EP2485329B1 - Array antenna - Google Patents

Array antenna Download PDF

Info

Publication number
EP2485329B1
EP2485329B1 EP11000921.4A EP11000921A EP2485329B1 EP 2485329 B1 EP2485329 B1 EP 2485329B1 EP 11000921 A EP11000921 A EP 11000921A EP 2485329 B1 EP2485329 B1 EP 2485329B1
Authority
EP
European Patent Office
Prior art keywords
grid
spacers
waim
array antenna
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11000921.4A
Other languages
German (de)
French (fr)
Other versions
EP2485329A1 (en
Inventor
Michael Dr. Sabielny
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hensoldt Sensors GmbH
Original Assignee
Airbus Defence and Space GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Airbus Defence and Space GmbH filed Critical Airbus Defence and Space GmbH
Priority to EP11000921.4A priority Critical patent/EP2485329B1/en
Priority to ES11000921.4T priority patent/ES2583753T3/en
Priority to IN209DE2012 priority patent/IN2012DE00209A/en
Priority to AU2012200517A priority patent/AU2012200517B2/en
Priority to BR102012002423-3A priority patent/BR102012002423B1/en
Priority to US13/365,620 priority patent/US9397408B2/en
Priority to JP2012021836A priority patent/JP2012165382A/en
Publication of EP2485329A1 publication Critical patent/EP2485329A1/en
Application granted granted Critical
Publication of EP2485329B1 publication Critical patent/EP2485329B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/02Details
    • H01Q19/021Means for reducing undesirable effects
    • H01Q19/023Means for reducing undesirable effects for reducing the scattering of mounting structures, e.g. of the struts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49016Antenna or wave energy "plumbing" making

Definitions

  • the invention relates to a group antenna with a WAIM layer for impedance matching for large tilt angles according to the preamble of claim 1.
  • WAIM Wide Angle Impedance Match
  • the WAIM layer in analogy to a replacement line model of the antenna, functions like a parallel-connected capacitance whose relative susceptance (relative to the characteristic impedance) changes with the swivel angle ⁇ .
  • this change is with the factor 1 / cos ( ⁇ )
  • the TM polarization with the factor cos ( ⁇ )
  • the dielectric constant of the WAIM layer is sufficiently high and the thickness the WAIM layer is sufficiently low.
  • the US 3,605,098 A describes a group antenna in which there is a separate WAIM element in front of each radiator element.
  • a WAIM element comprises in each case a WAIM layer parallel to the plane of the radiator elements and spacers on which the WAIM layer is arranged.
  • MCGRATH DT Accelerated periodic hybrid finite element method analysis for integrated array element and radome design, PHASED ARRAY SYSTEMS AND TECHNOLOGY, 2000.
  • the JP 2007013311 A describes an arrangement of a plurality of individual antennas arranged in a fixed grid, whose radiations are each decoupled from one another.
  • the individual antennas are covered by a radome, which has spacers in relation to an antenna base plate in a corresponding grid.
  • the object of the invention is to provide a group antenna with WAIM layer, which avoids the disadvantages occurring in the use of foams as an intermediate layer between radiator elements and WAIM layer disadvantages.
  • spacers are machined in a regular pattern from the material of the WAIM layer. Spacer and WAIM layer are therefore integrally connected to each other (monolithic), wherein the grid of the spacers corresponds to the grid of the radiator elements. and the spacers are disposed in the spaces between the individual radiating elements.
  • the grid may e.g. square, rectangular or hexagonal.
  • the spacers may in particular be of columnar design with a round cross section.
  • the attachment of the WAIM layer to the antenna baseplate advantageously takes place on the spacers by mechanical connection means (e.g., screws), the numbers of which spacers on which a connection means is present depend on the specific requirements. In particular, therefore, a connecting means does not have to be present on each spacer.
  • WAIM layer - adhesive film - foam which comprises different materials, only the material of the WAIM layer, in which the spacers already are integrated.
  • the spacers realize an air- or vacuum-filled separator between the WAIM layer and the antenna elements.
  • the spacers give the WAIM layer the required mechanical stability. It is therefore insensitive to vibration, shock, etc., making it suitable for robust application scenarios.
  • the grid in which the spacers are arranged corresponds to the grid of the radiator elements, the natural periodicity of the array antenna is not disturbed, so that within the frequency range for which the array antenna is designed, no Bragg reflections can occur on the antenna surface. There is no loss in Radar Wegstreuquerites be accepted. If there are no increased requirements for the radar backscatter cross section (RCS), embodiments are alternatively possible in which the grid of the spacers and the grid of the radiator elements do not correspond. However, this changed grid must continue to be based on the grid of the radiator elements.
  • RCS radar backscatter cross section
  • the grid of the spacers is derived from the grid of the radiator elements such that only a corresponding spacer is present for every nth radiator element (and, moreover, no further spacers are present). It is therefore a defined thinning of the original grid of the spacers. In other words: the basic grid structure is retained, but the grid dimension (grid constant) changes by the factor n. N is a natural number greater than 1.
  • the described shape of the WAIM layer can be achieved in particular by mechanical processing techniques, such as milling.
  • the material should have the highest possible dielectric constant and a low loss angle, and its layer thickness should be as low as possible.
  • dielectric materials are commercially available as semi-finished products.
  • a suitable material for the WAIM layer is e.g. the dielectric material (semi-finished product) "C-Stock AK" of the company. Cuming Microwave Corporation, which is available with customized dielectric constant and in different semi-finished sizes. Such materials can be readily processed by mechanical means (e.g., milling).
  • additional stiffening structures in the form of ribs can be formed out of the material of the WAIM layer. So that these have no negative effects on the transmittance of the antenna during electronic panning, these structures must also follow the periodicity in the arrangement of the antenna elements.
  • the ribs are formed so that they each connect two adjacent spacers.
  • the WAIM layer does not necessarily have to be flat. It may also have a one-dimensional or two-dimensionally curved surface, for use in structurally-conforming curved array antennas.
  • the WAIM layer can be expanded to a multi-layer WAIM block by connecting to further dielectric layers.
  • Fig. 1 shows an example of the inventive WAIM layer W.
  • the layer W itself is shown transparent (lying in the plane of the paper). Exalted protruding from this layer W can be seen in this embodiment post-shaped (with a circular cross-section) spacers A and each connecting a spacer A reinforcing ribs R recognize. Spacers A and reinforcing ribs R were machined out of a block of material.
  • Fig. 2 shows cross-sectional representations of a group antenna according to the invention with WAIM layer W arranged in front of it.
  • the terms "before” and “behind” with respect to the antenna are used in the sense that “before” means the side of the antenna into which the radiation takes place.
  • the attachment of the WAIM layer W with the metallic antenna base plate P of the array antenna is carried out by means of a plurality of screws S (FIG. Fig. 2b . c ), which are driven in the area of the spacer A. Screws made of a plastic material are preferably used in order not to influence the antenna pattern.
  • the screws S in their entirety provide for a very stable anchoring of the WAIM layer W to the base plate P.
  • the material properties of the screws should be as similar as possible to those of the WAIM layer.
  • each screw is chosen based on the antenna stability requirements. In particular, there need not be a screw on each spacer.
  • the arrangement of the screws will preferably be selected in the same grid as the grid prescribed by the radiator elements.
  • the arrangement of the screws will continue to be oriented at the grid of the radiator elements.
  • the Fig. 2b . c differ with respect to the question from which direction the attachment of the WAIM layer should take place. This can be done both from the back ( Fig. 2b ) or from the front of the antenna ( Fig. 2c ) ago.
  • the screws S are driven through the base plate P into the spacers A.
  • the screws S are driven through the WAIM layer W in the base plate P.
  • the attachment from the rear is preferred, but the attachment from the front naturally has advantages in terms of accessibility.
  • Fig. 3a shows in plan view the antenna base plate P with the arranged thereon in a regular grid elements elements SE.
  • Fig. 3c shows the matching WAIM layer W with associated spacers A.
  • the grid of the spacers A on the WAIM layer corresponds to the grid of the radiator elements SE.
  • the WAIM layer W (shown in transparent) is mounted on the antenna base plate P, whereby the correspondence of the two screens can be seen very well.

