EP3526928A1 - Verfahren zur datenübertragung zwischen einem feldgerät der automatisierungstechnik und einer kommunikationsbox - Google Patents

Verfahren zur datenübertragung zwischen einem feldgerät der automatisierungstechnik und einer kommunikationsbox

Info

Publication number
EP3526928A1
EP3526928A1 EP17761235.5A EP17761235A EP3526928A1 EP 3526928 A1 EP3526928 A1 EP 3526928A1 EP 17761235 A EP17761235 A EP 17761235A EP 3526928 A1 EP3526928 A1 EP 3526928A1
Authority
EP
European Patent Office
Prior art keywords
field device
communication signal
communication
current
supply voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP17761235.5A
Other languages
English (en)
French (fr)
Inventor
Simon Gerwig
Harald SCHÄUBLE
Wolfgang Brutschin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Endress and Hauser SE and Co KG
Original Assignee
Endress and Hauser SE and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Endress and Hauser SE and Co KG filed Critical Endress and Hauser SE and Co KG
Publication of EP3526928A1 publication Critical patent/EP3526928A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/10Current supply arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/54Systems for transmission via power distribution lines
    • H04B3/542Systems for transmission via power distribution lines the information being in digital form
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/54Systems for transmission via power distribution lines
    • H04B3/548Systems for transmission via power distribution lines the power on the line being DC
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L12/40006Architecture of a communication node
    • H04L12/40045Details regarding the feeding of energy to the node from the bus

Definitions

  • the invention relates to a method for data transmission between a field device of automation technology and a communication box, a field device of automation technology and a communication box.
  • Flowmeters, pressure and temperature measuring devices, pH redox potential measuring devices, conductivity measuring devices, etc. which record the corresponding process variables level, flow, pressure, temperature, pH or conductivity.
  • actuators such as valves or pumps, via which the flow of a liquid in a pipe section or the level can be changed in a container.
  • Such field devices have for this purpose an analog current or voltage output, for example a 4 to 20 mA current output or a 0 to 10 V voltage output. Only the transmission of the process variable or the measured value is possible via this current or voltage output.
  • the HART protocol for example, is used.
  • the field devices can be very flexibly parameterized and put into operation or read out additional determined and stored measured values or data.
  • the HART protocol enables bidirectional communication even in a potentially explosive environment via a point-to-point transmission of at least two subscribers.
  • an FSK method Frequency Shift Keying
  • Differentiating the binary states uses different frequencies of a sinusoidal signal (eg Bell 202 standard: “0" 2200 Hz, "1" 1200 Hz).
  • the discretized and digitized data are provided by a special modem, which is in each case Participants must be present in a Hart protocol using the FSK method transmitted and received.
  • the components used for realizing a HART communication require a relatively large amount of space and, moreover, are also relatively expensive, which is undesirable particularly in the case of field devices that are inexpensive to produce.
  • the object is achieved by a method for data transmission between a field device of automation technology and a communication box, wherein the communication box is connected to the field device via a two-wire line and via the two-wire line, a supply voltage is applied to the field device to provide the field device with energy, the method includes the following steps:
  • a method is proposed in which data can be communicated via the current consumption of the field device and its supply voltage.
  • a communication box is introduced into a two-wire line between the field device and a supply unit.
  • the communication box is
  • the invention modulates a request in the form of a first communication signal to the supply voltage and demodulates the request in the field device.
  • the response in the form of a second communication signal is modulated onto an output current of the field device and this is demodulated again in the communication box.
  • the data to be communicated are modulated one to one, ie without change, to the supply voltage and not, as with others Communication method, such as HART, in which Frequency Shift Keying (Frequency Shift Keying) occurs, usually, for the purpose of data transmission changed.
  • the proposed communication method can be used, for example, in the production for programming the field device and during the final adjustment and the so-called load check. Furthermore, it is also possible via the communication method to connect the communication box to the field device in a data-conducting manner and to connect the communication box with further functionalities, e.g. Radio communications,
  • Supply voltage is varied such that the supply voltage having the first communication signal.
  • Output current is varied such that the output current is the second
  • An advantageous embodiment of the invention provides that for the demodulation of the first communication signal from the supply voltage DC voltage components of the supply voltage are filtered out by the field device.
  • An advantageous embodiment of the invention provides that the first and / or the second communication signal are generated according to a UART protocol, SPI or an MC protocol.
  • a field device of automation technology which can be connected to a two-wire line for power supply, comprising: a demodulation unit having a capacitance, wherein the capacitance separates a first communication signal, which is modulated onto the supply voltage of the field device, from the supply voltage, so that the first communication signal is available to the field device;
  • Field device is transferable.
  • An advantageous embodiment of the field device according to the invention provides that the demodulation unit and / or the modulation unit has no modem, in particular no FSK modem, or to have to separate the first communication signal from the supply voltage and / or to modulate the second communication signal.
  • a further advantageous embodiment of the field device according to the invention provides that the demodulation unit consists of the capacitance. Because of that
  • Demodulation unit consists solely of a capacity, can be the
  • Integrate demodulation unit particularly simple and space-saving in the field device or realize.
  • a further advantageous embodiment of the field device according to the invention provides that the field device is adapted to transmit a process variable via a loop current, in particular a 4 to 20mA loop current, wherein a means for current regulation, in particular a current regulator, sets the loop current according to the process variable and the current-regulating means is part of the modulation unit and further configured to modulate the second communication signal to the loop current so that the loop current comprises the second communication signal.
  • a means for current regulation in particular a current regulator
  • An alternative embodiment of the field device according to the invention provides that the field device is adapted to transmit a process variable via a voltage signal, in particular a 0 to 10 V voltage signal, wherein the
  • Modulation unit is designed such that a first terminal with a second connection for the two-wire line via a means for current regulation, which
  • a communication box for data transmission with a field device of automation technology wherein the communication box can be connected to the field device via a two-wire line, and has the following:
  • a modulation unit that is configured to perform a voltage modulation of a voltage signal of the two-wire line, so that the voltage signal of the two-wire line to a first communication signal to
  • a demodulation unit configured to generate a current signal of
  • a system of automation technology which is a field device according to one of the previously described embodiment, a communication box according to the previously described embodiment and a
  • Two-wire line which connects the field device with the communication box and over which the field device is supplied with energy has.
  • the communication box has at least one further functionality in order to also equip the field device with this functionality, the communication box exchanging data with the field device according to the method described above in relation to the further functionality Provide that the communication box is formed on the at least one further functionality to a connection of the communication box via a radio protocol or a
  • Field device exchanges data related to the radio protocol or the wired protocol.
  • FIG. 1 shows a schematic representation of the system according to the invention, comprising a field device, a communication box and a two-wire line.
  • FIG. 1 shows a schematic representation of the system 1 according to the invention, which is a field device 2 of automation technology, a communication box 4 for
  • the communication box 4 and the field device 2 are connected in a data-conducting manner via a two-wire line 3.
  • the field device 2 is supplied with a supply voltage Uv, for example.
  • a power adapter which is not shown in Fig. 1.
  • About the two-wire line 3 is next to the
  • Field device 2 is detected, to one, also not shown in Fig. 1, higher-level unit, for example.
  • a PLC instead. It goes without saying that in the case that the field device 2 acts as an actuator, via the two-wire line 3, a transmission of the
  • Control value from the parent unit to the field device 2 takes place.
  • the communication box 4 For the transmission of data going beyond that, for example for parameterization, between the communication box 4 and the field device 2, the communication box 4 has the following: A first terminal pair 13 for input-side connection of the two-wire line 3, so that the communication box 4 via the two-wire line 3 to a supply unit, such as a transmitter power supply, not shown in Fig. 1, is connected.
  • a supply unit such as a transmitter power supply, not shown in Fig. 1, is connected.
  • a modulation unit 11 which is arranged between the first and the second terminal pair 13, 14 in the communication box 4.
  • the modulation unit 11 is set up such that a voltage modulation or an amplitude modulation of a voltage signal of the two-wire line 3 takes place in accordance with a first communication signal 5 for data transmission.
  • This can, for example, by one or more diodes, which has a
  • Switch in particular a controllable field effect transistor, short-circuited, be realized.
  • the controllable switch and the diode or diodes the first communication signal to the voltage signal of
  • the voltage signal is thus available to the field device 2 as a supply voltage at the second connection terminal pair 14 of the communication box 4, so that the first communication signal 5 is transmitted via the two-wire line 3 to the field device 2. That by the
  • a demodulation unit 12 which is arranged between the first and the second terminal pair 13, 14 in the communication box 4. The demodulation unit 12 is set up so that one of the second
  • Terminal pair 14 connected two-wire line 3 derived current signal is demodulated.
  • the demodulation unit 12 preferably comprises a resistor, which is arranged between the first and the second terminal pair such that the current signal flows through the resistor, and an operational amplifier, which consists of a through the
  • Resistance generated voltage drop generates the second communication signal.
  • Communication signal 6 is shown by way of example in FIG. 1 by a "1010" signal.
  • the communication box 4 can also be equipped with a different functionality than the parameterization.
  • it can have a radio module, so that data can be exchanged wirelessly with another device via the radio module of the communication box 4 and the data between the communication box and the field device wired, according to the inventive method, be replaced.
  • a corresponding field device 2 For transmission of the additional data, a corresponding field device 2 has the following:
  • the field device 2 is supplied with energy.
  • the field device 2 is supplied with a voltage of 24 V.
  • Communication box 4 on the supply voltage V s modulated first communication signal 5 demodulates or separates.
  • the capacitor 8 can be formed, for example, by a capacitor or a plurality of capacitors connected in series and / or in parallel.
  • the first communication signal 5 is thus available after the capacitor 8 without a modem, in particular without a FSK modem, and can, for example, by a microcontroller
  • 1 shows by way of example the simplest case in which the demodulation unit 7 requires only a single capacitance 8, for example in the form of a capacitor.
  • the demodulation unit 7 requires only a single capacitance 8, for example in the form of a capacitor.
  • a modulation unit 9 which is adapted to a second
  • Output current I A of the field device 2 to the communication box 4 is transferable.
  • the modulation unit 9 performs a current modulation of
  • Output current l A or an amplitude modulation of the output current is designed as a two-wire or two-wire field device according to the 4 to 20 mA standard, and a process variable detected by the field device 2 is applied via a loop current generated by a current regulator 10 is adjustable, transmitted.
  • the current controller 10 receives in the normal measurement mode, for example from the microprocessor, a current setpoint value, which represents the process variable, and regulates the loop current to a value corresponding to the current setpoint value.
  • the current regulator 10 is also part of the modulation unit and is further adapted to apply the second communication signal 6 to the
  • the current controller adds the second one
  • Communication signal to the loop current to be set It is also conceivable, however, an alternative embodiment of the field device 2 such that the process variable is not transmitted via a loop current, but via a voltage signal.
  • the process variable can be represented by a 0 to 10V
  • the modulation unit has a means for current regulation, wherein the means comprises a first
  • Communication signal 6 are modulated on a self-current of the field device.
  • the means may comprise, for example, a resistor and a field effect transistor, wherein the field effect transistor is arranged in series with the resistor, so that the current flowing through the resistor is modulated by the field effect transistor.
  • the method for data transmission provides that in a first method step, the supply voltage V s of the field device 2 is amplitude-modulated by the communication box 4, so that a first communication signal 5 is generated.
  • the first communication signal 5 can be generated according to a UART, SPI or MC protocol.
  • the supply voltage V s applied via the two-wire line 3 to the field device 2 is demodulated so that the first communication signal 5 is obtained from the supply voltage V s applied to the field device.
  • the first communication signal 5 can subsequently
  • a microcontroller or microprocessor the field device according to the means of the first communication signal. 5
  • transmitted parameter information parameterize the field device 2.
  • a current modulation or an amplitude modulation of the output current I A of the field device takes place by the field device, so that the
  • Output current has the second communication signal.
  • Communication signal 6 is thus transmitted via the output current I A to the communication box 4.
  • the communication box 4 demodulates the output current I A , so that the second communication signal 6 from the

