EP3533108B1 - Radome wall for communication applications - Google Patents
Radome wall for communication applications Download PDFInfo
- Publication number
- EP3533108B1 EP3533108B1 EP17793900.6A EP17793900A EP3533108B1 EP 3533108 B1 EP3533108 B1 EP 3533108B1 EP 17793900 A EP17793900 A EP 17793900A EP 3533108 B1 EP3533108 B1 EP 3533108B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- layers
- radome
- radome wall
- wall
- core
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004891 communication Methods 0.000 title claims description 9
- 239000010410 layer Substances 0.000 claims description 64
- 239000012792 core layer Substances 0.000 claims description 44
- 239000000463 material Substances 0.000 claims description 8
- 239000006261 foam material Substances 0.000 claims description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 4
- 239000003822 epoxy resin Substances 0.000 claims description 4
- 239000006260 foam Substances 0.000 claims description 4
- 229920000647 polyepoxide Polymers 0.000 claims description 4
- 239000004642 Polyimide Substances 0.000 claims description 3
- 239000003365 glass fiber Substances 0.000 claims description 3
- 229920001721 polyimide Polymers 0.000 claims description 3
- 239000007787 solid Substances 0.000 claims description 2
- 239000003989 dielectric material Substances 0.000 claims 1
- 230000005540 biological transmission Effects 0.000 description 17
- 238000004519 manufacturing process Methods 0.000 description 9
- 230000005670 electromagnetic radiation Effects 0.000 description 5
- 238000010276 construction Methods 0.000 description 3
- 230000035699 permeability Effects 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 230000006735 deficit Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/42—Housings not intimately mechanically associated with radiating elements, e.g. radome
- H01Q1/422—Housings not intimately mechanically associated with radiating elements, e.g. radome comprising two or more layers of dielectric material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/27—Adaptation for use in or on movable bodies
- H01Q1/28—Adaptation for use in or on aircraft, missiles, satellites, or balloons
Definitions
- the invention relates to a radome wall for communication in the frequency band from 17 to 31 GHz for use on commercial aircraft, and a radome with a corresponding radome wall.
- radomes Protective covers for antennas known as “radomes” are known for protecting antennas for the emission and/or reception of electromagnetic radiation from external mechanical or chemical influences, such as wind and rain. In addition to the structural strength required to protect the antennas, it is essential for radomes that they have suitable transmission behavior, i.e. are sufficiently permeable to electromagnetic radiation in the frequency range relevant to the antenna(s) to be protected - for communication applications such as data transmission, e.g 17 to 31 GHz - are.
- the wall of the radome In particular for applications in which the shape of a radome cannot be chosen freely, it is also necessary for the wall of the radome to have good transmission behavior in a sufficiently large range for the angle of incidence, based on an orthogonal impingement of the radiation on the wall .
- An example of such an application is the protection of antennas for satellite communication on commercial aircraft, where the radomes have to be adapted to the shape of the aircraft hull for aerodynamic reasons, which means that the electromagnetic radiation does not usually occur orthogonally on the radomes or penetrate them.
- radomes consisting of three or five-layer sandwich structures comprising GRP and foam layers are known, which, on the one hand, have sufficient transmission behavior and, on the other hand, offer sufficient structural strength at low weight.
- suitable layer arrangements can be calculated for desired frequency ranges, in particular with regard to the thickness of the individual layers, with the dielectric constants of the individual layer materials also having to be taken into account.
- U.S. 9,123,998 B1 and U.S. 5,849,234A each show a radome, among other things for communication antennas of aircraft, the wall of which has a symmetrical multi-layer structure comprising cover and core layers. From the document U.S. 3,002,190A a radome wall with a multilayer structure made up of cover layers and core layers is known.
- U.S. 2011/050370 A1 discloses a wall structure for protecting radar systems from external influences, which comprises a layered structure made up of a plurality of sandwich structures, each with a core and two cover layers, it being possible for a spacer layer to be provided between sandwich structures.
- a disadvantage of the prior art is that the quality of the transmission behavior when the angle of incidence deviates from orthogonal impingement of the electromagnetic radiation on the radome wall depends greatly on compliance with the previously calculated thickness of the individual layers. As a result, the manufacturing tolerances with regard to the thickness of the individual layers are very small, which results in complex and cost-intensive manufacture.
- the object of the present invention is to create a radome wall in which the disadvantages of the prior art no longer occur, or at least only to a reduced extent.
- the radome wall is characterized in that it is formed in a sandwich construction with n ⁇ 4 cover layers and—since the outer sides of the wall are each to be formed by a cover layer— n ⁇ 1 core layers.
- the cover layers are force-absorbing solid layers that are supported and spaced apart by core layers that are only dimensionally stable. Compared to the cover layers, the core layers absorb only a small part of the forces acting on the component, but under load they only show a hardly significant and negligible deformation under operating load (often well below 1%). As a rule, the specific weight of the top layer is higher than the specific weight of the core layers.
- Corresponding sandwich designs are known in principle in the prior art and are widespread—not only in relation to radomes. In particular, it is known that a high degree of rigidity can be achieved with a low weight at the same time with the aid of a sandwich construction.
- the radome wall formed in this way to have good transmission behavior.
- the lowest possible attenuation or high electromagnetic permeability should be achieved over the largest possible range of angles of incidence. While the same can basically also be achieved with three- or five-layer sandwich structures according to the prior art, it is required However, this is a high-precision production.
- very small manufacturing tolerances must be maintained in order to reliably avoid deterioration in the transmission properties.
- the invention is based on the knowledge that with a multi-layer structure of the radome wall with at least four cover layers—that is, an at least seven-layer sandwich structure—a significantly more tolerant design leads to smaller fluctuations in thickness, without relevant impairments of the relevant transmission properties occurring.
- the manufacturing costs of a radome wall according to the invention can be reduced compared to a three- or five-layer design from the prior art, since the manufacturing tolerances can be chosen to be significantly more generous.
- a high overall strength of the radome wall can be achieved, which can at least correspond to that of a three- or five-layer design. Weight savings compared to the prior art are also generally possible.
