pressure pump for conveying fluid e.g. diesel, in common-rail-injection system of diesel engine of motor vehicle, has shaft comprising recess such that channel discharging fluid from lubricating area is formed between shaft and bearing
EP1989448B1 (en) Oil-pump and vacuum-pump module
DE19829548C2 (en) Radial piston pump
DE2737659A1 (en) Rotary vane vacuum pump for vehicle air brakes - has case hardened rotor shaft supported directly in casing bearing
DE102012216256A1 (en) External gear machine e.g. pump, has channels guided from high pressure terminal to compensation pressure fields that are provided for force loading of bearing sleeves against force effect of pressure or force effect of portion of pressure
DE102018105144A1 (en) Axial sealing element Vacuum pump
DE102019112050A1 (en) Feed pump with a leakage channel
DE102019200014A1 (en) Gear pump, especially oil pump
DE102015108923B3 (en) Electrically driven liquid displacement pump
DE102013222397B4 (en) Eccentric drive of a hydraulic unit of a vehicle brake system with a plain bearing having an eccentric inner ring, the inner ring end faces of which are partially encompassed by an outer ring

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: F04C 29/00 20060101ALI20191031BHEP

Ipc: F04C 25/02 20060101ALI20191031BHEP

Ipc: F04C 11/00 20060101ALI20191031BHEP

Ipc: F04C 23/00 20060101AFI20191031BHEP

Ipc: F04C 27/00 20060101ALI20191031BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200604

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SCHWAEBISCHE HUETTENWERKE AUTOMOTIVE GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20211217

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20231121

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019011150

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

U01 Request for unitary effect filed

Effective date: 20240501

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20240510