Abstract

Verfahren zur Datenübertragung zwischen einem Feldgerät (2) der Automatisierungstechnik und einer Kommunikationsbox (4), wobei das Verfahren die folgenden Schritte vorsieht: - Spannungsmodulation der Versorgungsspannung (Uv) des Feldgerätes (2) durch die Kommunikationsbox (4), so dass ein erstes Kommunikationssignal (5) erzeugt wird und die Versorgungsspannung (Uv) das erstes Kommunikationssignal (5) aufweist; - Demodulation des ersten Kommunikationssignals (5) aus der über die Zweidrahtleitung (3) an das Feldgerät (2) angelegten Versorgungsspannung (Uv), so dass das erste Kommunikationssignal (5) von der Versorgungsspannung (Uv) getrennt wird; - Strommodulation eines Ausgansstromes (IA) des Feldgerätes durch das Feldgerät (2), so dass ein zweites Kommunikationssignal (6) erzeugt wird und der Ausgansstrom (IA) das zweite Kommunikationssignal (6) aufweist;- Demodulation des zweiten Kommunikationssignals (6) aus dem Ausgangsstrom (IA) durch die Kommunikationsbox (4), so dass das zweite Kommunikationssignal (6) von dem Ausgangsstrom (IA) getrennt wird.

Description

Verfahren zur Datenübertragung zwischen einem Feldgerät der
Automatisierungstechnik und einer Kommunikationsbox
Die Erfindung bezieht sich auf ein Verfahren zur Datenübertragung zwischen einem Feldgerät der Automatisierungstechnik und einer Kommunikationsbox, ein Feldgerät der Automatisierungstechnik sowie eine Kommunikationsbox.
In der Prozessautomatisierungstechnik ebenso wie in der Fertigungsautomati- sierungstechnik werden üblicherweise Feldgeräte eingesetzt, die zur Erfassung und/oder Beeinflussung von Prozessgrößen dienen. Zur Erfassung von Prozessgrößen dienen Messgeräte bzw. Sensoren, wie beispielsweise Füllstandsmessgeräte,
Durchflussmessgeräte, Druck- und Temperatur-messgeräte, pH- Redoxpotentialmessgeräte, Leitfähigkeitsmessgeräte, etc., welche die entsprechenden Prozessvariablen Füllstand, Durchfluss, Druck, Temperatur, pH-Wert bzw. Leitfähigkeit erfassen. Zur Beeinflussung von Prozessgrößen dienen Aktoren, wie zum Beispiel Ventile oder Pumpen, über die der Durchfluss einer Flüssigkeit in einem Rohrleitungsabschnitt bzw. der Füllstand in einem Behälter geändert werden kann.
Eine Vielzahl solcher Feldgeräte wird von der Endress + Hauser-Gruppe hergestellt und vertrieben.
Darüber hinaus ist es in der Automatisierungstechnik auch üblich, die Feldgeräte in einer so genannten Zweileiter-Technik aufzubauen und miteinander zu verbinden, so dass die Energiespeisung und die Kommunikation der Prozessgröße zwischen den Feldgeräten über ein einziges Paar Leitungen (Zweidrahtleitung) erfolgen kann.
Derartige Feldgeräte weisen hierfür einen analogen Strom- oder Spannungsausgang auf, bspw. einen 4 bis 20 mA Stromausgang oder einen 0 bis 10 V Spannungsausgang. Über diesen Strom- bzw. Spannungsausgang ist lediglich die Übertragung der Prozessgröße bzw. des Messwertes möglich. Ist eine darüber hinaus gehende Datenübertragung zwischen den an der Zweidrahtleitung angebundenen Teilnehmern gewünscht, wird bspw. auf das HART Protokoll zurückgegriffen. Mittels der HART-Kommunikation lassen sich die Feldgeräte sehr flexibel parametrieren und in Betrieb nehmen oder zusätzliche ermittelte und gespeicherte Messwerte bzw. Daten auslesen. Das HART Protokoll ermöglicht eine bidirektionale Kommunikation auch in einer explosionsgefährdeten Umgebung über eine Punkt-zu-Punkt Übertragung von zumindest zwei Teilnehmern. Hierbei wird ein FSK-Verfahren (Frequency Shift Keying) eingesetzt, dass zur
Unterscheidung der binären Zustände unterschiedliche Frequenzen eines sinusförmigen Signals (z. B. Bell 202-Standard:„0" 2200 Hz,„1 " 1200 Hz) nutzt. Die diskretisierten und digitalisierten Daten werden u.a. von einem speziellen Modem, welches in jedem Teilnehmer vorhanden sein muss, in ein Hart-Protokoll mittels des FSK-Verfahrens übertragen und empfangen.
Die zur Realisierung einer HART Kommunikation verwendeten Bauteile, insbesondere das FSK-Modem, benötigen jedoch relativ viel Platz und sind darüber hinaus auch relativ teuer, was insbesondere bei kostengünstig herzustellenden Feldgeräten nicht erwünscht ist.
Es ist daher eine Aufgabe der Erfindung, eine kostengünstige und möglichst
platzsparende Kommunikationsmethode vorzuschlagen.
Die Aufgabe wird erfindungsgemäß durch ein Verfahren zur Datenübertragung zwischen einem Feldgerät der Automatisierungstechnik und einer Kommunikationsbox gelöst, wobei die Kommunikationsbox mit dem Feldgerät über eine Zweidrahtleitung verbunden ist und über die Zweidrahtleitung ein Versorgungsspannung an das Feldgerät angelegt wird, um das Feldgerät mit Energie zu versorgen, wobei das Verfahren die folgenden Schritte vorsieht:
Spannungsmodulation der Versorgungsspannung des Feldgerätes durch die Kommunikationsbox, so dass ein erstes Kommunikationssignal erzeugt wird und die Versorgungsspannung das erste Kommunikationssignal aufweist;
Demodulation des ersten Kommunikationssignals aus der über die
Zweidrahtleitung an das Feldgerät angelegten Versorgungsspannung, so dass das erste Kommunikationssignal von der Versorgungsspannung getrennt wird; Strommodulation eines Ausgansstromes des Feldgerätes durch das Feldgerät, so dass ein zweites Kommunikationssignal erzeugt wird und der Ausgansstrom das zweite Kommunikationssignal aufweist;
Demodulation des zweiten Kommunikationssignals aus dem Ausgangsstrom durch die Kommunikationsbox, so dass das zweite Kommunikationssignal von dem Ausgangsstrom getrennt wird.
