EP3536774B1 - Gene sequencing chip and combination with mounting frame - Google Patents

Gene sequencing chip and combination with mounting frame Download PDF

Info

Publication number
EP3536774B1
EP3536774B1 EP16920517.6A EP16920517A EP3536774B1 EP 3536774 B1 EP3536774 B1 EP 3536774B1 EP 16920517 A EP16920517 A EP 16920517A EP 3536774 B1 EP3536774 B1 EP 3536774B1
Authority
EP
European Patent Office
Prior art keywords
gene sequencing
sequencing chip
flow channel
silicon wafer
sealant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16920517.6A
Other languages
German (de)
French (fr)
Other versions
EP3536774A1 (en
EP3536774A4 (en
Inventor
Hong Xu
Songzhen ZHANG
Chongchong DAI
Huan ZHENG
Yong Gan
Jing Wang
Ming Ni
Daxi TAN
Wenyu Zhang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MGI Tech Co Ltd
Original Assignee
MGI Tech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MGI Tech Co Ltd filed Critical MGI Tech Co Ltd
Publication of EP3536774A1 publication Critical patent/EP3536774A1/en
Publication of EP3536774A4 publication Critical patent/EP3536774A4/en
Application granted granted Critical
Publication of EP3536774B1 publication Critical patent/EP3536774B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502707Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502761Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip specially adapted for handling suspended solids or molecules independently from the bulk fluid flow, e.g. for trapping or sorting beads, for physically stretching molecules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L9/00Supporting devices; Holding devices
    • B01L9/52Supports specially adapted for flat sample carriers, e.g. for plates, slides, chips
    • B01L9/527Supports specially adapted for flat sample carriers, e.g. for plates, slides, chips for microfluidic devices, e.g. used for lab-on-a-chip
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/02Adapting objects or devices to another
    • B01L2200/025Align devices or objects to ensure defined positions relative to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0647Handling flowable solids, e.g. microscopic beads, cells, particles
    • B01L2200/0668Trapping microscopic beads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0819Microarrays; Biochips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0877Flow chambers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/08Regulating or influencing the flow resistance
    • B01L2400/084Passive control of flow resistance
    • B01L2400/086Passive control of flow resistance using baffles or other fixed flow obstructions