Description

Die Erfindung betrifft eine Gruppenantenne mit einer WAIM-Schicht zur Impedanzanpassung für große Schwenkwinkel nach dem Oberbegriff des Anspruchs 1.The invention relates to a group antenna with a WAIM layer for impedance matching for large tilt angles according to the preamble of claim 1.

Ein oft beobachtetes Phänomen im Transmissionsverhalten einer Gruppenantenne während des elektronischen Schwenkens des Hauptstrahls ist der Unterschied im Transmissionsgrad, je nachdem in welche Richtung die Antenne geschwenkt wird. Üblicherweise hat eine Antenne eine definierte Polarisationsausrichtung, z.B. vertikale oder horizontale Polarisation. Um das genannte Phänomen zu erläutern, reicht es aus, im Gedanken den Hauptstrahl solch einer Gruppenantenne entlang dieser
beiden Ebenen (vertikal & horizontal) elektronisch zu schwenken. Sofern der Vektor der abgestrahlten elektrischen Feldstärke sich innerhalb der Schwenkebene, definiert aus Schwenkrichtung und Antennen-Normale ausbildet, spricht man von der transversal magnetischen Polarisation (TM). Falls der Vektor der elektrischen Feldstärke sich senkrecht zu dieser Ebene befindet, lautet die Bezeichnung transversal elektrisch (TE). Alle möglichen anderen Polarisationszustände lassen sich in diese beiden
Polarisationskomponenten zerlegen. Prinzipiell neigen konventionelle Gruppenantennen (wie auch andere artverwandte Strukturen wie dielektrische oder frequenzselektive Radome) dazu, mit steigendem Schwenkwinkel in TE einen schlechteren Transmissionsgrad als in TM auszubilden.
An often observed phenomenon in the transmission behavior of a group antenna during the electronic pivoting of the main beam is the difference in transmittance, depending on the direction in which the antenna is pivoted. Usually, an antenna has a defined polarization orientation, eg vertical or horizontal polarization. In order to explain the said phenomenon, it is sufficient, in the thought, the main ray of such a group antenna along this
both levels (vertical & horizontal) to pivot electronically. If the vector of the radiated electric field strength forms within the pivoting plane, defined from the pivoting direction and antenna normal, one speaks of the transverse magnetic polarization (TM). If the vector of the electric field strength is perpendicular to this plane, the designation is transversely electric (TE). All sorts of other polarization states can be in these two
Disassemble polarization components. In principle, conventional array antennas (as well as other related structures such as dielectric or frequency-selective radomes) tend to form a worse transmittance with increasing tilt angle in TE than in TM.