Erfindungsgemäß wird ein Verfahren vorgeschlagen, bei dem über die Stromaufnahme des Feldgerätes und dessen Versorgungsspannung Daten kommuniziert werden können. Hierzu wird eine Kommunikationsbox in eine Zweidrahtleitung zwischen dem Feldgerät und einer Versorgungseinheit eingebracht. Über die Kommunikationsbox wird
erfindungsgemäß eine Anfrage in Form eines ersten Kommunikationssignals auf die Versorgungsspannung aufmoduliert und die Anfrage im Feldgerät demoduliert. Die Antwort in Form eines zweiten Kommunikationssignals wird auf einen Ausgangsstrom des Feldgerätes aufmoduliert und dieser bei der Kommunikationsbox wieder demoduliert. Die zu kommunizierenden Daten werden dabei eins zu eins, d.h. ohne Änderung, auf die Versorgungsspannung aufmoduliert und nicht, wie bei anderen Kommunikationsverfahren, bspw. HART, bei dem eine Frequenzumtastung (in Englisch: Frequency Shift Keying) erfolgt, üblich, zum Zweck der Datenübertragung verändert.
Das vorgeschlagene Kommunikationsverfahren kann bspw. in der Fertigung zum Programmieren des Feldgerätes sowie beim Endabgleich und dem so genannten Last Check verwendet werden. Weiterhin ist es über das Kommunikationsverfahren auch möglich, die Kommunikationsbox an das Feldgerät datenleitend anzubinden und die Kommunikationsbox mit weiteren Funktionalitäten, z.B. Funkkommunikation,
auszustatten, um so das Feldgerät ebenfalls mit diesen Funktionalitäten zu erweitern.
Eine vorteilhafte Ausführungsform der Erfindung sieht vor, dass zur
Spannungsmodulation der Versorgungsspannung ein Spannungswert der
Versorgungsspannung derartig variiert wird, dass die Versorgungsspannung das erste Kommunikationssignal aufweist.
Eine weitere vorteilhafte Ausführungsform der Erfindung sieht vor, dass zur
Strommodulation des Ausgansstromes des Feldgerätes ein Stromwert des
Ausgangsstromes derartig variiert wird, dass der Ausgangsstrom das zweite
Kommunikationssignal aufweist.
Eine vorteilhafte Ausführungsform der Erfindung sieht vor, dass zur Demodulation des ersten Kommunikationssignals aus der Versorgungsspannung Gleichspannungsanteile der Versorgungsspannung durch das Feldgerät herausgefiltert werden. Eine vorteilhafte Ausführungsform der Erfindung sieht vor, dass das erste und/oder das zweite Kommunikationssignal gemäß einem UART-Protokoll, SPI oder einem MC- Protokoll erzeugt werden.
Die Aufgabe wird ferner auch durch ein Feldgerät der Automatisierungstechnik gelöst, welches an eine Zweidrahtleitung zur Energieversorgung anbindbar ist, aufweisend: eine Demodulationseinheit mit einer Kapazität, wobei die Kapazität ein erstes Kommunikationssignal, welches auf die Versorgungsspannung des Feldgerätes aufmoduliert ist, von der Versorgungsspannung trennt, so dass das erste Kommunikationssignal dem Feldgerät zur Verfügung steht;
- eine Modulationseinheit, die dazu eingerichtet ist, ein zweites
Kommunikationssignal auf einen Ausgangsstrom des Feldgerätes zu modulieren, so dass das zweite Kommunikationssignal über den Ausgangstrom des
Feldgerätes übertragbar ist. Eine vorteilhafte Ausgestaltung des erfindungsgemäßen Feldgerätes sieht vor, dass die Demodulationseinheit und/oder die Modulationseinheit kein Modem, insbesondere kein FSK-Modem, aufweist bzw. aufweisen, um das erste Kommunikationssignal von der Versorgungsspannung zu trennen und/oder das zweite Kommunikationssignal zu modulieren.
Eine weitere vorteilhafte Ausgestaltung des erfindungsgemäßen Feldgerätes sieht vor, dass die Demodulationseinheit aus der Kapazität besteht. Dadurch, dass die
Demodulationseinheit ausschließlich aus einer Kapazität besteht, lässt sich die
Demodulationseinheit besonders einfach und platzsparend im Feldgerät integrieren bzw. realisieren.
Eine weitere vorteilhafte Ausgestaltung des erfindungsgemäßen Feldgerätes sieht vor, dass das Feldgerät dazu eingerichtet ist, eine Prozessgröße über einen Schleifenstrom, insbesondere einen 4 bis 20mA Schleifenstrom, zu übertragen, wobei ein Mittel zum Stromregeln, insbesondere ein Stromregler, den Schleifenstrom entsprechend der Prozessgröße einstellt und das Mittel zum Stromregeln Teil der Modulationseinheit ist und ferner dazu eingerichtet ist, das zweite Kommunikationssignal auf den Schleifenstrom zu modulieren, so dass der Schleifenstrom das zweite Kommunikationssignal aufweist.
Eine hierzu alternative Ausgestaltung des erfindungsgemäßen Feldgerätes sieht vor, dass das Feldgerät dazu eingerichtet ist, eine Prozessgröße über ein Spannungssignal, insbesondere ein 0 bis 10 V Spannungssignal, zu übertragen, wobei die
Modulationseinheit derartig ausgebildet ist, dass ein erster Anschluss mit einem zweiten Anschluss für die Zweidrahtleitung über ein Mittel zum Stromregeln, welches
insbesondere einen steuerbaren Widerstand aufweist, verbunden ist und das Mittel das zweite Kommunikationssignal auf einen Eigenstrom des Feldgerätes als Ausgangsstrom moduliert. Die Aufgabe wird ferner auch durch eine Kommunikationsbox zur Datenübertragung mit einem Feldgerät der Automatisierungstechnik gelöst, wobei die Kommunikationsbox über eine Zweidrahtleitung mit dem Feldgerät verbindbar ist, und folgendes aufweist:
eine Modulationseinheit, die dazu eingerichtet ist, eine Spannungsmodulation eines Spannungssignals der Zweidrahtleitung durchzuführen, so dass das Spannungssignal der Zweidrahtleitung ein erstes Kommunikationssignal zur
Datenübertragung aufweist;
eine Demodulationseinheit, die dazu eingerichtet ist, ein Stromsignal der