Definitions

  • the disclosure relates to gene sequencing consumables, in particular to a gene sequencing chip and a mounting frame for the same.
  • DNA sequencing synonym for DNA ordering or gene sequencing, refers to analysis of the base order of a particular DNA fragment, i.e., the arrangement of adenine (A), thymine (T), cytosine (C) and guanine (G).
  • A adenine
  • T thymine
  • C cytosine
  • G guanine
  • next-generation sequencing is a popular gene sequencing method on the market, conducted by loading a gene molecule to be sequenced onto a gene sequencing chip, followed by analysis of the gene sequence of the gene molecule to be sequenced via its fluorescent signal measured on a gene sequencing platform.
  • a CN invention patent with the application No. 200680029826.4 and the publication No. CN101466847B has disclosed a method for loading a gene molecule to be sequenced onto a gene sequencing chip.
  • a CN application discloses a microfluidic chip, actually a gene sequencing chip.
  • a substrate 101 of the chip includes several microchannels 1011 which are divided by metal microsphere sealing strips 1013 and into which a liquid reagent is injected via a linker seat 103.
  • the metal microsphere sealing strip 1013 dispensed on the substrate 101 is extruded to be spread out upon adhesion of the substrate 101 with a cover sheet 102, forming irregular edges and thus resulting in an irregular inner wall of the microchannel 1011, thereby interfering uniform flow of liquid.
  • the liquid reagent directly contacts the metal microsphere sealing strip 1013 to a large extent, which would incur a chemical reaction, thus leading an inaccurate sequencing result.
  • the substrate 101 is not fixed by a sealant or seal ring which is deposited between an upper fixing plate 1055 and a lower fixing plate 1051 (which constitute the chip along with other elements), thus may cause poor sealing performance to the microchannel 1011.
  • the subject of gene sequencing is sensitive to flow rate, pressure and the like of a reagent. Therefore, the flow rate and stability of pressure of a reagent in a gene sequencing chip are important criteria for assessing quality of the gene sequencing chip.
  • the microfluidic chip in CN105624020A still has many disadvantages, and a gene sequencing chip (i.e. a microfluidic chip) prepared by the method in CN101466847B cannot achieve an excellent result.
  • US20100323350A1 provides methods and compositions, including, without limitation, algorithms, computer readable media, computer programs, apparatus, and systems for determining the identity of nucleic acids in nucleotide sequences using, for example, data obtained from sequencing by synthesis methods.
  • a plurality of smaller flow cells is employed, each with a relatively small area to be imaged, in order to provide greater flexibility and efficiency.
  • US2014/024126A1 disclosed a flow-channel device for detecting light emission, having a flow channel which is structured by bonding of at least two substrates, wherein a first substrate has a first groove which constitutes the flow channel, and a second groove which contains an adhesive therein that contains an organic material, and the second groove has a light-shielding film provided on an inner wall thereof.
  • Embodiments of the present disclosure aim at solving at least one of the problems existing in the related art, such as non-uniform flow rate of a liquid in a gene sequencing chip, an inaccurate result by direct contact of the liquid with a sealant, poor sealing performance and the like.
  • the present disclosure in embodiments provides a gene sequencing chip with excellent performance, and a mounting frame used in cooperation with the gene sequencing chip.
  • the gene sequencing chip according to the invention includes the features of claim 1.
  • the sealant channel is filled with a sealant and is separated from the flow channel, avoiding contact of a liquid in the flow channel with the sealant to a maximum extent, thus preventing an inaccurate sequencing result incurred by the chemical reaction between the liquid and the sealant.
  • the flow channel is formed with a highly smooth inner surface to ensure uniform flow rate and stable pressure for the liquid, therefore improving accuracy of the sequencing results effectively.
  • the flow channel is enclosed only by the flow channel groove and the silicon wafer such that the flow channel has few contacting surfaces, thereby providing excellent sealing performance.
  • the first and second terminal sections each are in a shape of sharp angle protruding outward.
  • the silicon wafer is further provided with a boss which is located at the middle section and on which the adaptor region is provided.
  • the gene sequencing chip is optimized as follows.
  • the sharp angle protruding outward is an included angle of 60° and chamfered with a corner radius of 2 mm;
  • the first and second terminal sections each are connected to the middle section through a rounded transition with a corner radius of 2 mm;
  • the flow channel is of a length of 69.8 mm, a width of 5 mm for the middle section, and a distance from an upper surface of the boss to a bottom surface of the flow channel groove of 0.05 ⁇ 0.005 mm;
  • the liquid inlet and the liquid outlet, each formed as a round hole in a diameter of 0.8 mm, are apart from each other at a center distance of 69 mm.
  • the transparent cover sheet is further formed with a reinforcing agent groove at the surface where the transparent cover sheet is adhered to the silicon wafer, the reinforcing agent groove and the silicon wafer enclose a reinforcing agent channel which is filled with a reinforcing agent and surrounds the sealant channel, and the silicon wafer is further provided with an air hole which is located between the reinforcing agent channel and the sealant channel.
  • the sealant and the reinforcing agent are selected from polyurethane adhesive, hot melt adhesive and ultraviolet curing adhesive.
  • the adaptor region is in a round shape with a diameter of 220 nm
  • the silicon wafer is provided with a plurality of the adaptor regions arranged in an array with a center distance of 900 nm between adjacent two adaptor regions.
  • a mounting frame for the gene sequencing chip as described above including:
  • the mounting frame for the gene sequencing chip provided in embodiments of the present disclosure can be useful in protecting the gene sequencing chip, as well as for assisting the positioning of the gene sequencing chip on an exterior platform.
  • the mounting groove is provided with symmetric protrusions at inner side walls which are configured to restrict the gene sequencing chip within the mounting groove.
  • the anti-off structure includes first and second elastic pieces which are symmetrically arranged at the insertion opening, wherein the first elastic piece has first and second ends, the second elastic piece has third and fourth ends, the first and third ends are fixed at two sides of the insertion opening, respectively, at a distance greater than the width of the gene sequencing chip; the second and fourth ends are movable with a reset distance smaller than the width of the gene sequencing chip, the first and third ends are located at an upstream end along an insertion direction, and the second and fourth ends are located at a downstream end along the insertion direction.
  • the gene sequencing chip and the mounting frame for the same provided in embodiments of the present disclosure can have various embodiments.
  • the following embodiments are described by taking one of the embodiments as a main line, and Figures 1 to 13 are the schematic diagrams of the gene sequencing chip and the mounting frame for the same described in accordance with the main line.
  • Alternatives of technical features of the embodiment as the main line are interspersed as branches when the embodiment is described, and the alternatives which can be clearly expressed literally will not be illustrated by drawings.
  • Figures 14 and 15 are schematic diagrams of another embodiment of a mounting frame for a gene sequencing chip.
  • the gene sequencing chip 1 includes a silicon wafer 2 and a transparent cover sheet 3.
  • the silicon wafer 2 is provided with an adaptor region containing an adaptor which is capable of capturing a gene molecule to be sequenced, and a liquid inlet 7 and a liquid outlet 8 connecting a flow channel 6 with outside.
  • the transparent cover sheet 3 is adhered to the silicon wafer 2 and formed with a flow channel groove 4 and a sealant groove 5 at a surface where the transparent cover sheet 3 is adhered to the silicon wafer 2.
  • the flow channel groove 4 and the silicon wafer 2 enclose the flow channel 6 which allows a liquid to flow through and accommodates the adaptor region, referring to Figures 11 and 13 for understanding.
  • the sealant groove 5 and the silicon wafer 2 enclose a sealant channel 9 which is filled with a sealant 10 and surrounds the flow channel 6, also referring to Figures 11 and 13 for understanding.
  • the transparent cover sheet 3 is made from a light-transmitting material, with excellent light transmittance, allowing an exterior laser to penetrate through it and radiate the flow channel 6, as well as allowing the fluorescent signal in the flow channel 6 to be emitted outside, which can be photographed clearly by an exterior camera.
  • the adaptor region is chemically modified by seeding a specific gene fragment as an adaptor onto its surface, thus will capture a gene molecule to be sequenced when a solution containing the gene molecule to be sequenced flows through, with the gene molecule fixed onto the adaptor region.
  • the adaptor region of the present disclosure can be modified by various methods, and accordingly the gene molecule to be sequenced can be captured by various methods, for example, in one embodiment of the present disclosure, the modification of the adaptor region and capturing of the gene molecule to be sequenced are conducted according to the methods disclosed in CN invention patent CN101466847B , from which such the gene molecule to be sequenced is called as "DNA nanoball" (DNB for short).
  • the sealant channel 9 is filled with a sealant 10 and is separated from the flow channel 6, avoiding contact of a liquid in the flow channel 6 with the sealant 10 to a maximum extent, thus preventing an inaccurate sequencing result incurred by the chemical reaction between the liquid and the sealant 10.
  • the flow channel 6 is formed with a highly smooth inner surface to ensure uniform flow rate and stable pressure for the liquid, therefore improving accuracy of the sequencing results effectively.
  • the flow channel 6 is enclosed only by the flow channel groove 4 and the silicon wafer 2 such that the flow channel 6 has few contacting surfaces, thereby providing excellent sealing performance.
  • the gene sequencing chip 1 prepared can achieve high sequencing throughput although in a small size.
