EP3528351A1 - Connecteur électrique pour un câble électrique multi-fils - Google Patents

Connecteur électrique pour un câble électrique multi-fils Download PDF

Info

Publication number
EP3528351A1
EP3528351A1 EP19164410.3A EP19164410A EP3528351A1 EP 3528351 A1 EP3528351 A1 EP 3528351A1 EP 19164410 A EP19164410 A EP 19164410A EP 3528351 A1 EP3528351 A1 EP 3528351A1
Authority
EP
European Patent Office
Prior art keywords
cable
electrical
contact elements
output
side contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP19164410.3A
Other languages
German (de)
English (en)
Other versions
EP3528351B1 (fr
Inventor
Martin Huber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MD Elektronik GmbH
Original Assignee
MD Elektronik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MD Elektronik GmbH filed Critical MD Elektronik GmbH
Priority to HUE19164410A priority Critical patent/HUE053319T2/hu
Priority to EP19164410.3A priority patent/EP3528351B1/fr
Publication of EP3528351A1 publication Critical patent/EP3528351A1/fr
Application granted granted Critical
Publication of EP3528351B1 publication Critical patent/EP3528351B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/648Protective earth or shield arrangements on coupling devices, e.g. anti-static shielding  
    • H01R13/658High frequency shielding arrangements, e.g. against EMI [Electro-Magnetic Interference] or EMP [Electro-Magnetic Pulse]
    • H01R13/6591Specific features or arrangements of connection of shield to conductive members
    • H01R13/6592Specific features or arrangements of connection of shield to conductive members the conductive member being a shielded cable
    • H01R13/6593Specific features or arrangements of connection of shield to conductive members the conductive member being a shielded cable the shield being composed of different pieces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R24/00Two-part coupling devices, or either of their cooperating parts, characterised by their overall structure
    • H01R24/38Two-part coupling devices, or either of their cooperating parts, characterised by their overall structure having concentrically or coaxially arranged contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2823Wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/04Pins or blades for co-operation with sockets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/62Means for facilitating engagement or disengagement of coupling parts or for holding them in engagement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/66Structural association with built-in electrical component
    • H01R13/6608Structural association with built-in electrical component with built-in single component
    • H01R13/6633Structural association with built-in electrical component with built-in single component with inductive component, e.g. transformer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/66Structural association with built-in electrical component
    • H01R13/719Structural association with built-in electrical component specially adapted for high frequency, e.g. with filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/66Structural association with built-in electrical component
    • H01R13/719Structural association with built-in electrical component specially adapted for high frequency, e.g. with filters
    • H01R13/7197Structural association with built-in electrical component specially adapted for high frequency, e.g. with filters with filters integral with or fitted onto contacts, e.g. tubular filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R9/00Structural associations of a plurality of mutually-insulated electrical connecting elements, e.g. terminal strips or terminal blocks; Terminals or binding posts mounted upon a base or in a case; Bases therefor
    • H01R9/11End pieces for multiconductor cables supported by the cable and for facilitating connections to other conductive members, e.g. for liquid cooled welding cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/30Fastening or clamping coils, windings, or parts thereof together; Fastening or mounting coils or windings on core, casing, or other support
    • H01F27/303Clamping coils, windings or parts thereof together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/46Bases; Cases
    • H01R13/502Bases; Cases composed of different pieces
    • H01R13/504Bases; Cases composed of different pieces different pieces being moulded, cemented, welded, e.g. ultrasonic, or swaged together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/648Protective earth or shield arrangements on coupling devices, e.g. anti-static shielding  
    • H01R13/658High frequency shielding arrangements, e.g. against EMI [Electro-Magnetic Interference] or EMP [Electro-Magnetic Pulse]
    • H01R13/6591Specific features or arrangements of connection of shield to conductive members
    • H01R13/6594Specific features or arrangements of connection of shield to conductive members the shield being mounted on a PCB and connected to conductive members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/648Protective earth or shield arrangements on coupling devices, e.g. anti-static shielding  
    • H01R13/658High frequency shielding arrangements, e.g. against EMI [Electro-Magnetic Interference] or EMP [Electro-Magnetic Pulse]
    • H01R13/6591Specific features or arrangements of connection of shield to conductive members
    • H01R13/6597Specific features or arrangements of connection of shield to conductive members the conductive member being a contact of the connector