Eine sogenannte WAIM-Schicht (WAIM: Wide Angle Impedance Match), die vor den Strahlerelementen angeordnet wird, kann diesem Effekt entgegenwirken. Bezogen auf die beiden Polarisationsfälle TE und TM funktioniert die WAIM-Schicht in Analogie zu einem Ersatzleitungsmodell der Antenne wie eine parallel geschaltete Kapazität, deren relative Suszeptanz (bezogen auf den Wellenwiderstand) sich mit dem Schwenkwinkel θ ändert. Für den Fall der TE-Polarisation geht diese Änderung mit dem Faktor 1/cos(θ), für den Fall der TM-Polarisation jedoch mit dem Faktor cos(θ), vorausgesetzt die dielektrische Konstante der WAIM-Schicht ist ausreichend hoch und die Dicke der WAIM-Schicht ausreichend gering. Die geschilderte Reziprozität der Faktoren führt nun bei geeigneter Auslegung der WAIM-Schicht dazu, dass sich die Transmissionsgrade der Antenne beim Schwenken zwischen TE und TM-Polarisation aneinander angleichen. Dies gilt für alle möglichen Schwenkwinkel innerhalb eines technisch sinnvollen Bereicht von z.B. θ=0° bis θ=60°. Dieses Angleichen resultiert dann in den üblicherweise gewünschten breiten Einzelstrahlerdiagrammen von Strahlerelementen einer Gruppenantenne in allen wichtigen Schnittebenen.A so-called WAIM layer (WAIM: Wide Angle Impedance Match), which is arranged in front of the radiator elements, can counteract this effect. With reference to the two polarization cases TE and TM, the WAIM layer, in analogy to a replacement line model of the antenna, functions like a parallel-connected capacitance whose relative susceptance (relative to the characteristic impedance) changes with the swivel angle θ. In the case of the TE polarization, this change is with the factor 1 / cos (θ), but in the case of the TM polarization with the factor cos (θ), provided the dielectric constant of the WAIM layer is sufficiently high and the thickness the WAIM layer is sufficiently low. The described reciprocity of the factors now leads, with a suitable design of the WAIM layer, to the fact that the transmittance of the antenna when swinging between TE and TM polarization align with each other. This applies to all possible tilt angles within a technically meaningful range of, for example, θ = 0 ° to θ = 60 °. This matching then results in the usually desired broad single emitter diagrams of emitter elements of a group antenna in all important cutting planes.

Die bisher angewendeten Lösungen basieren wesentlich auf den theoretischen Ausarbeitungen von Magill & Wheeler,( E. Magill und H. Wheeler, "Wide-angle impedance matching of a planar array antenna by a dielectric sheet," IEEE Transactions on Antennas and Propagation, Bd. 14, Nr. 1, S. 49-53, 1966 ). Eine WAIM-Schicht erfüllt nur dann den Zweck eines Transmissions-Ausgleichs zwischen TE- und TM-Polarisation, wenn sie einen geringen, aber wohldefinierten Abstand zu den Antennenelementen der Gruppenantenne einhält.The solutions used so far are essentially based on the theoretical elaborations of Magill & Wheeler, ( E. Magill and H. Wheeler, "Wide-angle impedance matching of a planar array antenna by a dielectric sheet," IEEE Transactions on Antennas and Propagation, Vol. 14, No. 1, pp. 49-53, 1966 ). A WAIM layer only serves the purpose of transmission compensation between TE and TM polarization if it maintains a small but well-defined distance to the antenna elements of the array antenna.

Die Standard-Lösung zum Erzeugen der notwendigen räumlichen Separation ist die Verwendung von HF-Schaummaterialien, z.B. US 7,580,003 B1 . Während die Verfügbarkeit solcher Schäume kein Problem darstellt, ergeben sich im Zuge der Verwendung solcher Schäume eine Reihe von Nachteilen:

  • Hygroskopie: Viele Schäume neigen dazu, mit der Zeit Feuchtigkeit aus der Umgebung aufzunehmen, was zu einer starken Veränderung der dielektrischen Eigenschaften führt. Aufwändige Maßnahmen zur Kapselung der SchaumSchicht sind die Folge.
  • Toleranzen: Die Herstellung von Schaumschichten mit wenigen Millimetern Dicke ist nur in einem moderaten Toleranzbereich möglich.
  • Verklebung: Für die WAIM-Schicht prinzipiell geeignete Standardmaterialien (kommerziell erhältliche HF-Leiterplattenmaterialien mit hoher dielektrischer Konstante, z.B. Rogers RT/duroid 6010, enthalten Teflon, welches im Sinne einer haltbaren und zuverlässigen Verklebung mit dem Schaummaterial ein Problem darstellt. Zwar ist es prinzipiell technisch möglich, solche Verklebungen durchzuführen, jedoch nur mit aufwändigen Maßnahmen wie PlasmaAktivierung der teflonhaltigen WAIM-Bestandteile.
The standard solution for creating the necessary spatial separation is the use of RF foam materials, eg US 7,580,003 B1 , While the availability of such foams is not a problem, there are a number of disadvantages to using such foams:
  • Hygroscopy: Many foams tend to absorb moisture from the environment over time, resulting in a large change in dielectric properties. Elaborate measures to encapsulate the foam layer are the result.
  • Tolerances: The production of foam layers with a thickness of only a few millimeters is only possible within a moderate tolerance range.
  • Bonding: Basically suitable standard materials for the WAIM coating (commercially available HF printed circuit board materials with a high dielectric constant, eg Rogers RT / duroid 6010, contain Teflon, which is a problem in terms of a durable and reliable bonding with the foam material technically possible to perform such bonds, but only with complex measures such as plasma activation of the teflon-containing WAIM components.

Die US 3,605,098 A beschreibt eine Gruppenantenne, bei der vor jedem Strahlerelement ein separates WAIM-Element vorhanden ist. Ein derartiges WAIM-Element umfasst jeweils eine WAIM-Schicht parallel zur Ebene der Strahlerelemente sowie Abstandshalter, auf dem die WAIM-Schicht angeordnet ist.The US 3,605,098 A describes a group antenna in which there is a separate WAIM element in front of each radiator element. Such a WAIM element comprises in each case a WAIM layer parallel to the plane of the radiator elements and spacers on which the WAIM layer is arranged.