  • the flow channel 6 can be formed with an extremely smooth inner surface by the current technology, benefiting uniform flow of liquid and avoiding generation of bubbles.
  • the flow channel 6, in a long strip shape includes a middle section 11, first and second terminal sections 12.
  • the first and second terminal sections 12 are located at and connected to two ends of the middle section 11, respectively.
  • the first and second terminal sections 12 each are in a shape of sharp angle protruding outward.
  • the liquid inlet 7 and the liquid outlet 8 are located at the first and second terminal sections 12, respectively.
  • FIG 2 is a schematic diagram of the genetic sequencing chip 1 of which the transparent cover sheet 3 is not displayed, and the shape of the sealant 10 therein substantially represents the shape of the flow channel 6, which is good for the skilled in the art to understand the embodiment of the present disclosure.
  • the flow channel 6 in the embodiment is surrounded by the sealant 10 at a certain interval with the transparent cover sheet 3 as an separator therebetween (referring to Figures 5 , 11 and 13 ), where the certain interval is extremely close, such that the shape of the flow channel 6 can be substantively represented by the shape of the sealant 10.
  • the flow channel 6 in such configuration further ensures uniform flow rate and stable pressure of a liquid. With fluid mechanics analysis and lots of trial results, it is found that the fluid velocity is most uniform and the pressure is best in the middle section 11 throughout the entire flow channel 6, thus the adaptor region is usually arranged at the middle section 11.
  • the silicon wafer 2 is further provided with a boss 13 which is located at the middle section 11 and on which the adaptor region is provided.
  • the distance between the adaptor region and the bottom surface of the flow channel groove 4 is shortened by provision of the boss 13, thus reducing the internal space of the flow channel 6, the reagent consumption and sequencing cost; as well shortening the optical path of light wave in the flow channel 6 and the optical path difference of fluorescence in different wavelengths passing through the transparent cover sheet 3, therefore accuracy of fluorescent signal collected with exterior detection devices (such as a camera) can be further improved.
  • a boss 13 is provided, referring to Figures 11 and 13 , where the adaptor region is arranged on the boss 13 (that is located on the upper surface of the boss 13), which is higher than the contacting surface between the transparent cover sheet 3 and the silicon wafer 2 under the upper surface of the boss 13 (that is located lower than the upper surface of the boss 13), thereby generating a height difference between the adaptor region and the contacting surface, thus the adaptor region arranged at a higher position cannot be affected, even if the liquid contacts with the sealant at a lower position (since the possible resulting product will not flow up to the upper surface of the boss 13 under the gravity), such that the accuracy of the sequencing results will be guaranteed.
  • the sharp angle protruding outward of the first and second terminal sections 12 is an included angle of 60° and chamfered with a corner radius of 2 mm; the first and second terminal sections 12 each are connected to the middle section 11 through a rounded transition with a corner radius of 2 mm; the flow channel 6 is of a length of 69.8 mm, a width of 5 mm for the middle section 11, and a distance from an upper surface of the boss 13 to a bottom surface of the flow channel groove 4 of 0.05 ⁇ 0.005 mm; and the liquid inlet 7 and the liquid outlet 8, each formed as a round hole in a diameter of 0.8 mm, are apart from each other at a center distance of 69 mm.
  • Figures 17 and 18 are diagrams showing the test results of flow channel optimized as above.
  • Figure 17 in which the liquid inlet is at the right end and the liquid outlet is at the left end shows a highly uniform flow field of the flow channel 6, with very uniform flow velocity at each position.
  • Figure 18 in which the liquid inlet is at the right end and the liquid outlet is at the left end shows a highest pressure near the liquid inlet and a lowest pressure near the liquid outlet, with a uniform pressure decreasing during the middle section. In this trial, the liquid flow is driven under a negative pressure provided at the liquid outlet.
  • the transparent cover sheet 3 is further formed with a reinforcing agent groove 14 at the surface where the transparent cover sheet 3 is adhered to the silicon wafer 2, the reinforcing agent groove 14 and the silicon wafer 2 enclose a reinforcing agent channel 15 which is filled with a reinforcing agent 16 and surrounds the sealant channel 9, and the silicon wafer 2 is further provided with an air hole 17 which is located between the reinforcing agent channel 15 and the sealant channel 9.
  • the air hole 17 can be useful in discharging the air between the reinforcing agent channel 15 and the sealant channel 9, as well useful in positioning during encapsulation of the gene sequencing chip.
  • the sealant and the reinforcing agent in embodiments of the present disclosure can be selected from polyurethane adhesive, hot melt adhesive, ultraviolet curing adhesive and other suitable adhesives.
  • the sealants as described above can endure high temperature, thus the gene sequencing chip where the sealant is used for adhesion is capable of resisting deformation strongly under the high temperature, and exhibiting excellent sealing performance.
  • the modification of the adaptor region at the silicon wafer and the capturing of the gene molecule to be sequenced is conducted according to the methods disclosed in CN invention patent CN101466847B .
  • the adaptor region 18 is in a round shape with a diameter of 220 nm, and the silicon wafer 2 is provided with a plurality of the adaptor regions 18 (about 200 million) arranged in an array with a center distance of 900 nm between adjacent two adaptor regions.
  • the adaptor region 18 is seeded with an adaptor, which can capture the gene molecule to be sequenced 19 (i.e. DNB in a diameter of about 200 nm), where one DNB can be specifically bond to one adaptor region 18.
  • the mounting frame 20 can be configured to protect the gene sequencing chip 1, as well as to assist the positioning of the gene sequencing chip 1 on an exterior platform, where the mounting frame 20 includes:
  • the mounting groove 21 may be formed as a groove structure with a sealed bottom.
  • the mounting groove 21 is formed as a groove structure with an open bottom, and provided with six symmetric protrusions 26 at two inner side walls (that is three protrusions at each inner side wall).
  • the protrusions are configured to restrict the gene sequencing chip 1 within the mounting groove 21, and to restrain the deformation of the mounting frame 20.
  • the number and size of the protrusions 26 can be set as desired, for example, four protrusions 26 are set, with two protrusions at each inner side wall.
  • the mounting frame 20 is further provided with six fabrication holes 29, which are located right above the six protrusions 26 respectively and configured to allow the protrusions 26 to be injection molded more conveniently.
  • the anti-off structure 23 includes first and second elastic pieces 27 which are symmetrically arranged at the insertion opening 22, more particularly, the first elastic piece 27 has first and second ends, the second elastic piece 27 has third and fourth ends, the first and third ends are fixed at two sides of the insertion opening 22, respectively, at a distance greater than the width of the gene sequencing chip 1; the second and fourth ends are movable with a reset distance smaller than the width of the gene sequencing chip 1, the first and third ends are located at an upstream end along an insertion direction, and the second and fourth ends are located at a downstream end along the insertion direction.
  • the anti-off structure in such configuration is good for loading and unloading the gene sequencing chip 1, and facilitates the gene sequencing chip 1 to be fixed in the mounting groove 21 firmly.
  • the open region 24 is configured to conform to the shape of the flow channel 6 (with its area slightly bigger than that of the flow channel 6) and is located right above the flow channel 6, which allows the entire flow channel 6 to be observed from outside.
  • the open region of a mounting frame 20' is formed as a long strip shape with round corners, which is slightly different from the open region 24, and is configured to allow the entire flow channel 6 to be completely fallen into the range of the open region of the mounting frame 20', thus the entire flow channel 6 can be observed from outside as well.
  • the mounting frame 20 can be further attached with a label 28, which is printed with a barcode or a two-dimensional code and the like, so as to facilitate the tracking and management of the gene sequencing chip and the mounting frame for the same, thus improving efficiency and accuracy of gene sequencing.
  • the gene sequencing chip and the mounting frame for the same provided in embodiments of the present disclosure are formed as individual simple structures with few components, thus can be easily assembled and produced.
  • the silicon wafer 2 of the gene sequencing chip 1 is provided with more than 200 million of adaptor regions 18 seeded with adaptors via chemical modification on the surface of the silicon wafer 2, according to the methods disclosed in the CN invention patent CN101466847B .
  • Step 2 The gene sequencing chip 1 in step 1 is mounted into the mounting frame 20, which is subsequently placed on an exterior gene sequencer.
  • Step 3 A solution containing a gene molecule to be sequenced 19 (i.e. DNB) is injected into the flow channel 6 via the liquid inlet 7, with the DNB flowing through captured by and adhered to an adaptor on the adaptor region 18.
  • DNB a gene molecule to be sequenced 19
  • Step 4 A gene sequencing reagent which would react with the DNBs is injected into the cleaned flow channel 6, with a fluorescent signal generated which is subsequently collected by the gene sequencer, thus obtaining the sequences of the gene molecule to be sequenced.
  • Combinatorial Probe-Anchor Synthesis (cPAS) is used, however it does not belong to the protection scope of this present disclosure and will not be described in detail herein. It should be noted, the chemical modification of the adaptor region on the silicon wafer and gene sequencing can be conducted with other methods in the present disclosure, which are not limited to the methods disclosed in CN101466847B as an example.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Clinical Laboratory Science (AREA)
  • Dispersion Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Hematology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Medicinal Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Biomedical Technology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Description