Definitions

  • the invention relates to an electrical connector for a multi-core electrical cable according to the preamble of claim 1.
  • Such an electrical connector comprises at least two input or cable-side electrical contact elements, for example in the form of contact plates, to each of which a wire of the associated electrical cable (via a suitable connection point) is connected, as well as at least two output-side electrical contact elements, for example in the form of contact plates, of which in each case an electrical plug element, for example in the form of an electrically conductive pin, goes off in order to be able to establish an electrical connection with a mating connector.
  • Such connectors are for example from the JP 2001 160463 A and the WO 2006/062629 A1 known.
  • An electrical connector is described with a common mode filter having a choke section and an insulating section with at least two core elements, each core element comprising two legs, and with each axially extending coil associated with the choke section and the insulating section.
  • the invention is based on the problem to improve an electrical connector of the type mentioned in view of the above requirements.
  • the inductive electrical component is an integrally molded part of a carrier body, depart from the two support portions such that they form an annular circumferential structure, wherein the electrical component at least partially by a jacket made of a ferromagnetic material (in the ferritic phase) offset plastic is enclosed.
  • the inductive electrical component may comprise a plurality of turns integrally formed thereon.
  • the windings of the inductive electrical component run in this case, for example. spiral along a plane.
  • the electrical component may e.g. on the one hand (partially) to be encapsulated by the associated ferrite jacket; on the other hand, the jacket can be placed on the electrical component, e.g. by putting together individual jacket parts.
  • an electrical connection part is integrally formed out of the electrical component, which bridges a section of the electrical component and which is fixed cohesively to the output-side contact elements or the cable-side contact elements (as a separate part from the corresponding contact element).
  • an inductive electrical component may be arranged, which comprises two electrical coils, which are each integrally formed on a cable-side contact element and / or an output-side contact element, such that via a respective electrical coil each one cable-side and one output-side contact element (in pairs) are electrically connected to each other.
  • the carrier body can be designed specifically for the reliable absorption of forces, such as torsional forces, and it can serve as a stop and locking means for other components, such as for an outer conductor of the connector.
  • the two support sections can each extend arcuately. Furthermore, the two support sections may each have a free end (spaced from the respective connection section of the support section) and be shaped in such a way that the free ends of the two support sections face each other and face each other (and possibly abut one another).
  • the carrier body may be integrally formed in such a way that its supporting sections can be positioned by bending in such a way that they form an annular (in particular bow-shaped) contour together with the carrier region of the carrier body.
  • the inductive electrical component and the cable-side and output-side contact elements can be jointly surrounded by an encapsulation of an electrically insulating material, in particular of plastic.
  • the encapsulation may have an opening through which the associated ferrite jacket can be applied to the inductive electrical component.
  • the carrier body and / or the overmoulding - are enclosed by an outer conductor (for example an electrically conductive outer tube), e.g. the carrier body to be connected to the outer conductor, in particular form-fitting and / or material fit.
  • an outer conductor for example an electrically conductive outer tube
  • the carrier body is e.g. partially disposed within the space surrounded by the outer conductor, in particular such that the inductive component is located within the space surrounded by the outer conductor.
  • the carrier body may be led out in sections from the outer conductor, for example through slots of the outer conductor.
  • the carrier body may be arranged such that it is led out with its support portions of the outer conductor.
  • the support sections of the carrier body can enclose the outer conductor sections on the outside.
  • the support sections of the carrier body are advantageously bent over only after the carrier body has been arranged within the space enclosed by the outer conductor and the support sections of the carrier body have been guided out of the outer conductor, for example through slots of the outer conductor.
  • the input side (cable side) and the output side electrical contact elements and further the inductive electrical component - and optionally the carrier body - as components of a single, integrally molded component, for example in the form of a punched grid, manufactured and integrated into the connector Service. If necessary, the stamped grid is subdivided into separate components.
  • the figures Figure 1A and 1B show an electrical connector to the input side FIG. 2A shown in cross-section - multi-core electrical cable 1 is connected and the output side electrical connector elements 73, 74 for establishing an electrical connection with a mating connector.
  • the electrical cable 1 is designed in the embodiment as a two-core electrical cable.
  • the two wires 11, 12 of the cable 1 run along the cable longitudinal direction L side by side; they form parallel wires. These are each formed by an electrical line 11a, 12a, for example made of copper, as well as an insulating sheath 11b, 12b surrounding the respective line.
  • the wires 11, 12 of the cable 1 are arranged together in a cable jacket 15 which is defined by a cable jacket 15 running in the cable longitudinal direction L and is surrounded by the cable interior in a ring-shaped manner in cross-section.
  • the cable sheath 15 consists of an electrically insulating material.
  • the cable shield 14 may for example be formed by a braided screen or by a film or by a screen braid in combination with a film.
  • the cable shield 14 serves to shield the cable interior and consists for this purpose of a metallic material, such as aluminum.
  • a cable shield 14 in the form of a foil may be an aluminum foil.