In MCGRATH D T: "Accelerated periodic hybrid finite element method analysis for integrated array element and radome design, PHASED ARRAY SYSTEMS AND TECHNOLOGY, 2000. PROCEEDINGS. 2000 IEEE INTERNATIONAL CONFERENCE ON DANA POINT, CA, USA 21 -25 MAY 2000, PISCATAWAY, NJ, USA, IEEE, US, 21. Mai 2000 (2000-05-21), Seiten 319-322, XP010504600, DOI: DOI: 10.1109/PAST.2000.858965, ISBN: 978-0-7803-6345-8 wird eine Gruppenantenne mit Hohlleiter-Strahlerelementen beschrieben, wobei die Hohlleiter-Strahlerelemente dielektrische Füllelemente aufweisen, um die Strahlungseigenschaften der Antenne gezielt zu verändern. Die dielektrischen Füllelemente ragen aus der Antenne heraus. Auf diesen überstehenden dielektrischen Füllelementen ist eine WAIM-Schicht angeordnet.In MCGRATH DT: Accelerated periodic hybrid finite element method analysis for integrated array element and radome design, PHASED ARRAY SYSTEMS AND TECHNOLOGY, 2000. PROCEEDINGS 2000 IEEE INTERNATIONAL CONFERENCE ON DANA POINT, CA, USA 21 -25 MAY 2000, PISCATAWAY, NJ, USA, IEEE, US, May 21, 2000 (2000-05-21), pages 319-322, XP010504600, DOI: DOI: 10.1109 / PAST.2000.858965, ISBN: 978-0-7803-6345-8 a group antenna is described with waveguide radiating elements, wherein the waveguide radiator elements have dielectric filling elements to change the radiation properties of the antenna targeted. The dielectric filling elements project out of the antenna. On top of these overhanging dielectric filling elements, a WAIM layer is arranged.

Die JP 2007013311 A beschreibt eine Anordnung von mehreren, in einem festen Raster angeordneten Einzelantennen, deren Abstrahlungen jeweils voneinander entkoppelt sind. Die Einzelantennen werden von einem Radom abgedeckt, welches in einem entsprechenden Raster Abstandhalter im Bezug auf eine Antennengrundplatte aufweist.The JP 2007013311 A describes an arrangement of a plurality of individual antennas arranged in a fixed grid, whose radiations are each decoupled from one another. The individual antennas are covered by a radome, which has spacers in relation to an antenna base plate in a corresponding grid.

Aufgabe der Erfindung ist es, eine Gruppenantenne mit WAIM-Schicht zu schaffen, die die bei der Verwendung von Schäumen als Zwischenschicht zwischen Strahlerelementen und WAIM-Schicht auftretenden Nachteile vermeidet.The object of the invention is to provide a group antenna with WAIM layer, which avoids the disadvantages occurring in the use of foams as an intermediate layer between radiator elements and WAIM layer disadvantages.

Diese Aufgabe wird mit dem Gegenstand des Patentanspruchs 1 gelöst. Vorteilhafte Ausführungen sind Gegenstand von weiteren Ansprüchen.This object is achieved with the subject matter of patent claim 1. Advantageous embodiments are the subject of further claims.

Gemäß der Erfindung sind aus dem Material der WAIM-Schicht Abstandshalter in einem regelmäßigen Raster herausgearbeitet. Abstandshalter und WAIM-Schicht sind also integral miteinander verbunden (monolithisch), wobei das Raster der Abstandshalter dem Raster der Strahlerelemente entspricht. und die Abstandshalter in den Zwischenräumen zwischen den einzelnen Strahlerelementen angeordnet sind. Das Raster kann z.B. quadratisch, rechteckig oder hexagonal sein. Die Abstandshalter können insbesondere säulenartig mit rundem Querschnitt ausgebildet sein. Die Befestigung der WAIM-Schicht auf der Antennengrundplatte erfolgt vorteilhaft an den Abstandshaltern durch mechanische Verbindungsmittel (z.B. Schrauben), wobei die Anzahle derjenigen Abstandshalter, an denen ein Verbindungsmittel vorhanden ist, von den konkreten Erfordernissen abhängig ist. Insbesondere muss also nicht an jedem Abstandhalter ein Verbindungsmittel vorhanden sein.According to the invention spacers are machined in a regular pattern from the material of the WAIM layer. Spacer and WAIM layer are therefore integrally connected to each other (monolithic), wherein the grid of the spacers corresponds to the grid of the radiator elements. and the spacers are disposed in the spaces between the individual radiating elements. The grid may e.g. square, rectangular or hexagonal. The spacers may in particular be of columnar design with a round cross section. The attachment of the WAIM layer to the antenna baseplate advantageously takes place on the spacers by mechanical connection means (e.g., screws), the numbers of which spacers on which a connection means is present depend on the specific requirements. In particular, therefore, a connecting means does not have to be present on each spacer.

Erfindungsgemäß tritt somit an die Stelle des bekannten Mehrschichtaufbaus (WAIM-Schicht - Klebefilm - Schaum), welcher verschiedene Materialien umfasst, allein das Material der WAIM-Schicht, in welches die Abstandshalter bereits integriert sind. Durch die Abstandshalter wird ein luft- oder vakuumgefüllter Separator zwischen WAIM-Schicht und den Antennenelementen realisiert. Die geschilderten Nachteile im Zusammenhang mit den bisher verwendeten Schäumen werden vollständig vermieden. Des Weiteren entfallen aufwändige Klebeprozesse zur Verbindung der WAIM-Schicht mit einem Schaumseparator.According to the invention thus takes the place of the known multi-layer structure (WAIM layer - adhesive film - foam), which comprises different materials, only the material of the WAIM layer, in which the spacers already are integrated. The spacers realize an air- or vacuum-filled separator between the WAIM layer and the antenna elements. The disadvantages described in connection with the previously used foams are completely avoided. Furthermore, expensive adhesive processes for connecting the WAIM layer with a foam separator are eliminated.

Die Abstandshalter verleihen der WAIM-Schicht die benötigte mechanische Stabilität. Sie ist dadurch unempfindlich gegenüber Vibration, Schock etc. und eignet sich somit auch für robuste Anwendungsszenarien..The spacers give the WAIM layer the required mechanical stability. It is therefore insensitive to vibration, shock, etc., making it suitable for robust application scenarios.