    FIELD
  • The disclosure relates to gene sequencing consumables, in particular to a gene sequencing chip and a mounting frame for the same.
  • BACKGROUND
  • DNA sequencing, synonym for DNA ordering or gene sequencing, refers to analysis of the base order of a particular DNA fragment, i.e., the arrangement of adenine (A), thymine (T), cytosine (C) and guanine (G).
  • Currently, the Next-generation sequencing is a popular gene sequencing method on the market, conducted by loading a gene molecule to be sequenced onto a gene sequencing chip, followed by analysis of the gene sequence of the gene molecule to be sequenced via its fluorescent signal measured on a gene sequencing platform. A CN invention patent with the application No. 200680029826.4 and the publication No. CN101466847B has disclosed a method for loading a gene molecule to be sequenced onto a gene sequencing chip.
  • A CN application (with the application No. 201410625939.7 and the publication No. CN105624020A ) discloses a microfluidic chip, actually a gene sequencing chip. A substrate 101 of the chip includes several microchannels 1011 which are divided by metal microsphere sealing strips 1013 and into which a liquid reagent is injected via a linker seat 103. The metal microsphere sealing strip 1013 dispensed on the substrate 101 is extruded to be spread out upon adhesion of the substrate 101 with a cover sheet 102, forming irregular edges and thus resulting in an irregular inner wall of the microchannel 1011, thereby interfering uniform flow of liquid. Further, the liquid reagent directly contacts the metal microsphere sealing strip 1013 to a large extent, which would incur a chemical reaction, thus leading an inaccurate sequencing result. Furthermore, the substrate 101 is not fixed by a sealant or seal ring which is deposited between an upper fixing plate 1055 and a lower fixing plate 1051 (which constitute the chip along with other elements), thus may cause poor sealing performance to the microchannel 1011.
  • The subject of gene sequencing, usually in molecular scale, is sensitive to flow rate, pressure and the like of a reagent. Therefore, the flow rate and stability of pressure of a reagent in a gene sequencing chip are important criteria for assessing quality of the gene sequencing chip. Based on the above, the microfluidic chip in CN105624020A still has many disadvantages, and a gene sequencing chip (i.e. a microfluidic chip) prepared by the method in CN101466847B cannot achieve an excellent result.
  • US20100323350A1 provides methods and compositions, including, without limitation, algorithms, computer readable media, computer programs, apparatus, and systems for determining the identity of nucleic acids in nucleotide sequences using, for example, data obtained from sequencing by synthesis methods. A plurality of smaller flow cells is employed, each with a relatively small area to be imaged, in order to provide greater flexibility and efficiency.
  • US2014/024126A1 disclosed a flow-channel device for detecting light emission, having a flow channel which is structured by bonding of at least two substrates, wherein a first substrate has a first groove which constitutes the flow channel, and a second groove which contains an adhesive therein that contains an organic material, and the second groove has a light-shielding film provided on an inner wall thereof.
  • Note: the drawings and the reference numerals of technical features mentioned in the background section refer to the drawings and reference numerals in the cited documents only, and do not refer to the drawings and reference numerals in the present application.
  • SUMMARY
  • Embodiments of the present disclosure aim at solving at least one of the problems existing in the related art, such as non-uniform flow rate of a liquid in a gene sequencing chip, an inaccurate result by direct contact of the liquid with a sealant, poor sealing performance and the like. For this, the present disclosure in embodiments provides a gene sequencing chip with excellent performance, and a mounting frame used in cooperation with the gene sequencing chip.
  • The gene sequencing chip according to the invention includes the features of claim 1.
  • In some embodiments of the present disclosure, the sealant channel is filled with a sealant and is separated from the flow channel, avoiding contact of a liquid in the flow channel with the sealant to a maximum extent, thus preventing an inaccurate sequencing result incurred by the chemical reaction between the liquid and the sealant. Further, the flow channel is formed with a highly smooth inner surface to ensure uniform flow rate and stable pressure for the liquid, therefore improving accuracy of the sequencing results effectively. Furthermore, the flow channel is enclosed only by the flow channel groove and the silicon wafer such that the flow channel has few contacting surfaces, thereby providing excellent sealing performance.
  • In some embodiments of the present disclosure, the first and second terminal sections each are in a shape of sharp angle protruding outward.
  • In accordance with the present invention, the silicon wafer is further provided with a boss which is located at the middle section and on which the adaptor region is provided.
  • In one embodiment of the present disclosure, the gene sequencing chip is optimized as follows. The sharp angle protruding outward is an included angle of 60° and chamfered with a corner radius of 2 mm; the first and second terminal sections each are connected to the middle section through a rounded transition with a corner radius of 2 mm; the flow channel is of a length of 69.8 mm, a width of 5 mm for the middle section, and a distance from an upper surface of the boss to a bottom surface of the flow channel groove of 0.05±0.005 mm; and the liquid inlet and the liquid outlet, each formed as a round hole in a diameter of 0.8 mm, are apart from each other at a center distance of 69 mm.
  • To further improve the resistance to external force for the gene sequencing chip, in one embodiment of the present disclosure, the transparent cover sheet is further formed with a reinforcing agent groove at the surface where the transparent cover sheet is adhered to the silicon wafer, the reinforcing agent groove and the silicon wafer enclose a reinforcing agent channel which is filled with a reinforcing agent and surrounds the sealant channel, and the silicon wafer is further provided with an air hole which is located between the reinforcing agent channel and the sealant channel. In some embodiments of the present disclosure, the sealant and the reinforcing agent are selected from polyurethane adhesive, hot melt adhesive and ultraviolet curing adhesive.
  • In one embodiment of the present disclosure, the adaptor region is in a round shape with a diameter of 220 nm, and the silicon wafer is provided with a plurality of the adaptor regions arranged in an array with a center distance of 900 nm between adjacent two adaptor regions.
  • In another aspect of the present disclosure, provided in embodiments is a mounting frame for the gene sequencing chip as described above, including:
    • a mounting groove, configured to accommodate and fit to the gene sequencing chip and provided with an insertion opening for receiving the gene sequencing chip at one end of the mounting groove;
    • an anti-off structure, arranged at the insertion opening and configured to prevent the gene sequencing chip from slipping out of the insertion opening;
    • an open region, located right above the mounting groove and configured to allow observation of the flow channel of the gene sequencing chip accommodated in the mounting groove from outside; and
    • a positioning hole, configured to allow the mounting frame to be positioned on an exterior platform.
  • The mounting frame for the gene sequencing chip provided in embodiments of the present disclosure can be useful in protecting the gene sequencing chip, as well as for assisting the positioning of the gene sequencing chip on an exterior platform.
  • To further improve stability of the gene sequencing chip mounted, the mounting groove is provided with symmetric protrusions at inner side walls which are configured to restrict the gene sequencing chip within the mounting groove.
  • In a particular embodiment, the anti-off structure includes first and second elastic pieces which are symmetrically arranged at the insertion opening, wherein the first elastic piece has first and second ends, the second elastic piece has third and fourth ends, the first and third ends are fixed at two sides of the insertion opening, respectively, at a distance greater than the width of the gene sequencing chip; the second and fourth ends are movable with a reset distance smaller than the width of the gene sequencing chip, the first and third ends are located at an upstream end along an insertion direction, and the second and fourth ends are located at a downstream end along the insertion direction.
  • BRIEF DESCRIPTION OF THE DRAWINGS
    • Figure 1 is a schematic stereogram of a gene sequencing chip in one embodiment of the present disclosure;
    • Figure 2 is a schematic diagram of Figure 1 where a transparent cover sheet is not displayed;
    • Figure 3 is a decompose diagram of a gene sequencing chip in one embodiment of the present disclosure;
    • Figure 4 is a schematic diagram of a bottom view of Figure 3;
    • Figure 5 is an enlarged partial view for part I in Figure 4;
    • Figure 6 is a schematic stereogram of a mounting frame in one embodiment of the present disclosure, which is equipped with a gene sequencing chip of which a transparent cover sheet is not displayed;