  • a plastic film can be used for this purpose, which, in particular on the inside facing the cable interior, is coated with an electrically conductive material, such as aluminum.
  • Shield braids are used in particular for shielding at comparatively low frequencies and cable screens in the form of films for shielding at comparatively high frequencies (1 MHz to 10 GHz).
  • FIG. 2B schematically shows a possible concrete embodiment of a cable shield 14.
  • the cable shield 14 is wrapped in the form of a film around the cable inside, that the two connecting portions 141, 142 of the film overlap in the circumferential direction.
  • the cable shield 14 can be selectively opened if - for example when assembling the cable - the cable interior is to be accessed.
  • the cable shield 14 may be combined with the cable jacket 15 to form a structural unit, e.g. in that the cable shield 14 is connected to the cable sheath 15 on its outer surface remote from the cable interior, for example via an adhesive.
  • Beilauflitzen 21, 22 are arranged, each extending together with the wires 11, 12 along the cable longitudinal direction L.
  • the Beilauflitzen 21, 22 are electrically conductive and not isolated, and they are in electrical contact with the cable shield 14.
  • Such Beilauflitzen 21, 22 serve to define the cable shield 14 defined to ground potential, and advantageously even if the cable shield 14 is locally damaged, is torn in sections in the case of a film.
  • the battens 21, 22 can additionally contribute to the shielding of the cable interior.
  • a respective Beilauflitze 21, 22 contain a magnetic, in particular a ferromagnetic material. This may be an alloy (based on iron, nickel, cobalt), in particular steel.
  • a respective fillet slit 21, 22 consists entirely of an electrically conductive ferromagnetic material.
  • a respective Beilauflitze 21, 22 at least one consisting of a ferromagnetic material core, which is surrounded by an electrically conductive material.
  • This embodiment makes it possible to optimize, on the one hand, the core of a respective fill-strands 21, 22 with regard to the magnetic properties and the optimization of the outer conductive region of a respective fill-strands 21, 22 with regard to the electrical properties (also with regard to the skin effect at high levels) frequencies).
  • a respective Beilauflitze 21, 22 may be formed approximately by a core of steel, which is coated with copper. Coating can be done by electroplating, for example.
  • Both a respective core 11, 12 and a respective Beilauflitze 21, 22 of the electric cable 1 from the Figures 1A . 1B and 2A consists of a plurality of individual wires regularly.
  • a (connector-side) connecting portion of the cable 1 is released from the cable sheath 15. Separating the battens 21, 22 from the wires 11, 12 of the cable, about those cable components 11, 12; 21, 22 separated from the respective associated connection points on the connector Figure 1A to be able to perform, takes place in the embodiment by the use of magnetic forces. As based on FIG. 2A recognizable, this is - after cutting the cable sheath 15 at the plug-side cable end - a respective Beilauflitze 21, 22 at the corresponding cable end a magnet M approximated.
  • a respective fillet slit 21, 22 contains a material with such magnetic properties that the slits 21, 22 can be separated from the strands 11, 12 of the cable 1 under the influence of magnetic forces. That is, the magnetic properties of the fillets 21, 22 must be different from those of a respective wire 11, 12.
  • a support crimp 16 ie a support sleeve fastened by crimping, is applied, which (optionally) can be surrounded by a potting 18, for example in the form of a ferrite-core-filter encapsulation.
  • a cable-side (ferrite core) filter acts here as a jacket wave filter, in particular for the suppression of sheath waves in the form of high-frequency common mode noise, which are caused for example by electrical equipment and propagate along the cable 1.
  • the filter thus serves to eliminate or reduce common-mode noise which occurs in phase at the two parallel wires 11, 12 or the electrical leads 11a, 12a and which are caused in particular by sheath waves in the present example.
  • the adjoining the plug-side end of the cable 1 connector comprises an outer conductor 8, in the embodiment in the form of an outer tube, which consists of an electrically conductive material and which surrounds the plug in cross-section annular or concrete in the exemplary embodiment annular.
  • the outer conductor 8 extends along a longitudinal direction (cable longitudinal direction L), that is, axially, from a first, cable-side end 8a to a second, output-side end 8b. It may be connected to the support crimp 16, e.g. cohesively (by welding).
  • the outer conductor 8 has a pair of first slots 81 and a pair of second slots 82.
  • the slots 81 and 82 of a respective pair of slots are arranged in the present case in each case opposite one another on the outer conductor 8.
  • the slots 81 of the first pair of slots are arranged offset relative to slots 82 of the second pair of slots in the embodiment along the circumferential direction of the outer conductor 8 in each case by 90 °.
  • the slots 81 and 82 extend in the axial direction a of the connector (and thus along the cable longitudinal direction L) in each case up to the cable-side axial end of the outer conductor 8 (and form there an open end of the respective slot).
  • the components of the connector arranged within the interior of the connector enclosed by the outer conductor 8 comprise on the input side (i.e., on the cable side) first, cable-side electrical contact elements 31, 32, in the form of contact plates.
  • the connector On the output side (and spaced from the cable-side contact elements 31, 32 in the axial direction a), the connector (in the space enclosed by the outer conductor 8 interior) second, output-side contact elements 71, 72, to each of which a male member 73 and 74, in this case Form of a plug pin, is formed, via which the connector is electrically connected to a mating connector.
  • the plug elements 73, 74 are in the exemplary embodiment in the axial direction of a from the associated output-side contact element 71 and 72 from.
  • the term "electrical component” should explicitly include electronic components and in particular semiconducting components; furthermore active electrical components as well as passive electrical components.
  • the electrical component may be a passive electrical filter, such as e.g. a common mode filter, act.