- optimal thicknesses for the individual layers can be determined for the desired frequency range by simple parameter studies known to those skilled in the art, with which good electromagnetic transmission properties can be achieved in the desired frequency range permit.
- the good transmission properties can be achieved over a large angular range from 0° to approx. 65°, in each case with respect to the surface normal of the outside of the radome wall at the point at which the electromagnetic radiation impinges.
- This is particularly advantageous for radomes of antennas satellite communications on board commercial aircraft, which regularly operate in the 17 to 31 GHz frequency range. It is thus possible to design the radome as part of the outer shell of the aircraft in an aerodynamically favorable manner, without there being a significant loss of bandwidth.
- Fuselage or tail unit-mounted antennas for broadband satellite data transmission can be implemented in this way.
- the radome wall is surface-symmetrical to the center plane of the radome wall.
- the symmetrical structure ensures that the antenna, which is protected by the radome wall, has the same good transmission properties for both sending and receiving signals.
- the two core layers closest to the outer sides of the radome wall are thicker than the core layer(s) closest to the center plane of the radome wall.
- Appropriate configuration of the layers ensures good transmittance, in particular over a wide range of angles of incidence (for example from 0° to 65°).
- the tolerance for the thickness of the top layers is ⁇ 20% .
- Tolerance for core layer thickness is ⁇ 0.2mm. Appropriate tolerances can be achieved in the manufacture of a radome wall according to the invention without the need for complex and cost-intensive manufacturing processes.
- top layers and three core layers are provided, the thickness of the material Row by mm (top layer), 2.00 mm (core layer), 0.21 mm (top layer), 1.00 mm (core layer), 0.21 mm (top layer), 2.00 mm (core layer), 0.42 mm (top layer). These material thicknesses can of course be provided with the tolerances mentioned above.
- cover layers and four core layers are provided, the material thicknesses of which are preferably 0.63 mm (cover layer), 2.50 mm (core layer), 0.84 mm (cover layer), 2.00 mm (core layer), 1.06 mm (top layer), 2.00 mm (core layer), 0.84 mm (top layer), 2.50 mm (core layer), 0.63 mm (top layer).
- the tolerances mentioned above can also be provided here.
- Both preferred embodiments show very good transmission properties for an angle of incidence range of 0° to 65°, with the frequency range for the good transmission properties being able to be defined decisively via the dielectric constants of the material used for the cover and core layers.
- the person skilled in the art can easily determine the dielectric constant required to achieve the desired frequency range. In this case, it is preferred if the dielectric constant of the cover layers is greater than the dielectric constant of the core layers. For a frequency range from 17 GHz to 31° GHz, the dielectric constant of the cover layers is between 3.0 and 3.6.
- the dielectric constant of the core layers is between 1.0 and 1.2.
- the cover layers are preferably each formed by one or more layers of prepreg material, preferably quartz glass fiber/epoxy resin prepreg.
- it can be a quartz fiber fabric pre-impregnated with resin, the resin preferably being duroplastic, more preferably an epoxy resin.
- the use of polyester resin is also possible.
- the thickness of an individual prepreg is preferably 0.21 mm. With an appropriate prepreg, the thicknesses of the individual cover layers of the preferred embodiments can be easily achieved.
- the core layers are preferably each formed from foam material, preferably from a polyimide rigid foam. This enables a particularly low specific weight of the radome wall. The required dimensional stability and the dielectric permeability can be ensured by a suitable choice of the foam material. A homogeneous surface can preferably be produced with the foam material, which enables a large-area connection to the overlying cover layer.
- the radome according to the invention differs from radomes known from the prior art only in the design of the radome wall. To explain the radome according to the invention, reference is therefore made to the above statements.
- FIG 1 a first exemplary embodiment of a radome wall 1 according to the invention for communication in the frequency band from 17 to 31 GHz for use on commercial aircraft is shown in a sectional view.
- the radome wall 1 comprises four cover layers 11, 12, 12', 11' and three core layers 21, 22, 21'.
- the cover layers 11 and 11' each form an outside of the radome wall 1, while the core layers 21, 22, 21' are each arranged between two cover layers 11, 12, 12', 11'.
- the cover layers 11, 12, 12', 11' are formed from quartz glass fiber/epoxy resin prepreg, the thickness of an individual prepreg layer being 0.21 mm and the thicknesses of the cover layers 11, 12, 12', 11' each being a multiple thereof are.
- the core layers 21, 22, 21' are made of foam material, namely a polyimide rigid foam.
- the radome wall 1 has a surface-symmetrical structure with respect to the center plane 2, with the two core layers 21, 21' closest to the outside of the radome wall 1 being thicker than the core layer 22 located in the center plane 2 of the radome wall 1.
- the thickness of the individual cover 11, 12, 12 ', 11' and core layers 21, 22, 21 ⁇ , as well as their respective dielectric constants result from the following table: layer thickness dielectric constant 11 0.42mm 3.3 21 2.00mm 1.2 12 0.21mm 3.3 22 1.00mm 1.2 12' 0.21mm 3.3 21' 2.00mm 1.2 11' 0.42mm 3.3
- a tolerance of ⁇ 20% is provided for the mentioned thicknesses of the cover layers 11, 12, 12', 11'.
- the tolerance for the thicknesses of the core layers 21, 22, 21' is ⁇ 0.2 mm.
- the radome wall 1 shown has very good transmission properties for a frequency range from 17 to 31 GHz at any angle of incidence ⁇ between 0° and 65°.
- figure 2 shows a schematic sectional view of a second embodiment of a radome wall 1 not according to the invention, which is also designed for communication and data transmission in the frequency band from 17 to 31 GHz for use on commercial aircraft.
- the radome wall 1 comprises five cover layers 11, 12, 13, 12', 11' and subsequently four core layers 21, 22, 22', 21'.
- the cover layers 11 and 11' again each form an outside of the radome wall 1.
- the arrangement of the remaining layers 12, 13, 12', 21, 22, 22', 21' results from FIG figure 2 .