    • Figure 7 is a decompose diagram of Figure 6 where the transparent cover sheet of the gene sequencing chip is displayed;
    • Figure 8 is a schematic diagram of a bottom view of Figure 6;
    • Figure 9 is a schematic diagram of a bottom view of Figure 7;
    • Figure 10 is a sectional view taken along the line A-A in Figure 6 where a transparent cover sheet is displayed;
    • Figure 11 is an enlarged partial view for part II in Figure 10;
    • Figure 12 is a sectional view taken along the line B-B in Figure 6 where a transparent cover sheet is displayed;
    • Figure 13 is an enlarged partial view for part III in Figure 12;
    • Figure 14 is a schematic diagram of a mounting frame in another embodiment of the present disclosure, which is equipped with a gene sequencing chip;
    • Figure 15 is a schematic diagram of the gene sequencing chip of Figure 14 where a transparent cover sheet is not displayed;
    • Figure 16 is an enlarged view for an adaptor region in one embodiment of the present disclosure;
    • Figure 17 is a schematic diagram showing a velocity field of fluid in a gene sequencing chip in one embodiment of the present disclosure;
    • Figure 18 is a schematic diagram showing pressure of fluid in a gene sequencing chip in one embodiment of the present disclosure.
    DETAILED DESCRIPTION
  • To explicitly illustrate the objects, technical solutions and advantages of the present disclosure, the present disclosure is further described in detail below in combination with the drawings and examples. It is understood that the specific examples described herein are explanatory, and cannot be construed to limit the scope of the present disclosure.
  • The gene sequencing chip and the mounting frame for the same provided in embodiments of the present disclosure can have various embodiments. For a better understanding, the following embodiments are described by taking one of the embodiments as a main line, and Figures 1 to 13 are the schematic diagrams of the gene sequencing chip and the mounting frame for the same described in accordance with the main line. Alternatives of technical features of the embodiment as the main line are interspersed as branches when the embodiment is described, and the alternatives which can be clearly expressed literally will not be illustrated by drawings. Figures 14 and 15 are schematic diagrams of another embodiment of a mounting frame for a gene sequencing chip.
  • In one embodiment of the present disclosure, referring to Figures 1 to 5, the gene sequencing chip 1 includes a silicon wafer 2 and a transparent cover sheet 3. The silicon wafer 2 is provided with an adaptor region containing an adaptor which is capable of capturing a gene molecule to be sequenced, and a liquid inlet 7 and a liquid outlet 8 connecting a flow channel 6 with outside. The transparent cover sheet 3 is adhered to the silicon wafer 2 and formed with a flow channel groove 4 and a sealant groove 5 at a surface where the transparent cover sheet 3 is adhered to the silicon wafer 2. The flow channel groove 4 and the silicon wafer 2 enclose the flow channel 6 which allows a liquid to flow through and accommodates the adaptor region, referring to Figures 11 and 13 for understanding. The sealant groove 5 and the silicon wafer 2 enclose a sealant channel 9 which is filled with a sealant 10 and surrounds the flow channel 6, also referring to Figures 11 and 13 for understanding.
  • The transparent cover sheet 3 is made from a light-transmitting material, with excellent light transmittance, allowing an exterior laser to penetrate through it and radiate the flow channel 6, as well as allowing the fluorescent signal in the flow channel 6 to be emitted outside, which can be photographed clearly by an exterior camera.
  • The adaptor region is chemically modified by seeding a specific gene fragment as an adaptor onto its surface, thus will capture a gene molecule to be sequenced when a solution containing the gene molecule to be sequenced flows through, with the gene molecule fixed onto the adaptor region. The adaptor region of the present disclosure can be modified by various methods, and accordingly the gene molecule to be sequenced can be captured by various methods, for example, in one embodiment of the present disclosure, the modification of the adaptor region and capturing of the gene molecule to be sequenced are conducted according to the methods disclosed in CN invention patent CN101466847B , from which such the gene molecule to be sequenced is called as "DNA nanoball" (DNB for short).
  • In one embodiment of the present disclosure, the sealant channel 9 is filled with a sealant 10 and is separated from the flow channel 6, avoiding contact of a liquid in the flow channel 6 with the sealant 10 to a maximum extent, thus preventing an inaccurate sequencing result incurred by the chemical reaction between the liquid and the sealant 10. Further, the flow channel 6 is formed with a highly smooth inner surface to ensure uniform flow rate and stable pressure for the liquid, therefore improving accuracy of the sequencing results effectively. Furthermore, the flow channel 6 is enclosed only by the flow channel groove 4 and the silicon wafer 2 such that the flow channel 6 has few contacting surfaces, thereby providing excellent sealing performance.
  • The gene sequencing chip 1 prepared can achieve high sequencing throughput although in a small size. The flow channel 6 can be formed with an extremely smooth inner surface by the current technology, benefiting uniform flow of liquid and avoiding generation of bubbles.
  • Referring to Figure 2 for understanding, in one embodiment of the present disclosure, the flow channel 6, in a long strip shape, includes a middle section 11, first and second terminal sections 12. The first and second terminal sections 12 are located at and connected to two ends of the middle section 11, respectively. The first and second terminal sections 12 each are in a shape of sharp angle protruding outward. The liquid inlet 7 and the liquid outlet 8 are located at the first and second terminal sections 12, respectively.
  • Figure 2 is a schematic diagram of the genetic sequencing chip 1 of which the transparent cover sheet 3 is not displayed, and the shape of the sealant 10 therein substantially represents the shape of the flow channel 6, which is good for the skilled in the art to understand the embodiment of the present disclosure. It should be noted, the flow channel 6 in the embodiment is surrounded by the sealant 10 at a certain interval with the transparent cover sheet 3 as an separator therebetween (referring to Figures 5, 11 and 13), where the certain interval is extremely close, such that the shape of the flow channel 6 can be substantively represented by the shape of the sealant 10. The flow channel 6 in such configuration further ensures uniform flow rate and stable pressure of a liquid. With fluid mechanics analysis and lots of trial results, it is found that the fluid velocity is most uniform and the pressure is best in the middle section 11 throughout the entire flow channel 6, thus the adaptor region is usually arranged at the middle section 11.
  • In another embodiment of the present disclosure, for example, the silicon wafer 2 is further provided with a boss 13 which is located at the middle section 11 and on which the adaptor region is provided. Referring to Figures 11 and 13, the distance between the adaptor region and the bottom surface of the flow channel groove 4 is shortened by provision of the boss 13, thus reducing the internal space of the flow channel 6, the reagent consumption and sequencing cost; as well shortening the optical path of light wave in the flow channel 6 and the optical path difference of fluorescence in different wavelengths passing through the transparent cover sheet 3, therefore accuracy of fluorescent signal collected with exterior detection devices (such as a camera) can be further improved.
  • Generally, prior to adhering of the transparent cover sheet 3 on the silicon wafer 2, a liquid sealant which would be solidified to be the sealant 10 is injected into the sealant groove 5. However, it is hardly to ensure that the liquid sealant is injected in an exact amount such that the sealant channel 9 is just completely filled up, with a slight amount of sealant spilling out and flowing into the space between the transparent cover sheet 3 and the silicon wafer 2, which is at a risk of contacting the liquid in the flow channel 6 (usually occurring in an extremely low chance, but unavoidable), even resulting in a chemical reaction, thereby affecting the accuracy of sequencing results. For this, a boss 13 is provided, referring to Figures 11 and 13, where the adaptor region is arranged on the boss 13 (that is located on the upper surface of the boss 13), which is higher than the contacting surface between the transparent cover sheet 3 and the silicon wafer 2 under the upper surface of the boss 13 (that is located lower than the upper surface of the boss 13), thereby generating a height difference between the adaptor region and the contacting surface, thus the adaptor region arranged at a higher position cannot be affected, even if the liquid contacts with the sealant at a lower position (since the possible resulting product will not flow up to the upper surface of the boss 13 under the gravity), such that the accuracy of the sequencing results will be guaranteed.