  • the electrical component 5 has (as an inductive component) two coils 51, 52. It is on the one hand integrally formed with the cable-side contact elements 31, 32 and on the other hand electrically connected via connecting parts 53, 54 with the output-side contact elements 71, 72. This means that the wires 11, 12 of the electric cable 1 are each electrically connected via the electrical component 5 to the plug elements 73, 74 of the connector. Electrical signals which are supplied to the connector via the wires 11, 12 of the cable 1, thus pass through the electrical component 5, before they are output via the connector elements 73, 74 to a mating connector and thus to a mating connector associated electrical assembly.
  • the cable-side (input-side) contact elements 31, 32 on the one hand be electrically connected in pairs to the output-side contact elements 71, 72 on the other hand. That is, each of the cable-side contact elements 31, 32 is connected via the electrical component 5 with exactly one of the output-side contact elements 71, 72, as described below with reference to FIGS. 4A and 4B will be explained in more detail.
  • an electrical component 5 designed as a common-mode filter common-mode interference can be eliminated or reduced with such a configuration, which occur at the two parallel cores 11, 12 or the electrical leads 11a, 12a (simultaneously).
  • the (optional) support body 4 is in the present case designed as a support bracket. Of connecting portions 41, 42 of the support body 4 is in each case a support portion 43 and 44 of the support body 4 from. This extends curved (arcuate) in the circumferential direction along the outer conductor 8. The two support portions 43, 44 of the support body 4 form an annular contour.
  • the carrier body 4 penetrates in each case one of the first slots 81 of the outer conductor 8 in the radial direction.
  • the carrier body 4 is led out radially (each through one of the first slots 81) out of the interior of the outer conductor 8.
  • the support sections 43, 44 each extend arcuately in the circumferential direction along the outer wall of the outer conductor 8. Together, the two support sections 43, 44 surround the outer conductor 8 in the circumferential direction over an angle of approximately 180 °.
  • the support sections 43, 44 of the carrier body 4 each have a free end 43a, 44a, which faces away from the connecting section 41 or 42, on which the respective support section 43 or 44 leaves the carrier body 4.
  • the free ends 43a, 44a of the support portions 43, 44 face each other and face each other to form the described annular contour.
  • the free ends 43a, 44a may also rest against one another.
  • the Beilauflitzen 21, 22 departing from the electric cable 1 are arranged with their respective free end portion 21a and 22a, so that the second slots 82 are partially closed by the Beilauflitzen 21, 22.
  • Beilauflitzen 21, 22 may be cohesively, within the respective second slot 82, for example, by soldering or welding, set. Further details will be given below on the basis of FIGS. 3A and 3B be explained.
  • a potting 85 (potting compound), for example in the form of an injection-molded part. In the present case, this lies on the inner side of the outer conductor 8 facing the plug interior and, together with the outer conductor 8, encloses the said components 31-34, 4, 5, 61-64 and 71-74 of the plug connector.
  • the potting 85 has channels 86 in which the free end portions 21a, 22a of the Beilauflitzen 21, 22 are received and guided.
  • the carrier body 4 - as a (multi) function bracket - on the connector still receive a plurality of other functions.
  • the carrier body 4 in the present case serves as a positioning means for positioning the outer conductor 8 on the connector.
  • the positioning of the outer conductor 8 relative to the support body 4 takes place concretely in such a way that the outer conductor 8 is pushed with its cable side (ie at the respective end of the electrical cable 1 facing end 81 a) open first slots 81 on the support body 4, more precisely on the Connecting portions 41, 42 of the support body 4 until the closed end 81b of the respective slot 81 opposite to the open cable-side end 81a engages with the support body 4, as in FIG FIG. 1B shown. That is, the closed ends 81b of the slots 81 serve as stops for positioning the outer conductor 8 on the carrier body 4 (along the cable longitudinal direction L).
  • the outer conductor 8 (as a result of the first slots 81) is arranged in a form-fitting manner on the carrier body 4.
  • the outer conductor 8 can also be cohesively, e.g. by welding, be connected to the support body 4.
  • a respective first slot 81 of the outer conductor 8 may be provided with an insertion phase in order to avoid damaging the outer conductor 8 when pushed onto the carrier body 4.
  • the support body 4 each have axially extending extensions 46, which cover the first slots 81 (sections), see. FIG. 1B when the carrier body 4 and the outer conductor 8 are aligned and positioned as intended.
  • Such extensions 46 can also serve as guide means for guiding the outer conductor 8 when pushed onto the carrier body 4.
  • the extensions can act as an EMC labyrinth, so not only reduce the free line of sight, but also counteract the penetration of electromagnetic waves in the space inside the outer conductor 8.
  • support body 4 functions of the support body 4 are in the embodiment in the tension and pressure relief of the arranged in the interior of the outer conductor 8 components 31-34, 4, 5, 71-74 of the connector in the effect of forces / torques on the outer conductor 8 and in the train - and pressure relief of the Beilauflitzen 21, 22, in particular under the Effect of torsional forces (along the circumferential direction of the outer conductor 8). This makes it possible to prevent shearing of the auxiliary slits 21, 22.
  • a coding housing can also be positioned and locked. Furthermore, for AC decoupling (by means of a capacitor) between the carrier body 4 and the contact elements 31, 32; 71, 72 a capacitor can be arranged.
  • FIGS. 3A and 3B show a longitudinal section ( FIG. 3A ) and a cross section ( FIG. 3B ) through the electrical connector from the Figures 1A and 1B ,
  • FIG. 3B it is shown how torsional forces T1 acting on the outer conductor 8 or on the potting 85 are introduced into the carrier body 4, which in the cross-sectional representation of FIG FIG. 3B is exemplified by the extensions 46. Furthermore, it is shown how torsional forces T2 acting on the follower slits 21, 22 are introduced into the outer conductor 8 (from which they can in turn be discharged into the carrier body 4). As a result, a pressure and strain relief of the Beilauflitzen 21, 22 can be achieved under the action of torsional forces, which in particular prevents shearing the Beilauflitzen.