Da das Raster, in dem die Abstandshalter angeordnet sind, dem Raster der Strahlerelemente entspricht, wird die natürliche Periodizität der Gruppenantenne nicht gestört, so dass innerhalb des Frequenzbereichs, für den die Gruppenantenne ausgelegt ist, keine Bragg-Reflexionen an der Antennenoberfläche auftreten können. Es müssen keine Einbußen im Radarrückstreuquerschnitt hingenommen werden. Sofern keine erhöhten Anforderungen an den Radarrückstreuquerschnitt (RCS) vorhanden sind, sind alternativ auch Ausführungen möglich, bei denen sich das Raster der Abstandshalter und das Raster der Strahlerelemente nicht entsprechen. Dieses geänderte Raster muss sich jedoch weiterhin am Raster der Strahlerelemente orientieren. Zu diesem Zweck wird das Raster der Abstandshalter derart aus dem Raster der Strahlerelemente abgeleitet, dass nur noch zu jedem n-ten Strahlerelement ein entsprechender Abstandshalter vorhanden ist (und im Übrigen keine weiteren Abstandshalter vorhanden sind). Es handelt sich also um eine definierte Ausdünnung des ursprünglichen Rasters der Abstandshalter. Mit anderen Worten: die grundsätzliche Rasterstruktur bleibt erhalten, aber das Rastermaß (Gitterkonstante) ändert sich um den Faktor n. n ist dabei eine natürliche Zahl größer 1.Since the grid in which the spacers are arranged corresponds to the grid of the radiator elements, the natural periodicity of the array antenna is not disturbed, so that within the frequency range for which the array antenna is designed, no Bragg reflections can occur on the antenna surface. There is no loss in Radarrückstreuquerschnitt be accepted. If there are no increased requirements for the radar backscatter cross section (RCS), embodiments are alternatively possible in which the grid of the spacers and the grid of the radiator elements do not correspond. However, this changed grid must continue to be based on the grid of the radiator elements. For this purpose, the grid of the spacers is derived from the grid of the radiator elements such that only a corresponding spacer is present for every nth radiator element (and, moreover, no further spacers are present). It is therefore a defined thinning of the original grid of the spacers. In other words: the basic grid structure is retained, but the grid dimension (grid constant) changes by the factor n. N is a natural number greater than 1.

Die beschriebene Form der WAIM-Schicht kann insbesondere durch mechanische Bearbeitungstechniken, wie z.B. Ausfräsen, erreicht werden. Entsprechend seiner Funktion als WAIM-Schicht sollte das Material eine möglichst hohe Dielektrizitätskonstante und einen geringem Verlustwinkel aufweisen und seine Schichtdicke sollte möglichst gering sein. Derartige dielektrische Materialien sind als Halbzeuge kommerziell verfügbar.The described shape of the WAIM layer can be achieved in particular by mechanical processing techniques, such as milling. According to its function as a WAIM layer, the material should have the highest possible dielectric constant and a low loss angle, and its layer thickness should be as low as possible. Such dielectric materials are commercially available as semi-finished products.

Ein geeignetes Material für die WAIM-Schicht ist z.B. das dielektrische Material (Halbzeug) "C-Stock AK" der Fa. Cuming Microwave Corporation, welches mit kundenspezifischer dielektrischer Konstante und in unterschiedlichen Halbzeuggrößen verfügbar ist. Derartige Materialien können leicht mit mechanischen Mitteln (z.B. Fräsen) bearbeitet werden.A suitable material for the WAIM layer is e.g. the dielectric material (semi-finished product) "C-Stock AK" of the company. Cuming Microwave Corporation, which is available with customized dielectric constant and in different semi-finished sizes. Such materials can be readily processed by mechanical means (e.g., milling).

Zur weiteren mechanischen Stabilisierung können zusätzliche Versteifungsstrukturen in Form von Rippen aus dem Material der WAIM-Schicht herausgeformt werden. Damit diese keine negativen Effekte auf den Transmissionsgrad der Antenne beim elektronischen Schwenken haben, müssen auch diese Strukturen der Periodizität in der Anordnung der Antennenelemente folgen. Die Rippen sind so ausgebildet, dass sie jeweils zwei benachbarte Abstandshalter verbinden.For further mechanical stabilization, additional stiffening structures in the form of ribs can be formed out of the material of the WAIM layer. So that these have no negative effects on the transmittance of the antenna during electronic panning, these structures must also follow the periodicity in the arrangement of the antenna elements. The ribs are formed so that they each connect two adjacent spacers.

Die WAIM-Schicht muss nicht notwendigerweise eben ausgebildet sein. Sie kann auch eine eindimensional oder zweidimensional gekrümmte Oberfläche besitzen, im Hinblick auf eine Anwendung bei struktur-konformen, gekrümmten Gruppenantennen.The WAIM layer does not necessarily have to be flat. It may also have a one-dimensional or two-dimensionally curved surface, for use in structurally-conforming curved array antennas.

Die WAIM-Schicht kann durch Verbinden mit weiteren dielektrischen Schichten zu einem Multilayer-WAIM-Block erweitert werden.The WAIM layer can be expanded to a multi-layer WAIM block by connecting to further dielectric layers.

Konkrete Ausführungsbeispiele der Erfindung werden im Folgenden anhand von Figuren näher erläutert. Es zeigen:

Fig. 1
eine erfindungsgemäße WAIM-Schicht in 3D-Darstellung mit periodisch angeordneten Abstandshaltern;
Fig. 2
eine erfindungsgemäße Gruppenantenne in Querschnittsdarstellung:
  1. a) ohne Darstellung der Befestigungsmittel für die WAIM-Schicht;
  2. b) mit Befestigung der WAIM-Schicht von hinten;
  3. c) mit Befestigung der WAIM-Schicht von vorne;
Fig. 3
eine erfindungsgemäße Gruppenantenne sowie die zugehörige WAIM-Schicht jeweils in Draufsicht:
  1. a) Antennengrundplatte ohne WAIM-Schicht,
  2. b) mit davor angeordneter WAIM-Schicht (letzere transparent dargestellt),
  3. c) WAIM-Schicht allein.
Concrete embodiments of the invention are explained in more detail below with reference to figures. Show it:
Fig. 1
a WAIM layer according to the invention in 3D representation with periodically arranged spacers;
Fig. 2
a group antenna according to the invention in cross-sectional representation:
  1. a) without showing the fasteners for the WAIM layer;
  2. b) with attachment of the WAIM layer from behind;
  3. c) with attachment of the WAIM layer from the front;
Fig. 3
a group antenna according to the invention and the associated WAIM layer each in plan view:
  1. a) antenna base plate without WAIM layer,
  2. b) with WAIM layer arranged in front of it (the latter shown in transparent),
  3. c) WAIM layer alone.