  • With fluid mechanics analysis and lots of trial results, it is found that the flow channel 6 can be optimized as follows. The sharp angle protruding outward of the first and second terminal sections 12 is an included angle of 60° and chamfered with a corner radius of 2 mm; the first and second terminal sections 12 each are connected to the middle section 11 through a rounded transition with a corner radius of 2 mm; the flow channel 6 is of a length of 69.8 mm, a width of 5 mm for the middle section 11, and a distance from an upper surface of the boss 13 to a bottom surface of the flow channel groove 4 of 0.05±0.005 mm; and the liquid inlet 7 and the liquid outlet 8, each formed as a round hole in a diameter of 0.8 mm, are apart from each other at a center distance of 69 mm.
  • Figures 17 and 18 are diagrams showing the test results of flow channel optimized as above. Figure 17 in which the liquid inlet is at the right end and the liquid outlet is at the left end, shows a highly uniform flow field of the flow channel 6, with very uniform flow velocity at each position. Figure 18 in which the liquid inlet is at the right end and the liquid outlet is at the left end, shows a highest pressure near the liquid inlet and a lowest pressure near the liquid outlet, with a uniform pressure decreasing during the middle section. In this trial, the liquid flow is driven under a negative pressure provided at the liquid outlet.
  • In one embodiment of the present disclosure, referring to Figures 5, 11 and 13, to further improve the resistance to external force for the gene sequencing chip 1 and enhance the adhesive strength between the silicon wafer 2 and the transparent cover sheet 3, the transparent cover sheet 3 is further formed with a reinforcing agent groove 14 at the surface where the transparent cover sheet 3 is adhered to the silicon wafer 2, the reinforcing agent groove 14 and the silicon wafer 2 enclose a reinforcing agent channel 15 which is filled with a reinforcing agent 16 and surrounds the sealant channel 9, and the silicon wafer 2 is further provided with an air hole 17 which is located between the reinforcing agent channel 15 and the sealant channel 9. The air hole 17 can be useful in discharging the air between the reinforcing agent channel 15 and the sealant channel 9, as well useful in positioning during encapsulation of the gene sequencing chip.
  • The sealant and the reinforcing agent in embodiments of the present disclosure can be selected from polyurethane adhesive, hot melt adhesive, ultraviolet curing adhesive and other suitable adhesives. The sealants as described above can endure high temperature, thus the gene sequencing chip where the sealant is used for adhesion is capable of resisting deformation strongly under the high temperature, and exhibiting excellent sealing performance.
  • In one embodiment of the present disclosure, referring to Figure 16, the modification of the adaptor region at the silicon wafer and the capturing of the gene molecule to be sequenced is conducted according to the methods disclosed in CN invention patent CN101466847B . The adaptor region 18 is in a round shape with a diameter of 220 nm, and the silicon wafer 2 is provided with a plurality of the adaptor regions 18 (about 200 million) arranged in an array with a center distance of 900 nm between adjacent two adaptor regions. The adaptor region 18 is seeded with an adaptor, which can capture the gene molecule to be sequenced 19 (i.e. DNB in a diameter of about 200 nm), where one DNB can be specifically bond to one adaptor region 18. When the adaptor region is arranged as the size and adjacent distance as described above, clear fluorescent signals emitted can be collected within a resolution range acceptable for a camera, according to current technology.
  • In one embodiment of the present disclosure, referring to Figures 6 to 13, the mounting frame 20 provided can be configured to protect the gene sequencing chip 1, as well as to assist the positioning of the gene sequencing chip 1 on an exterior platform, where the mounting frame 20 includes:
    • a mounting groove 21, configured to accommodate and fit to the gene sequencing chip 1 and provided with an insertion opening 22 for receiving the gene sequencing chip 1 at one end of the mounting groove 21;
    • an anti-off structure 23, arranged at the insertion opening 22 and configured to prevent the gene sequencing chip 1 from slipping out of the insertion opening 22;
    • an open region 24, located right above the mounting groove 21 and configured to allow observation of the flow channel 6 of the gene sequencing chip 1 accommodated in the mounting groove 21 from outside; and
    • a positioning hole 25, configured to allow the mounting frame 20 to be positioned on an exterior platform,
    • in which the mounting frame 20 is formed as a hollow structure, and
    • the exterior platform is a customized gene sequencer.
  • In one embodiment of the present disclosure, the mounting groove 21 may be formed as a groove structure with a sealed bottom. In another embodiment, for simplification of structure, material-saving and facilitation of injection molding, the mounting groove 21 is formed as a groove structure with an open bottom, and provided with six symmetric protrusions 26 at two inner side walls (that is three protrusions at each inner side wall). The protrusions are configured to restrict the gene sequencing chip 1 within the mounting groove 21, and to restrain the deformation of the mounting frame 20. In still another embodiment of the present disclosure, the number and size of the protrusions 26 can be set as desired, for example, four protrusions 26 are set, with two protrusions at each inner side wall.
  • The mounting frame 20 is further provided with six fabrication holes 29, which are located right above the six protrusions 26 respectively and configured to allow the protrusions 26 to be injection molded more conveniently.
  • In a particular embodiment, referring to Figure 9, the anti-off structure 23 includes first and second elastic pieces 27 which are symmetrically arranged at the insertion opening 22, more particularly, the first elastic piece 27 has first and second ends, the second elastic piece 27 has third and fourth ends, the first and third ends are fixed at two sides of the insertion opening 22, respectively, at a distance greater than the width of the gene sequencing chip 1; the second and fourth ends are movable with a reset distance smaller than the width of the gene sequencing chip 1, the first and third ends are located at an upstream end along an insertion direction, and the second and fourth ends are located at a downstream end along the insertion direction. The anti-off structure in such configuration is good for loading and unloading the gene sequencing chip 1, and facilitates the gene sequencing chip 1 to be fixed in the mounting groove 21 firmly.
  • In one embodiment, referring to Figures 6 and 7, for example, the open region 24 is configured to conform to the shape of the flow channel 6 (with its area slightly bigger than that of the flow channel 6) and is located right above the flow channel 6, which allows the entire flow channel 6 to be observed from outside. In another embodiment, referring to Figures 14 and 15, the open region of a mounting frame 20' is formed as a long strip shape with round corners, which is slightly different from the open region 24, and is configured to allow the entire flow channel 6 to be completely fallen into the range of the open region of the mounting frame 20', thus the entire flow channel 6 can be observed from outside as well.
  • The mounting frame 20 can be further attached with a label 28, which is printed with a barcode or a two-dimensional code and the like, so as to facilitate the tracking and management of the gene sequencing chip and the mounting frame for the same, thus improving efficiency and accuracy of gene sequencing.
  • The gene sequencing chip and the mounting frame for the same provided in embodiments of the present disclosure are formed as individual simple structures with few components, thus can be easily assembled and produced.
  • To enable those skilled in the art to better understand the present disclosure, one implementation of the gene sequencing chip 1 and the mounting frame 20 for the same is exemplified briefly as the following steps, which is not intended to limit the protection scope of the present disclosure.
  • Step1. The silicon wafer 2 of the gene sequencing chip 1 is provided with more than 200 million of adaptor regions 18 seeded with adaptors via chemical modification on the surface of the silicon wafer 2, according to the methods disclosed in the CN invention patent CN101466847B .
  • Step 2. The gene sequencing chip 1 in step 1 is mounted into the mounting frame 20, which is subsequently placed on an exterior gene sequencer.
  • Step 3. A solution containing a gene molecule to be sequenced 19 (i.e. DNB) is injected into the flow channel 6 via the liquid inlet 7, with the DNB flowing through captured by and adhered to an adaptor on the adaptor region 18.
  • Step 4. A gene sequencing reagent which would react with the DNBs is injected into the cleaned flow channel 6, with a fluorescent signal generated which is subsequently collected by the gene sequencer, thus obtaining the sequences of the gene molecule to be sequenced.
  • During gene sequencing as described above, Combinatorial Probe-Anchor Synthesis (cPAS) is used, however it does not belong to the protection scope of this present disclosure and will not be described in detail herein. It should be noted, the chemical modification of the adaptor region on the silicon wafer and gene sequencing can be conducted with other methods in the present disclosure, which are not limited to the methods disclosed in CN101466847B as an example.
  • The description above is one embodiment of the present disclosure only, and is not intended to limit the present disclosure. The scope of the invention is defined by the appended claims.