Zweidrahtleitung zu demodulieren, so dass ein zweites Kommunikationssignal der Kommunikationsbox zur Verfügung steht. Darüber hinaus wird die Aufgabe auch durch ein System der Automatisierungstechnik gelöst, welches ein Feldgerät nach einer der zuvor beschriebenen Ausgestaltung, eine Kommunikationsbox nach der zuvor beschriebenen Ausgestaltung und eine
Zweidrahtleitung, die das Feldgerät mit der Kommunikationsbox verbindet und über die das Feldgerät mit Energie versorgbar ist, aufweist.
Eine vorteilhafte Ausgestaltung des erfindungsgemäßen Systems sieht vor, dass die Kommunikationsbox zumindest eine weitere Funktionalität aufweist, um das Feldgerät ebenfalls mit dieser Funktionalität auszustatten, wobei die Kommunikationsbox mit dem Feldgerät gemäß dem zuvor beschriebenen Verfahren Daten in Bezug auf die weitere Funktionalität austauscht Insbesondere kann die Ausgestaltung vorsehen, dass die Kommunikationsbox über die zumindest eine weitere Funktionalität dazu ausgebildet ist, eine Anbindung der Kommunikationsbox über ein Funkprotokoll oder ein
kabelgebundenes Protokoll zu ermöglichen und die Kommunikationsbox mit dem
Feldgerät Daten in Bezug auf das Funkprotokoll oder das kabelgebunden Protokoll austauscht.
Die Erfindung wird anhand der nachfolgenden Zeichnung näher erläutert. Es zeigt: Fig. 1 : eine schematische Darstellung des erfindungsgemäßen Systems, umfassend ein Feldgerät, eine Kommunikationsbox und eine Zweidrahtleitung.
Fig. 1 zeigt eine schematische Darstellung des erfindungsgemäßen Systems 1 , welches ein Feldgerät 2 der Automatisierungstechnik, eine Kommunikationsbox 4 zur
Datenübertragung und eine Zweidrahtleitung 3 aufweist.
Die Kommunikationsbox 4 und das Feldgerät 2 sind über eine Zweidrahtleitung 3 miteinander datenleitend verbunden. Über die Zweidrahtleitung 3 wird das Feldgerät 2 mit einer Versorgungsspannung Uv gespeist, bspw. durch einen Speiseadapter, welcher in Fig. 1 nicht dargestellt ist. Über die Zweidrahtleitung 3 findet neben der
Energieversorgung auch die Übertragung einer Prozessgröße, welche durch das
Feldgerät 2 erfasst wird, zu einer, ebenfalls nicht in Fig. 1 dargestellten, übergeordneten Einheit, bspw. einer SPS, statt. Es versteht sich von selbst, dass in dem Fall, dass das Feldgerät 2 als Aktor fungiert, über die Zweidrahtleitung 3 eine Übertragung des
Stellwerts von der übergeordneten Einheit zu dem Feldgerät 2 erfolgt.
Zur Übertragung darüber hinaus gehender Daten, bspw. zur Parametrierung, zwischen der Kommunikationsbox 4 und dem Feldgerät 2, weist die Kommunikationsbox 4 folgendes auf: Ein erstes Anschlussklemmenpaar 13 zum eingangsseitigen Anschließen der Zweidrahtleitung 3, so dass die Kommunikationsbox 4 über die Zweidrahtleitung 3 mit einer Versorgungseinheit, z.B. ein Messumformerspeisegerät, in Fig. 1 nicht dargestellt, verbunden ist.
- Ein zweites Anschlussklemmenpaar 14 zum ausgangsseitigen Anschließen der
Zweidrahtleitung 3, so dass die Kommunikationsbox 4 über die Zweidrahtleitung 3 mit dem Feldgerät 2 verbunden ist.
Eine Modulationseinheit 11 , welche zwischen dem ersten und dem zweiten Anschlussklemmenpaar 13, 14 in der Kommunikationsbox 4 angeordnet ist. Die Modulationseinheit 1 1 ist derartig eingerichtet, dass eine Spannungsmodulation bzw. eine Amplitudenmodulation eines Spannungssignals der Zweidrahtleitung 3 entsprechend einem ersten Kommunikationssignal 5 zur Datenübertragung erfolgt. Dies kann bspw. durch eine oder mehrere Dioden, die über einen
Schalter, insbesondere einen steuerbaren Feldeffekttransistor, kurzschließbar sind, realisiert sein. Über den steuerbaren Schalter und die Diode bzw. Dioden wird das erste Kommunikationssignal auf das Spannungssignal der
Zweidrahtleitung aufmoduliert. Das Spannungssignal steht somit am zweiten Anschlussklemmenpaar 14 der Kommunikationsbox 4 dem Feldgerät 2 als Versorgungsspannung zur Verfügung, so dass das erste Kommunikationssignal 5 über die Zweidrahtleitung 3 zu dem Feldgerät 2 übertragen wird. Das durch die
Spannungsmodulation übertragene erste Kommunikationssignal 5 ist in Fig. 1 exemplarisch durch ein„01010" Signal am Eingang des Feldgerätes 2 dargestellt. Eine Demodulationseinheit 12, welche zwischen dem ersten und dem zweiten Anschlussklemmenpaar 13, 14 in der Kommunikationsbox 4 angeordnet ist. Die Demodulationseinheit 12 ist derartig eingerichtet, dass ein von der am zweiten
Anschlussklemmenpaar 14 angeschlossenen Zweidrahtleitung 3 stammendes Stromsignal demoduliert wird. Hierzu umfasst die Demodulationseinheit 12 vorzugsweise einen Widerstand, welcher zwischen dem ersten und dem zweiten Anschlussklemmenpaar derartig angeordnet ist, dass das Stromsignal durch den Widerstand fließt, und einen Operationsverstärker, der aus einem durch den
Widerstand erzeugten Spannungsabfall das zweite Kommunikationssignal erzeugt. Das durch die Strommodulation übertragene zweite
Kommunikationssignal 6 ist in Fig.1 exemplarisch durch ein„1010" Signal dargestellt.
Prinzipiell kann die Kommunikationsbox 4 auch mit einer anderen Funktionalität, als die zur Parametrierung, ausgestattet sein. Beispielsweise kann diese ein Funkmodul aufweisen, so dass Daten über das Funkmodul der Kommunikationsbox 4 drahtlos mit einem anderen Gerät austauschbar sind und die Daten zwischen der Kommunikationsbox und dem Feldgerät drahtgebunden, entsprechend dem erfindungsgemäßen Verfahren, ausgetauscht werden.
Zur Übertragung der darüber hinaus gehender Daten weist ein entsprechendes Feldgerät 2 folgendes auf:
Ein Anschlussklemmenpaar 15 zum Anschließen der Zweidrahtleitung 3. Über die angeschlossene Zweidrahtleitung 3, wird das Feldgerät 2 mit Energie versorgt. In dem in Fig. 1 exemplarisch dargestellten Beispiel, wird das Feldgerät 2 mit einer Spannung von 24 V gespeist.