- the cover 11, 12, 13, 12', 11' and core layers 21, 22, 22', 21' are analogous to the embodiment according to FIG figure 1 built up.
- the radome wall 1 according to figure 2 is surface-symmetrical to the central plane 2, the two core layers 21, 21' closest to the outside of the radome wall 1 being thicker than the core layers 22, 22' lying adjacent to the central plane 2 of the radome wall 1.
- layer thickness dielectric constant 11 0.63mm 3.3 21 2.50mm 1.2 12 0.84mm 3.3 22 2.00mm 1.2 13 1.06mm 3.3 22' 2.00mm 1.2 12' 0.84mm 3.3 21' 2.50mm 1.2 11' 0.63mm 3.3
- a tolerance of ⁇ 20% is provided for the mentioned thicknesses of the cover layers 11, 12, 12', 11'.
- the tolerance for the thicknesses of the core layers 21, 22, 22', 21' and for the thickness of the cover layer 13 is ⁇ 0.2 mm.
- the radome wall 1 shown has very good transmission properties for a frequency range from 17 to 31 GHz at any angle of incidence ⁇ between 0° and 65°.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Astronomy & Astrophysics (AREA)
- Aviation & Aerospace Engineering (AREA)
- General Physics & Mathematics (AREA)
- Remote Sensing (AREA)
- Details Of Aerials (AREA)
Description
Die Erfindung betrifft eine Radomwandung für Kommunikation im Frequenzband von 17 bis 31 GHz zur Nutzung an Verkehrsflugzeugen, sowie ein Radom mit entsprechender Radomwandung.The invention relates to a radome wall for communication in the frequency band from 17 to 31 GHz for use on commercial aircraft, and a radome with a corresponding radome wall.
Zum Schutz von Antennen zur Abstrahlung und/oder zum Empfang von elektromagnetischer Strahlung vor äußeren mechanischen oder chemischen Einflüssen, wie bspw. Wind und Regen, sind als "Radome" bezeichnete Schutzhüllen für Antennen bekannt. Neben der zum Schutz der Antennen erforderlichen strukturellen Festigkeit ist für Radome wesentlich, dass sie ein geeignetes Transmissionsverhalten aufweisen, also im ausreichenden Maße durchlässig für die elektromagnetische Strahlung in dem für die zu schützende Antenne(n) relevanten Frequenzbereich - für Kommunikationsanwendungen wie Datenübertragung bspw. von 17 bis 31 GHz - sind.Protective covers for antennas known as “radomes” are known for protecting antennas for the emission and/or reception of electromagnetic radiation from external mechanical or chemical influences, such as wind and rain. In addition to the structural strength required to protect the antennas, it is essential for radomes that they have suitable transmission behavior, i.e. are sufficiently permeable to electromagnetic radiation in the frequency range relevant to the antenna(s) to be protected - for communication applications such as data transmission, e.g 17 to 31 GHz - are.
Insbesondere für Anwendungen, in denen die Formgebung eines Radoms nicht beliebig frei gewählt werden kann, ist es weiterhin erforderlich, dass die Wandung des Radoms auch in einem ausreichend großen Bereich für den Einfallswinkel ausgehend von einem orthogonalen Auftreffen der Strahlung auf die Wandung ein gutes Transmissionsverhalten aufweisen. Ein Beispiel für eine solche Anwendung ist der Schutz von Antennen zur Satellitenkommunikation an Verkehrsflugzeugen, bei denen die Radome aus aerodynamischen Gründen an die Formgebung der Flugzeughülle angepasst sein müssen, womit jedoch die elektromagnetische Strahlung regelmäßig nicht orthogonal auf die Radome auftritt bzw. diese durchdringt.In particular for applications in which the shape of a radome cannot be chosen freely, it is also necessary for the wall of the radome to have good transmission behavior in a sufficiently large range for the angle of incidence, based on an orthogonal impingement of the radiation on the wall . An example of such an application is the protection of antennas for satellite communication on commercial aircraft, where the radomes have to be adapted to the shape of the aircraft hull for aerodynamic reasons, which means that the electromagnetic radiation does not usually occur orthogonally on the radomes or penetrate them.
Im Stand der Technik, wie er bspw. in
Die Dokumente
Nachteilig an dem Stand der Technik ist jedoch, dass die Güte des Transmissionsverhalten bei von einem orthogonalen Auftreffen der elektromagnetischen Strahlung auf die Radomwandung abweichenden Einfallswinkel stark von der Einhaltung der zuvor berechneten Dicke der einzelnen Lagen abhängt. In der Folge sind die Fertigungstoleranzen hinsichtlich Dicke der einzelnen Lagen sehr gering, was eine aufwendige und kostenintensive Herstellung zur Folge hat.A disadvantage of the prior art, however, is that the quality of the transmission behavior when the angle of incidence deviates from orthogonal impingement of the electromagnetic radiation on the radome wall depends greatly on compliance with the previously calculated thickness of the individual layers. As a result, the manufacturing tolerances with regard to the thickness of the individual layers are very small, which results in complex and cost-intensive manufacture.
Aufgabe der vorliegenden Erfindung ist es, eine Radomwandung zu schaffen, bei der die Nachteile aus dem Stand der Technik nicht mehr oder zumindest nur noch im verminderten Umfang auftreten.The object of the present invention is to create a radome wall in which the disadvantages of the prior art no longer occur, or at least only to a reduced extent.
Gelöst wird diese Aufgabe durch eine Radomwandung gemäß dem Anspruch 1 sowie durch ein Radom gemäß dem nebengeordneten Anspruch 5.This object is achieved by a radome wall according to claim 1 and by a radome according to the independent claim 5.
Vorteilhafte Weiterbildungen sind Gegenstand der abhängigen Ansprüche.Advantageous developments are the subject of the dependent claims.