  • the carrier body 4 here represented in particular by the axially extended lateral extensions 46 (in two spatial planes), can serve as guide aid for sliding and positioning the outer conductor 8.
  • FIG. 3A Specifically in FIG. 3A are also those locations of the second slots 82, namely in the embodiment end portions 82a in the form of beveled areas, recognizable, in the vicinity of a respective Beilauflitze 21, 22 (with their respective free end portion 21a, 22a) is fixed to the outer conductor 8, for example, materially by welding, soldering, Sticking, etc., on a support formed by the respective end portion 82 a (platform 82 b).
  • This further ensures that the ground connection of the cable shield on the battens 21, 22 to the outer conductor 8 remains stable over time and in particular the contact resistance is constant in time.
  • the tapered end portions 82a and the pads 82b formed thereby continue to serve to transmit torsional forces.
  • the beveled end portions 82a and the pads 82b form additional guide aids when sliding the outer conductor 8 on the potting 85th
  • FIG. 4A shows an exploded view of the electrical connector from the Figures 1A and 1B together with the cable side immediately adjoining components, and that before the bending of the support portions 43, 44 of the support body 4. (This is formed as shown in FIG Figures 1A and 1B described.)
  • the carrier body 4 may be connected to the electrical component, which in FIG. 4A for reasons of clarity is not shown in detail, be summarized to form an integrally molded assembly, as further below with reference to FIGS. 5A to 8 will be explained in more detail.
  • Cable side is in FIG. 4A the electrical cable 1 with the wires 11, 12 and their respective core (electrical line 11a and 12a) and with the Beilauflitzen 21, 22 and with the cable sheath 15 shown.
  • the electrical connector facing the end of the electric cable 1 is provided with the already described Stauercrimp 16, on which in turn a potting 18 is applied.
  • the connector of the outer conductor 8 is surrounded with the first and second slots 81 and 82, wherein the space between the support body 4 - with the exception of outwardly guided support portions 43, 44 - and the outer conductor 8 is filled by a potting 85.
  • the assembly of the connector including the connection of the electric cable 1, can be described as follows: First, the electrical cable 1 is provided and provided with the Stitzcrimp 16 at its free end, to which it is to be connected to the associated electrical connector. At the electrical cable 1 are already Beilauflitzen 21, 22 have been separated, as based on the FIGS. 2A and 2B described.
  • the stamped grid is provided, from which the carrier body 4 and the cable-side and output-side contact elements 31, 32; 71, 72 together with the other associated components 33, 34; 73, 74 are formed.
  • the stripped free ends of the wires 11, 12 of the electric cable 1, at each of which the associated core in the form of an electrical line 11a, 12a exposed, are each with a cable-side contact element 31, 32 via the receptacle 33, 34 in contact or in Intervention brought.
  • An additional connection is preferably cohesively on the respective contact or engagement region, for example by soldering or welding.
  • the components defining the interior of the electrical connector namely the carrier body 4 and the contact elements 31, 32; 71, 72 with the other associated components 33, 34; 73, 74 and arranged on the support body 4 electrical component 5 including the associated wires are then provided by encapsulation with the insulating potting 85 to form the channels 86.
  • the outer conductor 8 is pushed (by means of the first slots 81) over the aforementioned components of the electrical connector, wherein the outer conductor 8 is guided by the carrier body 4.
  • the Beilauflitzen 21, 22 with their free end portions 21a, 22a compare FIGS. 3A and 3B , Introduced into the provided second slots 82 of the outer conductor 8 and there cohesively, for example by soldering, welding or gluing, set.
  • the support portions 43, 44 of the support body 4 to form the annular configuration of the Figures 1A and 1B bent over, as in FIG. 4B shown, and optionally also cohesively, for example by welding, fixed to the outer conductor 8.
  • the transition between the electrical cable 1 and the connector is provided with the encapsulation 18, which encloses in particular the support crimp 16.
  • FIGS. 5A to 5E show the essential components of an electrical connector of the above with reference to the FIGS. 1A to 4B described type, in particular, the formation of the electrical component 5 is shown in detail.
  • FIG. 5A illustrated electrical component 5 is formed as an inductive electrical component.
  • This has windings in the form of electrical coils 51, 52, which are designed in one piece with the cable-side contact elements 31, 32, that is, integrally formed thereon.
  • the inductive electrical component 5 in the embodiment according to FIG. 5A two each formed by a plurality of windings coils 51 and 52, which are integrally formed on one of the cable-side contact elements 31, 32, respectively.
  • the coils 51, 52 each extend along a (common) plane and are spirally designed (wound).
  • the two coils 51, 52 have two coil sections 51a, 52a facing each other and extending side by side.
  • the windings of the coils 51, 52 may, for example, each have been produced by laser cutting from a base element integrally formed on the cable-side contact elements 31, 32, as described below with reference to FIGS FIGS. 7A to 7C will be described.
  • a respective coil 51, 52 further has an (inner) connection part 53 or 54 (in the form of a respective contact tongue), via which an electrical connection with the output-side contact elements 71, 72 can be produced.
  • an electrical connection between a coil 51 or 52 and an associated output-side contact element 71 or 72 is to be produced by means of each of the two connection parts 53, 54.
  • a cable-side electrical contact element 31 or 32 is electrically connected via a coil 51 or 52 to precisely one output-side electrical contact element 71, 72.
  • the cable-side and output-side contact elements 31, 32; 71,72 connected via a respective coil 51 and 52 in pairs.
  • the inductive electrical component 5 and the cable-side electrical contact elements 31, 32 and the output-side electrical contact elements 71, 72 (in the embodiment, in each case with the associated connection points 33, 34 or plug elements 73, 74) in this case form part of an integrally formed stamped grid.
