EP3536766B1 - Epoxide quaternized quaternary ammonium salts - Google Patents
Epoxide quaternized quaternary ammonium salts Download PDFInfo
- Publication number
- EP3536766B1 EP3536766B1 EP19166380.6A EP19166380A EP3536766B1 EP 3536766 B1 EP3536766 B1 EP 3536766B1 EP 19166380 A EP19166380 A EP 19166380A EP 3536766 B1 EP3536766 B1 EP 3536766B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- composition
- hydrocarbyl
- acid
- epoxide
- moles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 150000003242 quaternary ammonium salts Chemical class 0.000 title claims description 30
- 150000002118 epoxides Chemical class 0.000 title 1
- 239000000203 mixture Substances 0.000 claims description 167
- 239000003795 chemical substances by application Substances 0.000 claims description 122
- -1 epoxide quaternary ammonium salt Chemical class 0.000 claims description 101
- 150000002924 oxiranes Chemical class 0.000 claims description 73
- 239000003599 detergent Substances 0.000 claims description 66
- 239000002270 dispersing agent Substances 0.000 claims description 66
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 60
- 150000001875 compounds Chemical class 0.000 claims description 51
- PUAQLLVFLMYYJJ-UHFFFAOYSA-N 2-aminopropiophenone Chemical compound CC(N)C(=O)C1=CC=CC=C1 PUAQLLVFLMYYJJ-UHFFFAOYSA-N 0.000 claims description 50
- 229910052757 nitrogen Inorganic materials 0.000 claims description 42
- 239000000654 additive Substances 0.000 claims description 36
- 239000003921 oil Substances 0.000 claims description 36
- YIWUKEYIRIRTPP-UHFFFAOYSA-N 2-ethylhexan-1-ol Chemical compound CCCCC(CC)CO YIWUKEYIRIRTPP-UHFFFAOYSA-N 0.000 claims description 34
- 238000000034 method Methods 0.000 claims description 32
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 28
- 230000001050 lubricating effect Effects 0.000 claims description 27
- 239000002253 acid Substances 0.000 claims description 25
- 230000000996 additive effect Effects 0.000 claims description 21
- 238000002485 combustion reaction Methods 0.000 claims description 20
- KDYFGRWQOYBRFD-UHFFFAOYSA-N succinic acid Chemical compound OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 claims description 20
- 239000003963 antioxidant agent Substances 0.000 claims description 17
- 239000007795 chemical reaction product Substances 0.000 claims description 17
- CTKINSOISVBQLD-UHFFFAOYSA-N Glycidol Chemical group OCC1CO1 CTKINSOISVBQLD-UHFFFAOYSA-N 0.000 claims description 16
- 125000003277 amino group Chemical group 0.000 claims description 15
- 125000004433 nitrogen atom Chemical group N* 0.000 claims description 13
- 229920000768 polyamine Polymers 0.000 claims description 13
- 230000003078 antioxidant effect Effects 0.000 claims description 12
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 11
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 11
- 229910052725 zinc Inorganic materials 0.000 claims description 11
- 239000011701 zinc Substances 0.000 claims description 11
- 229930195733 hydrocarbon Natural products 0.000 claims description 10
- 239000004215 Carbon black (E152) Substances 0.000 claims description 8
- 125000002947 alkylene group Chemical group 0.000 claims description 8
- 229910052760 oxygen Inorganic materials 0.000 claims description 8
- 239000001301 oxygen Substances 0.000 claims description 8
- 239000001384 succinic acid Substances 0.000 claims description 8
- 239000003586 protic polar solvent Substances 0.000 claims description 7
- FALRKNHUBBKYCC-UHFFFAOYSA-N 2-(chloromethyl)pyridine-3-carbonitrile Chemical compound ClCC1=NC=CC=C1C#N FALRKNHUBBKYCC-UHFFFAOYSA-N 0.000 claims description 6
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims description 6
- 229940014800 succinic anhydride Drugs 0.000 claims description 6
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims description 5
- 150000001299 aldehydes Chemical class 0.000 claims description 5
- 150000002989 phenols Chemical class 0.000 claims description 5
- 125000001302 tertiary amino group Chemical group 0.000 claims description 5
- 125000000467 secondary amino group Chemical group [H]N([*:1])[*:2] 0.000 claims description 4
- 239000000126 substance Substances 0.000 claims description 4
- 230000002209 hydrophobic effect Effects 0.000 claims description 3
- KXDHJXZQYSOELW-UHFFFAOYSA-N Carbamic acid Chemical group NC(O)=O KXDHJXZQYSOELW-UHFFFAOYSA-N 0.000 claims description 2
- 238000006683 Mannich reaction Methods 0.000 claims description 2
- 125000003368 amide group Chemical group 0.000 claims description 2
- 125000001183 hydrocarbyl group Chemical group 0.000 description 68
- 125000004432 carbon atom Chemical group C* 0.000 description 67
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical group N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 66
- 239000000314 lubricant Substances 0.000 description 51
- 239000000446 fuel Substances 0.000 description 50
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 44
- 238000006243 chemical reaction Methods 0.000 description 43
- 229920005652 polyisobutylene succinic anhydride Polymers 0.000 description 43
- 229920002367 Polyisobutene Polymers 0.000 description 34
- 229910052751 metal Inorganic materials 0.000 description 34
- 239000002184 metal Substances 0.000 description 34
- 235000019198 oils Nutrition 0.000 description 34
- 238000005516 engineering process Methods 0.000 description 33
- IUNMPGNGSSIWFP-UHFFFAOYSA-N dimethylaminopropylamine Chemical compound CN(C)CCCN IUNMPGNGSSIWFP-UHFFFAOYSA-N 0.000 description 32
- KZNICNPSHKQLFF-UHFFFAOYSA-N succinimide Chemical compound O=C1CCC(=O)N1 KZNICNPSHKQLFF-UHFFFAOYSA-N 0.000 description 31
- 150000003949 imides Chemical group 0.000 description 30
- 150000001412 amines Chemical class 0.000 description 27
- 230000015572 biosynthetic process Effects 0.000 description 22
- 239000010705 motor oil Substances 0.000 description 20
- 239000004034 viscosity adjusting agent Substances 0.000 description 20
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 16
- 229910052698 phosphorus Inorganic materials 0.000 description 16
- 239000011574 phosphorus Substances 0.000 description 16
- 229960002317 succinimide Drugs 0.000 description 16
- 238000012360 testing method Methods 0.000 description 16
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 15
- 150000003839 salts Chemical class 0.000 description 15
- 238000003860 storage Methods 0.000 description 15
- 239000000463 material Substances 0.000 description 14
- 239000003607 modifier Substances 0.000 description 14
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 14
- DSZTYVZOIUIIGA-UHFFFAOYSA-N 1,2-Epoxyhexadecane Chemical compound CCCCCCCCCCCCCCC1CO1 DSZTYVZOIUIIGA-UHFFFAOYSA-N 0.000 description 13
- 125000000217 alkyl group Chemical group 0.000 description 13
- 238000002347 injection Methods 0.000 description 13
- 239000007924 injection Substances 0.000 description 13
- 230000002378 acidificating effect Effects 0.000 description 12
- 150000002148 esters Chemical class 0.000 description 12
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 12
- 229920000642 polymer Polymers 0.000 description 12
- 229920001577 copolymer Polymers 0.000 description 11
- DMBHHRLKUKUOEG-UHFFFAOYSA-N diphenylamine Chemical class C=1C=CC=CC=1NC1=CC=CC=C1 DMBHHRLKUKUOEG-UHFFFAOYSA-N 0.000 description 11
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 11
- 229920000098 polyolefin Polymers 0.000 description 11
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 10
- 238000013019 agitation Methods 0.000 description 10
- 235000014113 dietary fatty acids Nutrition 0.000 description 10
- 229930195729 fatty acid Natural products 0.000 description 10
- 239000000194 fatty acid Substances 0.000 description 10
- 229920000193 polymethacrylate Polymers 0.000 description 10
- 230000008569 process Effects 0.000 description 10
- 239000000047 product Substances 0.000 description 10
- 235000011044 succinic acid Nutrition 0.000 description 10
- 229910052717 sulfur Inorganic materials 0.000 description 10
- 239000011593 sulfur Substances 0.000 description 10
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 9
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 9
- 229910052796 boron Inorganic materials 0.000 description 9
- 150000004665 fatty acids Chemical class 0.000 description 9
- RBACIKXCRWGCBB-UHFFFAOYSA-N 1,2-Epoxybutane Chemical compound CCC1CO1 RBACIKXCRWGCBB-UHFFFAOYSA-N 0.000 description 8
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 8
- 125000001931 aliphatic group Chemical group 0.000 description 8
- 239000011575 calcium Substances 0.000 description 8
- 229910052791 calcium Inorganic materials 0.000 description 8
- 150000001735 carboxylic acids Chemical class 0.000 description 8
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 7
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 7
- 150000001408 amides Chemical group 0.000 description 7
- 125000002573 ethenylidene group Chemical group [*]=C=C([H])[H] 0.000 description 7
- 150000002430 hydrocarbons Chemical class 0.000 description 7
- 239000001257 hydrogen Substances 0.000 description 7
- 229910052739 hydrogen Inorganic materials 0.000 description 7
- 150000003873 salicylate salts Chemical class 0.000 description 7
- 125000001424 substituent group Chemical group 0.000 description 7
- KRHOKZHVSQKTJI-BJBXXJATSA-N (1S,3R,8R,9S,11R)-2,2-dichloro-3,7,7,11-tetramethyl-10-oxatetracyclo[6.5.0.01,3.09,11]tridecane Chemical compound CC1(C)CCC[C@@]2(C)C(Cl)(Cl)[C@]22CC[C@@](C)(O3)[C@@H]3[C@@H]21 KRHOKZHVSQKTJI-BJBXXJATSA-N 0.000 description 6
- MPGABYXKKCLIRW-UHFFFAOYSA-N 2-decyloxirane Chemical compound CCCCCCCCCCC1CO1 MPGABYXKKCLIRW-UHFFFAOYSA-N 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 6
- 239000003054 catalyst Substances 0.000 description 6
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 6
- 238000005260 corrosion Methods 0.000 description 6
- 230000007797 corrosion Effects 0.000 description 6
- 125000005266 diarylamine group Chemical group 0.000 description 6
- 238000005227 gel permeation chromatography Methods 0.000 description 6
- 125000000743 hydrocarbylene group Chemical group 0.000 description 6
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 6
- 239000003112 inhibitor Substances 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 239000005078 molybdenum compound Substances 0.000 description 6
- 150000002752 molybdenum compounds Chemical class 0.000 description 6
- 239000000178 monomer Substances 0.000 description 6
- UMGDCJDMYOKAJW-UHFFFAOYSA-N thiourea Chemical compound NC(N)=S UMGDCJDMYOKAJW-UHFFFAOYSA-N 0.000 description 6
- 150000003609 titanium compounds Chemical class 0.000 description 6
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 5
- 150000007513 acids Chemical class 0.000 description 5
- 150000001336 alkenes Chemical class 0.000 description 5
- 239000002585 base Substances 0.000 description 5
- 229910002092 carbon dioxide Inorganic materials 0.000 description 5
- 239000007859 condensation product Substances 0.000 description 5
- 239000006078 metal deactivator Substances 0.000 description 5
- 239000002480 mineral oil Substances 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 150000002894 organic compounds Chemical class 0.000 description 5
- 229920001296 polysiloxane Polymers 0.000 description 5
- 238000010926 purge Methods 0.000 description 5
- 125000001453 quaternary ammonium group Chemical group 0.000 description 5
- 150000003900 succinic acid esters Chemical class 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 4
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 4
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 4
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 4
- GLOYGJPNNKTDIG-UHFFFAOYSA-N SC=1N=NSC=1S Chemical class SC=1N=NSC=1S GLOYGJPNNKTDIG-UHFFFAOYSA-N 0.000 description 4
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 4
- 150000001298 alcohols Chemical class 0.000 description 4
- 229910052783 alkali metal Inorganic materials 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 150000001768 cations Chemical class 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 150000001993 dienes Chemical class 0.000 description 4
- ZQPPMHVWECSIRJ-MDZDMXLPSA-N elaidic acid Chemical compound CCCCCCCC\C=C\CCCCCCCC(O)=O ZQPPMHVWECSIRJ-MDZDMXLPSA-N 0.000 description 4
- 239000000839 emulsion Substances 0.000 description 4
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 4
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 4
- 239000010687 lubricating oil Substances 0.000 description 4
- 239000011777 magnesium Substances 0.000 description 4
- 229910052749 magnesium Inorganic materials 0.000 description 4
- 235000010446 mineral oil Nutrition 0.000 description 4
- 229910052750 molybdenum Inorganic materials 0.000 description 4
- 239000011733 molybdenum Substances 0.000 description 4
- KHYKFSXXGRUKRE-UHFFFAOYSA-J molybdenum(4+) tetracarbamodithioate Chemical class C(N)([S-])=S.[Mo+4].C(N)([S-])=S.C(N)([S-])=S.C(N)([S-])=S KHYKFSXXGRUKRE-UHFFFAOYSA-J 0.000 description 4
- 229920000058 polyacrylate Polymers 0.000 description 4
- 229920005862 polyol Polymers 0.000 description 4
- 150000003077 polyols Chemical class 0.000 description 4
- 229960001860 salicylate Drugs 0.000 description 4
- 239000011734 sodium Substances 0.000 description 4
- 229910052708 sodium Inorganic materials 0.000 description 4
- 125000001273 sulfonato group Chemical class [O-]S(*)(=O)=O 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 3
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 3
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 3
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 3
- 239000005977 Ethylene Substances 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- AVXURJPOCDRRFD-UHFFFAOYSA-N Hydroxylamine Chemical compound ON AVXURJPOCDRRFD-UHFFFAOYSA-N 0.000 description 3
- 239000005642 Oleic acid Substances 0.000 description 3
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical class OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 3
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 3
- 150000001340 alkali metals Chemical class 0.000 description 3
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 3
- 150000004982 aromatic amines Chemical class 0.000 description 3
- 125000003118 aryl group Chemical group 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical group [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 239000002199 base oil Substances 0.000 description 3
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 3
- 239000004327 boric acid Substances 0.000 description 3
- 239000004202 carbamide Substances 0.000 description 3
- 125000002837 carbocyclic group Chemical group 0.000 description 3
- 239000000460 chlorine Substances 0.000 description 3
- 229910052801 chlorine Inorganic materials 0.000 description 3
- 150000004985 diamines Chemical class 0.000 description 3
- 239000003085 diluting agent Substances 0.000 description 3
- 150000002009 diols Chemical group 0.000 description 3
- 239000013020 final formulation Substances 0.000 description 3
- 239000006260 foam Substances 0.000 description 3
- 150000002462 imidazolines Chemical class 0.000 description 3
- 150000002646 long chain fatty acid esters Chemical class 0.000 description 3
- LVZUNTGFCXNQAF-UHFFFAOYSA-N n-nonyl-n-phenylaniline Chemical compound C=1C=CC=CC=1N(CCCCCCCCC)C1=CC=CC=C1 LVZUNTGFCXNQAF-UHFFFAOYSA-N 0.000 description 3
- 239000012299 nitrogen atmosphere Substances 0.000 description 3
- AQSJGOWTSHOLKH-UHFFFAOYSA-N phosphite(3-) Chemical class [O-]P([O-])[O-] AQSJGOWTSHOLKH-UHFFFAOYSA-N 0.000 description 3
- 150000003018 phosphorus compounds Chemical class 0.000 description 3
- 229920013639 polyalphaolefin Polymers 0.000 description 3
- 208000034301 polycystic dysgenetic disease of parotid salivary glands Diseases 0.000 description 3
- 150000003856 quaternary ammonium compounds Chemical class 0.000 description 3
- 239000000376 reactant Substances 0.000 description 3
- YGSDEFSMJLZEOE-UHFFFAOYSA-M salicylate Chemical compound OC1=CC=CC=C1C([O-])=O YGSDEFSMJLZEOE-UHFFFAOYSA-M 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 239000003643 water by type Substances 0.000 description 3
- YWWVWXASSLXJHU-AATRIKPKSA-N (9E)-tetradecenoic acid Chemical compound CCCC\C=C\CCCCCCCC(O)=O YWWVWXASSLXJHU-AATRIKPKSA-N 0.000 description 2
- 0 *N(*)*N*N(*)* Chemical compound *N(*)*N*N(*)* 0.000 description 2
- VILCJCGEZXAXTO-UHFFFAOYSA-N 2,2,2-tetramine Chemical compound NCCNCCNCCN VILCJCGEZXAXTO-UHFFFAOYSA-N 0.000 description 2
- QVXGKJYMVLJYCL-UHFFFAOYSA-N 2,3-di(nonyl)-N-phenylaniline Chemical compound C(CCCCCCCC)C=1C(=C(C=CC1)NC1=CC=CC=C1)CCCCCCCCC QVXGKJYMVLJYCL-UHFFFAOYSA-N 0.000 description 2
- PYSRRFNXTXNWCD-UHFFFAOYSA-N 3-(2-phenylethenyl)furan-2,5-dione Chemical compound O=C1OC(=O)C(C=CC=2C=CC=CC=2)=C1 PYSRRFNXTXNWCD-UHFFFAOYSA-N 0.000 description 2
- PYSGFFTXMUWEOT-UHFFFAOYSA-N 3-(dimethylamino)propan-1-ol Chemical compound CN(C)CCCO PYSGFFTXMUWEOT-UHFFFAOYSA-N 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- QGJOPFRUJISHPQ-UHFFFAOYSA-N Carbon disulfide Chemical compound S=C=S QGJOPFRUJISHPQ-UHFFFAOYSA-N 0.000 description 2
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 description 2
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 2
- ZRALSGWEFCBTJO-UHFFFAOYSA-N Guanidine Chemical compound NC(N)=N ZRALSGWEFCBTJO-UHFFFAOYSA-N 0.000 description 2
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 2
- XQVWYOYUZDUNRW-UHFFFAOYSA-N N-Phenyl-1-naphthylamine Chemical compound C=1C=CC2=CC=CC=C2C=1NC1=CC=CC=C1 XQVWYOYUZDUNRW-UHFFFAOYSA-N 0.000 description 2
- 238000005481 NMR spectroscopy Methods 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 229920000147 Styrene maleic anhydride Polymers 0.000 description 2
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 2
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 2
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 2
- ITBPIKUGMIZTJR-UHFFFAOYSA-N [bis(hydroxymethyl)amino]methanol Chemical compound OCN(CO)CO ITBPIKUGMIZTJR-UHFFFAOYSA-N 0.000 description 2
- 125000003342 alkenyl group Chemical group 0.000 description 2
- 150000004703 alkoxides Chemical class 0.000 description 2
- 125000005907 alkyl ester group Chemical group 0.000 description 2
- MBMBGCFOFBJSGT-KUBAVDMBSA-N all-cis-docosa-4,7,10,13,16,19-hexaenoic acid Chemical compound CC\C=C/C\C=C/C\C=C/C\C=C/C\C=C/C\C=C/CCC(O)=O MBMBGCFOFBJSGT-KUBAVDMBSA-N 0.000 description 2
- 229940061720 alpha hydroxy acid Drugs 0.000 description 2
- 150000001280 alpha hydroxy acids Chemical class 0.000 description 2
- DTOSIQBPPRVQHS-PDBXOOCHSA-N alpha-linolenic acid Chemical compound CC\C=C/C\C=C/C\C=C/CCCCCCCC(O)=O DTOSIQBPPRVQHS-PDBXOOCHSA-N 0.000 description 2
- 150000008064 anhydrides Chemical class 0.000 description 2
- 229940053200 antiepileptics fatty acid derivative Drugs 0.000 description 2
- YZXBAPSDXZZRGB-DOFZRALJSA-N arachidonic acid Chemical compound CCCCC\C=C/C\C=C/C\C=C/C\C=C/CCCC(O)=O YZXBAPSDXZZRGB-DOFZRALJSA-N 0.000 description 2
- 150000001639 boron compounds Chemical class 0.000 description 2
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical class C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 description 2
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical class O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 2
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 2
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 2
- 150000007942 carboxylates Chemical class 0.000 description 2
- 239000012612 commercial material Substances 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 239000010779 crude oil Substances 0.000 description 2
- GHVNFZFCNZKVNT-UHFFFAOYSA-N decanoic acid Chemical compound CCCCCCCCCC(O)=O GHVNFZFCNZKVNT-UHFFFAOYSA-N 0.000 description 2
- 239000002283 diesel fuel Substances 0.000 description 2
- 239000000539 dimer Substances 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- UKMSUNONTOPOIO-UHFFFAOYSA-N docosanoic acid Chemical compound CCCCCCCCCCCCCCCCCCCCCC(O)=O UKMSUNONTOPOIO-UHFFFAOYSA-N 0.000 description 2
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 230000032050 esterification Effects 0.000 description 2
- 238000005886 esterification reaction Methods 0.000 description 2
- 150000002170 ethers Chemical class 0.000 description 2
- 150000002194 fatty esters Chemical class 0.000 description 2
- 239000003502 gasoline Substances 0.000 description 2
- 150000002314 glycerols Chemical class 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- XMHIUKTWLZUKEX-UHFFFAOYSA-N hexacosanoic acid Chemical compound CCCCCCCCCCCCCCCCCCCCCCCCCC(O)=O XMHIUKTWLZUKEX-UHFFFAOYSA-N 0.000 description 2
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 2
- VKYKSIONXSXAKP-UHFFFAOYSA-N hexamethylenetetramine Chemical compound C1N(C2)CN3CN1CN2C3 VKYKSIONXSXAKP-UHFFFAOYSA-N 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- VKOBVWXKNCXXDE-UHFFFAOYSA-N icosanoic acid Chemical compound CCCCCCCCCCCCCCCCCCCC(O)=O VKOBVWXKNCXXDE-UHFFFAOYSA-N 0.000 description 2
- 150000002576 ketones Chemical class 0.000 description 2
- 239000004310 lactic acid Substances 0.000 description 2
- 235000014655 lactic acid Nutrition 0.000 description 2
- 150000004668 long chain fatty acids Chemical class 0.000 description 2
- 238000005461 lubrication Methods 0.000 description 2
- 150000007522 mineralic acids Chemical class 0.000 description 2
- LSHROXHEILXKHM-UHFFFAOYSA-N n'-[2-[2-[2-(2-aminoethylamino)ethylamino]ethylamino]ethyl]ethane-1,2-diamine Chemical compound NCCNCCNCCNCCNCCN LSHROXHEILXKHM-UHFFFAOYSA-N 0.000 description 2
- RQVGZVZFVNMBGS-UHFFFAOYSA-N n-octyl-n-phenylaniline Chemical compound C=1C=CC=CC=1N(CCCCCCCC)C1=CC=CC=C1 RQVGZVZFVNMBGS-UHFFFAOYSA-N 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 238000006386 neutralization reaction Methods 0.000 description 2
- 150000002825 nitriles Chemical class 0.000 description 2
- WWZKQHOCKIZLMA-UHFFFAOYSA-N octanoic acid Chemical compound CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- SECPZKHBENQXJG-FPLPWBNLSA-N palmitoleic acid Chemical compound CCCCCC\C=C/CCCCCCCC(O)=O SECPZKHBENQXJG-FPLPWBNLSA-N 0.000 description 2
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 2
- 235000021317 phosphate Nutrition 0.000 description 2
- 229920001451 polypropylene glycol Polymers 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 2
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 2
- 239000012429 reaction media Substances 0.000 description 2
- 239000010802 sludge Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000004071 soot Substances 0.000 description 2
- 229920003048 styrene butadiene rubber Polymers 0.000 description 2
- 150000003444 succinic acids Chemical class 0.000 description 2
- RINCXYDBBGOEEQ-UHFFFAOYSA-N succinic anhydride Chemical class O=C1CCC(=O)O1 RINCXYDBBGOEEQ-UHFFFAOYSA-N 0.000 description 2
- 239000003784 tall oil Substances 0.000 description 2
- 239000011975 tartaric acid Substances 0.000 description 2
- 235000002906 tartaric acid Nutrition 0.000 description 2
- 229940095064 tartrate Drugs 0.000 description 2
- 150000003892 tartrate salts Chemical class 0.000 description 2
- FAGUFWYHJQFNRV-UHFFFAOYSA-N tetraethylenepentamine Chemical compound NCCNCCNCCNCCN FAGUFWYHJQFNRV-UHFFFAOYSA-N 0.000 description 2
- 150000003558 thiocarbamic acid derivatives Chemical class 0.000 description 2
- 239000013638 trimer Substances 0.000 description 2
- XFNJVJPLKCPIBV-UHFFFAOYSA-N trimethylenediamine Chemical compound NCCCN XFNJVJPLKCPIBV-UHFFFAOYSA-N 0.000 description 2
- 239000002966 varnish Substances 0.000 description 2
- 239000001993 wax Substances 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- 239000004711 α-olefin Substances 0.000 description 2
- ZAIQBJPTOXDDKA-UHFFFAOYSA-N (1-benzylpyrrolidin-2-yl)methanol Chemical compound OCC1CCCN1CC1=CC=CC=C1 ZAIQBJPTOXDDKA-UHFFFAOYSA-N 0.000 description 1
- OBETXYAYXDNJHR-SSDOTTSWSA-M (2r)-2-ethylhexanoate Chemical compound CCCC[C@@H](CC)C([O-])=O OBETXYAYXDNJHR-SSDOTTSWSA-M 0.000 description 1
- OYHQOLUKZRVURQ-NTGFUMLPSA-N (9Z,12Z)-9,10,12,13-tetratritiooctadeca-9,12-dienoic acid Chemical compound C(CCCCCCC\C(=C(/C\C(=C(/CCCCC)\[3H])\[3H])\[3H])\[3H])(=O)O OYHQOLUKZRVURQ-NTGFUMLPSA-N 0.000 description 1
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 description 1
- YHYKLKNNBYLTQY-UHFFFAOYSA-N 1,1-diphenylhydrazine Chemical compound C=1C=CC=CC=1N(N)C1=CC=CC=C1 YHYKLKNNBYLTQY-UHFFFAOYSA-N 0.000 description 1
- 150000000180 1,2-diols Chemical group 0.000 description 1
- GEYOCULIXLDCMW-UHFFFAOYSA-N 1,2-phenylenediamine Chemical class NC1=CC=CC=C1N GEYOCULIXLDCMW-UHFFFAOYSA-N 0.000 description 1
- ZNEMGFATAVGQSF-UHFFFAOYSA-N 1-(2-amino-6,7-dihydro-4H-[1,3]thiazolo[4,5-c]pyridin-5-yl)-2-[5-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]-1,3,4-oxadiazol-2-yl]ethanone Chemical compound NC=1SC2=C(CN(CC2)C(CC=2OC(=NN=2)C=2C=NC(=NC=2)NC2CC3=CC=CC=C3C2)=O)N=1 ZNEMGFATAVGQSF-UHFFFAOYSA-N 0.000 description 1
- AZZDBAMLOMKUQR-UHFFFAOYSA-N 1-(diethylamino)butan-1-ol Chemical compound CCCC(O)N(CC)CC AZZDBAMLOMKUQR-UHFFFAOYSA-N 0.000 description 1
- VKKTUDKKYOOLGG-UHFFFAOYSA-N 1-(diethylamino)propan-1-ol Chemical compound CCC(O)N(CC)CC VKKTUDKKYOOLGG-UHFFFAOYSA-N 0.000 description 1
- BHUXAQIVYLDUQV-UHFFFAOYSA-N 1-(diethylamino)propan-2-ol Chemical compound CCN(CC)CC(C)O BHUXAQIVYLDUQV-UHFFFAOYSA-N 0.000 description 1
- NCXUNZWLEYGQAH-UHFFFAOYSA-N 1-(dimethylamino)propan-2-ol Chemical compound CC(O)CN(C)C NCXUNZWLEYGQAH-UHFFFAOYSA-N 0.000 description 1
- HXKKHQJGJAFBHI-UHFFFAOYSA-N 1-aminopropan-2-ol Chemical compound CC(O)CN HXKKHQJGJAFBHI-UHFFFAOYSA-N 0.000 description 1
- YQMXOIAIYXXXEE-UHFFFAOYSA-N 1-benzylpyrrolidin-3-ol Chemical compound C1C(O)CCN1CC1=CC=CC=C1 YQMXOIAIYXXXEE-UHFFFAOYSA-N 0.000 description 1
- RZRNAYUHWVFMIP-KTKRTIGZSA-N 1-oleoylglycerol Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC(O)CO RZRNAYUHWVFMIP-KTKRTIGZSA-N 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N 1-propanol Substances CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 229940044613 1-propanol Drugs 0.000 description 1
- XUJLWPFSUCHPQL-UHFFFAOYSA-N 11-methyldodecan-1-ol Chemical compound CC(C)CCCCCCCCCCO XUJLWPFSUCHPQL-UHFFFAOYSA-N 0.000 description 1
- HYZJCKYKOHLVJF-UHFFFAOYSA-N 1H-benzimidazole Chemical compound C1=CC=C2NC=NC2=C1 HYZJCKYKOHLVJF-UHFFFAOYSA-N 0.000 description 1
- YOYAZAPDLFQLCE-UHFFFAOYSA-N 2,3,4,5,6-pentakis(prop-1-enyl)phenol Chemical compound CC=CC1=C(O)C(C=CC)=C(C=CC)C(C=CC)=C1C=CC YOYAZAPDLFQLCE-UHFFFAOYSA-N 0.000 description 1
- 239000000263 2,3-dihydroxypropyl (Z)-octadec-9-enoate Substances 0.000 description 1
- AHDSRXYHVZECER-UHFFFAOYSA-N 2,4,6-tris[(dimethylamino)methyl]phenol Chemical compound CN(C)CC1=CC(CN(C)C)=C(O)C(CN(C)C)=C1 AHDSRXYHVZECER-UHFFFAOYSA-N 0.000 description 1
- BVUXDWXKPROUDO-UHFFFAOYSA-N 2,6-di-tert-butyl-4-ethylphenol Chemical compound CCC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 BVUXDWXKPROUDO-UHFFFAOYSA-N 0.000 description 1
- DKCPKDPYUFEZCP-UHFFFAOYSA-N 2,6-di-tert-butylphenol Chemical compound CC(C)(C)C1=CC=CC(C(C)(C)C)=C1O DKCPKDPYUFEZCP-UHFFFAOYSA-N 0.000 description 1
- SZATXRHXOOLEFV-UHFFFAOYSA-N 2,6-ditert-butyl-4-dodecylphenol Chemical compound CCCCCCCCCCCCC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 SZATXRHXOOLEFV-UHFFFAOYSA-N 0.000 description 1
- STHGHFNAPPFPQV-UHFFFAOYSA-N 2,6-ditert-butyl-4-propylphenol Chemical compound CCCC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 STHGHFNAPPFPQV-UHFFFAOYSA-N 0.000 description 1
- LDXJRKWFNNFDSA-UHFFFAOYSA-N 2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]ethanone Chemical compound C1CN(CC2=NNN=C21)CC(=O)N3CCN(CC3)C4=CN=C(N=C4)NCC5=CC(=CC=C5)OC(F)(F)F LDXJRKWFNNFDSA-UHFFFAOYSA-N 0.000 description 1
- BGRKGHSKCFAPCL-UHFFFAOYSA-N 2-(2-methylbutan-2-yl)phenol Chemical compound CCC(C)(C)C1=CC=CC=C1O BGRKGHSKCFAPCL-UHFFFAOYSA-N 0.000 description 1
- IWSZDQRGNFLMJS-UHFFFAOYSA-N 2-(dibutylamino)ethanol Chemical compound CCCCN(CCO)CCCC IWSZDQRGNFLMJS-UHFFFAOYSA-N 0.000 description 1
- GOXQRTZXKQZDDN-UHFFFAOYSA-N 2-Ethylhexyl acrylate Chemical compound CCCCC(CC)COC(=O)C=C GOXQRTZXKQZDDN-UHFFFAOYSA-N 0.000 description 1
- IMSODMZESSGVBE-UHFFFAOYSA-N 2-Oxazoline Chemical compound C1CN=CO1 IMSODMZESSGVBE-UHFFFAOYSA-N 0.000 description 1
- QDCPNGVVOWVKJG-VAWYXSNFSA-N 2-[(e)-dodec-1-enyl]butanedioic acid Chemical compound CCCCCCCCCC\C=C\C(C(O)=O)CC(O)=O QDCPNGVVOWVKJG-VAWYXSNFSA-N 0.000 description 1
- YSAANLSYLSUVHB-UHFFFAOYSA-N 2-[2-(dimethylamino)ethoxy]ethanol Chemical compound CN(C)CCOCCO YSAANLSYLSUVHB-UHFFFAOYSA-N 0.000 description 1
- RURPJGZXBHYNEM-UHFFFAOYSA-N 2-[2-[(2-hydroxyphenyl)methylideneamino]propyliminomethyl]phenol Chemical compound C=1C=CC=C(O)C=1C=NC(C)CN=CC1=CC=CC=C1O RURPJGZXBHYNEM-UHFFFAOYSA-N 0.000 description 1
- KTXWGMUMDPYXNN-UHFFFAOYSA-N 2-ethylhexan-1-olate;titanium(4+) Chemical group [Ti+4].CCCCC(CC)C[O-].CCCCC(CC)C[O-].CCCCC(CC)C[O-].CCCCC(CC)C[O-] KTXWGMUMDPYXNN-UHFFFAOYSA-N 0.000 description 1
- NKRVGWFEFKCZAP-UHFFFAOYSA-N 2-ethylhexyl nitrate Chemical compound CCCCC(CC)CO[N+]([O-])=O NKRVGWFEFKCZAP-UHFFFAOYSA-N 0.000 description 1
- TZGPACAKMCUCKX-UHFFFAOYSA-N 2-hydroxyacetamide Chemical class NC(=O)CO TZGPACAKMCUCKX-UHFFFAOYSA-N 0.000 description 1
- ROGIWVXWXZRRMZ-UHFFFAOYSA-N 2-methylbuta-1,3-diene;styrene Chemical class CC(=C)C=C.C=CC1=CC=CC=C1 ROGIWVXWXZRRMZ-UHFFFAOYSA-N 0.000 description 1