Fig. 1 zeigt ein Beispiel für die erfindungsgemäße WAIM-Schicht W. Die Schicht W selbst ist transparent dargestellt (in der Papierebene liegend). Erhaben aus dieser Schicht W hervortretend kann man die in dieser Ausführung pfostenförmig (mit kreisförmigem Querschnitt) ausgebildeten Abstandshalter A sowie die jeweils einen Abstandshalter A verbindenden Verstärkungsrippen R erkennen. Abstandshalter A und Verstärkungsrippen R wurden durch Ausfräsen aus einem Materialblock herausgearbeitet. Fig. 1 shows an example of the inventive WAIM layer W. The layer W itself is shown transparent (lying in the plane of the paper). Exalted protruding from this layer W can be seen in this embodiment post-shaped (with a circular cross-section) spacers A and each connecting a spacer A reinforcing ribs R recognize. Spacers A and reinforcing ribs R were machined out of a block of material.

Fig. 2 zeigt Querschnittsdarstellungen einer erfindungsgemäßen Gruppenantenne mit davor angeordneter WAIM-Schicht W. Die Begriffe "vor" und "hinter" im Bezug auf die Antenne werden in dem Sinne verwendet, dass "vor" die Seite der Antenne meint, in die die Abstrahlung erfolgt. Fig. 2 shows cross-sectional representations of a group antenna according to the invention with WAIM layer W arranged in front of it. The terms "before" and "behind" with respect to the antenna are used in the sense that "before" means the side of the antenna into which the radiation takes place.

Man erkennt die in regelmäßigem Raster angeordneten Abstandshalter A, die in den Zwischenräumen zwischen den einzelnen Strahlerelemente SE angeordnet sind und dort an der Antennengrundplatte P anstoßen.It can be seen arranged in a regular grid spacers A, which are arranged in the spaces between the individual radiator elements SE and abut there on the antenna base plate P.

Die Befestigung der WAIM-Schicht W mit der metallischen Antennengrundplatte P der Gruppenantenne erfolgt mittels einer Vielzahl von Schrauben S (Fig. 2b,c), welche im Bereich der Abstandshalter A eingetrieben sind. Dabei werden bevorzugt Schrauben aus einem Kunststoffmaterial verwendet, um das Antennendiagramm nicht zu beeinflussen. Die Schrauben S sorgen in ihrer Gesamtheit für eine sehr stabile Verankerung der WAIM-Schicht W an der Grundplatte P. Vorteilhaft sollten die Materialeigenschaften der Schrauben denen der WAIM-Schicht möglichst ähnlich sein.The attachment of the WAIM layer W with the metallic antenna base plate P of the array antenna is carried out by means of a plurality of screws S (FIG. Fig. 2b . c ), which are driven in the area of the spacer A. Screws made of a plastic material are preferably used in order not to influence the antenna pattern. The screws S in their entirety provide for a very stable anchoring of the WAIM layer W to the base plate P. Advantageously, the material properties of the screws should be as similar as possible to those of the WAIM layer.

Zahl und Position der einzelnen Schrauben werden abhängig von den Stabilitätsanforderungen an die Antenne gewählt. Insbesondere muss nicht an jedem Abstandshalter eine Schraube vorhanden sein.The number and position of each screw is chosen based on the antenna stability requirements. In particular, there need not be a screw on each spacer.

Um jedoch eine Beeinflussung des Antennendiagramms möglichst klein zu halten, wird man die Anordnung der Schrauben bevorzugt im gleichen Raster wie dem durch die Strahlerelemente vorgegebenen Raster wählen.However, in order to keep an influence on the antenna pattern as small as possible, the arrangement of the screws will preferably be selected in the same grid as the grid prescribed by the radiator elements.

Falls jedoch die Anzahl der benötigten Schrauben geringer als die Anzahl der Abstandshalter gewählt wird, wird man die Anordnung der Schrauben weiterhin am Raster der Strahlerelemente orientieren. Man wird dann die Anordnung der Schrauben derart ausdünnen, dass nur noch an jedem n-ten (n=2,3,4...) Abstandshalter eine Schraube vorgesehen ist.If, however, the number of screws required is less than the number of spacers selected, the arrangement of the screws will continue to be oriented at the grid of the radiator elements. The arrangement of the screws will then be thinned out in such a way that a screw is provided only on every nth (n = 2,3,4 ...) spacer.

Die Fig. 2b,c unterscheiden sich hinsichtlich der Frage, aus welcher Richtung die Befestigung der WAIM-Schicht erfolgen soll. Dies kann sowohl von der Rückseite (Fig. 2b) oder von der Frontseite der Antenne (Fig. 2c) her erfolgen. Im Falle der Fig. 2b werden die Schrauben S durch die Grundplatte P hindurch in die Abstandshalter A getrieben. Im Falle der Fig. 2c werden die Schrauben S durch die WAIM-Schicht W in die Grundplatte P getrieben.The Fig. 2b . c differ with respect to the question from which direction the attachment of the WAIM layer should take place. This can be done both from the back ( Fig. 2b ) or from the front of the antenna ( Fig. 2c ) ago. In case of Fig. 2b the screws S are driven through the base plate P into the spacers A. In case of Fig. 2c The screws S are driven through the WAIM layer W in the base plate P.