  • the stamped grid comprises a plurality of separation points S, in the exemplary embodiment in the form of webs on which the material of the stamped grid can be severed in each case as intended, in order to initially separate interconnected components of the stamped grid from one another. At which points the punched grid is severed in each case in order to separate the components connected thereto depends on which circuit diagram is to be produced in an individual case with the stamped grid.
  • the connections of the output-side connection elements 71, 72 with the other components of the stamped grid can be connected to the latter corresponding separation points S are severed.
  • FIG. 5A has the illustrated arrangement in addition to the inductive electrical component 5 and the associated cable-side and output-side contact elements 31, 32; 71, 72 further comprises a support body 4 integrally formed together with the electrical component 5 and the cable-side and output-side contact elements 31, 32; 71, 72 is formed.
  • the carrier body 4 in particular comprises support sections 43, 44, which are bent over to produce their final configuration.
  • the support portions 43, 44 are in the embodiment of FIG. 5A integrally formed on the cable-side contact elements 31, 32 in each case via a connecting portion 41 and 42, respectively.
  • axial extended extensions 46 of the carrier body 4 (with lateral angled portions 46a) are also integrally formed thereon.
  • the electrical component 5 and the cable-side and output-side electrical contact elements 31, 32; 71, 72 are made of an electrically conductive material. This can thus also apply to the stamped grid as a whole or to its other components, in particular the carrier body 4.
  • the electrical cable 1 to the cable-side contact elements 31, 32 connected.
  • the isolated free end of a respective electrical line 11a, 12a of the wires 11, 12 of the cable 1 is applied to the associated connection point 33, 34 of the cable 1 and there cohesively, for example by welding.
  • the Beilauflitzen 21, 22 of the electric cable 1 are initially still free.
  • connection part 53, 54 of a respective coil 51, 52 is bent in such a way that it bridges in each case a section of the corresponding coil 51, 52 and electrically contacts the respectively assigned output-side contact element 71, 72 FIG. 6B .
  • the definition of a respective connection part 53, 54 on the associated output-side contact element 71 or 72 can in turn be made materially, in particular by welding.
  • a further step is after FIG. 6C the at least partially formed by the inductive electrical component 5, by the cable-side electrical contact elements 31, 32 (with the connection points 33, 34) and by the output-side contact elements 71, 72 (with the connector elements 73, 74) and optionally by the support body 4 to form a casting 85 with an (electrically) insulating material encapsulated.
  • the potting 85 including its channels 86, corresponds essentially to that already described FIG. 1B explained potting; he points, however, according to FIG. 6C additionally opening areas 87, over which, as in FIG. 6D a ferrite jacket 9 can be introduced, which surrounds or surrounds the two coils 51, 52 of the electrical component 5 partially.
  • the ferrite jacket 9 encloses the mutually facing, juxtaposed sections 51a, 52a of the two coils 51, 52 (tube-like).
  • the ferrite jacket 9 is formed in the embodiment by a ferromagnetic material (in the ferritic phase) offset plastic.
  • the ferrite jacket 9 can be produced on the one hand by encapsulation of the juxtaposed sections of the coils 51, 52; or individual parts of the ferrite jacket 9, for example two shell halves, are inserted through the opening regions 87 and fitted together in such a way that they surround the corresponding sections 51a, 52a of the coils 51, 52.
  • a (tubular) outer conductor 8 is pushed over the assembly until it comes to the stop with the carrier body 4, as described above with reference to FIGS. 4A and 4B has been described in detail.
  • the insertion of the auxiliary slits 21, 22 into the associated second slits 82 of the outer conductor 8 takes place; and further, the support portions 43, 44 of the support body 4 are bent such that they surround the outer conductor 8 at its outer periphery, compare FIG. 6F , Beilauflitzen 21, 22 and / or the support portions 43, 44 can also be attached to the outer conductor 8, for example by (simultaneous) welding.
  • a ferrite are sprayed on the outer conductor 8 and / or on exposed line sections.
  • FIGS. 7A to 7D illustrate the preparation of the coils 51, 52, starting from a stamped grid, which in each case at the respective points first one (plate-like, integrally with each cable-side contact element 31 or 32 shaped) base element 5a and 5b, as in FIG. 7A shown.
  • a respective coil 51, 52 is produced from the corresponding base element 5a or 5b by laser cutting, wherein in the central opening of a respective coil 51, 52 also an electrical connection part 53 or 54 is formed.
  • the defined flipping of the connecting parts 53, 54, so that they each contact exactly one associated output-side contact element 73 or 74, is based on the Figures 7D and 8th shown in more detail.
  • a holder H with clamping effect
  • two bending dies B1, B2 are used, of which the one, first bending punch B1 acts transversely to the extension direction of the connecting part 53, 54 on the latter, in order to push this out of the plane of the respective coil 51, 52, and of which the other, second bending punch B2 parallel to the plane of the respective coil 51, 52 acts on the associated connection part 53 or 54, in order to this zugeordente output side contact element 71 or 72 to move.
  • a bending jaw B3 is used to ensure, during the action of the bending dies B1, B2, that the connecting part 53, 54 bridges the section of the respective coil 51, 52 to be bridged, without touching it. Subsequently, the connection part (eg 53) is pressed by means of a welding mechanism M against the associated output-side contact element (73) and welded thereto.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Details Of Connecting Devices For Male And Female Coupling (AREA)
EP19164410.3A 2017-02-17 2017-02-17 Connecteur électrique pour un câble électrique multi-fils Active EP3528351B1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
HUE19164410A HUE053319T2 (hu) 2017-02-17 2017-02-17 Villamos dugaszos csatlakozó többeres villamos kábelhez
EP19164410.3A EP3528351B1 (fr) 2017-02-17 2017-02-17 Connecteur électrique pour un câble électrique multi-fils