- CJNRGSHEMCMUOE-UHFFFAOYSA-N 2-piperidin-1-ylethanamine Chemical compound NCCN1CCCCC1 CJNRGSHEMCMUOE-UHFFFAOYSA-N 0.000 description 1
- KFZMGEQAYNKOFK-UHFFFAOYSA-N 2-propanol Substances CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 1
- WJQOZHYUIDYNHM-UHFFFAOYSA-N 2-tert-Butylphenol Chemical compound CC(C)(C)C1=CC=CC=C1O WJQOZHYUIDYNHM-UHFFFAOYSA-N 0.000 description 1
- KGIGUEBEKRSTEW-UHFFFAOYSA-N 2-vinylpyridine Chemical compound C=CC1=CC=CC=N1 KGIGUEBEKRSTEW-UHFFFAOYSA-N 0.000 description 1
- WKCYFSZDBICRKL-UHFFFAOYSA-N 3-(diethylamino)propan-1-ol Chemical compound CCN(CC)CCCO WKCYFSZDBICRKL-UHFFFAOYSA-N 0.000 description 1
- WVRNUXJQQFPNMN-VAWYXSNFSA-N 3-[(e)-dodec-1-enyl]oxolane-2,5-dione Chemical compound CCCCCCCCCC\C=C\C1CC(=O)OC1=O WVRNUXJQQFPNMN-VAWYXSNFSA-N 0.000 description 1
- KDHWOCLBMVSZPG-UHFFFAOYSA-N 3-imidazol-1-ylpropan-1-amine Chemical compound NCCCN1C=CN=C1 KDHWOCLBMVSZPG-UHFFFAOYSA-N 0.000 description 1
- UIKUBYKUYUSRSM-UHFFFAOYSA-N 3-morpholinopropylamine Chemical compound NCCCN1CCOCC1 UIKUBYKUYUSRSM-UHFFFAOYSA-N 0.000 description 1
- RZRNAYUHWVFMIP-GDCKJWNLSA-N 3-oleoyl-sn-glycerol Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@H](O)CO RZRNAYUHWVFMIP-GDCKJWNLSA-N 0.000 description 1
- KJWMCPYEODZESQ-UHFFFAOYSA-N 4-Dodecylphenol Chemical compound CCCCCCCCCCCCC1=CC=C(O)C=C1 KJWMCPYEODZESQ-UHFFFAOYSA-N 0.000 description 1
- WTWGHNZAQVTLSQ-UHFFFAOYSA-N 4-butyl-2,6-ditert-butylphenol Chemical compound CCCCC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 WTWGHNZAQVTLSQ-UHFFFAOYSA-N 0.000 description 1
- SMZFAZCVXCKGAC-UHFFFAOYSA-N 4-methyl-2-(piperidin-1-ylmethyl)phenol Chemical compound CC1=CC=C(O)C(CN2CCCCC2)=C1 SMZFAZCVXCKGAC-UHFFFAOYSA-N 0.000 description 1
- CMGDVUCDZOBDNL-UHFFFAOYSA-N 4-methyl-2h-benzotriazole Chemical compound CC1=CC=CC2=NNN=C12 CMGDVUCDZOBDNL-UHFFFAOYSA-N 0.000 description 1
- NSPMIYGKQJPBQR-UHFFFAOYSA-N 4H-1,2,4-triazole Chemical compound C=1N=CNN=1 NSPMIYGKQJPBQR-UHFFFAOYSA-N 0.000 description 1
- DQKVMDNCLZIACU-UHFFFAOYSA-J 7,7-dimethyloctanoate;titanium(4+) Chemical group [Ti+4].CC(C)(C)CCCCCC([O-])=O.CC(C)(C)CCCCCC([O-])=O.CC(C)(C)CCCCCC([O-])=O.CC(C)(C)CCCCCC([O-])=O DQKVMDNCLZIACU-UHFFFAOYSA-J 0.000 description 1
- YWWVWXASSLXJHU-UHFFFAOYSA-N 9E-tetradecenoic acid Natural products CCCCC=CCCCCCCCC(O)=O YWWVWXASSLXJHU-UHFFFAOYSA-N 0.000 description 1
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Chemical class C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 description 1
- 235000021357 Behenic acid Nutrition 0.000 description 1
- DPUOLQHDNGRHBS-UHFFFAOYSA-N Brassidinsaeure Natural products CCCCCCCCC=CCCCCCCCCCCCC(O)=O DPUOLQHDNGRHBS-UHFFFAOYSA-N 0.000 description 1
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 1
- UUNBFTCKFYBASS-UHFFFAOYSA-N C(CCCCCCC)C=1C(=C(C=CC1)NC1=CC=CC=C1)CCCCCCCC Chemical compound C(CCCCCCC)C=1C(=C(C=CC1)NC1=CC=CC=C1)CCCCCCCC UUNBFTCKFYBASS-UHFFFAOYSA-N 0.000 description 1
- DYEMOZDOTNNEEU-UHFFFAOYSA-N C(CN)N.CNN(NC)CC Chemical compound C(CN)N.CNN(NC)CC DYEMOZDOTNNEEU-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 239000005632 Capric acid (CAS 334-48-5) Substances 0.000 description 1
- 239000005635 Caprylic acid (CAS 124-07-2) Substances 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- 238000005698 Diels-Alder reaction Methods 0.000 description 1
- 229920005682 EO-PO block copolymer Polymers 0.000 description 1
- URXZXNYJPAJJOQ-UHFFFAOYSA-N Erucic acid Natural products CCCCCCC=CCCCCCCCCCCCC(O)=O URXZXNYJPAJJOQ-UHFFFAOYSA-N 0.000 description 1
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical group CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 1
- 239000005639 Lauric acid Substances 0.000 description 1
- 235000021353 Lignoceric acid Nutrition 0.000 description 1
- CQXMAMUUWHYSIY-UHFFFAOYSA-N Lignoceric acid Natural products CCCCCCCCCCCCCCCCCCCCCCCC(=O)OCCC1=CC=C(O)C=C1 CQXMAMUUWHYSIY-UHFFFAOYSA-N 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 1
- CHJJGSNFBQVOTG-UHFFFAOYSA-N N-methyl-guanidine Natural products CNC(N)=N CHJJGSNFBQVOTG-UHFFFAOYSA-N 0.000 description 1
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 1
- 235000021314 Palmitic acid Nutrition 0.000 description 1
- 235000021319 Palmitoleic acid Nutrition 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 1
- RVGRUAULSDPKGF-UHFFFAOYSA-N Poloxamer Chemical compound C1CO1.CC1CO1 RVGRUAULSDPKGF-UHFFFAOYSA-N 0.000 description 1
- 229920002845 Poly(methacrylic acid) Polymers 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229920002873 Polyethylenimine Polymers 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Chemical class O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 description 1
- 235000019486 Sunflower oil Nutrition 0.000 description 1
- GNVMUORYQLCPJZ-UHFFFAOYSA-M Thiocarbamate Chemical compound NC([S-])=O GNVMUORYQLCPJZ-UHFFFAOYSA-M 0.000 description 1
- RYYWUUFWQRZTIU-UHFFFAOYSA-N Thiophosphoric acid Chemical class OP(O)(S)=O RYYWUUFWQRZTIU-UHFFFAOYSA-N 0.000 description 1
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical compound ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 description 1
- UWHZIFQPPBDJPM-FPLPWBNLSA-M Vaccenic acid Natural products CCCCCC\C=C/CCCCCCCCCC([O-])=O UWHZIFQPPBDJPM-FPLPWBNLSA-M 0.000 description 1
- 235000021322 Vaccenic acid Nutrition 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- 150000007933 aliphatic carboxylic acids Chemical class 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 125000005250 alkyl acrylate group Chemical group 0.000 description 1
- 150000004996 alkyl benzenes Chemical class 0.000 description 1
- 150000001350 alkyl halides Chemical class 0.000 description 1
- 125000004414 alkyl thio group Chemical group 0.000 description 1
- 238000005804 alkylation reaction Methods 0.000 description 1
- JAZBEHYOTPTENJ-JLNKQSITSA-N all-cis-5,8,11,14,17-icosapentaenoic acid Chemical compound CC\C=C/C\C=C/C\C=C/C\C=C/C\C=C/CCCC(O)=O JAZBEHYOTPTENJ-JLNKQSITSA-N 0.000 description 1
- OBETXYAYXDNJHR-UHFFFAOYSA-N alpha-ethylcaproic acid Natural products CCCCC(CC)C(O)=O OBETXYAYXDNJHR-UHFFFAOYSA-N 0.000 description 1
- 235000020661 alpha-linolenic acid Nutrition 0.000 description 1
- HAMNKKUPIHEESI-UHFFFAOYSA-N aminoguanidine Chemical compound NNC(N)=N HAMNKKUPIHEESI-UHFFFAOYSA-N 0.000 description 1
- ZRIUUUJAJJNDSS-UHFFFAOYSA-N ammonium phosphates Chemical class [NH4+].[NH4+].[NH4+].[O-]P([O-])([O-])=O ZRIUUUJAJJNDSS-UHFFFAOYSA-N 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 229940114079 arachidonic acid Drugs 0.000 description 1
- 235000021342 arachidonic acid Nutrition 0.000 description 1
- 125000005228 aryl sulfonate group Chemical group 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 229910052728 basic metal Inorganic materials 0.000 description 1
- 150000003818 basic metals Chemical class 0.000 description 1
- 229940116226 behenic acid Drugs 0.000 description 1
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 description 1
- 239000012964 benzotriazole Substances 0.000 description 1
- 150000001565 benzotriazoles Chemical class 0.000 description 1
- 239000003139 biocide Substances 0.000 description 1
- MRNZSTMRDWRNNR-UHFFFAOYSA-N bis(hexamethylene)triamine Chemical compound NCCCCCCNCCCCCCN MRNZSTMRDWRNNR-UHFFFAOYSA-N 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 150000001642 boronic acid derivatives Chemical class 0.000 description 1
- SNCZNSNPXMPCGN-UHFFFAOYSA-N butanediamide Chemical compound NC(=O)CCC(N)=O SNCZNSNPXMPCGN-UHFFFAOYSA-N 0.000 description 1
- 235000010354 butylated hydroxytoluene Nutrition 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 238000004517 catalytic hydrocracking Methods 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- SECPZKHBENQXJG-UHFFFAOYSA-N cis-palmitoleic acid Natural products CCCCCCC=CCCCCCCCC(O)=O SECPZKHBENQXJG-UHFFFAOYSA-N 0.000 description 1
- 150000001860 citric acid derivatives Chemical class 0.000 description 1
- 238000004939 coking Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 125000000392 cycloalkenyl group Chemical group 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- HLYOOCIMLHNMOG-UHFFFAOYSA-N cyclohexyl nitrate Chemical compound [O-][N+](=O)OC1CCCCC1 HLYOOCIMLHNMOG-UHFFFAOYSA-N 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- LSXWFXONGKSEMY-UHFFFAOYSA-N di-tert-butyl peroxide Chemical compound CC(C)(C)OOC(C)(C)C LSXWFXONGKSEMY-UHFFFAOYSA-N 0.000 description 1
- 150000008050 dialkyl sulfates Chemical class 0.000 description 1
- BVXOPEOQUQWRHQ-UHFFFAOYSA-N dibutyl phosphite Chemical compound CCCCOP([O-])OCCCC BVXOPEOQUQWRHQ-UHFFFAOYSA-N 0.000 description 1
- 150000005690 diesters Chemical class 0.000 description 1
- HRKQOINLCJTGBK-UHFFFAOYSA-N dihydroxidosulfur Chemical class OSO HRKQOINLCJTGBK-UHFFFAOYSA-N 0.000 description 1
- LXEICSSQIFZBRE-UHFFFAOYSA-N dihydroxy-(6-methylheptylsulfanyl)-sulfanylidene-$l^{5}-phosphane Chemical compound CC(C)CCCCCSP(O)(O)=S LXEICSSQIFZBRE-UHFFFAOYSA-N 0.000 description 1
- 239000004205 dimethyl polysiloxane Substances 0.000 description 1
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 1
- SWSQBOPZIKWTGO-UHFFFAOYSA-N dimethylaminoamidine Natural products CN(C)C(N)=N SWSQBOPZIKWTGO-UHFFFAOYSA-N 0.000 description 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 1
- 150000004659 dithiocarbamates Chemical class 0.000 description 1
- 235000020669 docosahexaenoic acid Nutrition 0.000 description 1
- 229940090949 docosahexaenoic acid Drugs 0.000 description 1
- 235000020673 eicosapentaenoic acid Nutrition 0.000 description 1
- 229960005135 eicosapentaenoic acid Drugs 0.000 description 1
- JAZBEHYOTPTENJ-UHFFFAOYSA-N eicosapentaenoic acid Natural products CCC=CCC=CCC=CCC=CCC=CCCCC(O)=O JAZBEHYOTPTENJ-UHFFFAOYSA-N 0.000 description 1
- DPUOLQHDNGRHBS-KTKRTIGZSA-N erucic acid Chemical compound CCCCCCCC\C=C/CCCCCCCCCCCC(O)=O DPUOLQHDNGRHBS-KTKRTIGZSA-N 0.000 description 1
- RJUVPCYAOBNZAX-VOTSOKGWSA-N ethyl (e)-3-(dimethylamino)-2-methylprop-2-enoate Chemical compound CCOC(=O)C(\C)=C\N(C)C RJUVPCYAOBNZAX-VOTSOKGWSA-N 0.000 description 1
- FARYTWBWLZAXNK-WAYWQWQTSA-N ethyl (z)-3-(methylamino)but-2-enoate Chemical compound CCOC(=O)\C=C(\C)NC FARYTWBWLZAXNK-WAYWQWQTSA-N 0.000 description 1
- 229920001038 ethylene copolymer Polymers 0.000 description 1
- 229920006213 ethylene-alphaolefin copolymer Polymers 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 125000002541 furyl group Chemical group 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- RZRNAYUHWVFMIP-HXUWFJFHSA-N glycerol monolinoleate Natural products CCCCCCCCC=CCCCCCCCC(=O)OC[C@H](O)CO RZRNAYUHWVFMIP-HXUWFJFHSA-N 0.000 description 1
- 229920000578 graft copolymer Polymers 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- IZKZIDXHCDIZKY-UHFFFAOYSA-N heptane-1,1-diamine Chemical class CCCCCCC(N)N IZKZIDXHCDIZKY-UHFFFAOYSA-N 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 239000004312 hexamethylene tetramine Substances 0.000 description 1
- 235000010299 hexamethylene tetramine Nutrition 0.000 description 1
- SYECJBOWSGTPLU-UHFFFAOYSA-N hexane-1,1-diamine Chemical class CCCCCC(N)N SYECJBOWSGTPLU-UHFFFAOYSA-N 0.000 description 1
- 150000002431 hydrogen Chemical group 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 125000002883 imidazolyl group Chemical group 0.000 description 1
- 125000005462 imide group Chemical group 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- GKQPCPXONLDCMU-CCEZHUSRSA-N lacidipine Chemical compound CCOC(=O)C1=C(C)NC(C)=C(C(=O)OCC)C1C1=CC=CC=C1\C=C\C(=O)OC(C)(C)C GKQPCPXONLDCMU-CCEZHUSRSA-N 0.000 description 1
- OYHQOLUKZRVURQ-AVQMFFATSA-N linoelaidic acid Chemical compound CCCCC\C=C\C\C=C\CCCCCCCC(O)=O OYHQOLUKZRVURQ-AVQMFFATSA-N 0.000 description 1
- OYHQOLUKZRVURQ-IXWMQOLASA-N linoleic acid Natural products CCCCC\C=C/C\C=C\CCCCCCCC(O)=O OYHQOLUKZRVURQ-IXWMQOLASA-N 0.000 description 1
- 229960004488 linolenic acid Drugs 0.000 description 1
- 159000000003 magnesium salts Chemical class 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 150000004701 malic acid derivatives Chemical class 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910000000 metal hydroxide Inorganic materials 0.000 description 1
- 150000004692 metal hydroxides Chemical class 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- NMJORVOYSJLJGU-UHFFFAOYSA-N methane clathrate Chemical compound C.C.C.C.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O NMJORVOYSJLJGU-UHFFFAOYSA-N 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- RZRNAYUHWVFMIP-UHFFFAOYSA-N monoelaidin Natural products CCCCCCCCC=CCCCCCCCC(=O)OCC(O)CO RZRNAYUHWVFMIP-UHFFFAOYSA-N 0.000 description 1
- QOHMWDJIBGVPIF-UHFFFAOYSA-N n',n'-diethylpropane-1,3-diamine Chemical compound CCN(CC)CCCN QOHMWDJIBGVPIF-UHFFFAOYSA-N 0.000 description 1
- SWVGZFQJXVPIKM-UHFFFAOYSA-N n,n-bis(methylamino)propan-1-amine Chemical compound CCCN(NC)NC SWVGZFQJXVPIKM-UHFFFAOYSA-N 0.000 description 1
- ZYWUVGFIXPNBDL-UHFFFAOYSA-N n,n-diisopropylaminoethanol Chemical compound CC(C)N(C(C)C)CCO ZYWUVGFIXPNBDL-UHFFFAOYSA-N 0.000 description 1
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 1
- CDYHCLPQXKUDMV-UHFFFAOYSA-N n-decyl-n-phenylaniline Chemical compound C=1C=CC=CC=1N(CCCCCCCCCC)C1=CC=CC=C1 CDYHCLPQXKUDMV-UHFFFAOYSA-N 0.000 description 1
- VBEGHXKAFSLLGE-UHFFFAOYSA-N n-phenylnitramide Chemical compound [O-][N+](=O)NC1=CC=CC=C1 VBEGHXKAFSLLGE-UHFFFAOYSA-N 0.000 description 1
- PSZYNBSKGUBXEH-UHFFFAOYSA-N naphthalene-1-sulfonic acid Chemical class C1=CC=C2C(S(=O)(=O)O)=CC=CC2=C1 PSZYNBSKGUBXEH-UHFFFAOYSA-N 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- 125000000018 nitroso group Chemical group N(=O)* 0.000 description 1
- 125000001400 nonyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- LQNPIBHEOATAEO-UHFFFAOYSA-N octanoate;octylazanium Chemical compound CCCCCCCCN.CCCCCCCC(O)=O LQNPIBHEOATAEO-UHFFFAOYSA-N 0.000 description 1
- 229960002446 octanoic acid Drugs 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 150000002918 oxazolines Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- KJOMYNHMBRNCNY-UHFFFAOYSA-N pentane-1,1-diamine Chemical class CCCCC(N)N KJOMYNHMBRNCNY-UHFFFAOYSA-N 0.000 description 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 239000008055 phosphate buffer solution Substances 0.000 description 1
- 150000003904 phospholipids Chemical class 0.000 description 1
- UEZVMMHDMIWARA-UHFFFAOYSA-M phosphonate Chemical compound [O-]P(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-M 0.000 description 1
- 150000003009 phosphonic acids Chemical class 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 150000003014 phosphoric acid esters Chemical class 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920001281 polyalkylene Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- AOHJOMMDDJHIJH-UHFFFAOYSA-N propylenediamine Chemical compound CC(N)CN AOHJOMMDDJHIJH-UHFFFAOYSA-N 0.000 description 1
- KIDHWZJUCRJVML-UHFFFAOYSA-N putrescine Chemical class NCCCCN KIDHWZJUCRJVML-UHFFFAOYSA-N 0.000 description 1
- ZZYXNRREDYWPLN-UHFFFAOYSA-N pyridine-2,3-diamine Chemical class NC1=CC=CN=C1N ZZYXNRREDYWPLN-UHFFFAOYSA-N 0.000 description 1
- 125000004076 pyridyl group Chemical group 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229940058287 salicylic acid derivative anticestodals Drugs 0.000 description 1
- 150000003872 salicylic acid derivatives Chemical class 0.000 description 1
- NNNVXFKZMRGJPM-KHPPLWFESA-N sapienic acid Chemical compound CCCCCCCCC\C=C/CCCCC(O)=O NNNVXFKZMRGJPM-KHPPLWFESA-N 0.000 description 1
- 239000002455 scale inhibitor Substances 0.000 description 1
- 150000003335 secondary amines Chemical class 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 238000007655 standard test method Methods 0.000 description 1
- 150000003440 styrenes Chemical class 0.000 description 1
- 125000000547 substituted alkyl group Chemical group 0.000 description 1
- MBDNRNMVTZADMQ-UHFFFAOYSA-N sulfolene Chemical class O=S1(=O)CC=CC1 MBDNRNMVTZADMQ-UHFFFAOYSA-N 0.000 description 1
- 150000003460 sulfonic acids Chemical class 0.000 description 1
- 239000002600 sunflower oil Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 239000010689 synthetic lubricating oil Substances 0.000 description 1
- KKEYFWRCBNTPAC-UHFFFAOYSA-L terephthalate(2-) Chemical compound [O-]C(=O)C1=CC=C(C([O-])=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-L 0.000 description 1
- ISIJQEHRDSCQIU-UHFFFAOYSA-N tert-butyl 2,7-diazaspiro[4.5]decane-7-carboxylate Chemical compound C1N(C(=O)OC(C)(C)C)CCCC11CNCC1 ISIJQEHRDSCQIU-UHFFFAOYSA-N 0.000 description 1
- TUNFSRHWOTWDNC-HKGQFRNVSA-N tetradecanoic acid Chemical compound CCCCCCCCCCCCC[14C](O)=O TUNFSRHWOTWDNC-HKGQFRNVSA-N 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 125000001544 thienyl group Chemical group 0.000 description 1
- 125000003396 thiol group Chemical class [H]S* 0.000 description 1
- VXUYXOFXAQZZMF-UHFFFAOYSA-N titanium(IV) isopropoxide Chemical group CC(C)O[Ti](OC(C)C)(OC(C)C)OC(C)C VXUYXOFXAQZZMF-UHFFFAOYSA-N 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Chemical class OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 description 1
- UWHZIFQPPBDJPM-BQYQJAHWSA-N trans-vaccenic acid Chemical compound CCCCCC\C=C\CCCCCCCCCC(O)=O UWHZIFQPPBDJPM-BQYQJAHWSA-N 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 150000003626 triacylglycerols Chemical class 0.000 description 1
- 150000005671 trienes Chemical class 0.000 description 1
- UFTFJSFQGQCHQW-UHFFFAOYSA-N triformin Chemical compound O=COCC(OC=O)COC=O UFTFJSFQGQCHQW-UHFFFAOYSA-N 0.000 description 1
- WMYJOZQKDZZHAC-UHFFFAOYSA-H trizinc;dioxido-sulfanylidene-sulfido-$l^{5}-phosphane Chemical class [Zn+2].[Zn+2].[Zn+2].[O-]P([O-])([S-])=S.[O-]P([O-])([S-])=S WMYJOZQKDZZHAC-UHFFFAOYSA-H 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- AGBMDKDXTAPWJQ-UHFFFAOYSA-L zinc;2-ethylhexoxy-(2-methylpropylsulfanyl)-oxido-sulfanylidene-$l^{5}-phosphane Chemical compound [Zn+2].CCCCC(CC)COP([O-])(=S)SCC(C)C.CCCCC(CC)COP([O-])(=S)SCC(C)C AGBMDKDXTAPWJQ-UHFFFAOYSA-L 0.000 description 1
- GSYTTXJUAAICBQ-UHFFFAOYSA-L zinc;2-ethylhexoxy-oxido-propan-2-ylsulfanyl-sulfanylidene-$l^{5}-phosphane Chemical compound [Zn+2].CCCCC(CC)COP([O-])(=S)SC(C)C.CCCCC(CC)COP([O-])(=S)SC(C)C GSYTTXJUAAICBQ-UHFFFAOYSA-L 0.000 description 1
- YRRJZUFDLNBWRL-UHFFFAOYSA-L zinc;3-methylbutoxy-(2-methylpropylsulfanyl)-oxido-sulfanylidene-$l^{5}-phosphane Chemical compound [Zn+2].CC(C)CCOP([O-])(=S)SCC(C)C.CC(C)CCOP([O-])(=S)SCC(C)C YRRJZUFDLNBWRL-UHFFFAOYSA-L 0.000 description 1
- JHWITEGDGVJLEM-UHFFFAOYSA-L zinc;butoxy-oxido-propan-2-ylsulfanyl-sulfanylidene-$l^{5}-phosphane Chemical compound [Zn+2].CCCCOP([O-])(=S)SC(C)C.CCCCOP([O-])(=S)SC(C)C JHWITEGDGVJLEM-UHFFFAOYSA-L 0.000 description 1
- CFOWUEASWNKJDT-UHFFFAOYSA-L zinc;cyclohexyloxy-cyclohexylsulfanyl-oxido-sulfanylidene-$l^{5}-phosphane Chemical compound [Zn+2].C1CCCCC1SP(=S)([O-])OC1CCCCC1.C1CCCCC1SP(=S)([O-])OC1CCCCC1 CFOWUEASWNKJDT-UHFFFAOYSA-L 0.000 description 1
- ICTFVBQZBCTKJO-UHFFFAOYSA-L zinc;hexan-2-yloxy-oxido-propan-2-ylsulfanyl-sulfanylidene-$l^{5}-phosphane Chemical compound [Zn+2].CCCCC(C)OP([O-])(=S)SC(C)C.CCCCC(C)OP([O-])(=S)SC(C)C ICTFVBQZBCTKJO-UHFFFAOYSA-L 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M133/00—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
- C10M133/52—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of 30 or more atoms
- C10M133/56—Amides; Imides
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M133/00—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
- C10M133/02—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of less than 30 atoms
- C10M133/04—Amines, e.g. polyalkylene polyamines; Quaternary amines
- C10M133/06—Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/22—Organic compounds containing nitrogen
- C10L1/222—Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond
- C10L1/2222—(cyclo)aliphatic amines; polyamines (no macromolecular substituent 30C); quaternair ammonium compounds; carbamates
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/22—Organic compounds containing nitrogen
- C10L1/234—Macromolecular compounds
- C10L1/238—Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
- C10L1/2383—Polyamines or polyimines, or derivatives thereof (poly)amines and imines; derivatives thereof (substituted by a macromolecular group containing 30C)
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L10/00—Use of additives to fuels or fires for particular purposes
- C10L10/04—Use of additives to fuels or fires for particular purposes for minimising corrosion or incrustation
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L10/00—Use of additives to fuels or fires for particular purposes
- C10L10/18—Use of additives to fuels or fires for particular purposes use of detergents or dispersants for purposes not provided for in groups C10L10/02 - C10L10/16
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M133/00—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
- C10M133/52—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of 30 or more atoms
- C10M133/58—Heterocyclic compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/18—Organic compounds containing oxygen
- C10L1/188—Carboxylic acids; metal salts thereof
- C10L1/1881—Carboxylic acids; metal salts thereof carboxylic group attached to an aliphatic carbon atom
- C10L1/1883—Carboxylic acids; metal salts thereof carboxylic group attached to an aliphatic carbon atom polycarboxylic acid
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L2200/00—Components of fuel compositions
- C10L2200/02—Inorganic or organic compounds containing atoms other than C, H or O, e.g. organic compounds containing heteroatoms or metal organic complexes
- C10L2200/0259—Nitrogen containing compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L2200/00—Components of fuel compositions
- C10L2200/04—Organic compounds
- C10L2200/0407—Specifically defined hydrocarbon fractions as obtained from, e.g. a distillation column
- C10L2200/0415—Light distillates, e.g. LPG, naphtha
- C10L2200/0423—Gasoline
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L2200/00—Components of fuel compositions
- C10L2200/04—Organic compounds
- C10L2200/0407—Specifically defined hydrocarbon fractions as obtained from, e.g. a distillation column
- C10L2200/0438—Middle or heavy distillates, heating oil, gasoil, marine fuels, residua
- C10L2200/0446—Diesel
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L2270/00—Specifically adapted fuels
- C10L2270/02—Specifically adapted fuels for internal combustion engines
- C10L2270/023—Specifically adapted fuels for internal combustion engines for gasoline engines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L2270/00—Specifically adapted fuels
- C10L2270/02—Specifically adapted fuels for internal combustion engines
- C10L2270/026—Specifically adapted fuels for internal combustion engines for diesel engines, e.g. automobiles, stationary, marine
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/10—Carboxylix acids; Neutral salts thereof
- C10M2207/12—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
- C10M2207/125—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids
- C10M2207/127—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids polycarboxylic
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/02—Amines, e.g. polyalkylene polyamines; Quaternary amines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/02—Amines, e.g. polyalkylene polyamines; Quaternary amines
- C10M2215/04—Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/02—Amines, e.g. polyalkylene polyamines; Quaternary amines
- C10M2215/04—Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
- C10M2215/042—Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Alkoxylated derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/28—Amides; Imides
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2217/00—Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2217/04—Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2217/043—Mannich bases
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2020/00—Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
- C10N2020/01—Physico-chemical properties
- C10N2020/04—Molecular weight; Molecular weight distribution
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/04—Detergent property or dispersant property
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/06—Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/04—Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/25—Internal-combustion engines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/25—Internal-combustion engines
- C10N2040/252—Diesel engines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/25—Internal-combustion engines
- C10N2040/252—Diesel engines
- C10N2040/253—Small diesel engines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/25—Internal-combustion engines
- C10N2040/255—Gasoline engines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/25—Internal-combustion engines
- C10N2040/255—Gasoline engines
- C10N2040/26—Two-strokes or two-cycle engines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2070/00—Specific manufacturing methods for lubricant compositions
Definitions
- the present technology is related to quaternary ammonium salts prepared with alcohol functionalized epoxide quaternizing agents, and the use of such quaternary ammonium salts in fuel and lubricant compositions to improve to improve the water shedding performance of the composition.
- the invention further relates to a method of lubricating an internal combustion engine with the lubricant composition for at least one of antiwear, friction, detergency, dispersancy, and/or corrosion control performance.
- demulsifiers can be added to fuel or crude oil formulations, whether in the pipeline, at the pump or as an aftermarket additive. While demulsifiers can assist in the water shedding process, it would be desirable to provide a new detergent molecule that provides improved demulsification or water shedding performance
- EP 0 183 478 A2 discloses glycidol modified succinimides.
- the present technology provides a composition comprising an epoxide quat prepared with alcohol functionalized epoxides.
- the epoxide quat itself is the reaction product of (a) a quaternizable compound and (b) a quaternizing agent comprising alcohol functionalized epoxides.
- the quaternizable compound is the reaction product of (i) a hydrocarbyl-substituted acylating agent, and (ii) a nitrogen containing compound having an oxygen or nitrogen atom capable of reacting with the hydrocarbyl-substituted acylating agent, and further having at least one quaternizable amino group.
- the hydrocarbyl-substituent has a number average molecular weight (M n ) of from 100 to 5000 as measured using gel permeation chromatography (GPC) based on a polystyrene calibration standard.
- the quaternizable amino group can be a primary, secondary or tertiary amino group.
- the hydrocarbyl-substituted acylating agent is polyisobutenyl succinic anhydride or polyisobutenyl succinic acid.
- the reaction to prepare the quaternizable compound of (a) can be carried out at a temperature of greater than 80 or 90 or 100 °C. In some embodiments, water of reaction can be removed. In some embodiments, the reaction to prepare the quaternizable compound of (a) can be carried out at a temperature of less than 80°C.
- the epoxide quat is an imide containing quaternary ammonium salt. In an embodiment, the epoxide quat is an amide or ester containing quaternary ammonium salt.
- the quaternizing agent can comprise, consist of, or consist essentially of alcohol functionalized epoxides. In still further embodiments, the quaternizing agent can comprise, consist of, or consist essentially of glycidol.
- the quaternizing agent can be employed in the presence of a protic solvent. In some embodiments, the quaternizing agent can be employed in the presence of 2-ethylhexanol, water, or mixtures thereof. In some embodiments, the quaternizing agent can be employed in the presence of an acid. In some embodiments, the quaternizing agent can be employed in the presence of an acid separate from the acid group present on the acylating agent. In some embodiments, the quaternizing agent can be employed in the presence of the acid group present in the structure of the acylating agent.
- the compositions described above can further include at least one other additive.
- the at least one other additive can be a detergent, a demulsifier, or a mixture thereof.
- the at least one other additive can be at least one hydrocarbyl-substituted succinic acid.
- the at least one other additive can be at least one hydrocarbyl-substituted quaternary ammonium salt.
- the hydrocarbyl-substituent can be a polyisobutylene having a number average molecular weight (M n ) of from about 100 to about 5000.
- the at least one other additive can be at least one Mannich compound.
- a further aspect of the present technology includes a composition having an epoxide quat as described herein, and further having an oil of lubricating viscosity.
- a still further aspect of the present technology provides a method of operating an internal combustion engine.
- the method of operating an internal combustion engine can include the steps of (a) supplying a lubricating oil composition to the crankcase of the engine and (b) operating said engine.