Im Hinblick auf mögliche Einbußen im Radarrückstreuquerschnitt (RCS) ist die Anbringung von hinten bevorzugt, jedoch besitzt die Befestigung von der Frontseite her naturgemäß Vorteile hinsichtlich der Zugänglichkeit.In view of possible losses in the radar backscatter cross section (RCS), the attachment from the rear is preferred, but the attachment from the front naturally has advantages in terms of accessibility.

Fig. 3a zeigt in Draufsicht die Antennengrundplatte P mit den darauf in einem regelmäßigen Raster angeordneten Strahlerelementen SE.
Fig. 3c zeigt die dazu passende WAIM-Schicht W mit zugehörigen Abstandshaltern A. Das Raster der Abstandshalter A auf der WAIM-Schicht entspricht dabei dem Raster der Strahlerelemente SE.
In Fig. 3b ist die (transparent dargestellte) WAIM-Schicht W auf die Antennengrundplatte P montiert, wobei man die Entsprechung der beiden Raster sehr gut erkennen kann.
Fig. 3a shows in plan view the antenna base plate P with the arranged thereon in a regular grid elements elements SE.
Fig. 3c shows the matching WAIM layer W with associated spacers A. The grid of the spacers A on the WAIM layer corresponds to the grid of the radiator elements SE.
In Fig. 3b For example, the WAIM layer W (shown in transparent) is mounted on the antenna base plate P, whereby the correspondence of the two screens can be seen very well.

Claims (8)

  1. Array antenna, comprising
    - an antenna base plate (P) having multiple radiating elements (SE) arranged in a regular grid, a main beam of the array antenna being electronically pivotable, and
    - a dielectric WAIM (Wide Angle Impedance Match) layer (W) arranged in front of the radiating elements (SE) for impedance matching at large pivot angles, which maintains a low but well-defined distance from the antenna elements of the array antenna,
    - the WAIM layer (W) covering all the radiating elements (SE),
    spacers (A) being machined out of the material of the WAIM layer in a regular grid,
    the grid of the spacers (A) corresponding to the grid of the radiating elements (SE),
    characterized in that WAIM layer (W) and spacers (A) together form an integral monolithic workpiece, and wherein the spacers (A) are arranged in the interspaces between the individual radiating elements (SE).
  2. Array antenna according to Claim 1, characterized in that the grid of the radiating elements (SE) is square, rectangular or hexagonal.
  3. Array antenna according to Claim 1 or 2, characterized in that the grid of the spacers (A) is not equal to the grid of the radiating elements (SE), wherein the grid of the spacers (A) is derived from the grid of the radiating elements (SE) in such a way that there is a corresponding spacer (A) only for each nth radiating element (SE), with n = 2, 3, 4,....
  4. Array antenna according to one of the preceding claims, characterized in that reinforcing ribs (R) which each connect two adjacent spacers (A) are machined out of the WAIM layer (W).
  5. Array antenna according to one of the preceding claims, characterized in that the fixing of the WAIM layer (W) to the antenna base plate (P) at multiple spacers (A) is carried out by mechanical connecting means (S).
  6. Array antenna according to Claim 5, characterized in that the mechanical connecting means (S) are arranged in a grid which corresponds to the grid of the spacers (A).
  7. Array antenna according to Claim 5, characterized in that the grid of the mechanical connecting means (S) is not equal to the grid of the spacers (A), wherein the grid of the mechanical connecting means (S) is derived from the grid of the spacers (A) in such a way that there is a corresponding mechanical connecting means (S) only at each nth spacer, where n = 2, 3, 4,....
  8. Array antenna according to one of the preceding claims, characterized in that the spacers (A) have a round cross section.
EP11000921.4A 2011-02-04 2011-02-04 Array antenna Active EP2485329B1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP11000921.4A EP2485329B1 (en) 2011-02-04 2011-02-04 Array antenna
ES11000921.4T ES2583753T3 (en) 2011-02-04 2011-02-04 Groups antenna
IN209DE2012 IN2012DE00209A (en) 2011-02-04 2012-01-24
AU2012200517A AU2012200517B2 (en) 2011-02-04 2012-01-30 Antenna array
BR102012002423-3A BR102012002423B1 (en) 2011-02-04 2012-02-02 GROUP ANTENNA
US13/365,620 US9397408B2 (en) 2011-02-04 2012-02-03 Antenna array
JP2012021836A JP2012165382A (en) 2011-02-04 2012-02-03 Antenna array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP11000921.4A EP2485329B1 (en) 2011-02-04 2011-02-04 Array antenna

Publications (2)

Publication Number Publication Date
EP2485329A1 EP2485329A1 (en) 2012-08-08
EP2485329B1 true EP2485329B1 (en) 2016-04-20

Family

ID=44063201

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11000921.4A Active EP2485329B1 (en) 2011-02-04 2011-02-04 Array antenna

Country Status (6)

Country Link
US (1) US9397408B2 (en)
EP (1) EP2485329B1 (en)
JP (1) JP2012165382A (en)
AU (1) AU2012200517B2 (en)
ES (1) ES2583753T3 (en)
IN (1) IN2012DE00209A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10535919B2 (en) * 2016-05-24 2020-01-14 Kymeta Corporation Low-profile communication terminal and method of providing same
US10700429B2 (en) 2016-09-14 2020-06-30 Kymeta Corporation Impedance matching for an aperture antenna
US11705634B2 (en) * 2020-05-19 2023-07-18 Kymeta Corporation Single-layer wide angle impedance matching (WAIM)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007013311A (en) * 2005-06-28 2007-01-18 Murata Mfg Co Ltd Antenna module and wireless apparatus