Die Radomwandung zeichnet sich dadurch aus, dass sie in Sandwichbauweise mit n ≥ 4 Deckschichten und - da die Außenseiten der Wandung jeweils durch eine Deckschicht gebildet werden sollen - n - 1 Kernschichten gebildet wird. Bei den Deckschichten handelt es sich um kraftaufnehmende feste Schichten, die von lediglich formstabilen Kernschichten gestützt und auf Abstand gehalten werden. Die Kernschichten nehmen dabei im Vergleich zu den Deckschichten nur einen geringen Teil der auf das Bauteil einwirkenden Kräfte auf, weisen unter Belastung aber dennoch nur eine kaum nennenswerte und zu vernachlässigende Deformation unter Betriebslast (häufig weit unter 1%) auf. Im Regelfall ist das spezifische Gewicht der Deckschicht höher als das spezifische Gewicht der Kernschichten. Im Stand der Technik sind entsprechende Sandwichbauweisen grundsätzlich bekannt und - nicht nur in Bezug auf Radome - weit verbreitet. Insbesondere ist bekannt, dass sich mithilfe einer Sandwichbauweise eine hohe Steifigkeit bei gleichzeitig geringem Gewicht erreichen lässt.The radome wall is characterized in that it is formed in a sandwich construction with n ≥ 4 cover layers and—since the outer sides of the wall are each to be formed by a cover layer— n −1 core layers. The cover layers are force-absorbing solid layers that are supported and spaced apart by core layers that are only dimensionally stable. Compared to the cover layers, the core layers absorb only a small part of the forces acting on the component, but under load they only show a hardly significant and negligible deformation under operating load (often well below 1%). As a rule, the specific weight of the top layer is higher than the specific weight of the core layers. Corresponding sandwich designs are known in principle in the prior art and are widespread—not only in relation to radomes. In particular, it is known that a high degree of rigidity can be achieved with a low weight at the same time with the aid of a sandwich construction.
Für die Verwendung der Sandwichbauweise für Radome ist weiterhin erforderlich, dass die so gebildete Radomwandung ein gutes Transmissionsverhalten aufweist. Insbesondere soll in dem für die durch das Radom geschützte Antenne relevanten Frequenzbereich eine möglichst geringe Dämpfung bzw. eine hohe elektromagnetische Durchlässigkeit über einen möglichst großen Einfallswinkelbereich erreicht werden. Während entsprechendes grundsätzlich auch bei drei- oder fünf-lagigen Sandwichstrukturen gemäß dem Stand der Technik erreichbar ist, erfordert dies jedoch eine hochgenaue Fertigung. Insbesondere in Bezug auf die Dicke der einzelnen Schichten müssen im Stand der Technik sehr geringe Fertigungstoleranzen zur sicheren Vermeidung von Verschlechterungen der Transmissionseigenschaften eingehalten werden.For the use of the sandwich construction for radomes, it is also necessary for the radome wall formed in this way to have good transmission behavior. In particular, in the frequency range relevant to the antenna protected by the radome, the lowest possible attenuation or high electromagnetic permeability should be achieved over the largest possible range of angles of incidence. While the same can basically also be achieved with three- or five-layer sandwich structures according to the prior art, it is required However, this is a high-precision production. In the prior art, in particular with regard to the thickness of the individual layers, very small manufacturing tolerances must be maintained in order to reliably avoid deterioration in the transmission properties.
Der Erfindung liegt die Erkenntnis zugrunde, dass bei einem Mehrschichtaufbau der Radomwandung mit wenigstens vier Deckschichten - also einer wenigstens sieben-lagigen Sandwichstruktur - ein deutlich toleranteres Design gegenüber kleineren Dickenschwankungen führt, ohne dass es zu relevanten Verschlechterungen der relevanten Transmissionseigenschaften kommt. Trotz der größeren Anzahl der Schichten und dem damit einhergehenden größeren Herstellungsaufwand, lassen sich dennoch die Herstellungskosten einer erfindungsgemäßen Radomwandung gegenüber einem drei- oder fünf-lagigen Design aus dem Stand der Technik reduzieren, da die Fertigungstoleranzen deutlich großzügiger gewählt werden können. Gleichzeitig lässt sich eine hohe Gesamtfestigkeit der Radomwandung erreichen, die wenigstens derjenigen eines drei- oder fünf-lagigen Design entsprechen kann. Auch sind in der Regel Gewichtseinsparungen gegenüber dem Stand der Technik möglich.The invention is based on the knowledge that with a multi-layer structure of the radome wall with at least four cover layers—that is, an at least seven-layer sandwich structure—a significantly more tolerant design leads to smaller fluctuations in thickness, without relevant impairments of the relevant transmission properties occurring. Despite the larger number of layers and the associated greater manufacturing effort, the manufacturing costs of a radome wall according to the invention can be reduced compared to a three- or five-layer design from the prior art, since the manufacturing tolerances can be chosen to be significantly more generous. At the same time, a high overall strength of the radome wall can be achieved, which can at least correspond to that of a three- or five-layer design. Weight savings compared to the prior art are also generally possible.
Durch geeignete Wahl der Dicken der einzelnen Deck- und Kernschichten lassen sich - unter Berücksichtigung der jeweiligen Dielektrizitätskonstanten - für den gewünschten Frequenzbereich durch einfache, dem Fachmann grundsätzlich bekannte Parameterstudien optimale Dicken für die einzelnen Schichten bestimmen, mit denen sich gute elektromagnetische Transmissionseigenschaften im gewünschten Frequenzbereich erreichen lassen. Dabei lassen sich die guten Transmissionseigenschaften über einen großen Winkelbereich von 0° bis zu ca. 65°, jeweils bezüglich der Flächennormalen der Außenseite der Radomwandung an der Stelle, an der die elektromagnetische Strahlung auftrifft. Dies ist insbesondere Vorteilhaft für Radome von Antennen für die Satellitenkommunikation an Bord von Verkehrsflugzeugen, die regelmäßig im Frequenzbereich von 17 bis 31 GHz arbeiten. Es ist so möglich, das Radom aerodynamisch günstig als Teil der Außenhülle des Flugzeugs auszugestalten, ohne dass es zu einem maßgeblichen Bandbreitenverlust käme. So lassen sich rumpf- oder leitwerksmontierte Antennen für die Breitband-Satellitendatenübertragung realisieren.By suitably selecting the thicknesses of the individual cover and core layers, taking into account the respective dielectric constants, optimal thicknesses for the individual layers can be determined for the desired frequency range by simple parameter studies known to those skilled in the art, with which good electromagnetic transmission properties can be achieved in the desired frequency range permit. The good transmission properties can be achieved over a large angular range from 0° to approx. 65°, in each case with respect to the surface normal of the outside of the radome wall at the point at which the electromagnetic radiation impinges. This is particularly advantageous for radomes of antennas satellite communications on board commercial aircraft, which regularly operate in the 17 to 31 GHz frequency range. It is thus possible to design the radome as part of the outer shell of the aircraft in an aerodynamically favorable manner, without there being a significant loss of bandwidth. Fuselage or tail unit-mounted antennas for broadband satellite data transmission can be implemented in this way.