- the lubricating oil composition can include (i) oil of lubricating viscosity, and (ii) the epoxide quat as described herein.
- Embodiments of the present technology may provide the use of the epoxide quat for at least one of antiwear performance, friction modification (particularly for enhancing fuel economy), detergent performance (particularly deposit control or varnish control), dispersancy (particularly soot control, or sludge control), or corrosion control.
- epoxide quats may be prepared with alcohol functionalized epoxides.
- a quaternary ammonium salt generally results in a mixture of compounds including a quaternary ammonium salt or salts, and this mixture may be difficult to define apart from the process steps employed to produce the quaternary ammonium salt. Further, the process by which a quaternary ammonium salt is produced can be influential in imparting distinctive structural characteristics to the final quaternary ammonium salt product that can affect the properties of the quaternary ammonium salt product.
- the epoxide quats of the present technology may be described as a reaction product of (a) a quaternizable compound, and (b) a quaternizing agent.
- reference to epoxide quat(s) includes references to the mixture compounds including a quaternary ammonium salt or salts prepared with alcohol functionalized epoxides, as well as referring to the quaternary ammonium salt itself.
- the quaternizable compound of (a) employed to prepare the epoxide quat may itself be the reaction product of (i) a hydrocarbyl-substituted acylating agent, and (ii) a nitrogen containing compound.
- the hydrocarbyl-substituted acylating agent of (a)(i) can be an acylating agent functionalized with a hydrocarbyl-substituent having a number average molecular weight of 100 to 5000.
- the number average molecular weight of the materials described herein is measured using gas permeation chromatography (GPC) using a Waters GPC 2000 equipped with a refractive index detector and Waters EmpowerTM data acquisition and analysis software.
- the columns are polystyrene (PLgel, 5 micron, available from Agilent/Polymer Laboratories, Inc.).
- PLgel polystyrene
- PTFE filters PTFE filters
- the hydrocarbyl substituted acylating agent employed to prepare the quaternizable compound can be the reaction product of the precursor to the hydrocarbyl-substituent, which is a long chain hydrocarbon, generally a polyolefin, with a monounsaturated carboxylic acid reactant such as maleic acid.
- the hydrocarbyl-substituent is a long chain hydrocarbyl group.
- the hydrocarbyl group can have a number average molecular weight (M n ) of from about 100 or 300 to about 5000, or from about 500 to about 2500.
- Mn of the hydrocarbyl group can also be from about 1300 to about 3000.
- the M n of the hydrocarbyl-substituent can also be from 1500 to 2800 or 2900, or from 1700 to 2700, or from 1900 to 2600, or 2000 to 2500. In an embodiment, the M n can be from about 300 to about 750.
- the M n of the hydrocarbyl-substituent can also be from about 350 to 700, and in some cases from 400 to 600, or 650. In yet other embodiments the M n of the hydrocarbyl-substituent can also be 550, or 1000, or 2300. In yet another embodiment, the hydrocarbyl-substituent may have a number average molecular weight of 1000 to 2300.
- Olefin polymers for reaction with the monounsaturated carboxylic acids include isobutylene, The polymers are polyisobutylene.
- the hydrocarbyl-substituted acylating agent may be a "conventional" vinylidene polyisobutylene (PIB) wherein less than 20% of the head groups are vinylidene head groups as measured by nuclear magnetic resonance (NMR).
- the hydrocarbyl-substituted acylating agent may be a mid-vinylidene PIB or a high-vinylidene PIB. In mid-vinylidene PIBs, the percentage of head groups that are vinylidene groups can range from greater than 20% to 70%. In high-vinylidene PIBs, the percentage of head groups that are vinylidene head groups is greater than 70%.
- composition of the present invention contains a nitrogen containing compound having an oxygen or nitrogen atom capable of reacting with the acylating agent and further having a quaternizable amino group.
- a quaternizable amino group is any primary, secondary or tertiary amino group on the nitrogen containing compound that is available to react with a quaternizing agent to become a quaternary amino group.
- the nitrogen containing compound can be represented by the following formulas: wherein X is an alkylene group containing 1 to 4 carbon atoms; R 2 may be a H or a hydrocarbyl group; and R 3 and R 4 are hydrocarbyl groups. wherein X is a alkylene group containing about 1 to about 4 carbon atoms; R3 and R4 are hydrocarbyl groups.
- nitrogen containing compound capable of reacting with the acylating agent can include, but are not limited to, dimethylaminopropylamine, N,N-dimethyl-aminopropylamine, N,N-diethyl-aminopropylamine, N,N-dimethylaminoethylamine ethylenediamine, 1,2-propylenediamine, 1,3-propylene diamine, the isomeric butylenediamines, pentanediamines, hexanediamines, heptanediamines, diethylenetriamine, dipropylenetriamine, dibutylenetriamine, triethylenetetraamine, tetraethylenepentaamine, pentaethylenehexaamine, hexamethylenetetramine, and bis(hexamethylene) triamine, the diaminobenzenes, the diaminopyridines or mixtures thereof.
- the nitrogen containing compounds capable of reacting with the acylating agent and further having a quaternizable amino group can further include aminoalkyl substituted heterocyclic compounds such as 1-(3-aminopropyl)imidazole and 4-(3-aminopropyl)morpholine, 1-(2-aminoethyl)piperidine, 3,3-diamino-N-methyldipropylamine.
- aminoalkyl substituted heterocyclic compounds such as 1-(3-aminopropyl)imidazole and 4-(3-aminopropyl)morpholine, 1-(2-aminoethyl)piperidine, 3,3-diamino-N-methyldipropylamine.
- Additional nitrogen containing compounds capable of reacting with the acylating agent and having a quaternizable amino group include alkanolamines including but not limited to triethanolamine, trimethanolamine, N,N-dimethylaminopropanol, N,N-diethylaminopropanol, N,N-diethylaminobutanol, N,N,N-tris(hydroxyethyl)amine, N,N,N-tris(hydroxymethyl)amine, N-N-dimethylethanolamine, N-N-diethylethanolamine, 2-(diisopropylamino)ethanol, 2-(dibutylamino)ethanol, 3-dimethylamino-1-propanol, 3-diethylamino-1-propanol, 1-dimethylamino-2-propanol, 1-diethylamino-2-propanol, 2-dimethylamino-2-methyl-1-1propanol, 5-dimethylamino-2-propan
- the nitrogen containing compound can be an imidazole, for example, as represented by the following formula: wherein R is an amine or alkanol capable of condensing with said hydrocarbyl-substituted acylating agent and having from 3 to 8 carbon atoms
- the nitrogen containing compound can be represented by at least one of formulas X or XI: wherein each X can be, individually, a C1 to C6 hydrocarbylene group, and each R can be, individually, a hydrogen or a C1 to C6 hydrocarbyl group.
- X can be, for example, a C1, C2 or C3 alkylene group.
- each R can be, for example, H or a C1, C2 or C3 alkyl group.
- hydrocarbyl substituted acylating agents and nitrogen containing compounds described above are reacted together to form a quaternizable compound.
- Methods and process for reacting the hydrocarbyl substituted acylating agents and nitrogen containing compounds are well known in the art.
- the reaction between the hydrocarbyl substituted acylating agents and nitrogen containing compounds can be carried out at temperatures of greater than about 80 °C, or 90 °C, or in some cases 100 °C, such as between 100 and 150 or 200 °C, or 125 and 175 °C.
- the reaction between the hydrocarbyl substituted acylating agents and the nitrogen containing compounds may be carried out at temperatures less than 80 °C, or 70 °C, or 60 °C, and in some cases between 40 °C and 80 °C.
- water may be produced during the condensation, which is referred to herein as the water of reaction.
- the water of reaction can be removed during the reaction, such that the water of reaction does not return to the reaction and further react.
- hydrocarbyl substituted acylating agents and nitrogen containing compounds may be reacted at a ratio of 1:1, but the reaction may also contain the respective reactants (i.e., hydrocarbyl substituted acylating agent:nitrogen containing compound) in ratios from 3:1 to 1:1.2, or from 2.5:1 to 1:1.1, and in some embodiments from 2:1 to 1:1.05.
- reactants i.e., hydrocarbyl substituted acylating agent:nitrogen containing compound
- the quaternary ammonium salt can be formed when the quaternizable compound, that is, the reaction products of the hydrocarbyl substituted acylating agent and nitrogen containing compounds described above, are reacted with a quaternizing agent.
- Suitable quaternizing agents include, alcohol functionalized epoxides.
- Exemplary epoxides can be represented by the following formula: where R 1 , R 2 , R 3 and R 4 can be independently H, a C 4 to C 14 hydrocarbyl group, or an alcohol containing hydrocarbyl group.
- the epoxides can be alcohol functionalized epoxides containing from 2 to 32, or from 3 to 28, or even from 3 to 24 carbon atoms.
- Exemplary alcohol functionalized epoxides can include those of formula VIII where R 1 , R 2 , R 3 and R 4 can be independently H or a hydroxyl containing hydrocarbyl group.
- hydroxyl containing hydrocarbyl group can contain from 2 to 32, or from 3 to 28, or even from 3 to 24 carbon atoms.
- Exemplary alcohol functionalized epoxide derivatives can include for example, glycidol and the like.
- the quaternizing agent can be employed in combination with an acid.
- the acid used with the quaternizing agent may be a separate component, such as acetic acid, propionic acid, 2-ethylhexanoic acid, and the like.
- a small amount of an acid component may be present, such as, about at ⁇ 0.2 or even ⁇ 0.1 moles of acid per mole of hydrocarbyl acylating agent.
- the molar ratio of the condensation compound to quaternizing agent is 1:0.1 to 2, or 1:1 to 1.5, or 1:1 to 1.3.
- the quaternizing agent can be employed in the presence of a protic solvent, such as, for example, 2-ethylhexanol, water, and combinations thereof.
- a protic solvent such as, for example, 2-ethylhexanol, water, and combinations thereof.
- the quaternizing agent can be employed in the presence of an acid.
- the quaternizing agent can be employed in the presence of an acid and a protic solvent.
- the acid can be an acid component in addition to the acid group present in the structure of the acylating agent.
- the reaction can be free of, or essentially free of, any additional acid component other than the acid group present in the structure of the acylating agent.
- free of' it is meant completely free, and by "essentially free” it is meant an amount that not materially affect the essential or basic and novel characteristics of the composition, such as, for example, less than 1% by weight.
- the epoxide quats can comprise, consist essentially of, or consist of a cation represented by the following formula: wherein: R 21 is a hydrocarbyl group containing from 1 to 10 carbon atoms; R 22 is a hydrocarbyl group containing from 1 to 10 carbon atoms; R 23 is a hydrocarbylene group containing from 1 to 20 carbon atoms; R 24 is a hydrocarbyl group containing from 5 to 400 carbon atoms, or from 15 or 25 to 300 or 350 carbon atoms, or from 50 or 120 to 250 carbon atoms, or from 135 to 200 carbon atoms; and X is a group derived from the quaternizing agent.
- R 24 can be a hydrocarbyl group containing from 92 to 215 carbon atoms, or from 107 to 200 or 210 carbon atoms, or from 120 to 195 carbon atoms, or from 135 to 190 or from 140 to 180 or 185 carbon atoms, or a hydrocarbyl group containing from 20 to 55 carbon atoms, or from 25 to 50, or from 28 to 43 or 47 carbon atoms.
- the epoxide quats can comprise, consist essentially of, or consist of a cation represented by the following formula: wherein: R 21 and R 22 are hydrocarbyl groups containing from 1 to 10 carbon atoms; R 23 is a hydrocarbylene group containing from 1 to 20 carbon atoms; R 24 is a hydrocarbyl group containing from 5 to 400 carbon atoms, or from 15 or 25 to 300 or 350 carbon atoms, or from 50 or 120 to 250 carbon atoms, or from 135 to 200 carbon atoms; X is a group derived from the quaternizing agent; and Y is oxygen or nitrogen.
- R 24 can be a hydrocarbyl group containing from 92 to 215 carbon atoms, or from 107 to 200 or 210 carbon atoms, or from 120 to 195 carbon atoms, or from 135 to 190 or from 140 to 180 or 185 carbon atoms, or a hydrocarbyl group containing from 20 to 55 carbon atoms, or from 25 to 50, or from 28 to 43 or 47 carbon atoms.
- the epoxide quats can comprise, consist essentially of, or consist of a cation represented by the following formulas: or wherein: R can be a C 1 to C 6 alkyl group; R 1 and R 2 , individually, can be a C 1 to C 6 hydrocarbyl group, for example a C 1 , C 2 , or C 3 alkyl group; R 3 , R 4 , R 5 and R 6 , individually, can be hydrogen or a C 1 to C 6 hydrocarbyl group, such as, for example, a C 1 , C 2 , or C 3 alkyl group; R 24 is a hydrocarbyl group containing from 5 to 400 carbon atoms, or from 15 or 25 to 300 or 350 carbon atoms, or from 50 or 120 to 250 carbon atoms, or from 135 to 200 carbon atoms; X 1 and X 2 , individually, can be H or a group derived from the quaternizing agent, so long as at least one of X 1 and
- R 24 can be a hydrocarbyl group containing from 92 to 215 carbon atoms, or from 107 to 200 or 210 carbon atoms, or from 120 to 195 carbon atoms, or from 135 to 190 or from 140 to 180 or 185 carbon atoms, or a hydrocarbyl group containing from 20 to 55 carbon atoms, or from 25 to 50, or from 28 to 43 or 47 carbon atoms.
- the epoxide quats can comprise, consist essentially of, or consist of a cation represented by the following formula: wherein: R 23 is a hydrocarbylene group containing from 1 to 20 carbon atoms; R 24 is a hydrocarbyl group containing from 5 to 400 carbon atoms, or from 15 or 25 to 300 or 350 carbon atoms, or from 50 or 120 to 250 carbon atoms, or from 135 to 200 carbon atoms; and X is a group derived from the quaternizing agent.
- R 24 can be a hydrocarbyl group containing from 92 to 215 carbon atoms, or from 107 to 200 or 210 carbon atoms, or from 120 to 195 carbon atoms, or from 135 to 190 or from 140 to 180 or 185 carbon atoms, or a hydrocarbyl group containing from 20 to 55 carbon atoms, or from 25 to 50, or from 28 to 43 or 47 carbon atoms.
- the present technology provides a composition comprising an epoxide quat, and the use of the composition in a lubricating composition with an oil of lubricating viscosity.
- the compositions of the present invention can comprise an oil of lubricating viscosity.
- oils include natural and synthetic oils, oil derived from hydrocracking, hydrogenation, and hydrofinishing, unrefined, refined, re-refined oils or mixtures thereof.
- a more detailed description of unrefined, refined and re-refined oils is provided in International Publication WO2008/147704 , paragraphs [0054] to [0056].
- a more detailed description of natural and synthetic lubricating oils is provided in paragraphs [0058] to [0059] respectively of WO2008/147704 .
- Synthetic oils may also be produced by Fischer-Tropsch reactions and typically may be hydroisomerized Fischer-Tropsch hydrocarbons or waxes. In one embodiment oils may be prepared by a Fischer-Tropsch gas-to liquid synthetic procedure as well as other gas-to-liquid oils.
- Oils of lubricating viscosity may also be selected from any of the base oils in Groups I-V as specified in the American Petroleum Institute (API) Base Oil Interchangeability Guidelines.
- the five base oil groups are as follow; Group I: > 0.03% sulfur or ⁇ 90% saturates and viscosity index 80-120; Group II: ⁇ 0.03% sulfur and ⁇ 90% saturates and viscosity index 80-120; Group III: ⁇ 0.03% sulfur and ⁇ 90% saturates and viscosity index ⁇ 120; Group IV: all polyalphaolefins; Group V: all others.
- Groups I, II and III are typically referred to as mineral oil base stocks.
- Typical treat rates of the epoxide quats of the invention to lubricating oils is 0.1 to 10 wt % or 0.5 to 5 wt % or 0.5 to 2.5 wt % or 0.5 to 1 wt % or 0.1 to 0.5 wt % or 1 to 2 wt % based on a total weight of the lubricating oil.
- the amount of the oil of lubricating viscosity present is typically the balance remaining after subtracting from 100 wt% the sum of the amount of the compound of the invention and the other performance additives.
- the lubricating composition may be in the form of a concentrate and/or fully formulated lubricant. If the lubricating composition of the invention (comprising the additives disclosed herein) is in the form of a concentrate which may be combined with additional oil to from, in whole or in part, a finished lubricant), the ratio of the of these additive to the oil of lubricating viscosity and/or diluent oil include the ranged of 1:99 to 99:1 by weight, or 80:20 to 10:90 by weight.
- the lubricant compositions of the present invention include the epoxide quats described above and may also include one or more additional additives. Such additional performance additives can be added to any of the compositions described depending on the results desired and the application in which the composition will be used.
- any of the additional performance additives described herein can be used in any of the fuel and/or lubricant compositions of the invention, the following additional additives are particularly useful for fuel and/or lubricant compositions: antioxidants, corrosion inhibitors, detergent and/or dispersant additives other than those described above, cold flow improvers, foam inhibitors, demulsifiers, lubricity agents, metal deactivators, valve seat recession additives, biocides, antistatic agents, deicers, fluidizers, combustion improvers, seal swelling agents, wax control polymers, scale inhibitors, gas-hydrate inhibitors, or any combination thereof.
- Demulsifiers suitable for use with the epoxide quats of the present technology can include, but not be limited to, arylsulfonates and polyalkoxylated alcohol, such as, for example, polyethylene and polypropylene oxide copolymers and the like.
- the demulsifiers can also comprise nitrogen containing compounds such as oxazoline and imidazoline compounds and fatty amines, as well as Mannich compounds. Mannich compounds are the reaction products of alkylphenols and aldehydes (especially formaldehyde) and amines (especially amine condensates and polyalkylenepolyamines).
- Mannich compounds are the reaction products of alkylphenols and aldehydes (especially formaldehyde) and amines (especially amine condensates and polyalkylenepolyamines).
- demulsifiers are, for example, the alkali metal or alkaline earth metal salts of alkyl-substituted phenol- and naphthalenesulfonates and the alkali metal or alkaline earth metal salts of fatty acids, and also neutral compounds such as alcohol alkoxylates, e.g. alcohol ethoxylates, phenol alkoxylates, e.g.
- tert-butylphenol ethoxylate or tert-pentylphenol ethoxylate fatty acids, alkylphenols, condensation products of ethylene oxide (EO) and propylene oxide (PO), for example including in the form of EO/PO block copolymers, polyethyleneimines or else polysiloxanes.
- EO ethylene oxide
- PO propylene oxide
- Any of the commercially available demulsifiers may be employed, suitably in an amount sufficient to provide a treat level of from 5 to 50 ppm in the fuel. In an embodiment there is no demulsifier present in the fuel and/or lubricant composition.
- the demulsifiers may be used alone or in combination. Some demulsifiers are commercially available, for example from Nalco or Baker Hughes.
- Suitable antioxidants include for example hindered phenols or derivatives thereof and/or diarylamines or derivatives thereof.
- Suitable detergent/dispersant additives include for example polyetheramines or nitrogen containing detergents, including but not limited to PIB amine detergents/dispersants, succinimide detergents/dispersants, and other quaternary salt detergents/dispersants including polyisobutylsuccinimide-derived quaternized PIB/amine and/or amide dispersants/detergents.
- Suitable cold flow improvers include for example esterified copolymers of maleic anhydride and styrene and/or copolymers of ethylene and vinyl acetate.
- Suitable lubricity improvers or friction modifiers are based typically on fatty acids or fatty acid esters. Typical examples are tall oil fatty acid, as described, for example, in WO 98/004656 , and glyceryl monooleate. The reaction products, described in U.S. Pat. No. 6,743,266 B2 , of natural or synthetic oils, for example triglycerides, and alkanolamines are also suitable as such lubricity improvers. Additional examples include commercial tall oil fatty acids containing polycyclic hydrocarbons and/or rosin acids. Suitable metal deactivators include for example aromatic triazoles or derivatives thereof, including but not limited to benzotriazole.
- Suitable metal deactivators are, for example, salicylic acid derivatives such as N,N-disalicylidene-1,2-propanediamine.
- Suitable valve seat recession additives include for example alkali metal sulfosuccinate salts.
- Suitable foam inhibitors and/or antifoams include for example organic silicones such as polydimethyl siloxane, polyethylsiloxane, polydiethylsiloxane, polyacrylates and polymethacrylates, trimethyl-triflouro-propylmethyl siloxane and the like.
- Suitable fluidizers include for example mineral oils and/or poly(alpha-olefins) and/or polyethers.
- Combustion improvers include for example octane and cetane improvers.
- Suitable cetane number improvers are, for example, aliphatic nitrates such as 2-ethylhexyl nitrate and cyclohexyl nitrate and peroxides such as di-tert-butyl peroxide.
- the additional performance additives which may be present in the fuel and/or lubricant compositions of the invention, also include di-ester, di-amide, ester-amide, and ester-imide friction modifiers prepared by reacting an ⁇ -hydroxy acid with an amine and/or alcohol optionally in the presence of a known esterification catalyst.
- ⁇ -hydroxy acids include glycolic acid, lactic acid, ⁇ -hydroxy dicarboxylic acid (such as tartaric acid) and/or an ⁇ -hydroxy tricarboxylic acid (such as citric acid), with an amine and/or alcohol, optionally in the presence of a known esterification catalyst.
- friction modifiers often derived from tartaric acid, citric acid, or derivatives thereof, may be derived from amines and/or alcohols that are branched, resulting in friction modifiers that themselves have significant amounts of branched hydrocarbyl groups present within it structure.
- suitable branched alcohols used to prepare such friction modifiers include 2-ethylhexanol, isotridecanol, Guerbet alcohols, and mixtures thereof.
- Friction modifiers may be present at 0 to 6 wt % or 0.001 to 4 wt %, or 0.01 to 2 wt % or 0.05 to 3 wt % or 0.1 to 2 wt% or 0.1 to 1 wt % or 0.001 to 0.01 wt %.
- the additional performance additives may comprise a detergent/dispersant comprising a hydrocarbyl substituted acylating agent.
- the acylating agent may be, for example, a hydrocarbyl substituted succinic acid, or the condensation product of a hydrocarbyl substituted succinic acid with an amine or an alcohol; that is, a hydrocarbyl substituted succinimide or hydrocarbyl substituted succinate.
- the detergent/dispersant may be a polyisobutenyl substituted succinic acid, amide or ester, wherein the polyisobutenyl substituent has a number average molecular weight of from about 100 to 5000.
- the detergent may be a C 6 to C 18 substituted succinic acid, amide or ester.
- hydrocarbyl substituted acylating agent detergents can be found from paragraph [0017] to [0036] of U.S. Publication 2011/0219674, published September 15, 2011 .
- the additional detergent/dispersant is a quaternary ammoniums salt other than that of the present technology.
- Additional quaternary ammoniums salts can be quaternary ammoniums salts prepared from hydrocarbyl substituted acylating agents, such as, for example, polyisobutyl succinic acids or anhydrides, having a hydrocarbyl substituent with a number average molecular weight of greater than 1200 M n , polyisobutyl succinic acids or anhydrides, having a hydrocarbyl substituent with a number average molecular weight of 300 to 750, or polyisobutyl succinic acids anhydrides, having a hydrocarbyl substituent with a number average molecular weight of 1000 M n .
- hydrocarbyl substituted acylating agents such as, for example, polyisobutyl succinic acids or anhydrides, having a hydrocarbyl substituent with a number average molecular weight of greater than 1200 M n
- the additional quaternary ammonium salts prepared from the reaction of nitrogen containing compound and a hydrocarbyl substituted acylating agent having a hydrocarbyl substituent with a number average molecular weight of 300 to 750 or 1300 to 3000 is an amide or ester.
- the quaternary ammonium salts prepared from the reaction of nitrogen containing compound and a hydrocarbyl substituted acylating agent having a hydrocarbyl substituent with a number average molecular weight of greater than 1200 M n or having a hydrocarbyl substituent with a number average molecular weight of from 300 to 750 is an imide.
- the hydrocarbyl substituted acylating agent can include a mono-, dimer or trimer carboxylic acid with 8 to 54 carbon atoms and is reactive with primary or secondary amines.
- Suitable acids include, but are not limited to, the mono-, dimer, or trimer acids of caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic, arachidic acid, behenic acid, lignoceric acid, cerotic acid, myristoleic acid, palmitoleic acid, sapienic acid, oleic acid, elaidic acid, vaccenic acid, linoleic acid, linoelaidic acid, ⁇ -linolenic acid, arachidonic acid, eicosapentaenoic acid, erucic acid, and docosahexaenoic acid.
- the nitrogen containing compound of the additional quaternary ammonium salts is an imidazole or nitrogen containing compound of either of formulas.
- R may be a C 1 to C 6 alkylene group; each of R 1 and R 2 , individually, may be a C 1 to C 6 hydrocarbylene group; and each of R 3 , R 4 , R 5 , and R 6 , individually, may be a hydrogen or a C 1 to C 6 hydrocarbyl group.
- the quaternizing agent used to prepare the additional quaternary ammonium salts can be a dialkyl sulfate, an alkyl halide, a hydrocarbyl substituted carbonate, a hydrocarbyl epoxide, a carboxylate, alkyl esters, or mixtures thereof.
- the quaternizing agent can be a hydrocarbyl epoxide.
- the quaternizing agent can be a hydrocarbyl epoxide in combination with an acid.
- the quaternizing agent can be a salicylate, oxalate or terephthalate.
- the hydrocarbyl epoxide is an alcohol functionalized epoxides or C 4 to C 14 epoxides.
- the quaternizing agent is multi-functional resulting in the additional quaternary ammonium salts being coupled quaternary ammoniums salts.
- Additional quaternary ammonium salts include, but are not limited to quaternary ammonium salts having a hydrophobic moiety in the anion.
- Exemplary compounds include quaternary ammonium compounds having the formula below: wherein R 0 , R 1 , R 2 and R 3 is each individually an optionally substituted alkyl, alkenyl or aryl group and R includes an optionally substituted hydrocarbyl moiety having at least 5 carbon atoms.
- Additional quaternary ammonium salts may also include polyetheramines that are the reaction products of a polyether-substituted amine comprising at least one tertiary quaternizable amino group and a quaternizing agent that converts the tertiary amino group to a quaternary ammonium group.
- Dispersants can also be post-treated by reaction with any of a variety of agents. Among these are urea, thiourea, dimercaptothiadiazoles, carbon disulfide, aldehydes, ketones, carboxylic acids, hydrocarbon-substituted succinic anhydrides, nitriles, epoxides, boron compounds, and phosphorus compounds. References detailing such treatment are listed in U.S. Patent 4,654,403 .
- the fuel and/or lubricant compositions of the invention may include a detergent additive, different from the disclosed epoxide quat technology.
- a detergent additive different from the disclosed epoxide quat technology.
- Most conventional detergents used in the field of engine lubrication obtain most or all of their basicity or TBN from the presence of basic metal-containing compounds (metal hydroxides, oxides, or carbonates, typically based on such metals as calcium, magnesium, or sodium).
- Such metallic overbased detergents also referred to as overbased or superbased salts, are generally single phase, homogeneous Newtonian systems characterized by a metal content in excess of that which would be present for neutralization according to the stoichiometry of the metal and the particular acidic organic compound reacted with the metal.
- the overbased materials are typically prepared by reacting an acidic material (typically an inorganic acid or lower carboxylic acid such as carbon dioxide) with a mixture of an acidic organic compound (also referred to as a substrate), a stoichiometric excess of a metal base, typically in a reaction medium of an one inert, organic solvent (e.g., mineral oil, naphtha, toluene, xylene) for the acidic organic substrate. Typically also a small amount of promoter such as a phenol or alcohol is present, and in some cases a small amount of water.
- the acidic organic substrate will normally have a sufficient number of carbon atoms to provide a degree of solubility in oil.
- Patents describing techniques for making basic metallic salts of sulfonic acids, carboxylic acids, phenols, phosphonic acids, and mixtures of any two or more of these include U.S. Patents 2,501,731 ; 2,616,905 ; 2,616,911 ; 2,616,925 ; 2,777,874 ; 3,256,186 ; 3,384,585 ; 3,365,396 ; 3,320,162 ; 3,318,809 ; 3,488,284 ; and 3,629,109 .
- Salixarate detergents are described in U.S. patent 6,200,936 .
- the detergent may contain a metal-containing salicylate detergent, such as an overbased calcium hydrocarbyl-substituted salicylate detergent and are described in U.S. Patents 5,688,751 and 4,627,928 .
- Viscosity improvers may be included in the fuel and/or lubricant compositions of this invention.
- Viscosity improvers are usually polymers, including polyisobutenes, polymethacrylates (PMA) and polymethacrylic acid esters, hydrogenated diene polymers, polyalkylstyrenes, esterified styrene-maleic anhydride copolymers, hydrogenated alkenylarene-conjugated diene copolymers and polyolefins.
- PMA's are prepared from mixtures of methacrylate monomers having different alkyl groups. The alkyl groups may be either straight chain or branched chain groups containing from 1 to 18 carbon atoms. Most PMA's are viscosity modifiers as well as pour point depressants.
- Multifunctional viscosity improvers which also have dispersant and/or antioxidancy properties are known and may optionally be used in the fuel and/or lubricant compositions.
- Dispersant viscosity modifiers are one example of such multifunctional additives.
- DVM are typically prepared by copolymerizing a small amount of a nitrogen-containing monomer with alkyl methacrylates, resulting in an additive with some combination of dispersancy, viscosity modification, pour point depressancy and dispersancy.
- Vinyl pyridine, N-vinyl pyrrolidone and N,N'-dimethylaminoethyl methacrylate are examples of nitrogen-containing monomers.
- Polyacrylates obtained from the polymerization or copolymerization of one or more alkyl acrylates also are useful as viscosity modifiers.
- Anti-wear agents may be used in the fuel and/or lubricant compositions provide herein.
- Anti-wear agents can in some embodiments include phosphorus-containing antiwear/extreme pressure agents such as metal thiophosphates, phosphoric acid esters and salts thereof, phosphorus-containing carboxylic acids, esters, ethers, and amides; and phosphites.
- a phosphorus antiwear agent may be present in an amount to deliver 0.01 to 0.2 or 0.015 to 0.15 or 0.02 to 0.1 or 0.025 to 0.08 percent by weight phosphorus.
- the antiwear agent is a zinc dialkyldithiophosphate (ZDP).
- Non-phosphorus-containing anti-wear agents include borate esters (including borated epoxides), dithiocarbamate compounds, molybdenum-containing compounds, and sulfurized olefins.
- the fuel and/or lubricant compositions of the invention are free of phosphorus-containing antiwear/extreme pressure agents.
- Foam inhibitors that may be useful in fuel and/or lubricant compositions of the invention include polysiloxanes, copolymers of ethyl acrylate and 2-ethylhexylacrylate and optionally vinyl acetate; demulsifiers including fluorinated polysiloxanes, trialkyl phosphates, polyethylene glycols, polyethylene oxides, polypropylene oxides and (ethylene oxide-propylene oxide) polymers.
- the disclosed technology may also be used with a silicone-containing antifoam agent in combination with a C 5 - C 17 alcohol.
- Pour point depressants that may be useful in fuel and/or lubricant compositions of the invention include polyalphaolefins, esters of maleic anhydride - styrene copolymers, poly(meth)acrylates, polyacrylates or polyacrylamides.
- Metal deactivators may be chosen from a derivative of benzotriazole (typically tolyltriazole), 1,2,4-triazole, benzimidazole, 2-alkyldithiobenzimidazole or 2-alkyldithiobenzothiazole, 1-amino-2-propanol, a derivative of dimercaptothiadiazole, octylamine octanoate, condensation products of dodecenyl succinic acid or anhydride and/or a fatty acid such as oleic acid with a polyamine.
- the metal deactivators may also be described as corrosion inhibitors.
- Seal swell agents include sulpholene derivatives Exxon Necton-37TM (FN 1380) and Exxon Mineral Seal OilTM (FN 3200).
- the technology provides engine oil lubricating compositions that can be employed in internal combustion engines.
- the internal combustion engine may be spark ignition or compression ignition.
- the internal combustion engine may be a 2-stroke or 4-stroke engine.
- the internal combustion engine may be a passenger car engine, a light duty diesel engine, a heavy duty diesel engine, a motorcycle engine, or a 2-stroke or 4-stroke marine diesel engine.
- the internal combustion engine may be a passenger car engine, or a heavy duty diesel internal combustion engine.
- an engine oil lubricant composition of the invention comprises in addition to the quaternary ammonium salts of the present technology an overbased metal-containing detergent, or mixtures thereof.
- Overbased detergents are known in the art. Overbased materials, otherwise referred to as overbased or superbased salts, are generally single phase, homogeneous systems characterized by a metal content in excess of that which would be present for neutralization according to the stoichiometry of the metal and the particular acidic organic compound reacted with the metal.
- the overbased materials are prepared by reacting an acidic material (typically an inorganic acid or lower carboxylic acid, typically carbon dioxide) with a mixture comprising an acidic organic compound, a reaction medium comprising at least one inert, organic solvent (mineral oil, naphtha, toluene, xylene, etc.) for said acidic organic material, a stoichiometric excess of a metal base, and a promoter such as a calcium chloride, acetic acid, phenol or alcohol.
- the acidic organic material will normally have a sufficient number of carbon atoms to provide a degree of solubility in oil.
- the amount of "excess" metal is commonly expressed in terms of metal ratio.