Eine Demodulationseinheit 7 mit einer Kapazität 8, die das von der
Kommunikationsbox 4 auf die Versorgungsspannung Vs aufmodulierte erste Kommunikationssignal 5 demoduliert bzw. trennt. Die Kapazität 8 kann bspw. durch einen Kondensator oder eine Vielzahl von in Reihe und/oder parallel geschalteten Kondensatoren gebildet werden. Das erste Kommunikationssignal 5 steht somit nach der Kapazität 8 ohne ein Modem, insbesondere ohne ein FSK- Modem, zur Verfügung und kann bspw. durch einen Microcontroller
weiterverarbeitet werden. Fig. 1 zeigt exemplarisch den einfachsten Fall, bei dem die Demodulationseinheit 7 ausschließlich eine einzige Kapazität 8, bspw. in Form eines Kondensators, benötigt. Im Gegensatz zu den aus dem Stand der Technik bekannten Kommunikationsmethoden, insbesondere HART, ist es somit möglich eine platzsparende und kostengünstige Datenübertragung zu realisieren.
Eine Modulationseinheit 9, die dazu eingerichtet ist, ein zweites
Kommunikationssignal 6 auf einen Ausgangsstrom lA des Feldgerätes zu modulieren, so dass das zweite Kommunikationssignal 6, welches bspw. als ein Antwortsignal auf das erste Kommunikationssignal 5 dient, über den
Ausgangstrom lA des Feldgerätes 2 zur Kommunikationsbox 4 übertragbar ist. Hierzu führt die Modulationseinheit 9 eine Strommodulation des
Ausgangsstromes lA bzw. eine Amplitudenmodulation des Ausgangsstromes durch. In dem in Fig. 1 exemplarisch dargestellten Beispiel, ist das Feldgerät 2 als ein Zweidraht- bzw. Zweileiter-Feldgerät entsprechend dem 4 bis 20 mA Standard ausgebildet, und eine durch das Feldgerät 2 erfasste Prozessgröße wird über einen Schleifenstrom, der durch einen Stromregler 10 einstellbar ist, übertragen. Der Stromregler 10 erhält hierfür im normalen Messbetrieb, bspw. von dem Mikroprozessor, ein Strom-Sollwert, welcher die Prozessgröße repräsentiert, und regelt den Schleifenstrom auf einen dem Strom-Sollwert entsprechenden Wert. Erfindungsgemäß ist der Stromregler 10 auch Teil der Modulationseinheit und ist ferner dazu eingerichtet, das zweite Kommunikationssignal 6 auf den
entsprechend der Prozessgröße einzustellenden Schleifenstrom auf zu modulieren. Im Wesentlichen addiert der Stromregler das zweite
Kommunikationssignal auf den einzustellenden Schleifenstrom. Denkbar ist aber auch eine alternative Ausgestaltung des Feldgerätes 2 derart, dass die Prozessgröße nicht über einen Schleifenstrom, sondern über ein Spannungssignal übertragen wird. Beispielsweise kann die Prozessgröße durch ein 0 bis 10 V
Spannungssignal übertragen werden. Bei Feldgeräten gemäß dieser Ausgestaltung ist kein Stromregler zum Einstellen des Stromes vorgesehen. Aufgrund dessen weist die Modulationseinheit ein Mittel zum Stromregeln auf, wobei das Mittel einen ersten
Anschluss des Anschlussklemmenpaares mit einem zweiten Anschluss des
Anschlussklemmenpaares verbindet. Durch das Mittel kann das zweite
Kommunikationssignal 6 auf einen Eigenstrom des Feldgerätes aufmoduliert werden. Das Mittel kann bspw. einen Widerstand und einen Feldeffekttransistor umfassen, wobei der Feldeffekttransistor in Reihe zum Widerstand angeordnet ist, so dass der Strom, welcher durch den Widerstand fließt, durch den Feldeffekttransistor modulierbar ist.
Durch die entsprechend ausgebildete Kommunikationsbox 4 und das Feldgerät 2 lässt sich somit ein Verfahren zur Datenübertragung auf einfache Art und Weise realisieren. Das Verfahren zur Datenübertragung sieht vor, dass in einem ersten Verfahrensschritt, die Versorgungsspannung Vs des Feldgerätes 2 durch die Kommunikationsbox 4 amplitudenmoduliert, so dass ein erstes Kommunikationssignal 5 erzeugt wird. Das erste Kommunikationssignal 5 kann dabei gemäß einem UART- , SPI- oder MC-Protokoll erzeugt werden. In einem zweiten Verfahrensschritt wird die über die Zweidrahtleitung 3 an dem Feldgerät 2 anliegende Versorgungsspannung Vs demoduliert, so dass das erste Kommunikationssignals 5 aus der an dem Feldgerät angelegten Versorgungsspannung Vs gewonnen wird. Das erste Kommunikationssignal 5 kann anschließend
weiterverarbeitet werden. Beispielsweise kann ein Microcontroller bzw. Mikroprozessor das Feldgerät entsprechend der mittels dem ersten Kommunikationssignal 5
übertragenen Parameterinformation das Feldgerät 2 parametrieren. In einem dritten Verfahrensschritt findet eine Strommodulation bzw. eine Amplitudenmodulation des Ausgangsstromes lA des Feldgerätes durch das Feldgerät statt, so dass der
Ausgangsstrom das zweite Kommunikationssignal aufweist. Das zweite
Kommunikationssignal 6 wird also über den Ausgangsstrom lA an die Kommunikationsbox 4 übertragen. In einem vierten Verfahrensschritt demoduliert die Kommunikationsbox 4 den Ausgangsstrom lA, so dass das zweite Kommunikationssignal 6 von dem
Ausgangsstrom lA getrennt wird und der Kommunikationsbox 4 zur Weiterverarbeitung vorliegt. Bezugszeichenliste
1 System der Automatisierungstechnik
2 Feldgerät
3 Zweidrahtleitung
4 Kommunikationsbox
5 Erstes Kommunikationssignal
6 Zweites Kommunikationssignal
7 Demodulationseinheit des Feldgerätes
8 Kapazität
9 Modulationseinheit des Feldgerätes
10 Mittel zum Stromregel, z.B. ein Stromregler
1 1 Modulationseinheit der Kommunikationsbox
12 Demodulationsbox der Kommunikationsbox
13 Erstes Anschlussklemmenpaar der Kommunikationsbox
14 Zweites Anschlussklemmenpaar der Kommunikationsbox
15 Anschlussklemmenpaar des Feldgerätes
Uv Versorgungsspannung
IA Ausgangsstrom