Es ist bevorzugt, wenn die Radomwandung flächensymmetrisch zur Mittelebene der Radomwandung ist. Aufgrund des symmetrischen Aufbaus ist sichergestellt, dass sowohl für das Senden als auch das Empfangen von Signalen durch die von der Radomwandung geschützte Antenne die gleichen guten Transmissionseigenschaften vorliegen.It is preferred if the radome wall is surface-symmetrical to the center plane of the radome wall. The symmetrical structure ensures that the antenna, which is protected by the radome wall, has the same good transmission properties for both sending and receiving signals.
Erfindungsgemäß ist vorgesehen, dass die beiden der Außenseiten der Radomwandung nächstliegenden Kernschichten dicker sind als die der Mittelebene der Radomwandung nächstliegende Kernschicht (en) . Durch eine entsprechende Ausgestaltung der Schichten wird der gute Transmissionsgrad insbesondere über einen weiten Einfallswinkelbereich (bspw. von 0° bis 65°) sichergestellt.According to the invention, it is provided that the two core layers closest to the outer sides of the radome wall are thicker than the core layer(s) closest to the center plane of the radome wall. Appropriate configuration of the layers ensures good transmittance, in particular over a wide range of angles of incidence (for example from 0° to 65°).
Die Toleranz für die Dicke der Deckschichten beträgt ∓20% . Toleranz für die Dicke der Kernschichten beträgt ±0,2 mm. Entsprechende Toleranzen lassen sich bei der Herstellung einer erfindungsgemäßen Radomwandung erreichen, ohne dass hierfür aufwendige und kostenintensive Fertigungsverfahren erforderlich sind.The tolerance for the thickness of the top layers is ∓20% . Tolerance for core layer thickness is ±0.2mm. Appropriate tolerances can be achieved in the manufacture of a radome wall according to the invention without the need for complex and cost-intensive manufacturing processes.
In der erfindungsgemäßen Ausführungsform sind vier Deckschichten und drei Kernschichten vorgesehen, deren Materialstärken der Reihe nach mm (Deckschicht), 2,00 mm (Kernschicht), 0,21 mm (Deckschicht), 1,00 mm (Kernschicht), 0,21 mm (Deckschicht), 2,00 mm (Kernschicht), 0,42 mm (Deckschicht) betragen. Diese Materialstärken können selbstverständlich mit den vorstehend erwähnten Toleranzen versehen sein.In the embodiment of the invention, four top layers and three core layers are provided, the thickness of the material Row by mm (top layer), 2.00 mm (core layer), 0.21 mm (top layer), 1.00 mm (core layer), 0.21 mm (top layer), 2.00 mm (core layer), 0.42 mm (top layer). These material thicknesses can of course be provided with the tolerances mentioned above.
In einer alternativen bevorzugten Ausführungsform, die lediglich der Veranschaulichung dient, sind fünf Deckschichten und vier Kernschichten vorgesehen, deren Materialstärken der Reihe nach vorzugsweise 0,63 mm (Deckschicht), 2,50 mm (Kernschicht), 0,84 mm (Deckschicht), 2,00 mm (Kernschicht), 1,06 mm (Deckschicht), 2,00 mm (Kernschicht), 0,84 mm (Deckschicht), 2,50 mm (Kernschicht), 0,63 mm (Deckschicht) betragen. Auch hier können die vorstehend genannten Toleranzen vorgesehen sein.In an alternative preferred embodiment, which is only used for illustration, five cover layers and four core layers are provided, the material thicknesses of which are preferably 0.63 mm (cover layer), 2.50 mm (core layer), 0.84 mm (cover layer), 2.00 mm (core layer), 1.06 mm (top layer), 2.00 mm (core layer), 0.84 mm (top layer), 2.50 mm (core layer), 0.63 mm (top layer). The tolerances mentioned above can also be provided here.
Beide bevorzugten Ausführungsformen zeigen sehr gute Transmissionseigenschaften für einen Einfallwinkelbereich 0° bis 65°, wobei der Frequenzbereich für die guten Transmissionseigenschaften maßgeblich über die Dielektrizitätskonstanten des verwendeten Materials für die Deck- und die Kernschicht festgelegt werden kann. Die Bestimmung der erforderlichen Dielektrizitätskonstanten zur Erreichung des gewünschten Frequenzbereiches ist dem Fachmann ohne weiteres möglich. Es ist dabei bevorzugt, wenn die Dielektrizitätskonstante der Deckschichten größer ist als die Dielektrizitätskonstante der Kernschichten. Für einen Frequenzbereich von 17 GHz bis 31°GHz liegt die Dielektrizitätskonstante der Deckschichten zwischen 3,0 und 3,6. Die Dielektrizitätskonstante der Kernschichten liegt zwischen 1,0 und 1,2.Both preferred embodiments show very good transmission properties for an angle of incidence range of 0° to 65°, with the frequency range for the good transmission properties being able to be defined decisively via the dielectric constants of the material used for the cover and core layers. The person skilled in the art can easily determine the dielectric constant required to achieve the desired frequency range. In this case, it is preferred if the dielectric constant of the cover layers is greater than the dielectric constant of the core layers. For a frequency range from 17 GHz to 31° GHz, the dielectric constant of the cover layers is between 3.0 and 3.6. The dielectric constant of the core layers is between 1.0 and 1.2.