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3605098A (en) * 1969-04-14 1971-09-14 Hazeltine Corp Phased array antenna including impedance matching apparatus
JPH01143506A (en) * 1987-11-30 1989-06-06 Sony Corp Planar antenna
JPH0332102A (en) * 1989-06-28 1991-02-12 Sony Corp Planer array antenna
US6768471B2 (en) * 2002-07-25 2004-07-27 The Boeing Company Comformal phased array antenna and method for repair
US7327325B2 (en) * 2006-04-14 2008-02-05 Spx Corporation Vertically polarized traveling wave antenna apparatus and method
US7580003B1 (en) 2006-11-07 2009-08-25 The Boeing Company Submarine qualified antenna aperture
US8274445B2 (en) * 2009-06-08 2012-09-25 Lockheed Martin Corporation Planar array antenna having radome over protruding antenna elements

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007013311A (en) * 2005-06-28 2007-01-18 Murata Mfg Co Ltd Antenna module and wireless apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
E. MAGILL ET AL: "Wide-angle impedance matching of a planar array antenna by a dielectric sheet", IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, vol. 14, no. 1, 1 January 1966 (1966-01-01), pages 49 - 53, XP055019127, ISSN: 0096-1973, DOI: 10.1109/TAP.1966.1138622 *

Also Published As

Publication number Publication date
BR102012002423A2 (en) 2016-08-09
AU2012200517B2 (en) 2016-05-26
US9397408B2 (en) 2016-07-19
AU2012200517A1 (en) 2012-08-23
EP2485329A1 (en) 2012-08-08
ES2583753T3 (en) 2016-09-22
JP2012165382A (en) 2012-08-30
US20120200474A1 (en) 2012-08-09
IN2012DE00209A (en) 2015-06-19

Similar Documents

Publication Publication Date Title
DE102016101583B4 (en) Radom
EP1194982B9 (en) Antenna
DE69813035T2 (en) MULTIPLE PARASITAL COUPLING INSIDE STRIP LADDER ANTENNA ELEMENTS TO OUTSIDE STRIP LADDER ANTENNA ELEMENTS
EP0042612B1 (en) Arrangement for transforming the polarization of electromagnetic waves
EP1601046B1 (en) Array antenna equipped with a housing
DE4136476C2 (en) Ultra-high frequency lens and antenna with electronic beam swiveling with such a lens
EP1434300B1 (en) Broadband antenna with a 3-dimensional casting part
DE102012023938A1 (en) Dual polarized omnidirectional antenna
DE112015006455T5 (en) Structure between radar and fairing
DE3536581A1 (en) DOUBLE GRID ANTENNA REFLECTOR SYSTEM AND METHOD FOR PRODUCING THE SAME
DE2362913B2 (en) Spiral antenna
EP2485329B1 (en) Array antenna
DE69833070T2 (en) Group antennas with a large bandwidth
EP2375491B1 (en) Leaky-wave antenna
DE102013201222A1 (en) antenna device
DE602005005098T2 (en) Reflector antenna with a 3D waveshaper structure for multiple frequency ranges
DE3027093C2 (en) Polarizing device for generating circularly polarized electromagnetic waves
DE4014133A1 (en) PLANAR ANTENNA
DE3840451C2 (en) Lens antenna
EP1006608B1 (en) Multi-layered antenna arrangement
DE69630299T2 (en) ANTENNA ELEMENT FOR TWO ORTHOGONAL POLARISATIONS
DE19845868A1 (en) Dual focus planar antenna
DE2048710A1 (en) Antenna arrangement
DE19848722B4 (en) Microwave reflector antenna
DE102011055457A1 (en) Antenna group, particularly satellite communication antenna, has emitter body, one emitting element and another emitting element, where emitting elements are formed as counter bore opposite to envelope of emitter body

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110801

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AIRBUS DEFENCE AND SPACE GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20151218

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 793330

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011009461

Country of ref document: DE

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: AIRBUS DS ELECTRONICS AND BORDER SECURITY GMBH

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2583753

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20160922

REG Reference to a national code

Ref country code: NL

Ref legal event code: PD

Owner name: AIRBUS DS ELECTRONICS AND BORDER SECURITY GMBH; DE

Free format text: DETAILS ASSIGNMENT: VERANDERING VAN EIGENAAR(S), OVERDRACHT; FORMER OWNER NAME: AIRBUS DEFENCE AND SPACE GMBH

Effective date: 20160927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160721

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160822

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20161110 AND 20161116

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502011009461

Country of ref document: DE

Owner name: AIRBUS DS ELECTRONICS AND BORDER SECURITY GMBH, DE

Free format text: FORMER OWNER: AIRBUS DEFENCE AND SPACE GMBH, 85521 OTTOBRUNN, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502011009461

Country of ref document: DE

Owner name: HENSOLDT SENSORS GMBH, DE

Free format text: FORMER OWNER: AIRBUS DEFENCE AND SPACE GMBH, 85521 OTTOBRUNN, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011009461

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

26N No opposition filed

Effective date: 20170123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502011009461

Country of ref document: DE

Representative=s name: LIFETECH IP SPIES & BEHRNDT PATENTANWAELTE PAR, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502011009461

Country of ref document: DE

Owner name: HENSOLDT SENSORS GMBH, DE

Free format text: FORMER OWNER: AIRBUS DS ELECTRONICS AND BORDER SECURITY GMBH, 82024 TAUFKIRCHEN, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170204

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170228

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170204

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 793330

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: HENSOLDT SENSORS GMBH

Effective date: 20181001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

REG Reference to a national code

Ref country code: NL

Ref legal event code: HC

Owner name: HENSOLDT SENSORS GMBH; DE

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), CHANGE OF OWNER(S) NAME; FORMER OWNER NAME: AIRBUS DS ELECTRONICS AND BORDER SECURITY GMBH

Effective date: 20181017

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160820

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230220

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230220

Year of fee payment: 13

Ref country code: ES

Payment date: 20230317

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230220

Year of fee payment: 13

Ref country code: IT

Payment date: 20230228

Year of fee payment: 13

Ref country code: GB

Payment date: 20230221

Year of fee payment: 13

Ref country code: DE

Payment date: 20230216

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240220

Year of fee payment: 14

Ref country code: ES

Payment date: 20240319

Year of fee payment: 14