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP17156695.3A EP3364507B1 (fr) 2017-02-17 2017-02-17 Connecteur électrique pour un câble électrique multi-fils
EP19164410.3A EP3528351B1 (fr) 2017-02-17 2017-02-17 Connecteur électrique pour un câble électrique multi-fils

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
EP17156695.3A Division EP3364507B1 (fr) 2017-02-17 2017-02-17 Connecteur électrique pour un câble électrique multi-fils
EP17156695.3A Division-Into EP3364507B1 (fr) 2017-02-17 2017-02-17 Connecteur électrique pour un câble électrique multi-fils

Publications (2)

Publication Number Publication Date
EP3528351A1 true EP3528351A1 (fr) 2019-08-21
EP3528351B1 EP3528351B1 (fr) 2020-11-11

Family

ID=58057036

Family Applications (2)

Application Number Title Priority Date Filing Date
EP19164410.3A Active EP3528351B1 (fr) 2017-02-17 2017-02-17 Connecteur électrique pour un câble électrique multi-fils
EP17156695.3A Active EP3364507B1 (fr) 2017-02-17 2017-02-17 Connecteur électrique pour un câble électrique multi-fils

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP17156695.3A Active EP3364507B1 (fr) 2017-02-17 2017-02-17 Connecteur électrique pour un câble électrique multi-fils

Country Status (6)

Country Link
US (1) US10320127B2 (fr)
EP (2) EP3528351B1 (fr)
CN (1) CN108462005B (fr)
DE (1) DE102017220944A1 (fr)
HU (2) HUE051493T2 (fr)
MX (1) MX2018001953A (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3327875B1 (fr) 2016-11-23 2019-10-09 MD Elektronik GmbH Connecteur électrique pour un câble électrique multi-fils
CN112531883B (zh) * 2020-11-25 2023-05-12 贵州电网有限责任公司 一种新型模块化ftu
EP4322341A1 (fr) * 2022-08-12 2024-02-14 Rosenberger Hochfrequenztechnik GmbH & Co. KG Dispositif de connexion permettant de connecter de manière électrique un abonné du bus à un système différentiel de bus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997047083A1 (fr) 1996-06-03 1997-12-11 Amphenol Corporation Combinaison de filtre de mode commun et de filtre/connecteur
JP2001160463A (ja) 1999-12-06 2001-06-12 Tdk Corp コネクタ
WO2005069445A1 (fr) 2004-01-07 2005-07-28 Amphenol-Tuchel Electronics Gmbh Connecteur electrique avec fonction de ressort de rappel/auto-rejet
WO2006062629A1 (fr) 2004-12-07 2006-06-15 Commscope Inc. Of North Carolina Jack de communication avec circuit imprimé équipé de conducteurs à auto-induction