Die Deckschichten sind vorzugsweise jeweils durch eine oder mehrere Lagen aus Prepreg-Material, vorzugsweise Quarzglasfaser/Epoxidharz-Prepreg gebildet. Es kann sich insbesondere um mit Harz vorimprägniertes Quarzfasergewebe handeln, wobei das Harz vorzugweise duroplastisch, weiter vorzugsweise ein Epoxidharz ist. Die Verwendung von Polyesterharz ist ebenfalls möglich. Die Dicke eines einzelnen Prepregs beträgt dabei vorzugsweise 0,21 mm. Mit einem entsprechenden Prepreg lassen sich die Dicken der einzelnen Deckschichten der bevorzugten Ausführungsformen ohne weiteres erreichen.The cover layers are preferably each formed by one or more layers of prepreg material, preferably quartz glass fiber/epoxy resin prepreg. In particular, it can be a quartz fiber fabric pre-impregnated with resin, the resin preferably being duroplastic, more preferably an epoxy resin. The use of polyester resin is also possible. The thickness of an individual prepreg is preferably 0.21 mm. With an appropriate prepreg, the thicknesses of the individual cover layers of the preferred embodiments can be easily achieved.
Die Kernschichten sind vorzugsweise jeweils durch Schaummaterial, vorzugsweise aus einem Polyimid-Hartschaumstoff, gebildet. Dadurch wird ein besonders geringes spezifisches Gewicht der Radomwandung möglich. Durch geeignete Wahl des Schaummaterials kann die erforderliche Formstabilität und die dielektrische Durchlässigkeit gewährleistet werden. Bevorzugt lässt sich mit dem Schaummaterial eine homogene Oberfläche herstellen, die eine großflächige Verbindung zur aufliegenden Deckschicht ermöglicht.The core layers are preferably each formed from foam material, preferably from a polyimide rigid foam. This enables a particularly low specific weight of the radome wall. The required dimensional stability and the dielectric permeability can be ensured by a suitable choice of the foam material. A homogeneous surface can preferably be produced with the foam material, which enables a large-area connection to the overlying cover layer.
Das erfindungsgemäße Radom unterscheidet sich von aus dem Stand der Technik bekannten Radomen lediglich in der Ausgestaltung der Radomwandung. Zur Erläuterung des erfindungsgemäßen Radoms wird daher auf die vorstehenden Ausführungen verwiesen.The radome according to the invention differs from radomes known from the prior art only in the design of the radome wall. To explain the radome according to the invention, reference is therefore made to the above statements.
Die Erfindung wird nun anhand vorteilhafter Ausführungsformen unter Bezugnahme auf die beigefügten Zeichnungen beispielhaft beschrieben. Es zeigen:
- Figur 1:
- ein schematischer Schnitt durch ein erstes Ausführungsbeispiel einer erfindungsgemäßen Radomwandung; und
- Figur 2:
- ein schematischer Schnitt durch ein zweites Ausführungsbeispiel einer nicht erfindungsgemäßen Radomwandung.
- Figure 1:
- a schematic section through a first embodiment of a radome wall according to the invention; and
- Figure 2:
- a schematic section through a second embodiment of a radome wall not according to the invention.
In
Die Radomwandung 1 umfasst vier Deckschichten 11, 12, 12', 11' und drei Kernschichten 21, 22, 21'. Die Deckschichten 11 und 11' bilden dabei jeweils eine Außenseite der Radomwandung 1, während die Kernschichten 21, 22, 21' jeweils zwischen zwei Deckschichten 11, 12, 12', 11' angeordnet sind.The radome wall 1 comprises four
Die Deckschichten 11, 12, 12', 11' sind aus Quarzglasfaser/Epoxidharz-Prepreg gebildet, wobei die Dicke einer einzelnen Prepreglage 0,21 mm beträgt und die Dicken der Deckschichten 11, 12, 12', 11' jeweils ausschließlich ein Vielfaches hiervon sind.The cover layers 11, 12, 12', 11' are formed from quartz glass fiber/epoxy resin prepreg, the thickness of an individual prepreg layer being 0.21 mm and the thicknesses of the cover layers 11, 12, 12', 11' each being a multiple thereof are.
Die Kernschichten 21, 22, 21' sind aus Schaummaterial, nämlich aus einem Polyimid-Hartschaumstoff.The core layers 21, 22, 21' are made of foam material, namely a polyimide rigid foam.
Die Radomwandung 1 ist flächensymmetrisch zur Mittelebene 2 aufgebaut, wobei die beiden der Außenseiten der Radomwandung 1 nächstliegenden Kernschichten 21, 21' dicker sind als die in der Mittelebene 2 der Radomwandung 1 liegende Kernschicht 22. Die Dicke der einzelnen Deck- 11, 12, 12', 11' und Kernschichten 21, 22, 21`, sowie deren jeweilige Dielektrizitätskonstanten ergeben sich aus der nachstehenden Tabelle:
Für die genannten Dicken der Deckschichten 11, 12, 12', 11' ist eine Toleranz von ±20% vorgesehen. Für die Dicken der Kernschichten 21, 22, 21' beträgt die Toleranz ±0,2 mm.A tolerance of ±20% is provided for the mentioned thicknesses of the cover layers 11, 12, 12', 11'. The tolerance for the thicknesses of the core layers 21, 22, 21' is ±0.2 mm.
Die dargestellte Radomwandung 1 weist trotz der vergleichsweise großen Toleranzen für einen Frequenzbereich von 17 bis 31 GHz bei einem beliebigen Einfallwinkel α zwischen 0° bis 65°sehr gute Transmissionseigenschaften auf.Despite the comparatively large tolerances, the radome wall 1 shown has very good transmission properties for a frequency range from 17 to 31 GHz at any angle of incidence α between 0° and 65°.
die ebenfalls für Kommunikation bzw. Datenübertragung im Frequenzband von 17 bis 31 GHz zur Nutzung an Verkehrsflugzeugen ausgebildet ist.
which is also designed for communication and data transmission in the frequency band from 17 to 31 GHz for use on commercial aircraft.