- metal ratio is the ratio of the total equivalents of the metal to the equivalents of the acidic organic compound.
- a neutral metal salt has a metal ratio of one.
- a salt having 4.5 times as much metal as present in a normal salt will have metal excess of 3.5 equivalents, or a ratio of 4.5.
- metal ratio is also explained in standard textbook entitled “ Chemistry and Technology of Lubricants", Third Edition, Edited by R. M. Mortier and S. T. Orszulik, Copyright 2010, page 219, sub-heading 7.25 .
- the overbased metal-containing detergent may be chosen from non-sulfur-containing phenates, sulfur-containing phenates, sulfonates, salixarates, salicylates, carboxylates, and mixtures thereof, or borated equivalents thereof.
- the overbased detergent may be borated with a borating agent such as boric acid.
- the overbased detergent may be non-sulfur containing phenates, sulfur containing phenates, sulfonates, or mixtures therof.
- An engine oil lubricant may further comprise an overbased sulfonate detergent present at 0.01 wt % to 0.9 wt %, or 0.05 wt % to 0.8 wt %, or 0.1 wt % to 0.7 wt %, or 0.2 wt % to 0.6 wt %.
- the overbased sulfonate detergent may have a metal ratio of 12 to less than 20, or 12 to 18, or 20 to 30, or 22 to 25.
- An engine oil lubricant composition may also include one or more detergents in addition to the overbased sulfonate.
- Overbased sulfonates typically have a total base number of 250 to 600, or 300 to 500 (on an oil free basis).
- Overbased detergents are known in the art.
- the sulfonate detergent may be a predominantly linear alkylbenzene sulfonate detergent having a metal ratio of at least 8 as is described in paragraphs [0026] to [0037] of US Patent Application 2005065045 (and granted as US 7,407,919 ).
- Linear alkyl benzenes may have the benzene ring attached anywhere on the linear chain, usually at the 2, 3, or 4 position, or mixtures thereof.
- the predominantly linear alkylbenzene sulfonate detergent may be particularly useful for assisting in improving fuel economy.
- the sulfonate detergent may be a metal salt of one or more oil-soluble alkyl toluene sulfonate compounds as disclosed in paragraphs [0046] to [0053] of US Patent Application 2008/0119378 .
- the overbased sulfonate detergent comprises an overbased calcium sulfonate.
- the calcium sulfonate detergent may have a metal ratio of 18 to 40 and a TBN of 300 to 500, or 325 to 425.
- the other detergents may have a metal of the metal-containing detergent may also include "hybrid" detergents formed with mixed surfactant systems including phenate and/or sulfonate components, e.g., phenate/salicylates, sulfonate/phenates, sulfonate/salicylates, sulfonates/phenates/salicylates, as described; for example, in US Patents 6,429,178 ; 6,429,179 ; 6,153,565 ; and 6,281,179 .
- phenate/salicylates e.g., phenate/salicylates, sulfonate/phenates, sulfonate/salicylates, sulfonates/phenates/salicylates, as described; for example, in US Patents 6,429,178 ; 6,429,179 ; 6,153,565 ; and 6,281,179 .
- hybrid detergent would be considered equivalent to amounts of distinct phenate and sulfonate detergents introducing like amounts of phenate and sulfonate soaps, respectively.
- the other detergent may have an alkali metal, an alkaline earth metal, or zinc counterion.
- the metal may be sodium, calcium, barium, or magnesium.
- other detergent may be sodium, calcium, or magnesium containing detergent (typically, calcium, or magnesium containing detergent).
- the other detergent may typically be an overbased detergent of sodium, calcium or magnesium salt of the phenates, sulfur-containing phenates, salixarates and salicylates.
- Overbased phenates and salicylates typically have a total base number of 180 to 450 TBN (on an oil free basis).
- Phenate detergents are typically derived from p-hydrocarbyl phenols.
- Alkylphenols of this type may be coupled with sulfur and overbased, coupled with aldehyde and overbased, or carboxylated to form salicylate detergents.
- Suitable alkylphenols include those alkylated with oligomers of propylene, i.e. tetrapropenylphenol (i.e. p-dodecylphenol or PDDP) and pentapropenylphenol.
- Other suitable alkylphenols include those alkylated with alpha-olefins, isomerized alpha-olefins, and polyolefins like polyisobutylene.
- the lubricating composition comprises less than 0.2 wt %, or less than 0.1 wt %, or even less than 0.05 wt % of a phenate detergent derived from PDDP. In one embodiment, the lubricant composition comprises a phenate detergent that is not derived from PDDP.
- the overbased detergent may be present at 0 wt % to 10 wt %, or 0.1 wt % to 10 wt %, or 0.2 wt % to 8 wt %, or 0.2 wt % to 3 wt %.
- the detergent may be present at 2 wt % to 3 wt % of the lubricant composition.
- the detergent may be present at 0.2 wt % to 1 wt % of the lubricant composition.
- an engine oil lubricant composition comprises at least one overbased detergent with a metal ratio of at least 3, or at least 8, or at least 15.
- an engine oil lubricant composition comprising the epoxide quats of the present technology may further include a dispersant, or mixtures thereof.
- the dispersant may be chosen from a succinimide dispersant, a Mannich dispersant, a succinamide dispersant, a polyolefin succinic acid ester, amide, or ester-amide, or mixtures thereof.
- an engine oil lubricant composition includes a dispersant or mixtures thereof.
- the dispersant may be present as a single dispersant.
- the dispersant may be present as a mixture of two or more (typically two or three) different dispersants, wherein at least one may be a succinimide dispersant.
- the succinimide dispersant may be derived from an aliphatic polyamine, or mixtures thereof.
- the aliphatic polyamine may be aliphatic polyamine such as an ethylenepolyamine, a propylenepolyamine, a butylenepolyamine, or mixtures thereof.
- the aliphatic polyamine may be ethylenepolyamine.
- the aliphatic polyamine may be chosen from ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, polyamine still bottoms, and mixtures thereof.
- the dispersant may be a polyolefin succinic acid ester, amide, or ester-amide.
- a polyolefin succinic acid ester may be a polyisobutylene succinic acid ester of pentaerythritol, or mixtures thereof.
- a polyolefin succinic acid ester-amide may be a polyisobutylene succinic acid reacted with an alcohol (such as pentaerythritol) and an amine (such as a diamine, typically diethyleneamine).
- the dispersant may be an N-substituted long chain alkenyl succinimide.
- An example of an N-substituted long chain alkenyl succinimide is polyisobutylene succinimide.
- the polyisobutylene from which polyisobutylene succinic anhydride may be derived has a number average molecular weight of 350 to 5000, or 550 to 3000 or 750 to 2500.
- Succinimide dispersants and their preparation are disclosed, for instance in US Patents 3,172,892 , 3,219,666 , 3,316,177 , 3,340,281 , 3,351,552 , 3,381,022 , 3,433,744 , 3,444,170 , 3,467,668 , 3,501,405 , 3,542,680 , 3,576,743 , 3,632,511 , 4,234,435 , Re 26,433 , and 6,165,235 , 7,238,650 and EP Patent Application 0 355 895 A .
- the dispersants may also be post-treated by conventional methods by a reaction with any of a variety of agents.
- agents such as boric acid, urea, thiourea, dimercaptothiadiazoles, carbon disulphide, aldehydes, ketones, carboxylic acids such as terephthalic acid, hydrocarbon-substituted succinic anhydrides, maleic anhydride, nitriles, epoxides, and phosphorus compounds.
- the post-treated dispersant is borated.
- the post-treated dispersant may be reacted with dimercaptothiadiazoles.
- the post-treated dispersant may be reacted with phosphoric or phosphorous acid. In one embodiment the post-treated dispersant may be reacted with terephthalic acid and boric acid (as described in US Patent Application US2009/0054278 .
- the dispersant may be borated or non-borated.
- a borated dispersant may be a succinimide dispersant.
- the ashless dispersant may be boron-containing, i.e., has incorporated boron and delivers said boron to the lubricant composition.
- the boron-containing dispersant may be present in an amount to deliver at least 25 ppm boron, at least 50 ppm boron, or at least 100 ppm boron to the lubricant composition.
- the lubricant composition may be free of a boron-containing dispersant, i.e. delivers no more than 10 ppm boron to the final formulation.
- the dispersant may be prepared/obtained/obtainable from reaction of succinic anhydride by an "ene” or “thermal” reaction, by what may be referred to as a "direct alkylation process.”
- the "ene” reaction mechanism and general reaction conditions are summarized in " Maleic Anhydride", pages, 147-149, Edited by B.C. Trivedi and B.C. Culbertson and Published by Plenum Press in 1982 .
- the dispersant prepared by a process that includes an "ene” reaction may be a polyisobutylene succinimide having a carbocyclic ring present on less than 50 mole %, or 0 to less than 30 mole %, or 0 to less than 20 mole %, or 0 mole % of the dispersant molecules.
- the "ene” reaction may have a reaction temperature of 180 °C to less than 300 °C, or 200 °C to 250 °C, or 200 °C to 220 °C.
- the dispersant may also be obtained/obtainable from a chlorine-assisted process, often involving Diels-Alder chemistry, leading to formation of carbocyclic linkages.
- the process is known to a person skilled in the art.
- the chlorine-assisted process may produce a dispersant that is a polyisobutylene succinimide having a carbocyclic ring present on 50 mole % or more, or 60 to 100 mole % of the dispersant molecules. Both the thermal and chlorine-assisted processes are described in greater detail in U.S. Patent 7,615,521 , columns 4-5 and preparative examples A and B.
- the dispersant may have a carbonyl to nitrogen ratio (CO:N ratio) of 5:1 to 1:10, 2:1 to 1:10, or 2:1 to 1:5, or 2:1 to 1:2.
- the dispersant may have a CO:N ratio of 2:1 to 1:10, or 2:1 to 1:5, or 2:1 to 1:2, or 1:1.4 to 1:0.6.
- the dispersant may be a succinimide dispersant may comprise a polyisobutylene succinimide, wherein the polyisobutylene from which polyisobutylene succinimide is derived has a number average molecular weight of 350 to 5000, or 750 to 2500.
- the dispersant may be present at 0 wt % to 20 wt %, 0.1 wt % to 15 wt %, or 0.5 wt % to 9 wt %, or 1 wt % to 8.5 wt % or 1.5 to 5 wt % of the lubricant composition.
- an engine oil lubricant composition comprising the epoxide quats of the present technology may be a lubricant composition further comprising a molybdenum compound.
- the molybdenum compound may be an antiwear agent or an antioxidant.
- the molybdenum compound may be chosen from molybdenum dialkyldithiophosphates, molybdenum dithiocarbamates, amine salts of molybdenum compounds, and mixtures thereof.
- the molybdenum compound may provide the lubricant composition with 0 to 1000 ppm, or 5 to 1000 ppm, or 10 to 750 ppm 5 ppm to 300 ppm, or 20 ppm to 250 ppm of molybdenum.
- an engine oil lubricant composition comprising the epoxide quats of the present technology may further comprise an antioxidant.
- Antioxidants include sulfurized olefins, diarylamines, alkylated diarylamines, hindered phenols, molybdenum compounds (such as molybdenum dithiocarbamates), hydroxyl thioethers, or mixtures thereof.
- the lubricant composition includes an antioxidant, or mixtures thereof.
- the antioxidant may be present at 0 wt % to 15 wt %, or 0.1 wt % to 10 wt %, or 0.5 wt % to 5 wt %, or 0.5 wt % to 3 wt %, or 0.3 wt % to 1.5 wt % of the lubricant composition.
- an engine oil lubricant composition comprising the epoxide quats of the present technology further comprises a phenolic or an aminic antioxidant or mixtures thereof, and wherein the antioxidant is present at 0.1 wt % to 3 wt %, or 0.5 wt % to 2.75 wt %, or 1 wt % to 2.5 wt %.
- the diarylamine or alkylated diarylamine may be a phenyl- ⁇ -naphthylamine (PANA), an alkylated diphenylamine, or an alkylated phenylnapthylamine, or mixtures thereof.
- the alkylated diphenylamine may include di-nonylated diphenylamine, nonyl diphenylamine, octyl diphenylamine, di-octylated diphenylamine, di-decylated diphenylamine, decyl diphenylamine and mixtures thereof.
- the diphenylamine may include nonyl diphenylamine, dinonyl diphenylamine, octyl diphenylamine, dioctyl diphenylamine, or mixtures thereof.
- the alkylated diphenylamine may include nonyl diphenylamine, or dinonyl diphenylamine.
- the alkylated diarylamine may include octyl, di-octyl, nonyl, di-nonyl, decyl or di-decyl phenylnapthylamines.
- the hindered phenol antioxidant often contains a secondary butyl and/or a tertiary butyl group as a sterically hindering group.
- the phenol group may be further substituted with a hydrocarbyl group (typically linear or branched alkyl) and/or a bridging group linking to a second aromatic group.
- hindered phenol antioxidants examples include 2,6-di-tert-butylphenol, 4-methyl-2,6-di-tert-butylphenol, 4-ethyl-2,6-di-tert-butylphenol, 4-propyl-2,6-di-tert-butylphenol or 4-butyl-2,6-di-tert-butylphenol, or 4-dodecyl-2,6-di-tert-butylphenol.
- the hindered phenol antioxidant may be an ester and may include, e.g., IrganoxTM L-135 from Ciba. A more detailed description of suitable ester-containing hindered phenol antioxidant chemistry is found in US Patent 6,559,105 .
- molybdenum dithiocarbamates which may be used as an antioxidant, include commercial materials sold under the trade names such as Molyvan 822®, Molyvan® A and Molyvan® 855 from R. T. Vanderbilt Co., Ltd., and Adeka Sakura-LubeTM S-100, S-165, S-600 and 525, or mixtures thereof.
- an engine oil lubricant composition comprising the epoxide quats of the present technology further includes a viscosity modifier.
- the viscosity modifier is known in the art and may include hydrogenated styrene-butadiene rubbers, ethylene-propylene copolymers, ethylene copolymers with propylene and higher olefins, polymethacrylates, polyacrylates, hydrogenated styrene-isoprene polymers, hydrogenated diene polymers, polyalkyl styrenes, polyolefins, esters of maleic anhydride-olefin copolymers (such as those described in International Application WO 2010/014655 ), esters of maleic anhydride-styrene copolymers, or mixtures thereof.
- the viscosity modifier may include a block copolymer comprising (i) a vinyl aromatic monomer block and (ii), a conjugated diene olefin monomer block (such as a hydrogenated styrene-butadiene copolymer or a hydrogenated styrene-isoprene copolymer), a polymethacrylate, an ethylene-alpha olefin copolymer, a hydrogenated star polymer comprising conjugated diene monomers such as butadiene or isoprene, or a star polymer of polymethacrylate, or mixtures thereof.
- a block copolymer comprising (i) a vinyl aromatic monomer block and (ii), a conjugated diene olefin monomer block (such as a hydrogenated styrene-butadiene copolymer or a hydrogenated styrene-isoprene copolymer), a polymethacrylate
- the viscosity modifier may be a dispersant viscosity modifier.
- the dispersant viscosity modifier may include functionalized polyolefins, for example, ethylene-propylene copolymers that have been functionalized with an acylating agent such as maleic anhydride and an amine.
- the dispersant viscosity modifier comprises an olefin copolymer further functionalized with a dispersant amine group.
- the olefin copolymer is an ethylene-propylene copolymer.
- the olefin copolymer has a number average molecular weight of 5000 to 20,000, or 6000 to 18,000, or 7000 to 15,000.
- the olefin copolymer may have a shear stability index of 0 to 20, or 0 to 10, or 0 to 5 as measured by the Orbahn shear test (ASTM D6278) as described above.
- the formation of a dispersant viscosity modifier is well known in the art.
- the dispersant viscosity modifier may include for instance those described in U.S. Patent US 7,790,661 column 2, line 48 to column 10, line 38.
- the dispersant viscosity modifier may be prepared by grafting of an olefinic carboxylic acid acylating agent onto a polymer of 15 to 80 mole percent of ethylene, from 20 to 85 mole percent of C 3-10 ⁇ -monoolefin, and from 0 to 15 mole percent of non-conjugated diene or triene, said polymer having an average molecular weight ranging from 5000 to 20,000, and further reacting said grafted polymer with an amine (typically an aromatic amine).
- an amine typically an aromatic amine
- the dispersant viscosity modifier may include functionalized polyolefins, for example, ethylene-propylene copolymers that have been functionalized with an acylating agent such as maleic anhydride and an amine; polymethacrylates functionalized with an amine, or styrene-maleic anhydride copolymers reacted with an amine.
- Suitable amines may be aliphatic or aromatic amines and polyamines. Examples of suitable aromatic amines include nitroaniline, aminodiphenylamine (ADPA), hydrocarbylene coupled polyaromatic amines, and mixtures thereof. More detailed description of dispersant viscosity modifiers are disclosed in International Publication WO2006/015130 or U.S. Patents 4,863,623 ; 6,107,257 ; 6,107,258 ; 6,117,825 ; and US 7,790,661 .
- the dispersant viscosity modifier may include those described in U.S. Patent 4,863,623 (see column 2, line 15 to column 3, line 52) or in International Publication WO2006/015130 (see page 2, paragraph [0008] and preparative examples are described paragraphs [0065] to [0073]).
- the dispersant viscosity modifier may include those described in U.S. Patent US 7,790,661 column 2, line 48 to column 10, line 38.
- an engine oil lubricant composition comprising the epoxide quats disclosed herein further comprises a dispersant viscosity modifier.
- the dispersant viscosity modifier may be present at 0 wt % to 5 wt %, or 0 wt % to 4 wt %, or 0.05 wt % to 2 wt %, or 0.2 wt % to 1.2 wt % of the lubricant composition.
- an engine oil lubricant composition comprising the epoxide quats of the present technology further includes a friction modifier.
- the friction modifier may be chosen from long chain fatty acid derivatives of amines, long chain fatty esters, or derivatives of long chain fatty epoxides; fatty imidazolines; amine salts of alkylphosphoric acids; fatty alkyl tartrates; fatty alkyl tartrimides; fatty alkyl tartramides; fatty malic esters and imides, fatty (poly)glycolates; and fatty glycolamides.
- the friction modifier may be present at 0 wt % to 6 wt %, or 0.01 wt % to 4 wt %, or 0.05 wt % to 2 wt %, or 0.1 wt % to 2 wt % of the lubricant composition.
- fatty alkyl or "fatty" in relation to friction modifiers means a carbon chain having 10 to 22 carbon atoms, typically a straight carbon chain.
- Suitable friction modifiers include long chain fatty acid derivatives of amines, fatty esters, or fatty epoxides; fatty imidazolines such as condensation products of carboxylic acids and polyalkylene-polyamines; amine salts of alkylphosphoric acids; fatty alkyl tartrates; fatty alkyl tartrimides; fatty alkyl tartramides; fatty phosphonates; fatty phosphites; borated phospholipids, borated fatty epoxides; glycerol esters such as glycerol mono-oleate; borated glycerol esters; fatty amines; alkoxylated fatty amines; borated alkoxylated fatty amines; hydroxyl and polyhydroxy fatty amines including tertiary hydroxy fatty amines; hydroxy alkyl amides; metal salts of fatty acids; metal salts of alkyl salicylates; fatty oxazolines;
- Friction modifiers may also encompass materials such as sulfurized fatty compounds and olefins, molybdenum dialkyldithiophosphates, molybdenum dithiocarbamates, sunflower oil or soybean oil monoester of a polyol and an aliphatic carboxylic acid.
- the friction modifier may be a long chain fatty acid ester.
- the long chain fatty acid ester may be a mono-ester and in another embodiment the long chain fatty acid ester may be a triglyceride.
- An engine oil lubricant composition comprising the epoxide quats of the present technology optionally further includes at least one antiwear agent.
- suitable antiwear agents include titanium compounds, tartaric acid derivatives such as tartrate esters, amides or tartrimides, malic acid derivatives, citric acid derivatives, glycolic acid derivatives, oil soluble amine salts of phosphorus compounds different from that of the invention, sulfurized olefins, metal dihydrocarbyldithiophosphates (such as zinc dialkyldithiophosphates), phosphites (such as dibutyl phosphite), phosphonates, thiocarbamate-containing compounds, such as thiocarbamate esters, thiocarbamate amides, thiocarbamic ethers, alkylene-coupled thiocarbamates, and bis(S-alkyldithiocarbamyl) disulphides.
- the antiwear agent may in one embodiment include a tartrate or tartrimide as disclosed in International Publication WO 2006/044411 or Canadian Patent CA 1 183 125.
- the tartrate or tartrimide may contain alkyl-ester groups, where the sum of carbon atoms on the alkyl groups is at least 8.
- the antiwear agent may in one embodiment include a citrate as is disclosed in US Patent Application 20050198894 .
- oil-soluble titanium compounds as disclosed in US 7,727,943 and US2006/0014651 .
- the oil-soluble titanium compounds may function as antiwear agents, friction modifiers, antioxidants, deposit control additives, or more than one of these functions.
- the oil soluble titanium compound is a titanium (IV) alkoxide.
- the titanium alkoxide is formed from a monohydric alcohol, a polyol or mixtures thereof.
- the monohydric alkoxides may have 2 to 16, or 3 to 10 carbon atoms.
- the titanium alkoxide is titanium (IV) isopropoxide.
- the titanium alkoxide is titanium (IV) 2-ethylhexoxide.
- the titanium compound comprises the alkoxide of a vicinal 1,2-diol or polyol.
- the 1,2-vicinal diol comprises a fatty acid mono-ester of glycerol, often the fatty acid is oleic acid.
- the oil soluble titanium compound is a titanium carboxylate.
- the titanium (IV) carboxylate is titanium neodecanoate.
- An engine oil lubricant composition comprising the epoxide quats of the present technology may further include a phosphorus-containing antiwear agent different from that of the invention.
- the phosphorus-containing antiwear agent may be a zinc dialkyldithiophosphate, phosphite, phosphate, phosphonate, and ammonium phosphate salts, or mixtures thereof.
- an engine oil lubricant composition may further comprise a phosphorus-containing antiwear agent, typically zinc dialkyldithiophosphate.
- Zinc dialkyldithiophosphates are known in the art.
- Examples of zinc dithiophosphates include zinc isopropyl methylamyl dithiophosphate, zinc isopropyl isooctyl dithiophosphate, zinc di(cyclohexyl) dithiophosphate, zinc isobutyl 2-ethylhexyl dithiophosphate, zinc isopropyl 2-ethylhexyl dithiophosphate, zinc isobutyl isoamyl dithiophosphate, zinc isopropyl n-butyl dithiophosphate, and combinations thereof.
- Zinc dialkyldithiophosphate may be present in amount to provide 0.01 wt % to 0.1 wt % phosphorus to the lubricating composition, or to provide 0.015 wt % to 0.075 wt % phosphorus, or 0.02 wt % to 0.05 wt % phosphorus to the lubricating composition.
- an engine oil lubricant composition further comprises one or more zinc dialkyldithiophosphate such that the amine (thio)phosphate additive of the invention provides at least 50% of the total phosphorus present in the lubricating composition, or at least 70% of the total phosphorus, or at least 90% of the total phosphorus in the lubricating composition.
- the lubricant composition is free or substantially free of a zinc dialkyldithiophosphate.
- the antiwear agent may be present at 0 wt % to 3 wt %, or 0.1 wt % to 1.5 wt %, or 0.5 wt % to 0.9 wt % of the lubricant composition.
- an engine oil lubricant composition comprising the epoxide quats of the present technology further comprises 0.01 to 5 wt % or 0.1 to 2 wt % of an ashless antiwear agent represented by Formula: wherein
- an engine oil lubricant composition comprising the epoxide quats of the present technology further comprises 0.01 to 5 wt % or 0.1 to 2 wt % of an ashless antiwear agent that may be a compound obtained/obtainable by a process comprising reacting a glycolic acid, a 2-halo-acetic acid, or a lactic acid, or an alkali or alkaline metal salt thereof, (typically glycolic acid or a 2-halo-acetic acid) with at least one member selected from the group consisting of an amine, an alcohol, and an aminoalcohol.
- an ashless antiwear agent may be a compound obtained/obtainable by a process comprising reacting a glycolic acid, a 2-halo-acetic acid, or a lactic acid, or an alkali or alkaline metal salt thereof, (typically glycolic acid or a 2-halo-acetic acid) with at least one member selected from the group consisting of an amine, an alcohol, and an aminoalcohol.
- the invention is useful in an oil of lubricating viscosity in an internal combustion engine.
- the internal combustion engine may be a gasoline or diesel engine.
- Exemplary internal combustion engines include, but are not limited to, spark ignition and compression ignition engines; 2-stroke or 4-stroke cycles; liquid fuel supplied via direct injection, indirect injection, port injection and carburetor; common rail and unit injector systems; light (e.g. passenger car) and heavy duty (e.g. commercial truck) engines; and engines fuelled with hydrocarbon and non-hydrocarbon fuels and mixtures thereof.
- the engines may be part of integrated emissions systems incorporating such elements as; EGR systems; aftertreatment including three-way catalyst, oxidation catalyst, NO x absorbers and catalysts, catalyzed and non-catalyzed particulate traps optionally employing fuel-borne catalyst; variable valve timing; and injection timing and rate shaping.
- the technology may be used with diesel engines having direct fuel injection systems wherein the fuel is injected directly into the engine's combustion chamber.
- the ignition pressures may be greater than 1000 bar and, in one embodiment, the ignition pressure may be greater than 1350 bar.
- the direct fuel injection system maybe a high-pressure direct fuel injection system having ignition pressures greater than 1350 bar.
- Exemplary types of high-pressure direct fuel injection systems include, but are not limited to, unit direct injection (or "pump and nozzle") systems, and common rail systems.
- unit direct injection systems the high-pressure fuel pump, fuel metering system and fuel injector are combined into one apparatus.
- Common rail systems have a series of injectors connected to the same pressure accumulator, or rail. The rail in turn, is connected to a high-pressure fuel pump.
- the unit direct injection or common rail systems may further comprise an optional turbocharged or supercharged direct injection system.
- the imide quat technology is useful for providing at least equivalent, if not improved detergency (deposit reduction and/or prevention) performance in both the traditional and modern diesel engine compared to a 1000 M n quaternary ammonium compound.
- the technology can provide improved water shedding (or demulsifying) performance compared to 1000 M n quaternary ammonium compounds in both the traditional and modern diesel engine.
- the disclosed technology may be used to improve the cold temperature operability or performance of a diesel fuel (as measured by the ARAL test).
- the lubricating composition comprising an epoxide quat is useful for lubricating an internal combustion engine (for crankcase lubrication).
- Embodiments of the present technology may provide at least one of antiwear performance, friction modification (particularly for enhancing fuel economy), detergent performance (particularly deposit control or varnish control), dispersancy (particularly soot control, or sludge control), or corrosion control.
- hydrocarbyl substituent or “hydrocarbyl group” is used in its ordinary sense, which is well-known to those skilled in the art. Specifically, it refers to a group having a carbon atom directly attached to the remainder of the molecule and having predominantly hydrocarbon character.
- hydrocarbyl groups include: hydrocarbon substituents, that is, aliphatic (e.g., alkyl or alkenyl), alicyclic (e.g., cycloalkyl, cycloalkenyl) substituents, and aromatic-, aliphatic-, and alicyclic-substituted aromatic substituents, as well as cyclic substituents wherein the ring is completed through another portion of the molecule (e.g., two substituents together form a ring); substituted hydrocarbon substituents, that is, substituents containing non-hydrocarbon groups which, in the context of this invention, do not alter the predominantly hydrocarbon nature of the substituent (e.g., halo (especially chloro and fluoro), hydroxy, alkoxy, mercapto, alkylmercapto, nitro, nitroso, and sulfoxy); hetero substituents, that is, substituents which, while having a predominantly hydrocarbon character, in the context of this invention
- Heteroatoms include sulfur, oxygen, nitrogen, and encompass substituents as pyridyl, furyl, thienyl and imidazolyl.
- substituents as pyridyl, furyl, thienyl and imidazolyl.
- no more than two, preferably no more than one, non-hydrocarbon substituent will be present for every ten carbon atoms in the hydrocarbyl group; typically, there will be no non-hydrocarbon substituents in the hydrocarbyl group.
- a 1000 number average molecular weight (M n ) polyisobutylene (PIB) (2000 g., 2.0 moles, high-vinylidene PIB) having greater than 70 % vinylidene groups is charged to a 5-liter flange flask equipped with overhead stirrer, air condenser, nitrogen inlet, thermocouple and EurothermTM temperature controller (reaction kit).
- the reaction kit is then reconfigured for vacuum stripping.
- the batch is stripped at 203 °C and 0.05 bar to remove unreacted maleic anhydride.
- the batch comprising the formed PIBSA is then cooled back to 50 °C and decanted into a storage vessel.
- a 1000 M n PIBSA (1950.3g, 1.86 moles) product of Example 1 is charged to a 3-liter flask equipped with a water condenser and Dean Stark trap, a thermocouple, a dropping funnel, an overhead stirrer and Nitrogen inlet and heated to 90 °C.
- DMAPA Dimethylaminopropylamine (189.7g, 1.86 moles) DMAPA is added to the flask via the dropping funnel over 50 minutes. The batch temperature is kept below 120 °C while adding the DMAPA.
- the reaction is slowly heated to 150 °C and maintained at that temperature for 3 hours. Approximately 40 g of water is collected in the Dean Stark apparatus while heating. The remaining product is the 1000 M n PIBSA/DMAPA quaternizable compound.
- a 1000 M n PIBSA/DMAPA quaternizable compound (551.1g, 0.54 moles, as prepared in Example 2) is added to a 1-liter flask equipped with a water condenser, a thermocouple, a syringe pump, an overhead stirrer and nitrogen inlet.
- 2-ethylhexanol (124.5g, 0.96 moles), acetic acid (32.4g, 0.54 moles) and water (5.0g, 0.287 moles) are also charged to the 1-liter flask.
- the batch is then heated to 75 °C, under agitation and nitrogen atmosphere.
- Propylene oxide is added via a syringe pump over 4 hours.
- the batch is then held for 4 hours at 75 °C before being cooled back to 50 °C.
- the imide/propylene oxide quat is then decanted into a storage vessel.
- a 1000 M n PIBSA/DMAPA quaternizable compound (476.2, 0.47 moles, as prepared in Example 2) is added to a 1-liter flask flange flask equipped with a water condenser, a thermocouple, a syringe pump, an overhead stirrer and a nitrogen inlet.
- Example 5 Formation of a 1000 M n PIBSA/DMAPA Quaternary Ammonium Salt using 1,2-Epoxydodecane (an imide/epoxydodecane quat - not according to the invention
- a 1000 M n PIBSA/DMAPA quaternizable compound (791.4 g, 0.776 moles, as prepared in Example 2) is added to a 2-liter flask flange flask equipped with a water condenser, a thermocouple, an overhead stirrer and a nitrogen inlet.
- Example 6 Formation of a 1000 M n PIBSA/DMAPA Quaternary Ammonium Salt using 1,2-Epoxyhexadecane (an imide/epoxyhexadecane quat - not according to the invention
- a 1000 M n PIBSA/DMAPA quaternizable compound (500 g, 0.495 moles, as prepared in Example 2) is added to a 1-liter flask flange flask equipped with a water condenser, a thermocouple, an overhead stirrer and a nitrogen inlet.
- 2-ethylhexanol (163.34 g, 1.26 moles) and water (5 g, 0.27 moles) are added to the flask and heated to 90 °C.
- Acetic acid (29.65, 0.494 moles) and 1,2-epoxyhexadecane (118.71 g, 0.494 moles) are added to the flask.
- Agitation is then initiated (200 rpm) and a slow nitrogen purge is introduced.
- the batch is held at 90 °C for 3 hours.
- the imide/epoxyhexadecane quat is then then cooled before it is transferred into a storage vessel.
- a 1000 M n PIBSA/DMAPA quaternizable compound (845 g, 0.78 moles, as prepared in Example 2) is added to a 2-liter flask flange flask equipped with a water condenser, a thermocouple, an overhead stirrer and a nitrogen inlet.
- a 550 number average molecular weight (M n ) polyisobutylene (PIB) (2840 g, 5.163 moles, mid-vinylidene PIB available from Daelim) having greater than 20 % vinylidene groups is charged to a 5-liter flange flask equipped with overhead stirrer, air condenser, nitrogen inlet, thermocouple and EurothermTM temperature controller (reaction kit).
- M n number average molecular weight polyisobutylene
- the reaction kit is then reconfigured for vacuum stripping.
- the batch is stripped at 203 °C and 0.05 bar to remove unreacted maleic anhydride.
- the batch comprising the formed PIBSA and ⁇ 20% unreacted polyisobutylene is then cooled back to 50 °C and decanted into a storage vessel.
- the 550 M n PIBSA (1556.2 g, 2.29 moles) (product of Example 8) is charged to a 3-liter flask equipped with a water condenser and Dean Stark trap, a thermocouple, a dropping funnel, an overhead stirrer and Nitrogen inlet and heated to 90 °C.
- DMAPA (233.4 g, 2.29moles) is added to the flask via the dropping funnel over 50 minutes.
- the batch temperature is kept below 120 °C while adding the DMAPA.
- the reaction is slowly heated to 150 °C and maintained at that temperature for 3 hours. Approximately 40g of water is collected in the Dean Stark apparatus while heating. The remaining product is the 550 M n PIBSA/DMAPA quaternizable compound.