Claims

Patentansprüche
1. Verfahren zur Datenübertragung zwischen einem Feldgerät (2) der
Automatisierungstechnik und einer Kommunikationsbox (4), wobei die
Kommunikationsbox (4) mit dem Feldgerät (2) über eine Zweidrahtleitung (3) verbunden ist und über die Zweidrahtleitung (3) ein Versorgungsspannung (Uv) an das Feldgerät (2) angelegt wird, um das Feldgerät (2) mit Energie zu versorgen, wobei das Verfahren die folgenden Schritte vorsieht:
Spannungsmodulation der Versorgungsspannung (Uv) des Feldgerätes (2) durch die Kommunikationsbox (4), so dass ein erstes Kommunikationssignal (5) erzeugt wird und die Versorgungsspannung (Uv) das erste Kommunikationssignal (5) aufweist;
Demodulation des ersten Kommunikationssignals (5) aus der über die
Zweidrahtleitung (3) an das Feldgerät (2) angelegten Versorgungsspannung (Uv), so dass das erste Kommunikationssignal (5) von der Versorgungsspannung (Uv) getrennt wird;
Strommodulation eines Ausgansstromes (lA) des Feldgerätes durch das Feldgerät (2), so dass ein zweites Kommunikationssignal (6) erzeugt wird und der
Ausgansstrom (lA) das zweite Kommunikationssignal (6) aufweist;
- Demodulation des zweiten Kommunikationssignals (6) aus dem Ausgangsstrom
( ) durch die Kommunikationsbox (4), so dass das zweite Kommunikationssignal (6) von dem Ausgangsstrom (lA) getrennt wird.
2. Verfahren nach Anspruch 1 , wobei zur Spannungsmodulation der
Versorgungsspannung (Uv) ein Spannungswert der Versorgungsspannung (Uv) derartig variiert wird, dass die Versorgungsspannung (Uv) das erste Kommunikationssignal (5) aufweist.
3. Verfahren nach Anspruch 1 oder 2, wobei zur Strommodulation des Ausgansstromes (lA) des Feldgerätes (2) ein Stromwert des Ausgangsstromes (lA) derartig variiert wird, dass der Ausgangsstrom (lA) das zweite Kommunikationssignal (6) aufweist.
4. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche, wobei zur Demodulation des ersten Kommunikationssignals (5) aus der Versorgungsspannung (Vs) Gleichspannungsanteile der Versorgungsspannung durch das Feldgerät (2)
herausgefiltert werden.
5. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche, wobei das erste und/oder das zweite Kommunikationssignal (5, 6) gemäß einem UART-Protokoll, einem SPI-Protokoll oder einem MC-Protokoll erzeugt werden.
6. Feldgerät der Automatisierungstechnik, welches an eine Zweidrahtleitung (3) zur Energieversorgung anbindbar ist, aufweisend:
eine Demodulationseinheit (7) mit einer Kapazität (8), wobei die Kapazität (8) ein erstes Kommunikationssignal (5), welches auf die Versorgungsspannung (Vs) des Feldgerätes (2) aufmoduliert ist, von der Versorgungsspannung (Vs) trennt, so dass das erste Kommunikationssignal (5) dem Feldgerät (2) zur Verfügung steht; eine Modulationseinheit (9), die dazu eingerichtet ist, ein zweites
Kommunikationssignal (6) auf einen Ausgangsstrom (lA) des Feldgerätes (2) zu modulieren, so dass das zweite Kommunikationssignal (6) über den
Ausgangstrom (lA) des Feldgerätes (2) übertragbar ist.
7. Feldgerät nach Anspruch 6, wobei die Demodulationseinheit (7) und/oder die
Modulationseinheit (9) kein Modem, insbesondere kein FSK-Modem, aufweist bzw.
aufweisen, um das erste Kommunikationssignal von der Versorgungsspannung zu trennen und/oder das zweite Kommunikationssignal zu modulieren.
8. Feldgerät nach einem der Ansprüche 6 bis 8, wobei die Demodulationseinheit (7) aus der Kapazität (8) besteht.
9. Feldgerät nach einem der Ansprüche 6 bis 8, wobei das Feldgerät (2) dazu eingerichtet ist eine Prozessgröße über einen Schleifenstrom, insbesondere einen 4 bis 20mA Schleifenstrom, zu übertragen, wobei ein Mittel zum Stromregeln (10),
insbesondere ein Stromregler, den Schleifenstrom entsprechend der Prozessgröße einstellt und das Mittel zum Stromregeln (10) Teil der Modulationseinheit (9) ist und ferner dazu eingerichtet ist, das zweite Kommunikationssignal (6) auf den Schleifenstrom zu modulieren, so dass der Schleifenstrom das zweite Kommunikationssignal (6) aufweist.
10. Feldgerät nach einem der Ansprüche 6 bis 8, wobei das Feldgerät (2) dazu eingerichtet ist eine Prozessgröße über ein Spannungssignal, insbesondere ein 0 bis 10 V Spannungssignal, zu übertragen, wobei die Modulationseinheit (9) derartig ausgebildet ist, dass ein erster Anschluss mit einem zweiten Anschluss für die Zweidrahtleitung über ein Mittel zum Stromregeln, welches insbesondere einen steuerbaren Widerstand aufweist, verbunden ist und das Mittel das zweite Kommunikationssignal auf einen Eigenstrom des Feldgerätes als Ausgangsstrom moduliert.
1 1. Kommunikationsbox zur Datenübertragung mit einem Feldgerät (2) der
Automatisierungstechnik, wobei die Kommunikationsbox (4) über eine Zweidrahtleitung (3) mit dem Feldgerät (2) verbindbar ist, aufweisend:
eine Modulationseinheit (1 1 ), die dazu eingerichtet ist, eine Spannungsmodulation eines Spannungssignals der Zweidrahtleitung (3) durchzuführen, so dass das Spannungssignal der Zweidrahtleitung (3) ein erstes Kommunikationssignal (5) zur Datenübertragung aufweist;
eine Demodulationseinheit (12), die dazu eingerichtet ist, ein Stromsignal der Zweidrahtleitung (3) zu demodulieren, so dass ein zweites Kommunikationssignal (6) der Kommunikationsbox (4) zur Verfügung steht.
12. System der Automatisierungstechnik aufweisend zumindest ein Feldgerät (2) nach einem der Ansprüche 6 bis 10, eine Kommunikationsbox (4) nach Anspruch 1 1 und eine Zweidrahtleitung (3) die das Feldgerät (2) mit der Kommunikationsbox (4) verbindet und über die das Feldgerät (2) mit Energie versorgbar ist.
13. System nach Anspruch 12, wobei die Kommunikationsbox (4) zumindest eine weitere Funktionalität aufweist, um das Feldgerät (2) ebenfalls mit dieser Funktionalität auszustatten, wobei die Kommunikationsbox mit dem Feldgerät gemäß dem Verfahren nach Anspruch 1 Daten in Bezug auf die weitere Funktionalität austauscht
14. System nach Anspruch 13, wobei die Kommunikationsbox über die zumindest eine weitere Funktionalität dazu ausgebildet ist, eine Anbindung der Kommunikationsbox über ein Funkprotokoll oder ein kabelgebundenes Protokoll zu ermöglichen und die
Kommunikationsbox mit dem Feldgerät Daten in Bezug auf das Funkprotokoll oder das kabelgebunden Protokoll austauscht.
EP17761235.5A 2016-10-13 2017-08-29 Verfahren zur datenübertragung zwischen einem feldgerät der automatisierungstechnik und einer kommunikationsbox Withdrawn EP3526928A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016119548.0A DE102016119548A1 (de) 2016-10-13 2016-10-13 Verfahren zur Datenübertragung zwischen einem Feldgerät der Automatisierungstechnik und einer Kommunikationsbox
PCT/EP2017/071599 WO2018068941A1 (de) 2016-10-13 2017-08-29 Verfahren zur datenübertragung zwischen einem feldgerät der automatisierungstechnik und einer kommunikationsbox

Publications (1)

Publication Number Publication Date
EP3526928A1 true EP3526928A1 (de) 2019-08-21

Family

ID=59761953

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17761235.5A Withdrawn EP3526928A1 (de) 2016-10-13 2017-08-29 Verfahren zur datenübertragung zwischen einem feldgerät der automatisierungstechnik und einer kommunikationsbox

Country Status (5)

Country Link
US (1) US10840973B2 (de)
EP (1) EP3526928A1 (de)
CN (1) CN109923831B (de)
DE (1) DE102016119548A1 (de)
WO (1) WO2018068941A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190268038A1 (en) * 2016-10-13 2019-08-29 Endress+Hauser SE+Co. KG Method for transferring data between an automation field device and a communication box

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017112755B4 (de) * 2017-06-09 2019-02-07 Sick Engineering Gmbh Messumformerspeisegerät
CN111487456B (zh) * 2020-03-27 2021-11-16 威胜信息技术股份有限公司 从工频信号中提取特征信号的方法、系统和档案管理方法
DE102020210152A1 (de) * 2020-08-11 2022-02-17 Siemens Aktiengesellschaft Messeinrichtung mit einer Sensoreinheit und einer von ihr räumlich getrennten Frontend-Einheit
CN112653444B (zh) * 2020-12-18 2024-05-03 施镇乾 一种信号传输电路、电源线及电子设备
US11233501B1 (en) * 2020-12-18 2022-01-25 Chun Kuen Sze Signal transmission circuit and power supply line