Die Radomwandung 1 umfasst fünf Deckschichten 11, 12, 13, 12', 11' und in der Folge vier Kernschichten 21, 22, 22', 21'. Die Deckschichten 11 und 11' bilden dabei wieder jeweils eine Außenseite der Radomwandung 1. Die Anordnung der übrigen Schichten 12, 13, 12', 21, 22, 22', 21' ergibt sich aus
Auch die Radomwandung 1 gemäß
Die Dicke der einzelnen Deck- 11, 12, 13, 12', 11' und Kernschichten 21, 22, 22', 21', sowie die jeweilige Dielektrizitätskonstante ergeben sich aus der nachstehenden Tabelle:
Für die genannten Dicken der Deckschichten 11, 12, 12', 11' ist eine Toleranz von ±20% vorgesehen. Für die Dicken der Kernschichten 21, 22, 22', 21' sowie für die Dicke der Deckschicht 13 beträgt die Toleranz ±0,2 mm.A tolerance of ±20% is provided for the mentioned thicknesses of the cover layers 11, 12, 12', 11'. The tolerance for the thicknesses of the core layers 21, 22, 22', 21' and for the thickness of the
Auch die in
Claims (5)
- Radome wall (1) for communication in the frequency band of from 17 to 31 GHz for use on commercial aircraft, comprising a multilayer structure having an alternating arrangement of force-absorbing solid cover layers (11, 12, 12', 11') and shear-rigid core layers (21, 22, 21'), wherein two cover layers (11, 11') form the outer sides of the radome wall (1) and the radome wall (1) is formed from four cover layers (11, 12, 12', 11') and three core layers (21, 22, 21'), the material thicknesses of which are, in order, 0.42 mm, 2.00 mm, 0.21 mm, 1.00 mm, 0.21 mm, 2.00 mm, 0.42 mm, whereby the two core layers (21, 21') closest to the outer sides of the radome wall (1) are thicker than the core layer (22) closest to the midplane (2) of the radome wall (1), wherein the four cover layers (11, 12, 12', 11') and the three core layers (21, 22, 21') are made of dielectric materials, wherein the dielectric constant of the cover layers (11, 12, 12', 11') lies between 3.0 and 3.6 and the dielectric constant of the core layers (21, 22, 21') lies between 1.0 and 1.2 and the tolerance for the thickness of the cover layers (11, 12, 12', 11') is ±20% and for the thickness of the core layers (21, 22, 21') is ±0.2 mm.
- Radome wall according to Claim 1,
characterized in that
the radome wall (1) is area-symmetrical with respect to the midplane (2) of the radome wall (1). - Radome wall according to either of the preceding claims, characterized in that
the cover layers (11, 12, 12', 11') are respectively formed by one or more sheets of prepreg material, preferably quartz glass fibre/epoxy resin prepreg, wherein the thickness of the prepreg is preferably 0.21 mm. - Radome wall according to one of the preceding claims, characterized in that
the core layers (21, 22, 21') are respectively formed by foam material, preferably from a polyimide hard foam. - Radome for use on commercial aircraft,
characterized in that
the wall of the radome is configured according to one of the preceding claims.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP22153819.2A EP4009440B1 (en) | 2016-10-27 | 2017-10-24 | Radome wall for communication applications |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102016221143.9A DE102016221143B4 (en) | 2016-10-27 | 2016-10-27 | Radome wall for communication applications |
PCT/EP2017/077050 WO2018077823A1 (en) | 2016-10-27 | 2017-10-24 | Radome wall for communication applications |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP22153819.2A Division-Into EP4009440B1 (en) | 2016-10-27 | 2017-10-24 | Radome wall for communication applications |
EP22153819.2A Division EP4009440B1 (en) | 2016-10-27 | 2017-10-24 | Radome wall for communication applications |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3533108A1 EP3533108A1 (en) | 2019-09-04 |
EP3533108B1 true EP3533108B1 (en) | 2022-03-09 |
Family
ID=60245071
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP22153819.2A Active EP4009440B1 (en) | 2016-10-27 | 2017-10-24 | Radome wall for communication applications |
EP17793900.6A Active EP3533108B1 (en) | 2016-10-27 | 2017-10-24 | Radome wall for communication applications |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP22153819.2A Active EP4009440B1 (en) | 2016-10-27 | 2017-10-24 | Radome wall for communication applications |
Country Status (8)
Country | Link |
---|---|
US (1) | US11095025B2 (en) |
EP (2) | EP4009440B1 (en) |
CN (1) | CN109891669B (en) |
BR (1) | BR112019008319A2 (en) |
CA (1) | CA3040797A1 (en) |
DE (1) | DE102016221143B4 (en) |
ES (2) | ES2909836T3 (en) |
WO (1) | WO2018077823A1 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB201914723D0 (en) | 2019-10-11 | 2019-11-27 | Rolls Royce Plc | Cleaning system and a method of cleaning |
US11621484B1 (en) * | 2019-11-21 | 2023-04-04 | General Atomics Aeronautical Systems, Inc. | Broadband radome structure |
US11969335B2 (en) | 2020-04-28 | 2024-04-30 | Cook Medical Technologies Llc | Woven graft having a taper with a re-engaged warp end |
JPWO2022176591A1 (en) * | 2021-02-19 | 2022-08-25 | ||
DE102021107538A1 (en) * | 2021-03-25 | 2022-09-29 | Airbus Defence and Space GmbH | Asymmetrically constructed radome |
IL292212B2 (en) * | 2022-04-11 | 2024-01-01 | Israel Aerospace Ind Ltd | Radome and method of design thereof |
DE102022127708A1 (en) | 2022-10-20 | 2024-04-25 | Lufthansa Technik Aktiengesellschaft | Radome wall for communication applications |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110050370A1 (en) * | 2009-08-31 | 2011-03-03 | Cheng-Ching Lee | High electromagnetic transmission composite structure |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3002190A (en) * | 1955-04-15 | 1961-09-26 | Zenith Plastics Company | Multiple sandwich broad band radome |
US5182155A (en) * | 1991-04-15 | 1993-01-26 | Itt Corporation | Radome structure providing high ballistic protection with low signal loss |
US5707723A (en) | 1996-02-16 | 1998-01-13 | Mcdonnell Douglas Technologies, Inc. | Multilayer radome structure and its fabrication |
US6028565A (en) * | 1996-11-19 | 2000-02-22 | Norton Performance Plastics Corporation | W-band and X-band radome wall |
US7420523B1 (en) * | 2005-09-14 | 2008-09-02 | Radant Technologies, Inc. | B-sandwich radome fabrication |
US7463212B1 (en) * | 2005-09-14 | 2008-12-09 | Radant Technologies, Inc. | Lightweight C-sandwich radome fabrication |
JP4931838B2 (en) * | 2008-02-18 | 2012-05-16 | 三菱電機株式会社 | Radome |