- Example 10 (prophetic) - Formation of a 550 M n PIBSA/DMAPA Quaternary Ammonium Salt using 1,2-Epoxybutane (an imide/epoxybutane quat) - not according to the invention
- the 550 M n PIBSA/DMAPA quaternizable compound of Example 9 (475 g, 0.62 moles) is added to a 1-liter flask flange flask equipped with a water condenser, a thermocouple, a syringe pump, an overhead stirrer and a nitrogen inlet.
- 2-ethylhexanol (136 g, 1.05 moles), acetic acid (37.3 g, 0.62 moles) and water (4.4g, 0.24 moles) are also charged to the 1-liter flask.
- the batch is then heated to 75 °C, under agitation and nitrogen atmosphere.
- 1,2-epoxybutane (48.9 g, 0.68 moles) is added via the syringe pump over 2 hours.
- the batch is then held for 3 hours at 75 °C.
- the imide/epoxybutane quat is then cooled and discharged into a storage vessel.
- Example 11 (prophetic) - Formation of a 550 M n PIBSA/DMAPA Quaternary Ammonium Salt using 1,2-Epoxydodecane (an imide/epoxydodecane quat) - not according to the invention
- the 550 M n PIBSA/DMAPA quaternizable compound of Example 9 (470 g, 0.61 moles) is added to a 1-liter flask flange flask equipped with a water condenser, a thermocouple, an overhead stirrer and a nitrogen inlet.
- 2-ethylhexanol (136 g, 1.05 moles), 1,2-epoxydodecane (114.1 g, 0.62 moles), acetic acid (37 g, 0.62 moles), and water (4.4 g, 0.24 moles) are also charged to the 1-liter flask.
- the batch is then heated to 75 °C under agitation and nitrogen and maintained at temperature for 3 hours.
- the imide/epoxydodecane quat is then then cooled before it is transferred into a storage vessel.
- Example 12 (prophetic) - Formation of a 550 M n PIBSA/DMAPA Quaternary Ammonium Salt using 1,2-Epoxyhexadecane (an imide/epoxyhexadecane quat) - not according to the invention
- the 550 M n PIBSA/DMAPA quaternizable compound of Example 9 (470 g, 0.61 moles) is added to a 1-liter flask flange flask equipped with a water condenser, a thermocouple, an overhead stirrer and a nitrogen inlet.
- 2-ethylhexanol (136 g, 1.05 moles), 1,2-epoxyhexadecane (148.99 g, 0.62 moles), acetic acid (37.0 g, 0.62 moles), and water (4.4 g, 0.24 moles) are added to the flask and heated to 75 °C while agitating under nitrogen. The batch is held at 75 °C for 3 hours. The imide/epoxyhexadecane quat is then then cooled before it is transferred into a storage vessel.
- Example 13 (prophetic) - Formation of a 550 M n PIBSA/DMAPA Quaternary Ammonium Salt using Glycidol (an imide/glycidol quat)
- the 550 M n PIBSA/DMAPA quaternizable compound of Example 9 (471 g, 0.62 moles) is added to a 1-liter flask flange flask equipped with a water condenser, a thermocouple, an overhead stirrer and a nitrogen inlet.
- 2-ethylhexanol 138.0 g, 1.06 moles
- glycidol 48.2 g, 0.65 moles
- acetic acid 37.2 g, 0.62 moles
- water 4.1 g, 0.22 moles
- Agitation is then initiated (200 rpm) and a slow nitrogen purge is introduced.
- the batch is then heated to 75 °C and maintained at temperature for 4 hours.
- the imide/glycidol quat is then then cooled before it is transferred into a storage vessel.
- a 2300 number average molecular weight (M n ) polyisobutylene (PIB) (2000 g., 0.87 moles) high-vinylidene PIB having greater than 20 % vinylidene groups is charged to a 5-liter flange flask equipped with overhead stirrer, air condenser, nitrogen inlet, thermocouple and EurothermTM temperature controller (reaction kit).
- M n number average molecular weight
- PIB polyisobutylene
- the reaction kit is then reconfigured for vacuum stripping.
- the batch is stripped at 203 °C and 0.05 bar to remove unreacted maleic anhydride.
- Diluent oil such as mineral oil (1116.8 g) is added to the batch.
- the batch comprising the formed PIBSA is then cooled back to 50 °C and decanted into a storage vessel.
- a 2300 M n PIBSA (3000 g, 1.52 moles, as prepared in Example 14) is charged to a 5-liter flask equipped with a water condenser and Dean Stark trap, a thermocouple, a dropping funnel, an overhead stirrer and Nitrogen inlet and heated to 90 °C.
- DMAPA (154.72 g, 1.517 moles) is added to the flask via the dropping funnel over 40 minutes. An exotherm increasing 6 °C was observed. Once all the DMAPA is added, the reaction is slowly heated to 150 °C and maintained at that temperature for 3 hours, and approximately 25g water is collected in Dean Stark trap. The resulting product is a 2300 M n PIBSA/DMAPA quaternizable compound.
- Example 16 (prophetic) - Formation of a 2300 M n PIBSA/DMAPA Quaternary Ammonium Salt using 1,2-Epoxydodecane (an imide/epoxydodecane quat) - not according to the invention
- the 2300 M n PIBSA/DMAPA quaternizable compound of Example 15 (550.8 g, 0.29 moles) is added to a 1-liter flask flange flask equipped with a water condenser, a thermocouple, an overhead stirrer and a nitrogen inlet.
- Example 17 Formation of a 2300 M n PIBSA/DMAPA Quaternary Ammonium Salt using 1,2-Epoxyhexadecane (an imide/epoxyhexadecane quat) - not according to the invention
- the 2300 M n PIBSA/DMAPA quaternizable compound of Example 15 (550.8 g, 0.29 moles) is added to a 1-liter flask flange flask equipped with a water condenser, a thermocouple, an overhead stirrer and a nitrogen inlet.
- the 2300 M n PIBSA/DMAPA quaternizable compound of Example 15 (550 g, 0.25 moles) is added to a 1-liter flask flange flask equipped with a water condenser, a thermocouple, an overhead stirrer and a nitrogen inlet.
- 2-ethylhexanol (175.6 g, 1.35 moles), glycidol (18.85 g, 0.25 moles), acetic acid (15.28 g, 0.25 moles), and water (5 g, 0.27 moles) are also charged to the 1-liter flask. Agitation is then initiated (200 rpm) and a slow nitrogen purge is introduced. The batch is then heated to 90 °C and maintained at temperature for 3 hours. The imide/glycidol quat is then then cooled before it is transferred into a storage vessel.
- the demulsification test is performed to measure the epoxide quats' ability to demulsify fuel and water mixtures as compared to the 1000 M n imide/propylene oxide quat of Comparative Example 3.
- the demulsification test is run according to the procedure in ASTM D1094-07 ("Standard Test Method for Water Reaction of Aviation Fuels").
- the quaternary ammonium salt is added to room temperature fuel at 60 ppm actives by weight based on a total weight of the fuel.
- a commercially available demulsifier (Tolad 9327 available from Baker Hughes) is added to the fuel at 18 ppm by weight based on a total weight of the fuel.
- the fuel (80 mL) is then added to a clean, 100 mL-graduated cylinder.
- a phosphate buffer solution with a pH of 7.0 (20 mL) is then added to the graduated cylinder and the cylinder is stoppered.
- the cylinder is shaken for 2 minutes at 2 to 3 strokes per second and placed on a flat surface.
- the volume of the aqueous layer, or water recovery, is then measured at 3, 5, 7, 10, 15, 20, and 30-minute intervals.
- Table 1 The results of the demulsification tests are shown in Table 1 below and in FIG. 1 .
- Table 1 3 5 7 10 15 30 Time Example 4 2.5 8.5 14 18 19 20 Water recovered (mL)
- Example 6 11 18 19 20 20 20 Water recovered (mL)
- Example 17 2.5 8.5 14 18 19 20
- Example 5 10.5 18 19 20 20
- Example 7 0 0 0 2 15 15
- Deposit tests are performed using Peugeot S.A.'s XUD 9 engine in accordance with the procedure in CEC F-23-01.
- air flow is measured though clean injector nozzles of the XUD 9 engine using an air-flow rig.
- the engine is then run on a reference fuel (RF79) and cycled through various loads and speeds for a period of 10 hours to simulate driving and allow any formed deposits to accumulate.
- the air-flow through the nozzles are measured again using the air-flow rig.
- the percentage of air flow loss (or flow remaining) is then calculated.
- a set of deposit tests are performed using the same steps above, except 10 ppm actives of the epoxide quat are added to the reference fuel.
- a second set of deposit tests are performed using the same steps above, except 30 ppm actives are added to the reference fuel.
- Table 2 and FIG. 2 and in Table 3 and FIG. 3 The results of the deposit tests for the first and second sets are shown in Table 2 and FIG. 2 and in Table 3 and FIG. 3 respectively.
- Table 2 - 10 ppm Actives Flow Loss (%) Flow Remaining (%) Example 4 65.5 34.5
- Example 5 72.1 27.9
- Example 7 70.5 29.5
- Reference Fuel 80 20
- Table 3 - 30 ppm Actives Flow Loss (%) Flow Remaining (%)
- Example 18 19.0 81.0 Reference Fuel 80 20 The results of the deposit tests for the first and second sets are shown in Table 2 and FIG. 2 and in Table 3 and FIG. 3 respectively.
- Table 2 - 10 ppm Actives Flow Loss (%) Flow Remaining (%)
- Example 4 65.5 34.5
- Example 5 72.1 27.9
- Example 7 70.5 29.5
- Reference Fuel 80 20
- Table 3 - 30 pp
- the transitional term "comprising,” which is synonymous with “including,” “containing,” or “characterized by,” is inclusive or open-ended and does not exclude additional, un-recited elements or method steps.
- the term also encompass, as alternative embodiments, the phrases “consisting essentially of' and “consisting of,” where “consisting of' excludes any element or step not specified and “consisting essentially of' permits the inclusion of additional un-recited elements or steps that do not materially affect the essential or basic and novel characteristics of the composition or method under consideration.
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Lubricants (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Description
- The present technology is related to quaternary ammonium salts prepared with alcohol functionalized epoxide quaternizing agents, and the use of such quaternary ammonium salts in fuel and lubricant compositions to improve to improve the water shedding performance of the composition. The invention further relates to a method of lubricating an internal combustion engine with the lubricant composition for at least one of antiwear, friction, detergency, dispersancy, and/or corrosion control performance.
- Deposit formation in diesel fuel injector nozzles is highly problematic, resulting in incomplete diesel combustion, and therefore power loss and misfiring. Traditionally, polyisobutylene succinimide detergents have been used to inhibit injector fouling, but these materials have shown poor efficacy in modern engines. A new class of compounds based on quaternized polyisobutylene succinimides has been shown to provide improved detergency performance in both the traditional and modern diesel engines.
- Although deposit control is the main function required of detergent molecules, there are a number of additional performance attributes which are desired. One of these is the ability of the detergent to shed water, or resolve water in oil emulsions. The entrainment of water in, for example, crude oil or downstream fuel pipelines, and during product transfer, can result in the formation of stable emulsions and suspended matter in the crude or fuel. Such emulsions can plug filters or otherwise make such emulsion containing fuels unacceptable. This could also result in corrosion issues downstream.
- In order to assist in the water shedding process, a class of molecules known as demulsifiers can be added to fuel or crude oil formulations, whether in the pipeline, at the pump or as an aftermarket additive. While demulsifiers can assist in the water shedding process, it would be desirable to provide a new detergent molecule that provides improved demulsification or water
shedding performance EP 0 183 478 A2 discloses glycidol modified succinimides. - The present technology provides a composition comprising an epoxide quat prepared with alcohol functionalized epoxides. The epoxide quat itself is the reaction product of (a) a quaternizable compound and (b) a quaternizing agent comprising alcohol functionalized epoxides.
- The quaternizable compound is the reaction product of (i) a hydrocarbyl-substituted acylating agent, and (ii) a nitrogen containing compound having an oxygen or nitrogen atom capable of reacting with the hydrocarbyl-substituted acylating agent, and further having at least one quaternizable amino group. The hydrocarbyl-substituent has a number average molecular weight (Mn) of from 100 to 5000 as measured using gel permeation chromatography (GPC) based on a polystyrene calibration standard.
- In an embodiment, the quaternizable amino group can be a primary, secondary or tertiary amino group. The hydrocarbyl-substituted acylating agent is polyisobutenyl succinic anhydride or polyisobutenyl succinic acid.
- In some embodiments, the reaction to prepare the quaternizable compound of (a) can be carried out at a temperature of greater than 80 or 90 or 100 °C. In some embodiments, water of reaction can be removed. In some embodiments, the reaction to prepare the quaternizable compound of (a) can be carried out at a temperature of less than 80°C.
- In an embodiment, the epoxide quat is an imide containing quaternary ammonium salt. In an embodiment, the epoxide quat is an amide or ester containing quaternary ammonium salt.
- In another embodiment, the quaternizing agent can comprise, consist of, or consist essentially of alcohol functionalized epoxides. In still further embodiments, the quaternizing agent can comprise, consist of, or consist essentially of glycidol.
- In some embodiments, the quaternizing agent can be employed in the presence of a protic solvent. In some embodiments, the quaternizing agent can be employed in the presence of 2-ethylhexanol, water, or mixtures thereof. In some embodiments, the quaternizing agent can be employed in the presence of an acid. In some embodiments, the quaternizing agent can be employed in the presence of an acid separate from the acid group present on the acylating agent. In some embodiments, the quaternizing agent can be employed in the presence of the acid group present in the structure of the acylating agent.
- In some embodiments, the compositions described above can further include at least one other additive. In some instances, the at least one other additive can be a detergent, a demulsifier, or a mixture thereof. In some instances the at least one other additive can be at least one hydrocarbyl-substituted succinic acid. In some instances, the at least one other additive can be at least one hydrocarbyl-substituted quaternary ammonium salt. In some instances where the at least one other additive is a non-quaternized or quaternized hydrocarbyl-substituted succinic acid, the hydrocarbyl-substituent can be a polyisobutylene having a number average molecular weight (Mn) of from about 100 to about 5000. In an embodiment, the at least one other additive can be at least one Mannich compound.
- A further aspect of the present technology includes a composition having an epoxide quat as described herein, and further having an oil of lubricating viscosity.
- A still further aspect of the present technology provides a method of operating an internal combustion engine.
- The method of operating an internal combustion engine can include the steps of (a) supplying a lubricating oil composition to the crankcase of the engine and (b) operating said engine. The lubricating oil composition can include (i) oil of lubricating viscosity, and (ii) the epoxide quat as described herein.
- Embodiments of the present technology may provide the use of the epoxide quat for at least one of antiwear performance, friction modification (particularly for enhancing fuel economy), detergent performance (particularly deposit control or varnish control), dispersancy (particularly soot control, or sludge control), or corrosion control.
-
-
FIG. 1 shows the demulsification test results of a reference embodiment of the disclosed technology. -
FIG. 2 shows the CEC F-23-01 XUD-9 test results at 10 ppm of a reference embodiment of the disclosed technology. -
FIG. 3 shows the CEC F-23-01 XUD-9 test results at 30 ppm of a reference embodiment of the disclosed technology. - Various preferred features and embodiments will be described below by way of non-limiting illustration.
- One aspect of the current technology relates to a composition of an imide containing quaternary ammonium salt. The quaternary ammonium salt (herein referred to as "epoxide quats") may be prepared with alcohol functionalized epoxides.
- The production of a quaternary ammonium salt generally results in a mixture of compounds including a quaternary ammonium salt or salts, and this mixture may be difficult to define apart from the process steps employed to produce the quaternary ammonium salt. Further, the process by which a quaternary ammonium salt is produced can be influential in imparting distinctive structural characteristics to the final quaternary ammonium salt product that can affect the properties of the quaternary ammonium salt product. Thus, in one embodiment, the epoxide quats of the present technology may be described as a reaction product of (a) a quaternizable compound, and (b) a quaternizing agent. As used herein, reference to epoxide quat(s) includes references to the mixture compounds including a quaternary ammonium salt or salts prepared with alcohol functionalized epoxides, as well as referring to the quaternary ammonium salt itself.
- The quaternizable compound of (a) employed to prepare the epoxide quat may itself be the reaction product of (i) a hydrocarbyl-substituted acylating agent, and (ii) a nitrogen containing compound. The hydrocarbyl-substituted acylating agent of (a)(i) can be an acylating agent functionalized with a hydrocarbyl-substituent having a number average molecular weight of 100 to 5000.
- The number average molecular weight of the materials described herein is measured using gas permeation chromatography (GPC) using a Waters GPC 2000 equipped with a refractive index detector and Waters Empower™ data acquisition and analysis software. The columns are polystyrene (PLgel, 5 micron, available from Agilent/Polymer Laboratories, Inc.). For the mobile phase, individual samples are dissolved in tetrahydrofuran and filtered with PTFE filters before they are injected into the GPC port.
- Injector, Column, and Pump/Solvent compartment temperatures: 40° C
- Autosampler Control: Run time: 40 minutes
- Injection volume: 300 microliter
- Pump: System pressure: ∼90 bars (Max. pressure limit: 270 bars, Min. pressure limit: 0 psi)
- Flow rate: 1.0 ml/minute
- Differential Refractometer (RI): Sensitivity: -16; Scale factor: 6
- Examples of quaternary ammonium salts and methods for preparing the same are described in the following patents, which are hereby incorporated by reference,
US 4,253,980 ,US 3,778,371 ,US 4,171,959 ,US 4,326,973 ,US 4,338,206 ,US 5,254,138 , andUS 7,951,211 . - Details regarding the quaternizable compound, and specifically, the hydrocarbyl-substituted acylating agent and the nitrogen containing compound, as well as the quaternizing agent, are provided below.
- The hydrocarbyl substituted acylating agent employed to prepare the quaternizable compound can be the reaction product of the precursor to the hydrocarbyl-substituent, which is a long chain hydrocarbon, generally a polyolefin, with a monounsaturated carboxylic acid reactant such as maleic acid.
- The hydrocarbyl-substituent is a long chain hydrocarbyl group. In one embodiment, the hydrocarbyl group can have a number average molecular weight (Mn) of from about 100 or 300 to about 5000, or from about 500 to about 2500. The Mn of the hydrocarbyl group can also be from about 1300 to about 3000. The Mn of the hydrocarbyl-substituent can also be from 1500 to 2800 or 2900, or from 1700 to 2700, or from 1900 to 2600, or 2000 to 2500. In an embodiment, the Mn can be from about 300 to about 750. The Mn of the hydrocarbyl-substituent can also be from about 350 to 700, and in some cases from 400 to 600, or 650. In yet other embodiments the Mn of the hydrocarbyl-substituent can also be 550, or 1000, or 2300. In yet another embodiment, the hydrocarbyl-substituent may have a number average molecular weight of 1000 to 2300.
- Olefin polymers for reaction with the monounsaturated carboxylic acids include isobutylene, The polymers are polyisobutylene.
- In other embodiments, the hydrocarbyl-substituted acylating agent may be a "conventional" vinylidene polyisobutylene (PIB) wherein less than 20% of the head groups are vinylidene head groups as measured by nuclear magnetic resonance (NMR). Alternatively, the hydrocarbyl-substituted acylating agent may be a mid-vinylidene PIB or a high-vinylidene PIB. In mid-vinylidene PIBs, the percentage of head groups that are vinylidene groups can range from greater than 20% to 70%. In high-vinylidene PIBs, the percentage of head groups that are vinylidene head groups is greater than 70%.
- Methods of making hydrocarbyl substituted acylating agents from the reaction of the monounsaturated carboxylic acid reactant and the compound of formula (I) are well known in the art and disclosed in the following patents:
U.S. Pat. Nos. 3,361,673 and3,401,118 to cause a thermal "ene" reaction to take place;U.S. Pat. Nos. 3,087,436 ;3,172,892 ;3,272,746 ,3,215,707 ;3,231,587 ;3,912,764 ;4,110,349 ;4,234,435 ;6,077,909 ;6,165,235 . - The composition of the present invention contains a nitrogen containing compound having an oxygen or nitrogen atom capable of reacting with the acylating agent and further having a quaternizable amino group. A quaternizable amino group is any primary, secondary or tertiary amino group on the nitrogen containing compound that is available to react with a quaternizing agent to become a quaternary amino group.
- In one embodiment, the nitrogen containing compound can be represented by the following formulas:
- Examples of the nitrogen containing compound capable of reacting with the acylating agent can include, but are not limited to, dimethylaminopropylamine, N,N-dimethyl-aminopropylamine, N,N-diethyl-aminopropylamine, N,N-dimethylaminoethylamine ethylenediamine, 1,2-propylenediamine, 1,3-propylene diamine, the isomeric butylenediamines, pentanediamines, hexanediamines, heptanediamines, diethylenetriamine, dipropylenetriamine, dibutylenetriamine, triethylenetetraamine, tetraethylenepentaamine, pentaethylenehexaamine, hexamethylenetetramine, and bis(hexamethylene) triamine, the diaminobenzenes, the diaminopyridines or mixtures thereof. The nitrogen containing compounds capable of reacting with the acylating agent and further having a quaternizable amino group can further include aminoalkyl substituted heterocyclic compounds such as 1-(3-aminopropyl)imidazole and 4-(3-aminopropyl)morpholine, 1-(2-aminoethyl)piperidine, 3,3-diamino-N-methyldipropylamine. Additional nitrogen containing compounds capable of reacting with the acylating agent and having a quaternizable amino group include alkanolamines including but not limited to triethanolamine, trimethanolamine, N,N-dimethylaminopropanol, N,N-diethylaminopropanol, N,N-diethylaminobutanol, N,N,N-tris(hydroxyethyl)amine, N,N,N-tris(hydroxymethyl)amine, N-N-dimethylethanolamine, N-N-diethylethanolamine, 2-(diisopropylamino)ethanol, 2-(dibutylamino)ethanol, 3-dimethylamino-1-propanol, 3-diethylamino-1-propanol, 1-dimethylamino-2-propanol, 1-diethylamino-2-propanol, 2-dimethylamino-2-methyl-1-1propanol, 5-dimethylamino-2-propanol, 2-[2-(dimethylamino)ethoxy]-ethanol, 4-methyl-2-(piperidino methyl)phenol, 1-benzyl-3-pyrrolidinol, 1-benzylpyrrolidine-2-methanol, 2,4,6-tri(dimethylaminomethyl)phenol, dialkoxylated amines such as Ethermeen T12. In some embodiments, the nitrogen containing compound excludes dimethylaminopropylamine.
-
- In one embodiment, the nitrogen containing compound can be represented by at least one of formulas X or XI:
- The hydrocarbyl substituted acylating agents and nitrogen containing compounds described above are reacted together to form a quaternizable compound. Methods and process for reacting the hydrocarbyl substituted acylating agents and nitrogen containing compounds are well known in the art.
- In embodiments, the reaction between the hydrocarbyl substituted acylating agents and nitrogen containing compounds can be carried out at temperatures of greater than about 80 °C, or 90 °C, or in some
cases 100 °C, such as between 100 and 150 or 200 °C, or 125 and 175 °C. In yet another embodiments the reaction between the hydrocarbyl substituted acylating agents and the nitrogen containing compounds may be carried out at temperatures less than 80 °C, or 70 °C, or 60 °C, and in some cases between 40 °C and 80 °C. At the foregoing temperatures water may be produced during the condensation, which is referred to herein as the water of reaction. In some embodiments, the water of reaction can be removed during the reaction, such that the water of reaction does not return to the reaction and further react. - The hydrocarbyl substituted acylating agents and nitrogen containing compounds may be reacted at a ratio of 1:1, but the reaction may also contain the respective reactants (i.e., hydrocarbyl substituted acylating agent:nitrogen containing compound) in ratios from 3:1 to 1:1.2, or from 2.5:1 to 1:1.1, and in some embodiments from 2:1 to 1:1.05.
- The quaternary ammonium salt can be formed when the quaternizable compound, that is, the reaction products of the hydrocarbyl substituted acylating agent and nitrogen containing compounds described above, are reacted with a quaternizing agent. Suitable quaternizing agents include, alcohol functionalized epoxides.
- Exemplary epoxides, can be represented by the following formula:
- Exemplary alcohol functionalized epoxides can include those of formula VIII where R1, R2, R3 and R4 can be independently H or a hydroxyl containing hydrocarbyl group. In an embodiment, hydroxyl containing hydrocarbyl group can contain from 2 to 32, or from 3 to 28, or even from 3 to 24 carbon atoms. Exemplary alcohol functionalized epoxide derivatives can include for example, glycidol and the like.
- In some embodiments the quaternizing agent can be employed in combination with an acid. The acid used with the quaternizing agent may be a separate component, such as acetic acid, propionic acid, 2-ethylhexanoic acid, and the like. In other embodiments, a small amount of an acid component may be present, such as, about at <0.2 or even <0.1 moles of acid per mole of hydrocarbyl acylating agent.
- In certain embodiments the molar ratio of the condensation compound to quaternizing agent is 1:0.1 to 2, or 1:1 to 1.5, or 1:1 to 1.3.
- In some embodiments, the quaternizing agent can be employed in the presence of a protic solvent, such as, for example, 2-ethylhexanol, water, and combinations thereof. In some embodiments, the quaternizing agent can be employed in the presence of an acid. In yet another embodiment, the quaternizing agent can be employed in the presence of an acid and a protic solvent. In some embodiments, the acid can be an acid component in addition to the acid group present in the structure of the acylating agent. In further embodiments the reaction can be free of, or essentially free of, any additional acid component other than the acid group present in the structure of the acylating agent. By "free of' it is meant completely free, and by "essentially free" it is meant an amount that not materially affect the essential or basic and novel characteristics of the composition, such as, for example, less than 1% by weight.
- While the process to prepare the epoxide quats can produce a mixture that is not readily definable apart from the process steps, certain structural components may be expected in some circumstances.
- In some embodiments the epoxide quats can comprise, consist essentially of, or consist of a cation represented by the following formula:
- In some embodiments the epoxide quats can comprise, consist essentially of, or consist of a cation represented by the following formula:
- In some embodiments the epoxide quats can comprise, consist essentially of, or consist of a cation represented by the following formulas:
- In some embodiments the epoxide quats can comprise, consist essentially of, or consist of a cation represented by the following formula:
- In one embodiment, the present technology provides a composition comprising an epoxide quat, and the use of the composition in a lubricating composition with an oil of lubricating viscosity.
- In lubricating composition embodiments, the compositions of the present invention can comprise an oil of lubricating viscosity. Such oils include natural and synthetic oils, oil derived from hydrocracking, hydrogenation, and hydrofinishing, unrefined, refined, re-refined oils or mixtures thereof. A more detailed description of unrefined, refined and re-refined oils is provided in International Publication
WO2008/147704 , paragraphs [0054] to [0056]. A more detailed description of natural and synthetic lubricating oils is provided in paragraphs [0058] to [0059] respectively ofWO2008/147704 . Synthetic oils may also be produced by Fischer-Tropsch reactions and typically may be hydroisomerized Fischer-Tropsch hydrocarbons or waxes. In one embodiment oils may be prepared by a Fischer-Tropsch gas-to liquid synthetic procedure as well as other gas-to-liquid oils. - Oils of lubricating viscosity may also be selected from any of the base oils in Groups I-V as specified in the American Petroleum Institute (API) Base Oil Interchangeability Guidelines. The five base oil groups are as follow; Group I: > 0.03% sulfur or < 90% saturates and viscosity index 80-120; Group II: < 0.03% sulfur and ≥ 90% saturates and viscosity index 80-120; Group III: < 0.03% sulfur and ≥ 90% saturates and viscosity index ≥ 120; Group IV: all polyalphaolefins; Group V: all others. Groups I, II and III are typically referred to as mineral oil base stocks.
- Typical treat rates of the epoxide quats of the invention to lubricating oils is 0.1 to 10 wt % or 0.5 to 5 wt % or 0.5 to 2.5 wt % or 0.5 to 1 wt % or 0.1 to 0.5 wt % or 1 to 2 wt % based on a total weight of the lubricating oil. The amount of the oil of lubricating viscosity present is typically the balance remaining after subtracting from 100 wt% the sum of the amount of the compound of the invention and the other performance additives.
- The lubricating composition may be in the form of a concentrate and/or fully formulated lubricant. If the lubricating composition of the invention (comprising the additives disclosed herein) is in the form of a concentrate which may be combined with additional oil to from, in whole or in part, a finished lubricant), the ratio of the of these additive to the oil of lubricating viscosity and/or diluent oil include the ranged of 1:99 to 99:1 by weight, or 80:20 to 10:90 by weight.
- The lubricant compositions of the present invention include the epoxide quats described above and may also include one or more additional additives. Such additional performance additives can be added to any of the compositions described depending on the results desired and the application in which the composition will be used.
- Although any of the additional performance additives described herein can be used in any of the fuel and/or lubricant compositions of the invention, the following additional additives are particularly useful for fuel and/or lubricant compositions: antioxidants, corrosion inhibitors, detergent and/or dispersant additives other than those described above, cold flow improvers, foam inhibitors, demulsifiers, lubricity agents, metal deactivators, valve seat recession additives, biocides, antistatic agents, deicers, fluidizers, combustion improvers, seal swelling agents, wax control polymers, scale inhibitors, gas-hydrate inhibitors, or any combination thereof.
- Demulsifiers suitable for use with the epoxide quats of the present technology can include, but not be limited to, arylsulfonates and polyalkoxylated alcohol, such as, for example, polyethylene and polypropylene oxide copolymers and the like. The demulsifiers can also comprise nitrogen containing compounds such as oxazoline and imidazoline compounds and fatty amines, as well as Mannich compounds. Mannich compounds are the reaction products of alkylphenols and aldehydes (especially formaldehyde) and amines (especially amine condensates and polyalkylenepolyamines). The materials described in the following U.S. Patents are illustrative:
U.S. Pat. Nos. 3,036,003 ;3,236,770 ;3,414,347 ;3,448,047 ;3,461,172 ;3,539,633 ;3,586,629 ;3,591,598 ;3,634,515 ;3,725,480 ;3,726,882 ; and3,980,569 . Other suitable demulsifiers are, for example, the alkali metal or alkaline earth metal salts of alkyl-substituted phenol- and naphthalenesulfonates and the alkali metal or alkaline earth metal salts of fatty acids, and also neutral compounds such as alcohol alkoxylates, e.g. alcohol ethoxylates, phenol alkoxylates, e.g. tert-butylphenol ethoxylate or tert-pentylphenol ethoxylate, fatty acids, alkylphenols, condensation products of ethylene oxide (EO) and propylene oxide (PO), for example including in the form of EO/PO block copolymers, polyethyleneimines or else polysiloxanes. Any of the commercially available demulsifiers may be employed, suitably in an amount sufficient to provide a treat level of from 5 to 50 ppm in the fuel. In an embodiment there is no demulsifier present in the fuel and/or lubricant composition. The demulsifiers may be used alone or in combination. Some demulsifiers are commercially available, for example from Nalco or Baker Hughes. - Suitable antioxidants include for example hindered phenols or derivatives thereof and/or diarylamines or derivatives thereof. Suitable detergent/dispersant additives include for example polyetheramines or nitrogen containing detergents, including but not limited to PIB amine detergents/dispersants, succinimide detergents/dispersants, and other quaternary salt detergents/dispersants including polyisobutylsuccinimide-derived quaternized PIB/amine and/or amide dispersants/detergents. Suitable cold flow improvers include for example esterified copolymers of maleic anhydride and styrene and/or copolymers of ethylene and vinyl acetate. Suitable lubricity improvers or friction modifiers are based typically on fatty acids or fatty acid esters. Typical examples are tall oil fatty acid, as described, for example, in
WO 98/004656 U.S. Pat. No. 6,743,266 B2 , of natural or synthetic oils, for example triglycerides, and alkanolamines are also suitable as such lubricity improvers. Additional examples include commercial tall oil fatty acids containing polycyclic hydrocarbons and/or rosin acids. Suitable metal deactivators include for example aromatic triazoles or derivatives thereof, including but not limited to benzotriazole. Other suitable metal deactivators are, for example, salicylic acid derivatives such as N,N-disalicylidene-1,2-propanediamine. Suitable valve seat recession additives include for example alkali metal sulfosuccinate salts. Suitable foam inhibitors and/or antifoams include for example organic silicones such as polydimethyl siloxane, polyethylsiloxane, polydiethylsiloxane, polyacrylates and polymethacrylates, trimethyl-triflouro-propylmethyl siloxane and the like. Suitable fluidizers include for example mineral oils and/or poly(alpha-olefins) and/or polyethers. Combustion improvers include for example octane and cetane improvers. Suitable cetane number improvers are, for example, aliphatic nitrates such as 2-ethylhexyl nitrate and cyclohexyl nitrate and peroxides such as di-tert-butyl peroxide. - The additional performance additives, which may be present in the fuel and/or lubricant compositions of the invention, also include di-ester, di-amide, ester-amide, and ester-imide friction modifiers prepared by reacting an α-hydroxy acid with an amine and/or alcohol optionally in the presence of a known esterification catalyst. Examples of α-hydroxy acids include glycolic acid, lactic acid, α-hydroxy dicarboxylic acid (such as tartaric acid) and/or an α-hydroxy tricarboxylic acid (such as citric acid), with an amine and/or alcohol, optionally in the presence of a known esterification catalyst. These friction modifiers, often derived from tartaric acid, citric acid, or derivatives thereof, may be derived from amines and/or alcohols that are branched, resulting in friction modifiers that themselves have significant amounts of branched hydrocarbyl groups present within it structure. Examples of suitable branched alcohols used to prepare such friction modifiers include 2-ethylhexanol, isotridecanol, Guerbet alcohols, and mixtures thereof. Friction modifiers may be present at 0 to 6 wt % or 0.001 to 4 wt %, or 0.01 to 2 wt % or 0.05 to 3 wt % or 0.1 to 2 wt% or 0.1 to 1 wt % or 0.001 to 0.01 wt %.