Claims (10)

  1. A gene sequencing chip (1), comprising a silicon wafer (2) and a transparent cover sheet (3) adhered to the silicon wafer (2), the silicon wafer (2) is provided with
    an adaptor region (18) containing an adaptor which is capable of capturing a gene molecule to be sequenced, and
    a liquid inlet (7) and a liquid outlet (8) connecting a flow channel (6) with outside;
    said gene sequencing chip (1) is characterized in that:
    the transparent cover sheet (3) is formed with a flow channel groove (4) and a sealant groove (5) at a surface where the transparent cover sheet (3) is adhered to the silicon wafer (2),
    wherein the flow channel groove (4) and the silicon wafer (2) enclose the flow channel (6) which allows a liquid to flow through and accommodates the adaptor region (18), and
    wherein the sealant groove (5) and the silicon wafer (2) enclose a sealant channel (9) which is filled with a sealant (10) and surrounds the flow channel (6),
    wherein the flow channel (6), in a long strip shape, comprises a middle section (11) and first and second terminal sections (12) located at and connected to two ends of the middle section (11), respectively; wherein the liquid inlet (7) and the liquid outlet (8) are located at the first and second terminal sections (12), respectively; and wherein
    the silicon wafer (2) is further provided with a boss (13) located at the middle section (11) of the flow channel (6) and on which the adaptor region (18) is provided.
  2. The gene sequencing chip (1) according to claim 1, wherein
    the first and second terminal sections (12) each are in a shape of sharp angle protruding outward.
  3. The gene sequencing chip (1) according to claim 2, wherein
    the sharp angle protruding outward is in an included degree of 60° and chamfered with a corner radius of 2 mm;
    the first and second terminal sections (12) each are connected to the middle section (11) through a rounded transition with a corner radius of 2 mm;
    the flow channel (6) is of a length of 69.8 mm, a width of 5 mm for the middle section (11), and a distance from an upper surface of the boss (13) to a bottom surface of the flow channel groove (4) of 0.05±0.005 mm; and
    the liquid inlet (7) and the liquid outlet (8), each formed as a round hole in a diameter of 0.8 mm, are apart from each other at a center distance of 69 mm.
  4. The gene sequencing chip (1) according to any one of claims 1 to 3, wherein
    the transparent cover sheet (3) is further formed with a reinforcing agent groove (14) at the surface where the transparent cover sheet (3) is adhered to the silicon wafer (2),
    the reinforcing agent groove (14) and the silicon wafer (2) enclose a reinforcing agent channel (15) which is filled with a reinforcing agent (16) and surrounds the sealant channel (9), and
    the silicon wafer (2) is further provided with an air hole (17) which is located between the reinforcing agent channel (15) and the sealant channel (9).
  5. The gene sequencing chip (1) according to claim 4, wherein the sealant (10) and the reinforcing agent (16) are selected from polyurethane adhesive, hot melt adhesive and ultraviolet curing adhesive.
  6. The gene sequencing chip (1) according to any one of claims 1 to 5, wherein
    the adaptor region (18) is in a round shape with a diameter of 220 nm, and
    the silicon wafer (2) is provided with a plurality of the adaptor regions (18) arranged in an array with a center distance of 900 nm between adjacent two adaptor regions (18).
  7. A combination of a mounting frame (20) for the gene sequencing chip (1) and the gene sequencing chip (1) according to any one of claims 1 to 6, being characterized by
    a mounting groove (21), configured to accommodate and fit to the gene sequencing chip (1) and provided with an insertion opening (22) for receiving the gene sequencing chip (1) at one end of mounting groove (21);
    an anti-off structure (23), arranged at the insertion opening (22) and configured to prevent the gene sequencing chip (1) from slipping out of the insertion opening (22);
    an open region (24), located right above the mounting groove (21) and configured to allow observation of the flow channel (6) of the gene sequencing chip (1) accommodated in the mounting groove (21) from outside; and
    a positioning hole (25), configured to allow the mounting frame (20) to be positioned on an exterior platform.
  8. The combination according to claim 7, wherein the mounting groove (21) is provided with symmetric protrusions (26) at inner side walls which are configured to restrict the gene sequencing chip (1) within the mounting groove (21).
  9. The combination according to claim 7 or 8, wherein
    the anti-off structure (23) comprises first and second elastic pieces (27) which are symmetrically arranged at the insertion opening (22),
    the first elastic piece (27) has first and second ends,
    the second elastic piece (27) has third and fourth ends,
    the first and third ends are fixed at two sides of the insertion opening (22), respectively, at a distance greater than the width of the gene sequencing chip (1);
    the second and fourth ends are movable with a reset distance smaller than the width of the gene sequencing chip (1),
    the first and third ends are located at an upstream end along an insertion direction, and
    the second and fourth ends are located at a downstream end of along the insertion direction.
  10. The combination according to any one of claims 7 to 9, wherein the mounting frame (20) further comprises fabrication holes (29), correspondingly located right above the protrusions (26) and configured to allow the protrusions (26) to be injection molded.
EP16920517.6A 2016-11-01 2016-11-01 Gene sequencing chip and combination with mounting frame Active EP3536774B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/104215 WO2018081920A1 (en) 2016-11-01 2016-11-01 Gene sequencing chip and mounting frame thereof