EP2747202A1 (en) | 2012-12-18 | 2014-06-25 | EADS Deutschland GmbH | Radome wall |
US9123998B1 (en) * | 2014-03-04 | 2015-09-01 | The Boeing Company | Lightning protected radome system |
US9537207B2 (en) * | 2014-12-11 | 2017-01-03 | Thales, Inc. | Antenna assembly with a multi-band radome and associated methods |
-
2016
- 2016-10-27 DE DE102016221143.9A patent/DE102016221143B4/en active Active
-
2017
- 2017-10-24 CN CN201780066828.9A patent/CN109891669B/en active Active
- 2017-10-24 EP EP22153819.2A patent/EP4009440B1/en active Active
- 2017-10-24 ES ES17793900T patent/ES2909836T3/en active Active
- 2017-10-24 WO PCT/EP2017/077050 patent/WO2018077823A1/en unknown
- 2017-10-24 CA CA3040797A patent/CA3040797A1/en active Pending
- 2017-10-24 BR BR112019008319A patent/BR112019008319A2/en unknown
- 2017-10-24 EP EP17793900.6A patent/EP3533108B1/en active Active
- 2017-10-24 ES ES22153819T patent/ES2961726T3/en active Active
- 2017-10-24 US US16/344,819 patent/US11095025B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110050370A1 (en) * | 2009-08-31 | 2011-03-03 | Cheng-Ching Lee | High electromagnetic transmission composite structure |
Also Published As
Publication number | Publication date |
---|---|
BR112019008319A2 (en) | 2019-07-16 |
US11095025B2 (en) | 2021-08-17 |
US20200058991A1 (en) | 2020-02-20 |
CN109891669B (en) | 2021-08-27 |
ES2909836T3 (en) | 2022-05-10 |
CN109891669A (en) | 2019-06-14 |
EP4009440B1 (en) | 2023-09-13 |
DE102016221143B4 (en) | 2018-05-09 |
WO2018077823A1 (en) | 2018-05-03 |
DE102016221143A1 (en) | 2018-05-03 |
ES2961726T3 (en) | 2024-03-13 |
EP3533108A1 (en) | 2019-09-04 |
CA3040797A1 (en) | 2018-05-03 |
EP4009440A1 (en) | 2022-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3533108B1 (en) | Radome wall for communication applications | |
DE69617947T2 (en) | PRINTED MULTI-BAND MONOPOLAN ANTENNA | |
EP2053690B1 (en) | Radome with integrated plasma shutter | |
DE60031446T2 (en) | CONFORMITY LOAD TRACK ANTENNA STRUCTURE | |
DE102016101583B4 (en) | Radom | |
DE69630508T2 (en) | PROTECTION FOR ONE OR MORE ELECTROMAGNETIC SENSORS | |
DE3706051A1 (en) | FLAT AERIAL | |
DE2211438B2 (en) | Covering for antennas | |
DE2354754C2 (en) | Radome | |
DE102010006809A1 (en) | Stacked microstrip antenna | |
DE2711313A1 (en) | LIGHT RF ANTENNA | |
EP2747202A1 (en) | Radome wall | |
DE102021100501A1 (en) | Battery pack | |
EP4064454A1 (en) | Asymmetrically constructed radome | |
DE69619153T2 (en) | Composite structure, capable of absorbing and dissipating striking electromagnetic radiation energy, especially for air, sea and land vehicles and for fixed ground facilities | |
EP2485329B1 (en) | Array antenna | |
DE19902511C2 (en) | Linings for directional antennas | |
DE2441540C3 (en) | Self-supporting, low reflection, dielectric cover for microwave antennas | |
DE29816114U1 (en) | Cover for directional antennas | |
DE3421196A1 (en) | Radome material | |
DE102022127708A1 (en) | Radome wall for communication applications | |
DE3812029C2 (en) | Wall for antenna dome and antenna domes made with it | |
EP3358674B1 (en) | Flexible antenna arrangement | |
EP0573971B1 (en) | Antenna | |
DE10215733B4 (en) | Cylindrical antenna cladding for sector antennas of mobile radio |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20190417 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20200807 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20210929 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 1474909 Country of ref document: AT Kind code of ref document: T Effective date: 20220315 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502017012759 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2909836 Country of ref document: ES Kind code of ref document: T3 Effective date: 20220510 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220309 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220309 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220609 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220309 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220309 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220609 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220309 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220610 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220309 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220309 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220309 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220309 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220711 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220309 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220309 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220309 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220709 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220309 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502017012759 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220309 |
|
26N | No opposition filed |
Effective date: 20221212 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220309 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220309 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230516 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20221031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221024 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221024 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20231023 Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1474909 Country of ref document: AT Kind code of ref document: T Effective date: 20221024 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20231025 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20231117 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221024 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20231031 Year of fee payment: 7 Ref country code: FR Payment date: 20231023 Year of fee payment: 7 Ref country code: DE Payment date: 20231018 Year of fee payment: 7 Ref country code: CH Payment date: 20231102 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20171024 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220309 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220309 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220309 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220309 |