- The additional performance additives may comprise a detergent/dispersant comprising a hydrocarbyl substituted acylating agent. The acylating agent may be, for example, a hydrocarbyl substituted succinic acid, or the condensation product of a hydrocarbyl substituted succinic acid with an amine or an alcohol; that is, a hydrocarbyl substituted succinimide or hydrocarbyl substituted succinate. In an embodiment, the detergent/dispersant may be a polyisobutenyl substituted succinic acid, amide or ester, wherein the polyisobutenyl substituent has a number average molecular weight of from about 100 to 5000. In some embodiments, the detergent may be a C6 to C18 substituted succinic acid, amide or ester. A more thorough description of the hydrocarbyl substituted acylating agent detergents can be found from paragraph [0017] to [0036] of
U.S. Publication 2011/0219674, published September 15, 2011 . - In one embodiment, the additional detergent/dispersant is a quaternary ammoniums salt other than that of the present technology. Additional quaternary ammoniums salts can be quaternary ammoniums salts prepared from hydrocarbyl substituted acylating agents, such as, for example, polyisobutyl succinic acids or anhydrides, having a hydrocarbyl substituent with a number average molecular weight of greater than 1200 Mn, polyisobutyl succinic acids or anhydrides, having a hydrocarbyl substituent with a number average molecular weight of 300 to 750, or polyisobutyl succinic acids anhydrides, having a hydrocarbyl substituent with a number average molecular weight of 1000 Mn.
- In an embodiment, the additional quaternary ammonium salts prepared from the reaction of nitrogen containing compound and a hydrocarbyl substituted acylating agent having a hydrocarbyl substituent with a number average molecular weight of 300 to 750 or 1300 to 3000 is an amide or ester. In an embodiment, the quaternary ammonium salts prepared from the reaction of nitrogen containing compound and a hydrocarbyl substituted acylating agent having a hydrocarbyl substituent with a number average molecular weight of greater than 1200 Mn or having a hydrocarbyl substituent with a number average molecular weight of from 300 to 750 is an imide.
- In yet another embodiment the hydrocarbyl substituted acylating agent can include a mono-, dimer or trimer carboxylic acid with 8 to 54 carbon atoms and is reactive with primary or secondary amines. Suitable acids include, but are not limited to, the mono-, dimer, or trimer acids of caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic, arachidic acid, behenic acid, lignoceric acid, cerotic acid, myristoleic acid, palmitoleic acid, sapienic acid, oleic acid, elaidic acid, vaccenic acid, linoleic acid, linoelaidic acid, α-linolenic acid, arachidonic acid, eicosapentaenoic acid, erucic acid, and docosahexaenoic acid.
- In an embodiment the nitrogen containing compound of the additional quaternary ammonium salts is an imidazole or nitrogen containing compound of either of formulas.
- In other embodiments, the quaternizing agent used to prepare the additional quaternary ammonium salts can be a dialkyl sulfate, an alkyl halide, a hydrocarbyl substituted carbonate, a hydrocarbyl epoxide, a carboxylate, alkyl esters, or mixtures thereof. In some cases the quaternizing agent can be a hydrocarbyl epoxide. In some cases the quaternizing agent can be a hydrocarbyl epoxide in combination with an acid. In some cases the quaternizing agent can be a salicylate, oxalate or terephthalate. In an embodiment the hydrocarbyl epoxide is an alcohol functionalized epoxides or C4 to C14 epoxides.
- In some embodiments, the quaternizing agent is multi-functional resulting in the additional quaternary ammonium salts being coupled quaternary ammoniums salts.
- Additional quaternary ammonium salts include, but are not limited to quaternary ammonium salts having a hydrophobic moiety in the anion. Exemplary compounds include quaternary ammonium compounds having the formula below:
- Additional quaternary ammonium salts may also include polyetheramines that are the reaction products of a polyether-substituted amine comprising at least one tertiary quaternizable amino group and a quaternizing agent that converts the tertiary amino group to a quaternary ammonium group.
- Dispersants can also be post-treated by reaction with any of a variety of agents. Among these are urea, thiourea, dimercaptothiadiazoles, carbon disulfide, aldehydes, ketones, carboxylic acids, hydrocarbon-substituted succinic anhydrides, nitriles, epoxides, boron compounds, and phosphorus compounds. References detailing such treatment are listed in
U.S. Patent 4,654,403 . - The fuel and/or lubricant compositions of the invention may include a detergent additive, different from the disclosed epoxide quat technology. Most conventional detergents used in the field of engine lubrication obtain most or all of their basicity or TBN from the presence of basic metal-containing compounds (metal hydroxides, oxides, or carbonates, typically based on such metals as calcium, magnesium, or sodium). Such metallic overbased detergents, also referred to as overbased or superbased salts, are generally single phase, homogeneous Newtonian systems characterized by a metal content in excess of that which would be present for neutralization according to the stoichiometry of the metal and the particular acidic organic compound reacted with the metal. The overbased materials are typically prepared by reacting an acidic material (typically an inorganic acid or lower carboxylic acid such as carbon dioxide) with a mixture of an acidic organic compound (also referred to as a substrate), a stoichiometric excess of a metal base, typically in a reaction medium of an one inert, organic solvent (e.g., mineral oil, naphtha, toluene, xylene) for the acidic organic substrate. Typically also a small amount of promoter such as a phenol or alcohol is present, and in some cases a small amount of water. The acidic organic substrate will normally have a sufficient number of carbon atoms to provide a degree of solubility in oil.
- Such conventional overbased materials and their methods of preparation are well known to those skilled in the art. Patents describing techniques for making basic metallic salts of sulfonic acids, carboxylic acids, phenols, phosphonic acids, and mixtures of any two or more of these include
U.S. Patents 2,501,731 ;2,616,905 ;2,616,911 ;2,616,925 ;2,777,874 ;3,256,186 ;3,384,585 ;3,365,396 ;3,320,162 ;3,318,809 ;3,488,284 ; and3,629,109 . Salixarate detergents are described inU.S. patent 6,200,936 . In certain embodiments, the detergent may contain a metal-containing salicylate detergent, such as an overbased calcium hydrocarbyl-substituted salicylate detergent and are described inU.S. Patents 5,688,751 and4,627,928 . - Viscosity improvers (also sometimes referred to as viscosity index improvers or viscosity modifiers) may be included in the fuel and/or lubricant compositions of this invention. Viscosity improvers are usually polymers, including polyisobutenes, polymethacrylates (PMA) and polymethacrylic acid esters, hydrogenated diene polymers, polyalkylstyrenes, esterified styrene-maleic anhydride copolymers, hydrogenated alkenylarene-conjugated diene copolymers and polyolefins. PMA's are prepared from mixtures of methacrylate monomers having different alkyl groups. The alkyl groups may be either straight chain or branched chain groups containing from 1 to 18 carbon atoms. Most PMA's are viscosity modifiers as well as pour point depressants.
- Multifunctional viscosity improvers, which also have dispersant and/or antioxidancy properties are known and may optionally be used in the fuel and/or lubricant compositions. Dispersant viscosity modifiers (DVM) are one example of such multifunctional additives. DVM are typically prepared by copolymerizing a small amount of a nitrogen-containing monomer with alkyl methacrylates, resulting in an additive with some combination of dispersancy, viscosity modification, pour point depressancy and dispersancy. Vinyl pyridine, N-vinyl pyrrolidone and N,N'-dimethylaminoethyl methacrylate are examples of nitrogen-containing monomers. Polyacrylates obtained from the polymerization or copolymerization of one or more alkyl acrylates also are useful as viscosity modifiers.
- Anti-wear agents may be used in the fuel and/or lubricant compositions provide herein. Anti-wear agents can in some embodiments include phosphorus-containing antiwear/extreme pressure agents such as metal thiophosphates, phosphoric acid esters and salts thereof, phosphorus-containing carboxylic acids, esters, ethers, and amides; and phosphites. In certain embodiments a phosphorus antiwear agent may be present in an amount to deliver 0.01 to 0.2 or 0.015 to 0.15 or 0.02 to 0.1 or 0.025 to 0.08 percent by weight phosphorus. Often the antiwear agent is a zinc dialkyldithiophosphate (ZDP). For a typical ZDP, which may contain 11 percent P (calculated on an oil free basis), suitable amounts may include 0.09 to 0.82 percent by weight. Non-phosphorus-containing anti-wear agents include borate esters (including borated epoxides), dithiocarbamate compounds, molybdenum-containing compounds, and sulfurized olefins. In some embodiments the fuel and/or lubricant compositions of the invention are free of phosphorus-containing antiwear/extreme pressure agents.
- Foam inhibitors that may be useful in fuel and/or lubricant compositions of the invention include polysiloxanes, copolymers of ethyl acrylate and 2-ethylhexylacrylate and optionally vinyl acetate; demulsifiers including fluorinated polysiloxanes, trialkyl phosphates, polyethylene glycols, polyethylene oxides, polypropylene oxides and (ethylene oxide-propylene oxide) polymers. The disclosed technology may also be used with a silicone-containing antifoam agent in combination with a C5 - C17 alcohol.
- Pour point depressants that may be useful in fuel and/or lubricant compositions of the invention include polyalphaolefins, esters of maleic anhydride - styrene copolymers, poly(meth)acrylates, polyacrylates or polyacrylamides.
- Metal deactivators may be chosen from a derivative of benzotriazole (typically tolyltriazole), 1,2,4-triazole, benzimidazole, 2-alkyldithiobenzimidazole or 2-alkyldithiobenzothiazole, 1-amino-2-propanol, a derivative of dimercaptothiadiazole, octylamine octanoate, condensation products of dodecenyl succinic acid or anhydride and/or a fatty acid such as oleic acid with a polyamine.. The metal deactivators may also be described as corrosion inhibitors.
- Seal swell agents include sulpholene derivatives Exxon Necton-37™ (FN 1380) and Exxon Mineral Seal Oil™ (FN 3200).
- In different embodiments the technology provides engine oil lubricating compositions that can be employed in internal combustion engines. The internal combustion engine may be spark ignition or compression ignition. The internal combustion engine may be a 2-stroke or 4-stroke engine. The internal combustion engine may be a passenger car engine, a light duty diesel engine, a heavy duty diesel engine, a motorcycle engine, or a 2-stroke or 4-stroke marine diesel engine. Typically the internal combustion engine may be a passenger car engine, or a heavy duty diesel internal combustion engine.
- In one embodiment an engine oil lubricant composition of the invention comprises in addition to the quaternary ammonium salts of the present technology an overbased metal-containing detergent, or mixtures thereof.
- Overbased detergents are known in the art. Overbased materials, otherwise referred to as overbased or superbased salts, are generally single phase, homogeneous systems characterized by a metal content in excess of that which would be present for neutralization according to the stoichiometry of the metal and the particular acidic organic compound reacted with the metal. The overbased materials are prepared by reacting an acidic material (typically an inorganic acid or lower carboxylic acid, typically carbon dioxide) with a mixture comprising an acidic organic compound, a reaction medium comprising at least one inert, organic solvent (mineral oil, naphtha, toluene, xylene, etc.) for said acidic organic material, a stoichiometric excess of a metal base, and a promoter such as a calcium chloride, acetic acid, phenol or alcohol. The acidic organic material will normally have a sufficient number of carbon atoms to provide a degree of solubility in oil. The amount of "excess" metal (stoichiometrically) is commonly expressed in terms of metal ratio. The term "metal ratio" is the ratio of the total equivalents of the metal to the equivalents of the acidic organic compound. A neutral metal salt has a metal ratio of one. A salt having 4.5 times as much metal as present in a normal salt will have metal excess of 3.5 equivalents, or a ratio of 4.5. The term "metal ratio is also explained in standard textbook entitled "Chemistry and Technology of Lubricants", Third Edition, Edited by R. M. Mortier and S. T. Orszulik, Copyright 2010, page 219, sub-heading 7.25.
- The overbased metal-containing detergent may be chosen from non-sulfur-containing phenates, sulfur-containing phenates, sulfonates, salixarates, salicylates, carboxylates, and mixtures thereof, or borated equivalents thereof. The overbased detergent may be borated with a borating agent such as boric acid.
- The overbased detergent may be non-sulfur containing phenates, sulfur containing phenates, sulfonates, or mixtures therof.
- An engine oil lubricant may further comprise an overbased sulfonate detergent present at 0.01 wt % to 0.9 wt %, or 0.05 wt % to 0.8 wt %, or 0.1 wt % to 0.7 wt %, or 0.2 wt % to 0.6 wt %.
- The overbased sulfonate detergent may have a metal ratio of 12 to less than 20, or 12 to 18, or 20 to 30, or 22 to 25.
- An engine oil lubricant composition may also include one or more detergents in addition to the overbased sulfonate.
- Overbased sulfonates typically have a total base number of 250 to 600, or 300 to 500 (on an oil free basis). Overbased detergents are known in the art. In one embodiment the sulfonate detergent may be a predominantly linear alkylbenzene sulfonate detergent having a metal ratio of at least 8 as is described in paragraphs [0026] to [0037] of
US Patent Application 2005065045 (and granted asUS 7,407,919 ). Linear alkyl benzenes may have the benzene ring attached anywhere on the linear chain, usually at the 2, 3, or 4 position, or mixtures thereof. The predominantly linear alkylbenzene sulfonate detergent may be particularly useful for assisting in improving fuel economy. In one embodiment the sulfonate detergent may be a metal salt of one or more oil-soluble alkyl toluene sulfonate compounds as disclosed in paragraphs [0046] to [0053] ofUS Patent Application 2008/0119378 . - In one embodiment the overbased sulfonate detergent comprises an overbased calcium sulfonate. The calcium sulfonate detergent may have a metal ratio of 18 to 40 and a TBN of 300 to 500, or 325 to 425.
- The other detergents may have a metal of the metal-containing detergent may also include "hybrid" detergents formed with mixed surfactant systems including phenate and/or sulfonate components, e.g., phenate/salicylates, sulfonate/phenates, sulfonate/salicylates, sulfonates/phenates/salicylates, as described; for example, in
US Patents 6,429,178 ;6,429,179 ;6,153,565 ; and6,281,179 . Where, for example, a hybrid sulfonate/phenate detergent is employed, the hybrid detergent would be considered equivalent to amounts of distinct phenate and sulfonate detergents introducing like amounts of phenate and sulfonate soaps, respectively. - The other detergent may have an alkali metal, an alkaline earth metal, or zinc counterion. In one embodiment the metal may be sodium, calcium, barium, or magnesium. Typically other detergent may be sodium, calcium, or magnesium containing detergent (typically, calcium, or magnesium containing detergent).
- The other detergent may typically be an overbased detergent of sodium, calcium or magnesium salt of the phenates, sulfur-containing phenates, salixarates and salicylates. Overbased phenates and salicylates typically have a total base number of 180 to 450 TBN (on an oil free basis).
- Phenate detergents are typically derived from p-hydrocarbyl phenols. Alkylphenols of this type may be coupled with sulfur and overbased, coupled with aldehyde and overbased, or carboxylated to form salicylate detergents. Suitable alkylphenols include those alkylated with oligomers of propylene, i.e. tetrapropenylphenol (i.e. p-dodecylphenol or PDDP) and pentapropenylphenol. Other suitable alkylphenols include those alkylated with alpha-olefins, isomerized alpha-olefins, and polyolefins like polyisobutylene. In one embodiment, the lubricating composition comprises less than 0.2 wt %, or less than 0.1 wt %, or even less than 0.05 wt % of a phenate detergent derived from PDDP. In one embodiment, the lubricant composition comprises a phenate detergent that is not derived from PDDP.
- The overbased detergent may be present at 0 wt % to 10 wt %, or 0.1 wt % to 10 wt %, or 0.2 wt % to 8 wt %, or 0.2 wt % to 3 wt %. For example in a heavy duty diesel engine the detergent may be present at 2 wt % to 3 wt % of the lubricant composition. For a passenger car engine the detergent may be present at 0.2 wt % to 1 wt % of the lubricant composition. In one embodiment, an engine oil lubricant composition comprises at least one overbased detergent with a metal ratio of at least 3, or at least 8, or at least 15.
- In an embodiment an engine oil lubricant composition comprising the epoxide quats of the present technology may further include a dispersant, or mixtures thereof. The dispersant may be chosen from a succinimide dispersant, a Mannich dispersant, a succinamide dispersant, a polyolefin succinic acid ester, amide, or ester-amide, or mixtures thereof.
- In one embodiment an engine oil lubricant composition includes a dispersant or mixtures thereof. The dispersant may be present as a single dispersant. The dispersant may be present as a mixture of two or more (typically two or three) different dispersants, wherein at least one may be a succinimide dispersant.
- The succinimide dispersant may be derived from an aliphatic polyamine, or mixtures thereof. The aliphatic polyamine may be aliphatic polyamine such as an ethylenepolyamine, a propylenepolyamine, a butylenepolyamine, or mixtures thereof. In one embodiment the aliphatic polyamine may be ethylenepolyamine. In one embodiment the aliphatic polyamine may be chosen from ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, polyamine still bottoms, and mixtures thereof.
- In one embodiment the dispersant may be a polyolefin succinic acid ester, amide, or ester-amide. For instance, a polyolefin succinic acid ester may be a polyisobutylene succinic acid ester of pentaerythritol, or mixtures thereof. A polyolefin succinic acid ester-amide may be a polyisobutylene succinic acid reacted with an alcohol (such as pentaerythritol) and an amine (such as a diamine, typically diethyleneamine).
- The dispersant may be an N-substituted long chain alkenyl succinimide. An example of an N-substituted long chain alkenyl succinimide is polyisobutylene succinimide. Typically the polyisobutylene from which polyisobutylene succinic anhydride may be derived has a number average molecular weight of 350 to 5000, or 550 to 3000 or 750 to 2500. Succinimide dispersants and their preparation are disclosed, for instance in
US Patents 3,172,892 ,3,219,666 ,3,316,177 ,3,340,281 ,3,351,552 ,3,381,022 ,3,433,744 ,3,444,170 ,3,467,668 ,3,501,405 ,3,542,680 ,3,576,743 ,3,632,511 ,4,234,435 ,Re 26,433 , and6,165,235 ,7,238,650 andEP Patent Application 0 355 895 A - The dispersants may also be post-treated by conventional methods by a reaction with any of a variety of agents. Among these are boron compounds (such as boric acid), urea, thiourea, dimercaptothiadiazoles, carbon disulphide, aldehydes, ketones, carboxylic acids such as terephthalic acid, hydrocarbon-substituted succinic anhydrides, maleic anhydride, nitriles, epoxides, and phosphorus compounds. In one embodiment the post-treated dispersant is borated. In one embodiment the post-treated dispersant may be reacted with dimercaptothiadiazoles. In one embodiment the post-treated dispersant may be reacted with phosphoric or phosphorous acid. In one embodiment the post-treated dispersant may be reacted with terephthalic acid and boric acid (as described in US Patent Application
US2009/0054278 . - In one embodiment the dispersant may be borated or non-borated. Typically a borated dispersant may be a succinimide dispersant. In one embodiment, the ashless dispersant may be boron-containing, i.e., has incorporated boron and delivers said boron to the lubricant composition. The boron-containing dispersant may be present in an amount to deliver at least 25 ppm boron, at least 50 ppm boron, or at least 100 ppm boron to the lubricant composition. In one embodiment, the lubricant composition may be free of a boron-containing dispersant, i.e. delivers no more than 10 ppm boron to the final formulation.
- The dispersant may be prepared/obtained/obtainable from reaction of succinic anhydride by an "ene" or "thermal" reaction, by what may be referred to as a "direct alkylation process." The "ene" reaction mechanism and general reaction conditions are summarized in "Maleic Anhydride", pages, 147-149, Edited by B.C. Trivedi and B.C. Culbertson and Published by Plenum Press in 1982. The dispersant prepared by a process that includes an "ene" reaction may be a polyisobutylene succinimide having a carbocyclic ring present on less than 50 mole %, or 0 to less than 30 mole %, or 0 to less than 20 mole %, or 0 mole % of the dispersant molecules. The "ene" reaction may have a reaction temperature of 180 °C to less than 300 °C, or 200 °C to 250 °C, or 200 °C to 220 °C.
- The dispersant may also be obtained/obtainable from a chlorine-assisted process, often involving Diels-Alder chemistry, leading to formation of carbocyclic linkages. The process is known to a person skilled in the art. The chlorine-assisted process may produce a dispersant that is a polyisobutylene succinimide having a carbocyclic ring present on 50 mole % or more, or 60 to 100 mole % of the dispersant molecules. Both the thermal and chlorine-assisted processes are described in greater detail in
U.S. Patent 7,615,521 , columns 4-5 and preparative examples A and B. - The dispersant may have a carbonyl to nitrogen ratio (CO:N ratio) of 5:1 to 1:10, 2:1 to 1:10, or 2:1 to 1:5, or 2:1 to 1:2. In one embodiment the dispersant may have a CO:N ratio of 2:1 to 1:10, or 2:1 to 1:5, or 2:1 to 1:2, or 1:1.4 to 1:0.6.
- In one embodiment the dispersant may be a succinimide dispersant may comprise a polyisobutylene succinimide, wherein the polyisobutylene from which polyisobutylene succinimide is derived has a number average molecular weight of 350 to 5000, or 750 to 2500.
- The dispersant may be present at 0 wt % to 20 wt %, 0.1 wt % to 15 wt %, or 0.5 wt % to 9 wt %, or 1 wt % to 8.5 wt % or 1.5 to 5 wt % of the lubricant composition.
- In one embodiment an engine oil lubricant composition comprising the epoxide quats of the present technology may be a lubricant composition further comprising a molybdenum compound. The molybdenum compound may be an antiwear agent or an antioxidant. The molybdenum compound may be chosen from molybdenum dialkyldithiophosphates, molybdenum dithiocarbamates, amine salts of molybdenum compounds, and mixtures thereof. The molybdenum compound may provide the lubricant composition with 0 to 1000 ppm, or 5 to 1000 ppm, or 10 to 750
ppm 5 ppm to 300 ppm, or 20 ppm to 250 ppm of molybdenum. - In another embodiment an engine oil lubricant composition comprising the epoxide quats of the present technology may further comprise an antioxidant. Antioxidants include sulfurized olefins, diarylamines, alkylated diarylamines, hindered phenols, molybdenum compounds (such as molybdenum dithiocarbamates), hydroxyl thioethers, or mixtures thereof. In one embodiment the lubricant composition includes an antioxidant, or mixtures thereof. The antioxidant may be present at 0 wt % to 15 wt %, or 0.1 wt % to 10 wt %, or 0.5 wt % to 5 wt %, or 0.5 wt % to 3 wt %, or 0.3 wt % to 1.5 wt % of the lubricant composition.
- In one embodiment an engine oil lubricant composition comprising the epoxide quats of the present technology further comprises a phenolic or an aminic antioxidant or mixtures thereof, and wherein the antioxidant is present at 0.1 wt % to 3 wt %, or 0.5 wt % to 2.75 wt %, or 1 wt % to 2.5 wt %.
- The diarylamine or alkylated diarylamine may be a phenyl-α-naphthylamine (PANA), an alkylated diphenylamine, or an alkylated phenylnapthylamine, or mixtures thereof. The alkylated diphenylamine may include di-nonylated diphenylamine, nonyl diphenylamine, octyl diphenylamine, di-octylated diphenylamine, di-decylated diphenylamine, decyl diphenylamine and mixtures thereof. In one embodiment the diphenylamine may include nonyl diphenylamine, dinonyl diphenylamine, octyl diphenylamine, dioctyl diphenylamine, or mixtures thereof. In one embodiment the alkylated diphenylamine may include nonyl diphenylamine, or dinonyl diphenylamine. The alkylated diarylamine may include octyl, di-octyl, nonyl, di-nonyl, decyl or di-decyl phenylnapthylamines.
- The hindered phenol antioxidant often contains a secondary butyl and/or a tertiary butyl group as a sterically hindering group. The phenol group may be further substituted with a hydrocarbyl group (typically linear or branched alkyl) and/or a bridging group linking to a second aromatic group. Examples of suitable hindered phenol antioxidants include 2,6-di-tert-butylphenol, 4-methyl-2,6-di-tert-butylphenol, 4-ethyl-2,6-di-tert-butylphenol, 4-propyl-2,6-di-tert-butylphenol or 4-butyl-2,6-di-tert-butylphenol, or 4-dodecyl-2,6-di-tert-butylphenol. In one embodiment the hindered phenol antioxidant may be an ester and may include, e.g., Irganox™ L-135 from Ciba. A more detailed description of suitable ester-containing hindered phenol antioxidant chemistry is found in
US Patent 6,559,105 . - Examples of molybdenum dithiocarbamates, which may be used as an antioxidant, include commercial materials sold under the trade names such as Molyvan 822®, Molyvan® A and Molyvan® 855 from R. T. Vanderbilt Co., Ltd., and Adeka Sakura-Lube™ S-100, S-165, S-600 and 525, or mixtures thereof.
- In one embodiment an engine oil lubricant composition comprising the epoxide quats of the present technology further includes a viscosity modifier. The viscosity modifier is known in the art and may include hydrogenated styrene-butadiene rubbers, ethylene-propylene copolymers, ethylene copolymers with propylene and higher olefins, polymethacrylates, polyacrylates, hydrogenated styrene-isoprene polymers, hydrogenated diene polymers, polyalkyl styrenes, polyolefins, esters of maleic anhydride-olefin copolymers (such as those described in International Application
WO 2010/014655 ), esters of maleic anhydride-styrene copolymers, or mixtures thereof. The viscosity modifier may include a block copolymer comprising (i) a vinyl aromatic monomer block and (ii), a conjugated diene olefin monomer block (such as a hydrogenated styrene-butadiene copolymer or a hydrogenated styrene-isoprene copolymer), a polymethacrylate, an ethylene-alpha olefin copolymer, a hydrogenated star polymer comprising conjugated diene monomers such as butadiene or isoprene, or a star polymer of polymethacrylate, or mixtures thereof. - In an embodiment the viscosity modifier may be a dispersant viscosity modifier. The dispersant viscosity modifier may include functionalized polyolefins, for example, ethylene-propylene copolymers that have been functionalized with an acylating agent such as maleic anhydride and an amine.
- In one embodiment the dispersant viscosity modifier comprises an olefin copolymer further functionalized with a dispersant amine group. Typically, the olefin copolymer is an ethylene-propylene copolymer. The olefin copolymer has a number average molecular weight of 5000 to 20,000, or 6000 to 18,000, or 7000 to 15,000. The olefin copolymer may have a shear stability index of 0 to 20, or 0 to 10, or 0 to 5 as measured by the Orbahn shear test (ASTM D6278) as described above.
- The formation of a dispersant viscosity modifier is well known in the art. The dispersant viscosity modifier may include for instance those described in U.S. Patent
US 7,790,661 column 2, line 48 tocolumn 10, line 38. - In one embodiment the dispersant viscosity modifier may be prepared by grafting of an olefinic carboxylic acid acylating agent onto a polymer of 15 to 80 mole percent of ethylene, from 20 to 85 mole percent of C3-10 α-monoolefin, and from 0 to 15 mole percent of non-conjugated diene or triene, said polymer having an average molecular weight ranging from 5000 to 20,000, and further reacting said grafted polymer with an amine (typically an aromatic amine).
- The dispersant viscosity modifier may include functionalized polyolefins, for example, ethylene-propylene copolymers that have been functionalized with an acylating agent such as maleic anhydride and an amine; polymethacrylates functionalized with an amine, or styrene-maleic anhydride copolymers reacted with an amine. Suitable amines may be aliphatic or aromatic amines and polyamines. Examples of suitable aromatic amines include nitroaniline, aminodiphenylamine (ADPA), hydrocarbylene coupled polyaromatic amines, and mixtures thereof. More detailed description of dispersant viscosity modifiers are disclosed in International Publication
WO2006/015130 orU.S. Patents 4,863,623 ;6,107,257 ;6,107,258 ;6,117,825 ; andUS 7,790,661 . - In one embodiment the dispersant viscosity modifier may include those described in
U.S. Patent 4,863,623 (see column 2,line 15 tocolumn 3, line 52) or in International PublicationWO2006/015130 (see page 2, paragraph [0008] and preparative examples are described paragraphs [0065] to [0073]). In one embodiment the dispersant viscosity modifier may include those described in U.S. PatentUS 7,790,661 column 2, line 48 tocolumn 10, line 38. - In one embodiment an engine oil lubricant composition comprising the epoxide quats disclosed herein further comprises a dispersant viscosity modifier. The dispersant viscosity modifier may be present at 0 wt % to 5 wt %, or 0 wt % to 4 wt %, or 0.05 wt % to 2 wt %, or 0.2 wt % to 1.2 wt % of the lubricant composition.
- In one embodiment an engine oil lubricant composition comprising the epoxide quats of the present technology further includes a friction modifier. In one embodiment the friction modifier may be chosen from long chain fatty acid derivatives of amines, long chain fatty esters, or derivatives of long chain fatty epoxides; fatty imidazolines; amine salts of alkylphosphoric acids; fatty alkyl tartrates; fatty alkyl tartrimides; fatty alkyl tartramides; fatty malic esters and imides, fatty (poly)glycolates; and fatty glycolamides. The friction modifier may be present at 0 wt % to 6 wt %, or 0.01 wt % to 4 wt %, or 0.05 wt % to 2 wt %, or 0.1 wt % to 2 wt % of the lubricant composition. As used herein the term "fatty alkyl" or "fatty" in relation to friction modifiers means a carbon chain having 10 to 22 carbon atoms, typically a straight carbon chain.
- Examples of suitable friction modifiers include long chain fatty acid derivatives of amines, fatty esters, or fatty epoxides; fatty imidazolines such as condensation products of carboxylic acids and polyalkylene-polyamines; amine salts of alkylphosphoric acids; fatty alkyl tartrates; fatty alkyl tartrimides; fatty alkyl tartramides; fatty phosphonates; fatty phosphites; borated phospholipids, borated fatty epoxides; glycerol esters such as glycerol mono-oleate; borated glycerol esters; fatty amines; alkoxylated fatty amines; borated alkoxylated fatty amines; hydroxyl and polyhydroxy fatty amines including tertiary hydroxy fatty amines; hydroxy alkyl amides; metal salts of fatty acids; metal salts of alkyl salicylates; fatty oxazolines; fatty ethoxylated alcohols; condensation products of carboxylic acids and polyalkylene polyamines; or reaction products from fatty carboxylic acids with guanidine, aminoguanidine, urea, or thiourea and salts thereof.
- Friction modifiers may also encompass materials such as sulfurized fatty compounds and olefins, molybdenum dialkyldithiophosphates, molybdenum dithiocarbamates, sunflower oil or soybean oil monoester of a polyol and an aliphatic carboxylic acid.
- In one embodiment the friction modifier may be a long chain fatty acid ester. In another embodiment the long chain fatty acid ester may be a mono-ester and in another embodiment the long chain fatty acid ester may be a triglyceride.
- An engine oil lubricant composition comprising the epoxide quats of the present technology optionally further includes at least one antiwear agent. Examples of suitable antiwear agents include titanium compounds, tartaric acid derivatives such as tartrate esters, amides or tartrimides, malic acid derivatives, citric acid derivatives, glycolic acid derivatives, oil soluble amine salts of phosphorus compounds different from that of the invention, sulfurized olefins, metal dihydrocarbyldithiophosphates (such as zinc dialkyldithiophosphates), phosphites (such as dibutyl phosphite), phosphonates, thiocarbamate-containing compounds, such as thiocarbamate esters, thiocarbamate amides, thiocarbamic ethers, alkylene-coupled thiocarbamates, and bis(S-alkyldithiocarbamyl) disulphides.
- The antiwear agent may in one embodiment include a tartrate or tartrimide as disclosed in International Publication
WO 2006/044411 or Canadian Patent CA 1 183 125. The tartrate or tartrimide may contain alkyl-ester groups, where the sum of carbon atoms on the alkyl groups is at least 8. The antiwear agent may in one embodiment include a citrate as is disclosed inUS Patent Application 20050198894 . - Another class of additives includes oil-soluble titanium compounds as disclosed in
US 7,727,943 andUS2006/0014651 . The oil-soluble titanium compounds may function as antiwear agents, friction modifiers, antioxidants, deposit control additives, or more than one of these functions. In one embodiment the oil soluble titanium compound is a titanium (IV) alkoxide. The titanium alkoxide is formed from a monohydric alcohol, a polyol or mixtures thereof. The monohydric alkoxides may have 2 to 16, or 3 to 10 carbon atoms. In one embodiment, the titanium alkoxide is titanium (IV) isopropoxide. In one embodiment, the titanium alkoxide is titanium (IV) 2-ethylhexoxide. In one embodiment, the titanium compound comprises the alkoxide of a vicinal 1,2-diol or polyol. In one embodiment, the 1,2-vicinal diol comprises a fatty acid mono-ester of glycerol, often the fatty acid is oleic acid. - In one embodiment, the oil soluble titanium compound is a titanium carboxylate. In one embodiment the titanium (IV) carboxylate is titanium neodecanoate.