Publications (3)

Publication Number Publication Date
EP3536774A1 EP3536774A1 (en) 2019-09-11
EP3536774A4 EP3536774A4 (en) 2020-08-12
EP3536774B1 true EP3536774B1 (en) 2021-06-16

Family

ID=62075663

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16920517.6A Active EP3536774B1 (en) 2016-11-01 2016-11-01 Gene sequencing chip and combination with mounting frame

Country Status (3)

Country Link
EP (1) EP3536774B1 (en)
CN (1) CN109328229B (en)
WO (1) WO2018081920A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11583856B2 (en) * 2019-04-02 2023-02-21 Beijing Boe Optoelectronics Technology Co., Ltd. Bio-information detection substrate and gene chip

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110387321B (en) * 2018-04-23 2023-03-17 深圳华大智造科技股份有限公司 Gene sequencing chip and gene sequencing device
WO2019218262A1 (en) * 2018-05-16 2019-11-21 深圳华大智造科技有限公司 Gene sequencer
CN112955536B (en) * 2018-08-16 2024-05-17 深圳华大智造科技股份有限公司 Handle device, positioning device, loading device and gene sequencer
CN108913590A (en) * 2018-09-07 2018-11-30 崔化先 A kind of gene sequencing chip and production method
CN110004028A (en) * 2019-04-16 2019-07-12 北京龙基高科生物科技有限公司 A kind of sequenator chip grain-clamping table
CN109985679A (en) * 2019-04-24 2019-07-09 浙江警察学院 A kind of SPR detector multichannel micro-fluidic chip grasping system
CN112280663A (en) * 2020-10-29 2021-01-29 王晓冬 Droplet single-layer tiled nucleic acid detection chip packaging part and chip packaging method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8481259B2 (en) * 2007-02-05 2013-07-09 Intelligent Bio-Systems, Inc. Methods and devices for sequencing nucleic acids in smaller batches
JP5995573B2 (en) * 2012-07-18 2016-09-21 キヤノン株式会社 Luminescence detection channel device
CN105624020B (en) * 2014-11-07 2017-11-03 深圳华大基因研究院 For the micro-fluidic chip for the base sequence for detecting DNA fragmentation
CN105013550B (en) * 2015-07-09 2016-08-24 清华大学深圳研究生院 Micro-fluidic chip clamp and micro-fluidic chip
CN105316224B (en) * 2015-12-07 2017-10-27 中国科学院苏州生物医学工程技术研究所 Full-automatic nucleic acid extraction expands micro-fluidic chip and its application process with PCR
CN205368331U (en) * 2016-01-08 2016-07-06 深圳华大基因研究院 Nucleic acid sequencing chip
CN105772125B (en) * 2016-04-23 2018-09-21 北京化工大学 Micro-fluidic chip clamp experiment porch based on 3D printing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11583856B2 (en) * 2019-04-02 2023-02-21 Beijing Boe Optoelectronics Technology Co., Ltd. Bio-information detection substrate and gene chip

Also Published As

Publication number Publication date
EP3536774A1 (en) 2019-09-11
CN109328229B (en) 2021-07-27
WO2018081920A1 (en) 2018-05-11
EP3536774A4 (en) 2020-08-12
CN109328229A (en) 2019-02-12

Similar Documents

Publication Publication Date Title
EP3536774B1 (en) Gene sequencing chip and combination with mounting frame
JP4797196B2 (en) Microchip
JP4252545B2 (en) Microchannel and microfluidic chip
US20050112036A1 (en) Micro flow passage device, connection device, and method of using the devices
JP6516761B2 (en) Microfluidic chip and real-time analyzer using the same
ES2881221T3 (en) Microfluidic chip, manufacturing method of the same and analysis device that uses the same
JP2015516802A (en) Systems and methods for biological analysis
US20120245038A1 (en) Thermal cycling apparatus and method
EP2230504B1 (en) Capillary pump unit and flow cell
JP7423626B2 (en) Apparatus and method for integrated sensor cartridge
US20090170189A1 (en) Microfluidic device and method of fabricating the same
US20220091100A1 (en) Method for measurement of live-cell parameters followed by measurement of gene and protein expression
JP4878200B2 (en) Biochemical reaction cassette
US20230166254A1 (en) Modular Active Surface Devices for Microfluidic Systems and Methods of Making Same
US20200319135A1 (en) Microfluidic chip and manufacturing method thereof and integrated microfluidic chip system
KR20140114206A (en) Heating block for polymerase chain reaction comprising repetitively disposed patterned heater and device for polymerase chain reaction comprising the same
US8133452B2 (en) Biochip package and biochip packaging substrate
US20230280308A1 (en) Molded flow channel
CN109844528A (en) For the integrated circuit of nano-pore sequencing and the multi-chip packaging of flow cell
KR100706464B1 (en) Apparatus and method for hybridization and spr detection
CN108348915B (en) System and method for biological analysis
JP4637610B2 (en) Microchannel and microchip
WO2006098435A1 (en) Detecting chip and method of detecting substance using the same
US20210285908A1 (en) Consumable system for molecule detection assays
CN110387321A (en) Gene sequencing chip and gene sequencing device

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190327

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RIC1 Information provided on ipc code assigned before grant

Ipc: B01L 3/00 20060101ALI20200403BHEP

Ipc: B01L 9/00 20060101ALI20200403BHEP

Ipc: C12M 1/00 20060101AFI20200403BHEP

A4 Supplementary search report drawn up and despatched

Effective date: 20200714

RIC1 Information provided on ipc code assigned before grant

Ipc: B01L 3/00 20060101ALI20200708BHEP

Ipc: B01L 9/00 20060101ALI20200708BHEP

Ipc: C12M 1/00 20060101AFI20200708BHEP

RIC1 Information provided on ipc code assigned before grant

Ipc: B01L 3/00 20060101ALI20210201BHEP

Ipc: C12M 1/00 20060101AFI20210201BHEP

Ipc: B01L 9/00 20060101ALI20210201BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210413

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602016059551

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1402369

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210916

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1402369

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210616

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210916

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211018

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602016059551

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

26N No opposition filed

Effective date: 20220317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211101

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211130

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20211130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20161101

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230722

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231120

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20231117

Year of fee payment: 8

Ref country code: LV

Payment date: 20231020

Year of fee payment: 8

Ref country code: FR

Payment date: 20231124

Year of fee payment: 8

Ref country code: DE

Payment date: 20231107

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616