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5833496A (en) * 1996-02-22 1998-11-10 Omega Engineering, Inc. Connector with protection from electromagnetic emissions
US6585540B2 (en) * 2000-12-06 2003-07-01 Pulse Engineering Shielded microelectronic connector assembly and method of manufacturing
US6837732B2 (en) 2002-06-28 2005-01-04 Amphenol-Tuchel Electronics Gmbh Filtered electrical connector with ferrite block combinations and filter assembly therefor
US20040002253A1 (en) 2002-06-28 2004-01-01 Slobodan Pavlovic Electrical connector with spring back/self rejection feature
US6767240B2 (en) 2002-06-28 2004-07-27 Amphenol-Tuchel Electronics Gmbh Electrical connector with cable insulation strain relief feature
US6623275B1 (en) 2002-06-28 2003-09-23 Amphenol-Tuchel Electronics Gmbh Filtered electrical connector with adjustable performance using combined multi-aperture ferrite cores
US6799983B2 (en) 2002-06-28 2004-10-05 Amphenol-Tuchel Electronics Gmbh Electrical connector with static discharge feature
TW200839807A (en) * 2007-03-23 2008-10-01 Delta Electronics Inc Embedded inductor and manufacturing method thereof
CN102460852A (zh) * 2009-04-28 2012-05-16 法尔科姆斯有限公司 连接器
CN202840138U (zh) * 2012-04-17 2013-03-27 良维科技股份有限公司 滤波插头结构
US8707547B2 (en) * 2012-07-12 2014-04-29 Inpaq Technology Co., Ltd. Method for fabricating a lead-frameless power inductor
US9744703B2 (en) * 2014-03-05 2017-08-29 Standard Cable USA, Inc. Method of manufacture insulating electrical plugs

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997047083A1 (fr) 1996-06-03 1997-12-11 Amphenol Corporation Combinaison de filtre de mode commun et de filtre/connecteur
JP2001160463A (ja) 1999-12-06 2001-06-12 Tdk Corp コネクタ
WO2005069445A1 (fr) 2004-01-07 2005-07-28 Amphenol-Tuchel Electronics Gmbh Connecteur electrique avec fonction de ressort de rappel/auto-rejet
WO2006062629A1 (fr) 2004-12-07 2006-06-15 Commscope Inc. Of North Carolina Jack de communication avec circuit imprimé équipé de conducteurs à auto-induction

Also Published As

Publication number Publication date
EP3364507A1 (fr) 2018-08-22
HUE053319T2 (hu) 2021-06-28
MX2018001953A (es) 2018-11-09
EP3528351B1 (fr) 2020-11-11
DE102017220944A1 (de) 2018-08-23
US20180241157A1 (en) 2018-08-23
CN108462005A (zh) 2018-08-28
CN108462005B (zh) 2020-11-20
EP3364507B1 (fr) 2020-05-20
US10320127B2 (en) 2019-06-11
HUE051493T2 (hu) 2021-03-01

Similar Documents

Publication Publication Date Title
EP3251180B1 (fr) Ensemble connecteur enfichable à manchon compensateur
EP3327868B1 (fr) Connecteur électrique pour un câble électrique multi-fils
DE102017122048A1 (de) Elektrische Kontaktvorrichtung, elektrische Verbindungseinrichtung, sowie Verfahren zum Konfektionieren eines elektrischen Kabels
DE102012201565A1 (de) Verbinderanordnung
WO2016120006A1 (fr) Dispositif connecteur avec partie formant manchon
EP2523275B1 (fr) Câble blindé et dispositif de fabrication d'un tel câble
EP2577806A1 (fr) Dispositif de connexion de câble et procédé pour connecter un câble à ce dernier
EP3327875B1 (fr) Connecteur électrique pour un câble électrique multi-fils
EP3021420B1 (fr) Câble blindé multi-fils et procédé de fabrication d'un tel câble
EP3364507B1 (fr) Connecteur électrique pour un câble électrique multi-fils
EP3327869B1 (fr) Connecteur électrique pour un câble électrique multi-fils
EP3837741B1 (fr) Ensemble de câble
DE102020117663A1 (de) Außenleiterkontaktelement, Winkelsteckverbinder und Verfahren zur Herstellung eines Winkelsteckverbinders
EP3467960B1 (fr) Connecteur à fiches électrique
EP3327876B1 (fr) Connecteur électrique pour un câble électrique multi-fils
DE102011077886B4 (de) Verfahren zur Leitungskonfektionierung
EP3211723A1 (fr) Connecteur avec cable multi-brins
DE112019006501T5 (de) Anschlussmodul und Verbinder
WO2019214775A1 (fr) Connecteur insérable électrique pour un câble électrique multiconducteur
DE102020127124A1 (de) Elektrisch leitende Verbindungsanordnung
EP1460730B1 (fr) Connecteur électrique audio pour un câble blindé
WO2019052823A1 (fr) Contact à la masse dans le cas de conducteurs à paire torsadée, blindés

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AC Divisional application: reference to earlier application

Ref document number: 3364507

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190902

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200804

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AC Divisional application: reference to earlier application

Ref document number: 3364507

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1334347

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017008212

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20201111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210311

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210211

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210311

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210211

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E053319

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017008212

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

26N No opposition filed

Effective date: 20210812

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210217

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210217

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210311

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1334347

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: HU

Payment date: 20240222

Year of fee payment: 8

Ref country code: DE

Payment date: 20240219

Year of fee payment: 8

Ref country code: CZ

Payment date: 20240209

Year of fee payment: 8

Ref country code: GB

Payment date: 20240219

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240222

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111