- An engine oil lubricant composition comprising the epoxide quats of the present technology may further include a phosphorus-containing antiwear agent different from that of the invention. Typically the phosphorus-containing antiwear agent may be a zinc dialkyldithiophosphate, phosphite, phosphate, phosphonate, and ammonium phosphate salts, or mixtures thereof.
- In one embodiment an engine oil lubricant composition may further comprise a phosphorus-containing antiwear agent, typically zinc dialkyldithiophosphate.
- Zinc dialkyldithiophosphates are known in the art. Examples of zinc dithiophosphates include zinc isopropyl methylamyl dithiophosphate, zinc isopropyl isooctyl dithiophosphate, zinc di(cyclohexyl) dithiophosphate, zinc isobutyl 2-ethylhexyl dithiophosphate, zinc isopropyl 2-ethylhexyl dithiophosphate, zinc isobutyl isoamyl dithiophosphate, zinc isopropyl n-butyl dithiophosphate, and combinations thereof. Zinc dialkyldithiophosphate may be present in amount to provide 0.01 wt % to 0.1 wt % phosphorus to the lubricating composition, or to provide 0.015 wt % to 0.075 wt % phosphorus, or 0.02 wt % to 0.05 wt % phosphorus to the lubricating composition.
- In one embodiment, an engine oil lubricant composition further comprises one or more zinc dialkyldithiophosphate such that the amine (thio)phosphate additive of the invention provides at least 50% of the total phosphorus present in the lubricating composition, or at least 70% of the total phosphorus, or at least 90% of the total phosphorus in the lubricating composition. In one embodiment, the lubricant composition is free or substantially free of a zinc dialkyldithiophosphate.
- The antiwear agent may be present at 0 wt % to 3 wt %, or 0.1 wt % to 1.5 wt %, or 0.5 wt % to 0.9 wt % of the lubricant composition.
-
- Y and Y' are independently -O-, >NH, >NR3, or an imide group formed by taking together both Y and Y' groups and forming a R1-N< group between two >C=O groups;
- X is independently -Z-O-Z'-, >CH2, >CHR4, >CR4R5, >C(OH)(CO2R2), >C(CO2R2)2, or >CHOR6;
- Z and Z' are independently >CH2, >CHR4, >CR4R5, >C(OH)(CO2R2), or >CHOR6;
- n is 0 to 10, with the proviso that when n=1, X is not >CH2, and when n=2, both X's are not >CH2;
- m is 0 or 1;
- R1 is independently hydrogen or a hydrocarbyl group, typically containing 1 to 150 carbon atoms, with the proviso that when R1 is hydrogen, m is 0, and n is more than or equal to 1;
- R2 is a hydrocarbyl group, typically containing 1 to 150 carbon atoms;
- R3, R4 and R5 are independently hydrocarbyl groups; and
- R6 is hydrogen or a hydrocarbyl group, typically containing 1 to 150 carbon atoms.
- In one embodiment an engine oil lubricant composition comprising the epoxide quats of the present technology further comprises 0.01 to 5 wt % or 0.1 to 2 wt % of an ashless antiwear agent that may be a compound obtained/obtainable by a process comprising reacting a glycolic acid, a 2-halo-acetic acid, or a lactic acid, or an alkali or alkaline metal salt thereof, (typically glycolic acid or a 2-halo-acetic acid) with at least one member selected from the group consisting of an amine, an alcohol, and an aminoalcohol. For example the compound may be represented by formulae:
- Y is independently oxygen or >NH or >NR1;
- R1 is independently a hydrocarbyl group, typically containing 4 to 30, or 6 to 20, or 8 to 18 carbon atoms;
- Z is hydrogen or methyl;
- Q is the residue of a diol, triol or higher polyol, a diamine, triamine, or higher polyamine, or an aminoalcohol (typically Q is a diol, diamine or aminoalcohol)
- g is 2 to 6, or 2 to 3, or 2;
- q is 1 to 4, or 1 to 3 or 1 to 2;
- n is 0 to 10, 0 to 6, 0 to 5, 1 to 4, or 1 to 3; and
- Ak1 is an alkylene group containing 1 to 5, or 2 to 4 or 2 to 3 (typically ethylene) carbon atoms; and
- b is 1 to 10, or 2 to 8, or 4 to 6, or 4.
- The compound is known and is described in International publication
WO 2011/022317 , and also in grantedUS Patents 8,404,625 ,8,530,395 , and8,557,755 . - In one embodiment the invention is useful in an oil of lubricating viscosity in an internal combustion engine. The internal combustion engine may be a gasoline or diesel engine. Exemplary internal combustion engines include, but are not limited to, spark ignition and compression ignition engines; 2-stroke or 4-stroke cycles; liquid fuel supplied via direct injection, indirect injection, port injection and carburetor; common rail and unit injector systems; light (e.g. passenger car) and heavy duty (e.g. commercial truck) engines; and engines fuelled with hydrocarbon and non-hydrocarbon fuels and mixtures thereof. The engines may be part of integrated emissions systems incorporating such elements as; EGR systems; aftertreatment including three-way catalyst, oxidation catalyst, NOx absorbers and catalysts, catalyzed and non-catalyzed particulate traps optionally employing fuel-borne catalyst; variable valve timing; and injection timing and rate shaping.
- In one embodiment, the technology may be used with diesel engines having direct fuel injection systems wherein the fuel is injected directly into the engine's combustion chamber. The ignition pressures may be greater than 1000 bar and, in one embodiment, the ignition pressure may be greater than 1350 bar. Accordingly, in another embodiment, the direct fuel injection system maybe a high-pressure direct fuel injection system having ignition pressures greater than 1350 bar. Exemplary types of high-pressure direct fuel injection systems include, but are not limited to, unit direct injection (or "pump and nozzle") systems, and common rail systems. In unit direct injection systems the high-pressure fuel pump, fuel metering system and fuel injector are combined into one apparatus. Common rail systems have a series of injectors connected to the same pressure accumulator, or rail. The rail in turn, is connected to a high-pressure fuel pump. In yet another embodiment, the unit direct injection or common rail systems may further comprise an optional turbocharged or supercharged direct injection system.
- In a further embodiment, the imide quat technology is useful for providing at least equivalent, if not improved detergency (deposit reduction and/or prevention) performance in both the traditional and modern diesel engine compared to a 1000 Mn quaternary ammonium compound. In addition, the technology can provide improved water shedding (or demulsifying) performance compared to 1000 Mn quaternary ammonium compounds in both the traditional and modern diesel engine. In yet another embodiment, the disclosed technology may be used to improve the cold temperature operability or performance of a diesel fuel (as measured by the ARAL test).
- In yet another embodiment, the lubricating composition comprising an epoxide quat is useful for lubricating an internal combustion engine (for crankcase lubrication).
- Embodiments of the present technology may provide at least one of antiwear performance, friction modification (particularly for enhancing fuel economy), detergent performance (particularly deposit control or varnish control), dispersancy (particularly soot control, or sludge control), or corrosion control.
- As used herein, the term "hydrocarbyl substituent" or "hydrocarbyl group" is used in its ordinary sense, which is well-known to those skilled in the art. Specifically, it refers to a group having a carbon atom directly attached to the remainder of the molecule and having predominantly hydrocarbon character. Examples of hydrocarbyl groups include: hydrocarbon substituents, that is, aliphatic (e.g., alkyl or alkenyl), alicyclic (e.g., cycloalkyl, cycloalkenyl) substituents, and aromatic-, aliphatic-, and alicyclic-substituted aromatic substituents, as well as cyclic substituents wherein the ring is completed through another portion of the molecule (e.g., two substituents together form a ring); substituted hydrocarbon substituents, that is, substituents containing non-hydrocarbon groups which, in the context of this invention, do not alter the predominantly hydrocarbon nature of the substituent (e.g., halo (especially chloro and fluoro), hydroxy, alkoxy, mercapto, alkylmercapto, nitro, nitroso, and sulfoxy); hetero substituents, that is, substituents which, while having a predominantly hydrocarbon character, in the context of this invention, contain other than carbon in a ring or chain otherwise composed of carbon atoms. Heteroatoms include sulfur, oxygen, nitrogen, and encompass substituents as pyridyl, furyl, thienyl and imidazolyl. In general, no more than two, preferably no more than one, non-hydrocarbon substituent will be present for every ten carbon atoms in the hydrocarbyl group; typically, there will be no non-hydrocarbon substituents in the hydrocarbyl group.
- It is known that some of the materials described above may interact in the final formulation, so that the components of the final formulation may be different from those that are initially added. For instance, metal ions (of, e.g., a detergent) can migrate to other acidic or anionic sites of other molecules. The products formed thereby, including the products formed upon employing the composition of the present invention in its intended use, may not be susceptible of easy description. Nevertheless, all such modifications and reaction products are included within the scope of the present invention; the present invention encompasses the composition prepared by admixing the components described above.
- The invention will be further illustrated by the following examples, which sets forth particularly advantageous embodiments. While the examples are provided to illustrate the present invention, they are not intended to limit it.
- A 1000 number average molecular weight (Mn) polyisobutylene (PIB) (2000 g., 2.0 moles, high-vinylidene PIB) having greater than 70 % vinylidene groups is charged to a 5-liter flange flask equipped with overhead stirrer, air condenser, nitrogen inlet, thermocouple and Eurotherm™ temperature controller (reaction kit).
- Maleic anhydride (245 g, 2.5 moles) is then charged to the reaction vessel. The batch is agitated under a nitrogen blanket and slowly heated to 203 °C over a 90 minute period. The batch is maintained at 203°C for 24 hours.
- The reaction kit is then reconfigured for vacuum stripping. The batch is stripped at 203 °C and 0.05 bar to remove unreacted maleic anhydride. The batch comprising the formed PIBSA is then cooled back to 50 °C and decanted into a storage vessel.
- A 1000 Mn PIBSA (1950.3g, 1.86 moles) product of Example 1 is charged to a 3-liter flask equipped with a water condenser and Dean Stark trap, a thermocouple, a dropping funnel, an overhead stirrer and Nitrogen inlet and heated to 90 °C.
- Dimethylaminopropylamine (189.7g, 1.86 moles) DMAPA is added to the flask via the dropping funnel over 50 minutes. The batch temperature is kept below 120 °C while adding the DMAPA.
- Once all the DMAPA is added, the reaction is slowly heated to 150 °C and maintained at that temperature for 3 hours. Approximately 40 g of water is collected in the Dean Stark apparatus while heating. The remaining product is the 1000 Mn PIBSA/DMAPA quaternizable compound.
- A 1000 Mn PIBSA/DMAPA quaternizable compound (551.1g, 0.54 moles, as prepared in Example 2) is added to a 1-liter flask equipped with a water condenser, a thermocouple, a syringe pump, an overhead stirrer and nitrogen inlet.
- 2-ethylhexanol (124.5g, 0.96 moles), acetic acid (32.4g, 0.54 moles) and water (5.0g, 0.287 moles) are also charged to the 1-liter flask. The batch is then heated to 75 °C, under agitation and nitrogen atmosphere. Propylene oxide is added via a syringe pump over 4 hours. The batch is then held for 4 hours at 75 °C before being cooled back to 50 °C. The imide/propylene oxide quat is then decanted into a storage vessel.
- A 1000 Mn PIBSA/DMAPA quaternizable compound (476.2, 0.47 moles, as prepared in Example 2) is added to a 1-liter flask flange flask equipped with a water condenser, a thermocouple, a syringe pump, an overhead stirrer and a nitrogen inlet.
- 2-ethylhexanol (136.6 g, 1.05 moles), acetic acid (28.24 g, 0.47 moles) and water (4.76 g, 0.264 moles) are also charged to the 1-liter flask. The batch is then heated to 90 °C, under agitation and nitrogen atmosphere. 1,2-epoxybutane (37.3g, 0.51moles) is added via the syringe pump over 2 hours. The batch is then held for 3 hours at 90 °C before being cooled back to 50 °C. The imide/epoxybutane quat is then decanted into a storage vessel.
- A 1000 Mn PIBSA/DMAPA quaternizable compound (791.4 g, 0.776 moles, as prepared in Example 2) is added to a 2-liter flask flange flask equipped with a water condenser, a thermocouple, an overhead stirrer and a nitrogen inlet.
- 2-ethylhexanol (315.4 g, 2.43 moles), 1,2-epoxydodecane (146 g, 0.793 moles), acetic acid (46 g, 0.77 moles), and water are also charged to the 2-liter flask. Agitation is then initiated (200 rpm) and a slow nitrogen purge is introduced. The batch is then heated to 75 °C and maintained at temperature for 4 hours. The imide/epoxydodecane quat is then then cooled before it is transferred into a storage vessel.
- A 1000 Mn PIBSA/DMAPA quaternizable compound (500 g, 0.495 moles, as prepared in Example 2) is added to a 1-liter flask flange flask equipped with a water condenser, a thermocouple, an overhead stirrer and a nitrogen inlet.
- 2-ethylhexanol (163.34 g, 1.26 moles) and water (5 g, 0.27 moles) are added to the flask and heated to 90 °C. Acetic acid (29.65, 0.494 moles) and 1,2-epoxyhexadecane (118.71 g, 0.494 moles) are added to the flask. Agitation is then initiated (200 rpm) and a slow nitrogen purge is introduced. The batch is held at 90 °C for 3 hours. The imide/epoxyhexadecane quat is then then cooled before it is transferred into a storage vessel.
- A 1000 Mn PIBSA/DMAPA quaternizable compound (845 g, 0.78 moles, as prepared in Example 2) is added to a 2-liter flask flange flask equipped with a water condenser, a thermocouple, an overhead stirrer and a nitrogen inlet.
- 2-ethylhexanol (315.4 g, 2.43 moles), glycidol (63 g, 0.85 moles), acetic acid (47.3 g, 0.78 moles), and water (8.2 g, 0.45 moles) are also charged to the 2-liter flask. Agitation is then initiated (200 rpm) and a slow nitrogen purge is introduced. The batch is then heated to 75 °C and maintained at temperature for 4 hours. The imide/glycidol quat is then then cooled before it is transferred into a storage vessel.
- A 550 number average molecular weight (Mn) polyisobutylene (PIB) (2840 g, 5.163 moles, mid-vinylidene PIB available from Daelim) having greater than 20 % vinylidene groups is charged to a 5-liter flange flask equipped with overhead stirrer, air condenser, nitrogen inlet, thermocouple and Eurotherm™ temperature controller (reaction kit).
- Maleic anhydride (632.2 g 6.449 moles) is then charged to the reaction vessel. The batch is agitated under a nitrogen blanket and slowly heated to 203 °C over a 90 minute period. The batch is maintained at 203°C for 24 hours.
- The reaction kit is then reconfigured for vacuum stripping. The batch is stripped at 203 °C and 0.05 bar to remove unreacted maleic anhydride. The batch comprising the formed PIBSA and ∼ 20% unreacted polyisobutylene is then cooled back to 50 °C and decanted into a storage vessel.
- The 550 Mn PIBSA (1556.2 g, 2.29 moles) (product of Example 8) is charged to a 3-liter flask equipped with a water condenser and Dean Stark trap, a thermocouple, a dropping funnel, an overhead stirrer and Nitrogen inlet and heated to 90 °C.
- DMAPA (233.4 g, 2.29moles) is added to the flask via the dropping funnel over 50 minutes. The batch temperature is kept below 120 °C while adding the DMAPA.
- Once all the DMAPA is added, the reaction is slowly heated to 150 °C and maintained at that temperature for 3 hours. Approximately 40g of water is collected in the Dean Stark apparatus while heating. The remaining product is the 550 Mn PIBSA/DMAPA quaternizable compound.
- The 550 Mn PIBSA/DMAPA quaternizable compound of Example 9 (475 g, 0.62 moles) is added to a 1-liter flask flange flask equipped with a water condenser, a thermocouple, a syringe pump, an overhead stirrer and a nitrogen inlet.
- 2-ethylhexanol (136 g, 1.05 moles), acetic acid (37.3 g, 0.62 moles) and water (4.4g, 0.24 moles) are also charged to the 1-liter flask. The batch is then heated to 75 °C, under agitation and nitrogen atmosphere. 1,2-epoxybutane (48.9 g, 0.68 moles) is added via the syringe pump over 2 hours. The batch is then held for 3 hours at 75 °C. The imide/epoxybutane quat is then cooled and discharged into a storage vessel.
- The 550 Mn PIBSA/DMAPA quaternizable compound of Example 9 (470 g, 0.61 moles) is added to a 1-liter flask flange flask equipped with a water condenser, a thermocouple, an overhead stirrer and a nitrogen inlet.
- 2-ethylhexanol (136 g, 1.05 moles), 1,2-epoxydodecane (114.1 g, 0.62 moles), acetic acid (37 g, 0.62 moles), and water (4.4 g, 0.24 moles) are also charged to the 1-liter flask. The batch is then heated to 75 °C under agitation and nitrogen and maintained at temperature for 3 hours. The imide/epoxydodecane quat is then then cooled before it is transferred into a storage vessel.
- The 550 Mn PIBSA/DMAPA quaternizable compound of Example 9 (470 g, 0.61 moles) is added to a 1-liter flask flange flask equipped with a water condenser, a thermocouple, an overhead stirrer and a nitrogen inlet.
- 2-ethylhexanol (136 g, 1.05 moles), 1,2-epoxyhexadecane (148.99 g, 0.62 moles), acetic acid (37.0 g, 0.62 moles), and water (4.4 g, 0.24 moles) are added to the flask and heated to 75 °C while agitating under nitrogen. The batch is held at 75 °C for 3 hours. The imide/epoxyhexadecane quat is then then cooled before it is transferred into a storage vessel.
- The 550 Mn PIBSA/DMAPA quaternizable compound of Example 9 (471 g, 0.62 moles) is added to a 1-liter flask flange flask equipped with a water condenser, a thermocouple, an overhead stirrer and a nitrogen inlet.
- 2-ethylhexanol (138.0 g, 1.06 moles), glycidol (48.2 g, 0.65 moles), acetic acid (37.2 g, 0.62 moles), and water (4.1 g, 0.22 moles) are also charged to the 1-liter flask. Agitation is then initiated (200 rpm) and a slow nitrogen purge is introduced. The batch is then heated to 75 °C and maintained at temperature for 4 hours. The imide/glycidol quat is then then cooled before it is transferred into a storage vessel.
- A 2300 number average molecular weight (Mn) polyisobutylene (PIB) (2000 g., 0.87 moles) high-vinylidene PIB having greater than 20 % vinylidene groups is charged to a 5-liter flange flask equipped with overhead stirrer, air condenser, nitrogen inlet, thermocouple and Eurotherm™ temperature controller (reaction kit).
- Maleic anhydride (165.5 g, 1.70 moles) is then charged to the reaction vessel. The batch is agitated under a nitrogen blanket and slowly heated to 203 °C over a 90 minute period. The batch is maintained at 203°C for 24 hours.
- The reaction kit is then reconfigured for vacuum stripping. The batch is stripped at 203 °C and 0.05 bar to remove unreacted maleic anhydride. Diluent oil, such as mineral oil (1116.8 g), is added to the batch. The batch comprising the formed PIBSA is then cooled back to 50 °C and decanted into a storage vessel.
- A 2300 Mn PIBSA (3000 g, 1.52 moles, as prepared in Example 14) is charged to a 5-liter flask equipped with a water condenser and Dean Stark trap, a thermocouple, a dropping funnel, an overhead stirrer and Nitrogen inlet and heated to 90 °C.
- DMAPA (154.72 g, 1.517 moles) is added to the flask via the dropping funnel over 40 minutes. An exotherm increasing 6 °C was observed. Once all the DMAPA is added, the reaction is slowly heated to 150 °C and maintained at that temperature for 3 hours, and approximately 25g water is collected in Dean Stark trap. The resulting product is a 2300 Mn PIBSA/DMAPA quaternizable compound.
- The 2300 Mn PIBSA/DMAPA quaternizable compound of Example 15 (550.8 g, 0.29 moles) is added to a 1-liter flask flange flask equipped with a water condenser, a thermocouple, an overhead stirrer and a nitrogen inlet.
- 2-ethylhexanol (145.4 g, 1.12 moles), 1,2-epoxydodecane (51.55 g, 0.28 moles), acetic acid (17.4 g, 0.29 moles), and water (5.6 g, 0.31 moles) are also charged to the 1-liter flask. The batch is then heated to 75 °C under agitation and nitrogen and maintained at temperature for 3 hours and 15 minutes. The imide/epoxydodecane quat is then then cooled before it is transferred into a storage vessel.
- The 2300 Mn PIBSA/DMAPA quaternizable compound of Example 15 (550.8 g, 0.29 moles) is added to a 1-liter flask flange flask equipped with a water condenser, a thermocouple, an overhead stirrer and a nitrogen inlet.
- 2-ethylhexanol (145.4 g, 1.12 moles), 1,2-epoxyhexadecane (67.4 g, 0.28 moles), acetic acid (17.4 g, 0.29 moles), and water (5.6 g, 0.31 moles) are added to the flask and heated to 75 °C while agitating under nitrogen. The batch is held at 75 °C for 3 hours and 15 minutes. The imide/epoxyhexadecane quat is then then cooled before it is transferred into a storage vessel.
- The 2300 Mn PIBSA/DMAPA quaternizable compound of Example 15 (550 g, 0.25 moles) is added to a 1-liter flask flange flask equipped with a water condenser, a thermocouple, an overhead stirrer and a nitrogen inlet.
- 2-ethylhexanol (175.6 g, 1.35 moles), glycidol (18.85 g, 0.25 moles), acetic acid (15.28 g, 0.25 moles), and water (5 g, 0.27 moles) are also charged to the 1-liter flask. Agitation is then initiated (200 rpm) and a slow nitrogen purge is introduced. The batch is then heated to 90 °C and maintained at temperature for 3 hours. The imide/glycidol quat is then then cooled before it is transferred into a storage vessel.
- The demulsification test is performed to measure the epoxide quats' ability to demulsify fuel and water mixtures as compared to the 1000 Mn imide/propylene oxide quat of Comparative Example 3. The demulsification test is run according to the procedure in ASTM D1094-07 ("Standard Test Method for Water Reaction of Aviation Fuels"). The quaternary ammonium salt is added to room temperature fuel at 60 ppm actives by weight based on a total weight of the fuel. A commercially available demulsifier (Tolad 9327 available from Baker Hughes) is added to the fuel at 18 ppm by weight based on a total weight of the fuel.
- The fuel (80 mL) is then added to a clean, 100 mL-graduated cylinder. A phosphate buffer solution with a pH of 7.0 (20 mL) is then added to the graduated cylinder and the cylinder is stoppered. The cylinder is shaken for 2 minutes at 2 to 3 strokes per second and placed on a flat surface. The volume of the aqueous layer, or water recovery, is then measured at 3, 5, 7, 10, 15, 20, and 30-minute intervals.
- The results of the demulsification tests are shown in Table 1 below and in
FIG. 1 .Table 1 3 5 7 10 15 30 Time Example 4 2.5 8.5 14 18 19 20 Water recovered (mL) Example 6 11 18 19 20 20 20 Water recovered (mL) Example 17 2.5 8.5 14 18 19 20 Water recovered (mL) Example 5 10.5 18 19 20 20 20 Water recovered (mL) Example 7 0 0 0 2 15 20 Water recovered (mL) Example 18 7 8 13 15 17 19 Water recovered (mL) Comparative Example 3 2 2 4 4 5 10 Water recovered (mL) - Deposit tests are performed using Peugeot S.A.'s
XUD 9 engine in accordance with the procedure in CEC F-23-01. For the first deposit test, air flow is measured though clean injector nozzles of theXUD 9 engine using an air-flow rig. The engine is then run on a reference fuel (RF79) and cycled through various loads and speeds for a period of 10 hours to simulate driving and allow any formed deposits to accumulate. The air-flow through the nozzles are measured again using the air-flow rig. The percentage of air flow loss (or flow remaining) is then calculated. - A set of deposit tests are performed using the same steps above, except 10 ppm actives of the epoxide quat are added to the reference fuel. A second set of deposit tests are performed using the same steps above, except 30 ppm actives are added to the reference fuel.
- The results of the deposit tests for the first and second sets are shown in Table 2 and
FIG. 2 and in Table 3 andFIG. 3 respectively.Table 2 - 10 ppm Actives Flow Loss (%) Flow Remaining (%) Example 4 65.5 34.5 Example 5 72.1 27.9 Example 7 70.5 29.5 Reference Fuel 80 20 Table 3 - 30 ppm Actives Flow Loss (%) Flow Remaining (%) Example 4 25.9 74.1 Example 6 13.0 87.0 Example 7 8.6 91.4 Example 18 19.0 81.0 Reference Fuel 80 20 - Except in the Examples, or where otherwise explicitly indicated, all numerical quantities in this description specifying amounts of materials, reaction conditions, molecular weights, number of carbon atoms, and the like, are to be understood as modified by the word "about." Unless otherwise indicated, each chemical or composition referred to herein should be interpreted as being a commercial grade material which may contain the isomers, by-products, derivatives, and other such materials which are normally understood to be present in the commercial grade. However, the amount of each chemical component is presented exclusive of any solvent or diluent oil, which may be customarily present in the commercial material, unless otherwise indicated. It is to be understood that the upper and lower amount, range, and ratio limits set forth herein may be independently combined. Similarly, the ranges and amounts for each element of the invention can be used together with ranges or amounts for any of the other elements.
- As used herein, the transitional term "comprising," which is synonymous with "including," "containing," or "characterized by," is inclusive or open-ended and does not exclude additional, un-recited elements or method steps. However, in each recitation of "comprising" herein, it is intended that the term also encompass, as alternative embodiments, the phrases "consisting essentially of' and "consisting of," where "consisting of' excludes any element or step not specified and "consisting essentially of' permits the inclusion of additional un-recited elements or steps that do not materially affect the essential or basic and novel characteristics of the composition or method under consideration.
- While certain representative embodiments and details have been shown for the purpose of illustrating the subject invention, it will be apparent to those skilled in this art that various changes and modifications can be made therein without departing from the scope of the subject invention. In this regard, the scope of the invention is to be limited only by the following claims. Various preferred features and embodiments of the present invention will now be described with reference to the following numbered paragraphs (paras).
- 1. A composition comprising an epoxide quaternary ammonium salt ("epoxide quat"), wherein the epoxide quat comprises the reaction product of:
- a) a quaternizable compound that is the reaction product of:
- (i) a hydrocarbyl-substituted acylating agent, wherein the hydrocarbyl-substituent has a number average molecular weight ranging from 100 to 5000, and
- (ii) a nitrogen containing compound having an oxygen or nitrogen atom capable of reacting with said hydrocarbyl-substituted acylating agent, and further having at least one quaternizable amino group; and
- b) a quaternizing agent comprising alcohol functionalized epoxides; C4 to C14 epoxides; and mixtures thereof.
- a) a quaternizable compound that is the reaction product of:
- 2. A composition comprising an epoxide quaternary ammonium salt ("epoxide quat"), wherein the epoxide quat comprises the reaction product of:
- a) a quaternizable compound that is the reaction product of:
- (i) a hydrocarbyl-substituted acylating agent, wherein the hydrocarbyl-substituent has a number average molecular weight ranging from 100 to 5000, and
- (ii) a nitrogen containing compound having an oxygen or nitrogen atom capable of reacting with said hydrocarbyl-substituted acylating agent, and further having at least one quaternizable amino group; and
- b) a quaternizing agent comprising alcohol functionalized epoxides; C4 to C20 epoxides; and mixtures thereof.
- a) a quaternizable compound that is the reaction product of:
- 3. The composition of any of previous para, wherein the quaternizable amino group is a primary, secondary or tertiary amino group.
- 4. The composition of any previous para, wherein the hydrocarbyl-substituted acylating agent comprises at least one polyisobutenyl succinic anhydride or polyisobutenyl succinic acid.
- 5. The composition of any previous para, wherein the reaction in a) is carried out at a temperature of greater than 80, 90, or 100 °C.
- 6. The composition of any previous para, wherein the reaction in a) is carried out at a temperature of less than 80°C.
- 7. The composition of any previous para, wherein the quaternizing agent comprises a C4 to C14 epoxide.
- 8. The composition of any previous para, wherein the quaternizing agent comprises an alcohol functionalized epoxide.
- 9. The composition of para 8, wherein the quaternizing agent is glycidol.
- 10. The composition of
para 7, wherein the quaternizing agent is 1,2-epoxyhexadecane. - 11. The composition of
para 7, wherein the quaternizing agent comprises butylene oxide. - 12. The composition of any of any previous para wherein the quaternizing agent is employed in the presence of a protic solvent.
- 13. The composition of para 12, wherein the protic solvent comprises 2-ethylhexanol, water, and mixtures thereof.
- 14. The composition of any previous para wherein the quaternizing agent is employed in the presence of an acid.
- 15. The composition of para 14, wherein the acid is present in the structure of the acylating agent.
- 16. The composition of any previous para, further comprising at least one other additive.
- 17. The composition of para 16, wherein the at least one other additive comprises a detergent, a dispersant, a demulsifier, a lubricity agent, a cold flow improver, an antioxidant, or a mixture thereof.
- 18. The composition of para 16, wherein the at least one other additive comprises at least one hydrocarbyl-substituted succinic acid.
- 19. The composition of para 16, wherein the at least one other additive comprises at least one hydrocarbyl-substituted quaternary ammonium salt.
- 20. The composition of para 16, wherein the at least one other additive comprises at least one detergent/dispersant that is an amphiphilic substance which possess at least one hydrophobic hydrocarbon radical with a number average molecular weight of 100 to 10000 and at least one polar moiety selected from (i) Mono- or polyamino groups having up to 6 nitrogen atoms, at least one nitrogen atom having basic properties; (ii) Hydroxyl groups in combination with mono or polyamino groups, at least one nitrogen atoms having basic properties; (v) Polyoxy-C2 to C4 alkylene moieties terminated by hydroxyl groups, mono- or polyamino groups, at least one nitrogen atom having basic properties, or by carbamate groups; (vii) Moieties derived from succinic anhydride and having hydroxyl and/or amino and/or amido and/or imido groups; and/or (viii) Moieties obtained by Mannich reaction of substituted phenols with aldehydes and mono-or polyamines.
- 21. The composition of either of
paras 18 through 20, wherein the hydrocarbyl-substituent is a polyisobutylene having a molecular weight ranging from 100 to 5000. - 22. The composition of para 16, wherein the at least one other additive comprises at least one Mannich compound.
- 23. The composition of any previous para, further comprising a fuel that is liquid at room temperature.
- 24. The composition of para 23, wherein the fuel is gasoline or diesel.
- 25. The composition of any of paras 1 to 24 further comprising an oil of lubricating viscosity.
- 26. A method of operating an internal combustion engine comprising:
- a) supplying to said engine:
- (i) a fuel, wherein said fuel
- 1. is liquid at room temperature; and
- (ii) has a composition comprising an epoxide quat according to any paras 1 to 24 therein; and
- (i) a fuel, wherein said fuel
- b) operating said engine.
- a) supplying to said engine:
- 27. A method of operating an internal combustion engine comprising:
- a) supplying to a crankcase of said engine:
- (i) an oil of lubricating viscosity; having a composition comprising an epoxide quat according to any paras 1 to 24 therein, and
- b) operating said engine.
- a) supplying to a crankcase of said engine:
- 28. The method of para 27 wherein the oil of lubricating viscosity has total sulfated ash of less than 1 wt% and/or a phosphorus content of less than 0.11 wt%.
- 29. A method of improving water shedding performance of a fuel composition comprising employing a composition comprising an epoxide quat according to any of paras 1 to 24.
- 30. A method of reducing and/or preventing injector deposits comprising:
- a) supplying to a fuel injector of said engine:
- (i) a fuel, wherein said fuel
- 1. is liquid at room temperature; and
- 2. has a composition comprising an epoxide quat according to any paras 1 to 24 therein; and
- (i) a fuel, wherein said fuel
- b) operating said engine.
- a) supplying to a fuel injector of said engine:
Claims (12)
- A composition comprising:a. an oil of lubricating viscosity;b. an epoxide quaternary ammonium salt ("epoxide quat"), wherein the epoxide quat comprises the reaction product of:i. a quaternizable compound that is the reaction product of:1. a hydrocarbyl-substituted acylating agent, wherein the hydrocarbyl-substituent has a number average molecular weight ranging from 100 to 5000, and comprises at least one polyisobutenyl succinic anhydride or polyisobutenyl succinic acid; and2. a nitrogen containing compound having an oxygen or nitrogen atom capable of reacting with said hydrocarbyl-substituted acylating agent, and further having at least one quaternizable amino group; andii. a quaternizing agent comprising alcohol functionalized epoxides, preferably wherein the quaternizing agent is glycidol.
- The composition of claim 1, wherein the hydrocarbyl-substituent of said acylating agent has a number average molecular weight of 550.
- The composition of any of previous claim, wherein the quaternizable amino group is a primary, secondary or tertiary amino group.
- The composition of any of any previous claim wherein the quaternizing agent is employed in the presence of a protic solvent.
- The composition of claim 4, wherein the protic solvent comprises 2-ethylhexanol, water, and mixtures thereof.
- The composition of any previous claim wherein the quaternizing agent is employed in the presence of an acid.
- The composition of claim 6, wherein the acid is present in the structure of the acylating agent.
- The composition of any previous claim, further comprising at least one other additive, preferably wherein the at least one other additive comprises a detergent, a dispersant, a demulsifier, a lubricity agent, a cold flow improver, an antioxidant, or a mixture thereof.
- The composition of claim 8, wherein the at least one other additive comprises at least one hydrocarbyl-substituted quaternary ammonium salt.
- The composition of claim 8, wherein the at least one other additive comprises at least one detergent/dispersant that is an amphiphilic substance which possess at least one hydrophobic hydrocarbon radical with a number average molecular weight of 100 to 10000 and at least one polar moiety selected from (i) Mono- or polyamino groups having up to 6 nitrogen atoms, at least one nitrogen atom having basic properties; (ii) Hydroxyl groups in combination with mono or polyamino groups, at least one nitrogen atoms having basic properties; (v) Polyoxy-C2 to C4 alkylene moieties terminated by hydroxyl groups, mono- or polyamino groups, at least one nitrogen atom having basic properties, or by carbamate groups; (vii) Moieties derived from succinic anhydride and having hydroxyl and/or amino and/or amido and/or imido groups; and/or (viii) Moieties obtained by Mannich reaction of substituted phenols with aldehydes and mono-or polyamines.
- The composition of any previous claim, wherein the composition is free or substantially free of a zinc dialkyldithiophosphate.
- A method of operating an internal combustion engine comprising:a. supplying to a crankcase of said engine:i. an oil of lubricating viscosity; having a composition comprising an epoxide quat according to any claims 1 to 11 therein, andii. operating said engine.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201462005114P | 2014-05-30 | 2014-05-30 | |
EP15730327.2A EP3149130B1 (en) | 2014-05-30 | 2015-05-29 | Use of epoxide quaternized quaternary ammonium salts |
PCT/US2015/033210 WO2015184276A1 (en) | 2014-05-30 | 2015-05-29 | Epoxide quaternized quaternary ammonium salts |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15730327.2A Division EP3149130B1 (en) | 2014-05-30 | 2015-05-29 | Use of epoxide quaternized quaternary ammonium salts |
Publications (3)
Publication Number | Publication Date |
---|---|
EP3536766A1 EP3536766A1 (en) | 2019-09-11 |
EP3536766A8 EP3536766A8 (en) | 2020-02-26 |
EP3536766B1 true EP3536766B1 (en) | 2020-12-09 |
Family
ID=53434462
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15730327.2A Active EP3149130B1 (en) | 2014-05-30 | 2015-05-29 | Use of epoxide quaternized quaternary ammonium salts |
EP19166380.6A Active EP3536766B1 (en) | 2014-05-30 | 2015-05-29 | Epoxide quaternized quaternary ammonium salts |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15730327.2A Active EP3149130B1 (en) | 2014-05-30 | 2015-05-29 | Use of epoxide quaternized quaternary ammonium salts |
Country Status (7)
Country | Link |
---|---|
US (1) | US20170107441A1 (en) |
EP (2) | EP3149130B1 (en) |
CN (1) | CN106661473A (en) |
BR (1) | BR112016028080B1 (en) |
DK (1) | DK3149130T3 (en) |
SG (1) | SG11201609882UA (en) |
WO (1) | WO2015184276A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3374440B1 (en) * | 2015-11-09 | 2023-06-21 | The Lubrizol Corporation | Coating composition comprising quaternary amine additives and its use |
GB201705095D0 (en) | 2017-03-30 | 2017-05-17 | Innospec Ltd | Composition and methods and uses relating thereto |
US11008526B2 (en) * | 2019-07-23 | 2021-05-18 | Croda Inc. | Demulsifier for quaternary ammonium salt containing fuels |
CN117264670B (en) * | 2023-10-24 | 2024-05-10 | 湖南浩润科技有限公司 | Diesel antiwear agent and preparation method thereof |
Family Cites Families (155)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2501731A (en) | 1946-10-14 | 1950-03-28 | Union Oil Co | Modified lubricating oil |
US2616911A (en) | 1951-03-16 | 1952-11-04 | Lubrizol Corp | Organic alkaline earth metal complexes formed by use of sulfonic promoters |
US2616925A (en) | 1951-03-16 | 1952-11-04 | Lubrizol Corp | Organic alkaline earth metal complexes formed by use of thiophosphoric promoters |
US2616905A (en) | 1952-03-13 | 1952-11-04 | Lubrizol Corp | Organic alkaline earth metal complexes and methods of making same |
US2777874A (en) | 1952-11-03 | 1957-01-15 | Lubrizol Corp | Metal complexes and methods of making same |
US3036003A (en) | 1957-08-07 | 1962-05-22 | Sinclair Research Inc | Lubricating oil composition |
DE1248643B (en) | 1959-03-30 | 1967-08-31 | The Lubrizol Corporation, Cleveland, Ohio (V. St. A.) | Process for the preparation of oil-soluble aylated amines |
US3444170A (en) | 1959-03-30 | 1969-05-13 | Lubrizol Corp | Process which comprises reacting a carboxylic intermediate with an amine |
NL124842C (en) | 1959-08-24 | |||
US3488284A (en) | 1959-12-10 | 1970-01-06 | Lubrizol Corp | Organic metal compositions and methods of preparing same |
US3215707A (en) | 1960-06-07 | 1965-11-02 | Lubrizol Corp | Lubricant |
US3231587A (en) | 1960-06-07 | 1966-01-25 | Lubrizol Corp | Process for the preparation of substituted succinic acid compounds |
US3236770A (en) | 1960-09-28 | 1966-02-22 | Sinclair Research Inc | Transaxle lubricant |
US3087436A (en) | 1960-12-02 | 1963-04-30 | Ross Gear And Tool Company Inc | Hydraulic pump |
US3282835A (en) | 1963-02-12 | 1966-11-01 | Lubrizol Corp | Carbonated bright stock sulfonates and lubricants containing them |
US3381022A (en) | 1963-04-23 | 1968-04-30 | Lubrizol Corp | Polymerized olefin substituted succinic acid esters |
DE1271877B (en) | 1963-04-23 | 1968-07-04 | Lubrizol Corp | Lubricating oil |
USRE26433E (en) | 1963-12-11 | 1968-08-06 | Amide and imide derivatives of metal salts of substituted succinic acids | |
US3320162A (en) | 1964-05-22 | 1967-05-16 | Phillips Petroleum Co | Increasing the base number of calcium petroleum sulfonate |
GB1052380A (en) | 1964-09-08 | |||
US3316177A (en) | 1964-12-07 | 1967-04-25 | Lubrizol Corp | Functional fluid containing a sludge inhibiting detergent comprising the polyamine salt of the reaction product of maleic anhydride and an oxidized interpolymer of propylene and ethylene |
US3414347A (en) | 1965-03-30 | 1968-12-03 | Edroy Products Company Inc | Binocular with pivoted lens plate |
DE1595234A1 (en) | 1965-04-27 | 1970-03-05 | Roehm & Haas Gmbh | Process for the preparation of oligomeric or polymeric amines |
US3340281A (en) | 1965-06-14 | 1967-09-05 | Standard Oil Co | Method for producing lubricating oil additives |
US3318809A (en) | 1965-07-13 | 1967-05-09 | Bray Oil Co | Counter current carbonation process |
US3539633A (en) | 1965-10-22 | 1970-11-10 | Standard Oil Co | Di-hydroxybenzyl polyamines |
US3272746A (en) | 1965-11-22 | 1966-09-13 | Lubrizol Corp | Lubricating composition containing an acylated nitrogen compound |
US3365396A (en) | 1965-12-28 | 1968-01-23 | Texaco Inc | Overbased calcium sulfonate |
US3384585A (en) | 1966-08-29 | 1968-05-21 | Phillips Petroleum Co | Overbasing lube oil additives |
NL147472C (en) | 1966-09-23 | 1980-05-16 | Du Pont | PROCESS FOR PREPARING A LIQUID OIL WITH IMPROVED VISCOSITY INDEX AND IMPROVED STABILITY AT HIGH SLIDES. |
US3433744A (en) | 1966-11-03 | 1969-03-18 | Lubrizol Corp | Reaction product of phosphosulfurized hydrocarbon and alkylene polycarboxylic acid or acid derivatives and lubricating oil containing the same |
US3461172A (en) | 1966-11-22 | 1969-08-12 | Consolidation Coal Co | Hydrogenation of ortho-phenolic mannich bases |
US3448047A (en) | 1967-04-05 | 1969-06-03 | Standard Oil Co | Lube oil dispersants |
US3501405A (en) | 1967-08-11 | 1970-03-17 | Rohm & Haas | Lubricating and fuel compositions comprising copolymers of n-substituted formamide-containing unsaturated esters |
US3401118A (en) | 1967-09-15 | 1968-09-10 | Chevron Res | Preparation of mixed alkenyl succinimides |
US3586629A (en) | 1968-09-16 | 1971-06-22 | Mobil Oil Corp | Metal salts as lubricant additives |
US3591598A (en) | 1968-11-08 | 1971-07-06 | Standard Oil Co | Certain condensation products derived from mannich bases |
US3634515A (en) | 1968-11-08 | 1972-01-11 | Standard Oil Co | Alkylene polyamide formaldehyde |
US3726882A (en) | 1968-11-08 | 1973-04-10 | Standard Oil Co | Ashless oil additives |
US3725480A (en) | 1968-11-08 | 1973-04-03 | Standard Oil Co | Ashless oil additives |
US3629109A (en) | 1968-12-19 | 1971-12-21 | Lubrizol Corp | Basic magnesium salts processes and lubricants and fuels containing the same |
US3576743A (en) | 1969-04-11 | 1971-04-27 | Lubrizol Corp | Lubricant and fuel additives and process for making the additives |
US3632511A (en) | 1969-11-10 | 1972-01-04 | Lubrizol Corp | Acylated nitrogen-containing compositions processes for their preparationand lubricants and fuels containing the same |
US3778371A (en) | 1972-05-19 | 1973-12-11 | Ethyl Corp | Lubricant and fuel compositions |
US3912764A (en) | 1972-09-29 | 1975-10-14 | Cooper Edwin Inc | Preparation of alkenyl succinic anhydrides |
GB1446435A (en) | 1972-11-02 | 1976-08-18 | Cooper Ltd Ethyl | Lubricant additives |
GB1457328A (en) | 1973-06-25 | 1976-12-01 | Exxon Research Engineering Co | Aminated polymers useful as additives for fuels and lubricants |
US4156061A (en) | 1974-03-06 | 1979-05-22 | Exxon Research & Engineering Co. | Epoxidized terpolymer or derivatives thereof, and oil and fuel compositions containing same |
US3980569A (en) | 1974-03-15 | 1976-09-14 | The Lubrizol Corporation | Dispersants and process for their preparation |
US4026809A (en) | 1974-12-19 | 1977-05-31 | Texaco Inc. | Lubricating compositions containing methacrylate ester graft copolymers as useful viscosity index improvers |
US4110349A (en) | 1976-06-11 | 1978-08-29 | The Lubrizol Corporation | Two-step method for the alkenylation of maleic anhydride and related compounds |
US4627928A (en) | 1976-08-26 | 1986-12-09 | The Lubrizol Corporation | Basic non-carbonated magnesium compositions and fuel, lubricant and additive concentrate compositions containing same |
US4137185A (en) | 1977-07-28 | 1979-01-30 | Exxon Research & Engineering Co. | Stabilized imide graft of ethylene copolymeric additives for lubricants |
US4171959A (en) | 1977-12-14 | 1979-10-23 | Texaco Inc. | Fuel composition containing quaternary ammonium salts of succinimides |
US4320019A (en) | 1978-04-17 | 1982-03-16 | The Lubrizol Corporation | Multi-purpose additive compositions and concentrates containing same |
US4357250A (en) | 1978-04-17 | 1982-11-02 | The Lubrizol Corporation | Nitrogen-containing terpolymer-based compositions useful as multi-purpose lubricant additives |
US4234435A (en) | 1979-02-23 | 1980-11-18 | The Lubrizol Corporation | Novel carboxylic acid acylating agents, derivatives thereof, concentrate and lubricant compositions containing the same, and processes for their preparation |
US4253980A (en) | 1979-06-28 | 1981-03-03 | Texaco Inc. | Quaternary ammonium salt of ester-lactone and hydrocarbon oil containing same |
US4326973A (en) | 1981-01-13 | 1982-04-27 | Texaco Inc. | Quaternary ammonium succinimide salt composition and lubricating oil containing same |
US4338206A (en) | 1981-03-23 | 1982-07-06 | Texaco Inc. | Quaternary ammonium succinimide salt composition and lubricating oil containing same |
US4464182A (en) | 1981-03-31 | 1984-08-07 | Exxon Research & Engineering Co. | Glycol ester flow improver additive for distillate fuels |
FR2512458A1 (en) | 1981-09-10 | 1983-03-11 | Lubrizol Corp | COMPOSITIONS, CONCENTRATES, LUBRICATING COMPOSITIONS AND METHODS FOR INCREASING FUEL SAVINGS IN INTERNAL COMBUSTION ENGINES |
JPS58138791A (en) | 1982-02-10 | 1983-08-17 | Nippon Oil & Fats Co Ltd | Fluidity improver for fuel oil |
US4937299A (en) | 1983-06-06 | 1990-06-26 | Exxon Research & Engineering Company | Process and catalyst for producing reactor blend polyolefins |
US5324800A (en) | 1983-06-06 | 1994-06-28 | Exxon Chemical Patents Inc. | Process and catalyst for polyolefin density and molecular weight control |
US4617137A (en) * | 1984-11-21 | 1986-10-14 | Chevron Research Company | Glycidol modified succinimides |
US4594378A (en) | 1985-03-25 | 1986-06-10 | The Lubrizol Corporation | Polymeric compositions, oil compositions containing said polymeric compositions, transmission fluids and hydraulic fluids |
US4668834B1 (en) | 1985-10-16 | 1996-05-07 | Uniroyal Chem Co Inc | Low molecular weight ethylene-alphaolefin copolymer intermediates |
US4658078A (en) | 1986-08-15 | 1987-04-14 | Shell Oil Company | Vinylidene olefin process |
DE3782243T2 (en) | 1986-08-26 | 1993-03-04 | Mitsui Petrochemical Ind | CATALYST FOR POLYMERIZING ALPHA OLEFIN AND METHOD. |
IN184481B (en) | 1986-09-24 | 2000-08-26 | Exxon Chemical Patents Inc | |
US4863623A (en) | 1988-03-24 | 1989-09-05 | Texaco Inc. | Novel VI improver, dispersant, and anti-oxidant additive and lubricating oil composition containing same |
GB8818711D0 (en) | 1988-08-05 | 1988-09-07 | Shell Int Research | Lubricating oil dispersants |
US5137978A (en) | 1990-05-17 | 1992-08-11 | Ethyl Petroleum Additives, Inc. | Substituted acylating agents and their production |
US5071919A (en) | 1990-05-17 | 1991-12-10 | Ethyl Petroleum Additives, Inc. | Substituted acylating agents and their production |
US5137980A (en) | 1990-05-17 | 1992-08-11 | Ethyl Petroleum Additives, Inc. | Ashless dispersants formed from substituted acylating agents and their production and use |
US5254138A (en) | 1991-05-03 | 1993-10-19 | Uop | Fuel composition containing a quaternary ammonium salt |
BE1006694A5 (en) | 1991-06-22 | 1994-11-22 | Basf Ag | PREPARATION PROCESS EXTREMELY REACTIVE polyisobutenes. |
US6117825A (en) | 1992-05-07 | 2000-09-12 | Ethyl Corporation | Polyisobutylene succinimide and ethylene-propylene succinimide synergistic additives for lubricating oils compositions |
US5342505A (en) * | 1993-02-25 | 1994-08-30 | Betz Laboratories, Inc. | Use of polyalkenyl succinimides-glycidol reaction products as antifoulants in hydrocarbon process media |
US5336278A (en) | 1993-05-13 | 1994-08-09 | The Lubrizol Corporation | Fuel composition containing an aromatic amide detergent |
US5458793A (en) | 1993-05-13 | 1995-10-17 | The Lubrizol Corporation | Compositions useful as additives for lubricants and liquid fuels |
US6020500A (en) | 1995-08-22 | 2000-02-01 | The Lubrizol Corporation | Hydroxy-substituted monolactones useful as intermediates for preparing lubricating oil and fuel additives |
US5777142A (en) | 1995-08-22 | 1998-07-07 | The Lubrizol Corporation | Unsaturated hydroxycarboxylic compounds useful as intermediates for preparing lubricant and fuel additives |
SG64399A1 (en) | 1995-08-22 | 1999-04-27 | Lubrizol Corp | Process for preparing compositions useful as intermediates for preparing lubricanting oil and fuel additives |
US5620949A (en) | 1995-12-13 | 1997-04-15 | The Lubrizol Corporation | Condensation products of alkylphenols and aldehydes, and derivatives thereof |
US5827805A (en) | 1996-02-29 | 1998-10-27 | The Lubrizol Corporation | Condensates of alkyl phenols and glyoxal and products derived therefrom |
US5885944A (en) | 1996-05-21 | 1999-03-23 | The Lubrizol Corporation | Low chlorine polyalkylene substituted carboxylic acylating agent compositions and compounds derived therefrom |
GB9611316D0 (en) | 1996-05-31 | 1996-08-07 | Exxon Chemical Patents Inc | Overbased metal-containing detergents |
GB9611318D0 (en) | 1996-05-31 | 1996-08-07 | Exxon Chemical Patents Inc | Overbased metal-containing detergents |
GB9611428D0 (en) | 1996-05-31 | 1996-08-07 | Exxon Chemical Patents Inc | Overbased metal-containing detergents |
GB9611424D0 (en) | 1996-05-31 | 1996-08-07 | Exxon Chemical Patents Inc | Overbased metal-containing detergents |
FR2751982B1 (en) | 1996-07-31 | 2000-03-03 | Elf Antar France | ONCTUOSITY ADDITIVE FOR ENGINE FUEL AND FUEL COMPOSITION |
US5840920A (en) | 1996-08-08 | 1998-11-24 | The Lubrizol Corporation | Process for preparing compositions useful as intermediates for preparing lubricating oil and fuel additives |
US5779742A (en) | 1996-08-08 | 1998-07-14 | The Lubrizol Corporation | Acylated nitrogen compounds useful as additives for lubricating oil and fuel compositions |
US5688751A (en) | 1996-08-14 | 1997-11-18 | The Lubrizol Corporation | Salicylate salts as lubricant additives for two-cycle engines |
US6077909A (en) | 1997-02-13 | 2000-06-20 | The Lubrizol Corporation | Low chlorine content compositions for use in lubricants and fuels |
US5912213A (en) | 1997-06-05 | 1999-06-15 | The Lubrizol Corporation | Substituted carboxylic acylating agent compositions and derivatives thereof for use in lubricants and fuels |
US5851966A (en) | 1997-06-05 | 1998-12-22 | The Lubrizol Corporation | Reaction products of substituted carboxylic acylating agents and carboxylic reactants for use in fuels and lubricants |
US6165235A (en) | 1997-08-26 | 2000-12-26 | The Lubrizol Corporation | Low chlorine content compositions for use in lubricants and fuels |
US6001781A (en) | 1997-09-10 | 1999-12-14 | The Lubrizol Corporation | Process for preparing condensation product of hydroxy-substituted aromatic compounds and glyoxylic reactants |
US6107258A (en) | 1997-10-15 | 2000-08-22 | Ethyl Corporation | Functionalized olefin copolymer additives |
JP2001508084A (en) | 1997-11-13 | 2001-06-19 | ルブリゾール アディビス ホールディングズ(ユーケイ)リミテッド | Salicyclic calixarenes and their use as lubricant additives |
US6107257A (en) | 1997-12-09 | 2000-08-22 | Ethyl Corporation | Highly grafted, multi-functional olefin copolymer VI modifiers |
GB9827366D0 (en) | 1998-12-11 | 1999-02-03 | Exxon Chemical Patents Inc | Macromolecular materials |
US6562913B1 (en) | 1999-09-16 | 2003-05-13 | Texas Petrochemicals Lp | Process for producing high vinylidene polyisobutylene |
US7037999B2 (en) | 2001-03-28 | 2006-05-02 | Texas Petrochemicals Lp | Mid-range vinylidene content polyisobutylene polymer product and process for producing the same |
AU2001248679A1 (en) | 2000-03-31 | 2001-10-08 | Texaco Development Corporation | Fuel additive composition for improving delivery of friction modifier |
US6559105B2 (en) | 2000-04-03 | 2003-05-06 | The Lubrizol Corporation | Lubricant compositions containing ester-substituted hindered phenol antioxidants |
EP1442105B1 (en) | 2001-11-05 | 2005-04-06 | The Lubrizol Corporation | Lubricating composition with improved fuel economy |
US7238650B2 (en) | 2002-06-27 | 2007-07-03 | The Lubrizol Corporation | Low-chlorine, polyolefin-substituted, with amine reacted, alpha-beta unsaturated carboxylic compounds |
DE10247795A1 (en) | 2002-10-14 | 2004-04-22 | Basf Ag | Use of an additive mixture containing homopolymer of a hydrocarbylvinyl ether for improving the action of a cold flow improver for fuel oil compositions and for decreasing the Cold Filter Plugging Point with avoidance of aspiration |
CA2535107A1 (en) | 2003-08-01 | 2005-02-10 | The Lubrizol Corporation | Mixed dispersants for lubricants |
DE10356595A1 (en) | 2003-12-04 | 2005-06-30 | Basf Ag | Fuel oil compositions with improved cold flow properties |
US7696136B2 (en) | 2004-03-11 | 2010-04-13 | Crompton Corporation | Lubricant compositions containing hydroxy carboxylic acid and hydroxy polycarboxylic acid esters |
US7615519B2 (en) | 2004-07-19 | 2009-11-10 | Afton Chemical Corporation | Additives and lubricant formulations for improved antiwear properties |
JP5070049B2 (en) | 2004-07-30 | 2012-11-07 | ザ ルブリゾル コーポレイション | Dispersant viscosity modifier containing aromatic amine |
US7651987B2 (en) | 2004-10-12 | 2010-01-26 | The Lubrizol Corporation | Tartaric acid derivatives as fuel economy improvers and antiwear agents in crankcase oils and preparation thereof |
US7902130B2 (en) | 2005-02-18 | 2011-03-08 | The Lubrizol Corporation | Multifunctional dispersants |
CN101151353A (en) | 2005-03-28 | 2008-03-26 | 卢布里佐尔公司 | Titanium compounds and complexes as additives in lubricants |
ES2694856T3 (en) | 2005-06-16 | 2018-12-27 | The Lubrizol Corporation | Composition of diesel fuel comprising quaternary ammonium salt detergents |
US7906470B2 (en) | 2006-09-01 | 2011-03-15 | The Lubrizol Corporation | Quaternary ammonium salt of a Mannich compound |
US20080113890A1 (en) | 2006-11-09 | 2008-05-15 | The Lubrizol Corporation | Quaternary Ammonium Salt of a Polyalkene-Substituted Amine Compound |
US20080119378A1 (en) | 2006-11-21 | 2008-05-22 | Chevron Oronite Company Llc | Functional fluids comprising alkyl toluene sulfonates |
EP2152838B1 (en) | 2007-05-24 | 2012-10-17 | The Lubrizol Corporation | Lubricating composition containing ashfree antiwear agent based on tartaric acid derivative and a molybdenum compound |
US20120065112A1 (en) * | 2008-03-31 | 2012-03-15 | Exxonmobil Research And Engineering Company | Lubricant composition with improved varnish deposit resistance |
US8529643B2 (en) | 2008-05-13 | 2013-09-10 | Afton Chemical Corporation | Fuel additives for treating internal deposits of fuel injectors |
EP2664632A1 (en) | 2008-07-31 | 2013-11-20 | The Lubrizol Corporation | Novel copolymers and lubricating compositions thereof |
US20110219674A1 (en) | 2008-10-10 | 2011-09-15 | The Lubrizol Corporation | Additives to Reduce Metal Pick-Up in Fuels |
NO2430131T3 (en) * | 2009-05-15 | 2018-02-03 | ||
IN2012DN01627A (en) | 2009-08-18 | 2015-06-05 | Lubrizol Corp | |
GB201001920D0 (en) | 2010-02-05 | 2010-03-24 | Innospec Ltd | Fuel compostions |
GB201003973D0 (en) | 2010-03-10 | 2010-04-21 | Innospec Ltd | Fuel compositions |
US8790426B2 (en) | 2010-04-27 | 2014-07-29 | Basf Se | Quaternized terpolymer |
GB201007756D0 (en) | 2010-05-10 | 2010-06-23 | Innospec Ltd | Composition, method and use |
US8911516B2 (en) | 2010-06-25 | 2014-12-16 | Basf Se | Quaternized copolymer |
US20120010112A1 (en) | 2010-07-06 | 2012-01-12 | Basf Se | Acid-free quaternized nitrogen compounds and use thereof as additives in fuels and lubricants |
CA2804322C (en) * | 2010-07-06 | 2020-02-11 | Basf Se | Acid-free quaternised nitrogen compounds and use thereof as additives in fuels and lubricants |
US9006158B2 (en) | 2010-12-09 | 2015-04-14 | Basf Se | Polytetrahydrobenzoxazines and bistetrahydrobenzoxazines and use thereof as a fuel additive or lubricant additive |
US20130133243A1 (en) | 2011-06-28 | 2013-05-30 | Basf Se | Quaternized nitrogen compounds and use thereof as additives in fuels and lubricants |
US9044677B2 (en) * | 2011-07-11 | 2015-06-02 | Roblox Corporation | System for optimizing processing capacity for a group of gaming appliances engaged in play of an online game |
GB201113390D0 (en) | 2011-08-03 | 2011-09-21 | Innospec Ltd | Fuel compositions |
GB201113388D0 (en) | 2011-08-03 | 2011-09-21 | Innospec Ltd | Fuel compositions |
GB201113392D0 (en) | 2011-08-03 | 2011-09-21 | Innospec Ltd | Fuel compositions |
US8852297B2 (en) | 2011-09-22 | 2014-10-07 | Afton Chemical Corporation | Fuel additives for treating internal deposits of fuel injectors |
US20130225463A1 (en) | 2011-11-04 | 2013-08-29 | Markus Hansch | Quaternized polyether amines and their use as additive for fuels and lubricants |
US9574149B2 (en) | 2011-11-11 | 2017-02-21 | Afton Chemical Corporation | Fuel additive for improved performance of direct fuel injected engines |
CA2789907A1 (en) | 2011-11-11 | 2013-05-11 | Afton Chemical Corporation | Fuel additive for improved performance of direct fuel injected engines |
US8690970B2 (en) * | 2012-02-24 | 2014-04-08 | Afton Chemical Corporation | Fuel additive for improved performance in fuel injected engines |
US9039791B2 (en) * | 2012-05-25 | 2015-05-26 | Basf Se | Use of a reaction product of carboxylic acids with aliphatic polyamines for improving or boosting the separation of water from fuel oils |
US8894726B2 (en) | 2012-06-13 | 2014-11-25 | Afton Chemical Corporation | Fuel additive for improved performance in fuel injected engines |
WO2014007379A1 (en) * | 2012-07-05 | 2014-01-09 | Jx日鉱日石エネルギー株式会社 | Succinimide compound, lubricating oil additive, and lubricating oil composition |
EP2912148A1 (en) * | 2012-10-23 | 2015-09-02 | The Lubrizol Corporation | Diesel detergent without a low molecular weight penalty |
US8992636B1 (en) * | 2013-10-08 | 2015-03-31 | Afton Chemical Corporation | Alkoxylated quaternary ammonium salts and fuels containing them |
US9464252B2 (en) * | 2013-10-08 | 2016-10-11 | Afton Chemical Corporation | Quaternary ammonium detergent fuel additives |
-
2015
- 2015-05-29 CN CN201580041314.9A patent/CN106661473A/en active Pending
- 2015-05-29 DK DK15730327.2T patent/DK3149130T3/en active
- 2015-05-29 BR BR112016028080-6A patent/BR112016028080B1/en active IP Right Grant
- 2015-05-29 US US15/315,050 patent/US20170107441A1/en not_active Abandoned
- 2015-05-29 WO PCT/US2015/033210 patent/WO2015184276A1/en active Application Filing
- 2015-05-29 SG SG11201609882UA patent/SG11201609882UA/en unknown
- 2015-05-29 EP EP15730327.2A patent/EP3149130B1/en active Active
- 2015-05-29 EP EP19166380.6A patent/EP3536766B1/en active Active
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
EP3536766A1 (en) | 2019-09-11 |
EP3149130B1 (en) | 2019-04-03 |
WO2015184276A1 (en) | 2015-12-03 |
CN106661473A (en) | 2017-05-10 |
US20170107441A1 (en) | 2017-04-20 |
BR112016028080B1 (en) | 2022-06-14 |
DK3149130T3 (en) | 2019-05-20 |
EP3536766A8 (en) | 2020-02-26 |
BR112016028080A2 (en) | 2020-12-15 |
EP3149130A1 (en) | 2017-04-05 |
SG11201609882UA (en) | 2016-12-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11820957B2 (en) | Low molecular weight amide/ester containing quaternary ammonium salts | |
US11781085B2 (en) | Low molecular weight imide containing quaternary ammonium salts | |
US20170107438A1 (en) | High molecular weight imide containing quaternary ammonium salts | |
US20170096611A1 (en) | Branched amine containing quaternary ammonium salts | |
WO2015184254A1 (en) | High molecular weight amide/ester containing quaternary ammonium salts | |
EP3524663A1 (en) | Imidazole containing quaternary ammonium salts | |
US20170101594A1 (en) | Coupled quaternary ammonium salts | |
EP3383978B1 (en) | Ultra-low molecular weight amide/ester containing quaternary ammonium salts having short hydrocarbon tails | |
EP3536766B1 (en) | Epoxide quaternized quaternary ammonium salts |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AC | Divisional application: reference to earlier application |
Ref document number: 3149130 Country of ref document: EP Kind code of ref document: P |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: BUSH, JAMES H. Inventor name: STEVENSON,PAUL R. Inventor name: ADAMS, PAUL E. Inventor name: GREENFIELD, HANNAH Inventor name: MORETON, DAVID J. |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20200311 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C10N 70/00 20060101ALN20200330BHEP Ipc: C10N 20/04 20060101ALN20200330BHEP Ipc: C10M 133/56 20060101ALI20200330BHEP Ipc: C10L 10/18 20060101ALI20200330BHEP Ipc: C10L 10/04 20060101ALI20200330BHEP Ipc: C10M 133/58 20060101AFI20200330BHEP Ipc: C10L 1/188 20060101ALI20200330BHEP Ipc: C10L 1/2383 20060101ALI20200330BHEP Ipc: C10L 1/224 20060101ALI20200330BHEP Ipc: C10L 1/222 20060101ALI20200330BHEP Ipc: C10L 1/232 20060101ALI20200330BHEP Ipc: C10N 40/25 20060101ALN20200330BHEP |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C10L 1/188 20060101ALI20200429BHEP Ipc: C10N 20/04 20060101ALN20200429BHEP Ipc: C10L 1/2383 20060101ALI20200429BHEP Ipc: C10M 133/56 20060101ALI20200429BHEP Ipc: C10N 40/25 20060101ALN20200429BHEP Ipc: C10L 10/04 20060101ALI20200429BHEP Ipc: C10L 1/224 20060101ALI20200429BHEP Ipc: C10N 70/00 20060101ALN20200429BHEP Ipc: C10M 133/58 20060101AFI20200429BHEP Ipc: C10L 1/232 20060101ALI20200429BHEP Ipc: C10L 10/18 20060101ALI20200429BHEP Ipc: C10L 1/222 20060101ALI20200429BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20200605 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
GRAL | Information related to payment of fee for publishing/printing deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR3 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
GRAR | Information related to intention to grant a patent recorded |
Free format text: ORIGINAL CODE: EPIDOSNIGR71 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
INTC | Intention to grant announced (deleted) | ||
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C10M 133/58 20060101AFI20201007BHEP Ipc: C10L 10/18 20060101ALI20201007BHEP Ipc: C10N 30/04 20060101ALN20201007BHEP Ipc: C10N 40/26 20060101ALN20201007BHEP Ipc: C10M 133/56 20060101ALI20201007BHEP Ipc: C10N 40/25 20060101ALN20201007BHEP Ipc: C10L 1/222 20060101ALI20201007BHEP Ipc: C10N 20/04 20060101ALN20201007BHEP Ipc: C10L 1/224 20060101ALI20201007BHEP Ipc: C10L 1/2383 20060101ALI20201007BHEP Ipc: C10L 1/232 20060101ALI20201007BHEP Ipc: C10L 10/04 20060101ALI20201007BHEP Ipc: C10N 70/00 20060101ALN20201007BHEP Ipc: C10L 1/188 20060101ALI20201007BHEP |
|
AC | Divisional application: reference to earlier application |
Ref document number: 3149130 Country of ref document: EP Kind code of ref document: P |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
INTG | Intention to grant announced |
Effective date: 20201102 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1343471 Country of ref document: AT Kind code of ref document: T Effective date: 20201215 Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602015063432 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201209 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201209 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210309 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210310 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1343471 Country of ref document: AT Kind code of ref document: T Effective date: 20201209 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201209 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201209 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210309 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20201209 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201209 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201209 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201209 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201209 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210409 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201209 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201209 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201209 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201209 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201209 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201209 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602015063432 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210409 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201209 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201209 |
|
26N | No opposition filed |
Effective date: 20210910 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201209 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201209 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201209 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210531 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210529 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210531 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201209 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20210531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210529 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210409 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210531 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230516 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201209 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20150529 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201209 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201209 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240527 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240530 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240527 Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201209 |