Family Cites Families (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1542629A (en) * 1973-04-04 1979-03-21 Plessey Co Ltd House exchange telephone system
JP2735174B2 (ja) * 1985-10-16 1998-04-02 株式会社日立製作所 2線式通信方法
US4879911A (en) * 1988-07-08 1989-11-14 Micro Motion, Incorporated Coriolis mass flow rate meter having four pulse harmonic rejection
US4843890A (en) * 1988-07-08 1989-07-04 Micro Motion, Incorporated Coriolis mass flow rate meter having an absolute frequency output
US5434774A (en) * 1994-03-02 1995-07-18 Fisher Controls International, Inc. Interface apparatus for two-wire communication in process control loops
DE19609290C2 (de) 1995-10-26 2002-12-12 Bosch Gmbh Robert Airbagsystem
US6907082B1 (en) * 1999-02-03 2005-06-14 Invensys Systems, Inc. 4-20 mA interface circuit
EP1433030A2 (de) * 2001-07-31 2004-06-30 Endress + Hauser GmbH + Co. KG Übersichtsssteuerungs- und datenerfassungsschnittstelle zur tank- oder prozessüberwachung
US20060233119A1 (en) * 2002-10-31 2006-10-19 Endress + Hauser Gmbh + Co. Kg Method for Parameterizing a Field Device Used in Automation Technology
DE10344262A1 (de) * 2003-09-23 2005-04-14 Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG Steckmodul für einen Flüssigkeits- oder Gassensor
DE102004020393A1 (de) * 2004-04-23 2005-11-10 Endress + Hauser Gmbh + Co. Kg Funkmodul für Feldgeräte der Automatisierungstechnik
US7200503B2 (en) * 2004-12-29 2007-04-03 Endrss + Hauser Flowtec Ag Field device electronics fed by an external electrical energy supply
DE102006014102A1 (de) * 2005-12-30 2007-07-12 Endress + Hauser Gmbh + Co. Kg Verfahren zur Inbetriebnahme und/oder zum Betrieb eines Kommunikationssystems
DE102006005632A1 (de) * 2006-02-08 2007-08-09 Knick Elektronische Messgeräte GmbH & Co. KG Verbindungssystem, insbesondere Steckverbindungssystem zur Übertragung von Daten- und Energieversorgungssignalen
JP4918998B2 (ja) * 2006-05-10 2012-04-18 株式会社デンソー 通信装置
DE102006024311A1 (de) * 2006-05-24 2007-11-29 Berthold Technologies Gmbh & Co. Kg Schaltung zur Übermittlung eines analogen Signalwertes
US7630844B2 (en) * 2006-07-03 2009-12-08 Endress + Hauser Flowtec Ag Field device electronics fed by an external electrical energy supply
US7844410B2 (en) * 2006-07-03 2010-11-30 Endress + Hauser Flowtec Ag Field device electronics fed by an external electrical energy supply
US7663350B2 (en) * 2006-07-13 2010-02-16 Endress + Hauser Flowtec Ag External electrical energy supply for field device
DE102006056175A1 (de) * 2006-11-27 2008-05-29 Endress + Hauser Flowtec Ag Meßanordnung zum Erfassen chemischer und/oder physikalischer Meßgrößen sowie Meßgerät dafür
US7521944B2 (en) * 2006-12-28 2009-04-21 Rosemount Inc. System and method for detecting fluid in terminal block area of field device
US20080163937A1 (en) * 2007-01-09 2008-07-10 Dresser, Inc. Fluid regulatory systems and processes
US8573241B2 (en) * 2007-03-30 2013-11-05 Dresser, Inc. Systems and processes for field-initiated fluid regulation testing
DE102007021099A1 (de) * 2007-05-03 2008-11-13 Endress + Hauser (Deutschland) Ag + Co. Kg Verfahren zum Inbetriebnehmen und/oder Rekonfigurieren eines programmierbaren Feldmeßgeräts
DE102007045884A1 (de) * 2007-09-25 2009-04-09 Endress + Hauser Process Solutions Ag Verfahren zum Betreiben eines Feldgerätes in einem leistungsangepassten Modus
DE502007004947D1 (de) * 2007-10-22 2010-10-14 Siemens Ag Busanschalteinheit zum Zwischenschalten in eine Zweileiter-Stromschleife sowie Messumformer, Stellungsregler und analoge Ein- und Ausgabebaugruppe mit einer solchen Busanschalteinheit
US8290030B2 (en) * 2007-12-28 2012-10-16 Spectrum Controls, Inc. Micro-controller with FSK modem
DE102008033048A1 (de) * 2008-07-14 2010-02-04 Abb Technology Ag Feldgerät einer Prozessautomatisierungsanlage mit einer Einrichtung zur lokalen Gewinnung elektrischer Energie
US8195590B1 (en) * 2008-09-17 2012-06-05 Varec, Inc. Method and system for measuring and managing inventory of product in a collapsible tank
WO2010108803A2 (de) * 2009-03-25 2010-09-30 Endress+Hauser Conducta Gesellschaft Für Mess- Und Regeltechnik Mbh+Co. Kg Verfahren und schaltung zur signalübertragung über eine stromschleife
US8344542B2 (en) * 2009-04-09 2013-01-01 Charles John Micallef Apparatus and method to power 2-wire field devices, including HART, foundation fieldbus, and profibus PA, for configuration
DE102009028051B4 (de) * 2009-07-28 2023-10-26 Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG System zur Bedienung eines Feldgeräts über ein entferntes Terminal
DE102009046503A1 (de) * 2009-11-06 2011-05-26 Endress + Hauser Process Solutions Ag Verfahren zum Bedienen eines Feldgeräts der Automatisierungstechnik in ein Funknetzwerk
US8073991B2 (en) * 2010-01-14 2011-12-06 General Electric Company Isolated HART interface with programmable data flow
US9860093B2 (en) * 2010-03-18 2018-01-02 Pepper+Fuchs Gmbh Frequency shift keying modulation and demodulation
US8831145B2 (en) * 2010-05-18 2014-09-09 Texas Instruments Incorporated Hart transmitter/receiver systems
US9225534B2 (en) * 2011-04-15 2015-12-29 Electronic Systems Protection, Inc. Power conditioning management
FR2979503B1 (fr) * 2011-08-23 2014-07-11 Senstronic Procede de communication a des fins de configuration et/ou d'interrogation et systeme le mettant en oeuvre
DE102012200105A1 (de) * 2011-12-29 2013-07-04 Endress + Hauser Flowtec Ag Schaltungsanordnung zur Reduzierung der Verlustleistung bei einem aktiven Stromausgang eines Feldgeräts
DE102012106375A1 (de) * 2012-07-16 2014-01-16 Endress + Hauser Wetzer Gmbh + Co Kg Verfahren und Vorrichtung zur Diagnose eines Kommunikationskanals
US8750427B1 (en) * 2012-11-16 2014-06-10 Honeywell International Inc. Apparatus and method for demodulation of FSK signals
EP2860928B1 (de) * 2013-10-10 2016-12-07 Rockwell Automation Limited HART-Abtastung
US9408258B2 (en) * 2013-10-24 2016-08-02 Osram Sylvania Inc. Power line communication for lighting systems
DE102013113258A1 (de) * 2013-11-29 2015-06-03 Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG Sensor und Messanordnung
DE102014108871A1 (de) * 2014-06-25 2015-12-31 Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG Elektronische Schaltung, Feldgerät umfassend zumindest eine solche elektronische Schaltung und Verfahren
US9106488B1 (en) * 2014-08-23 2015-08-11 Smart Embedded Systems, Inc. Energy efficient highway addressable remote transducer soft modem
US9203665B1 (en) * 2014-08-23 2015-12-01 Smart Embedded Systems, Inc. Resource optimization by implementing multiple instances of a soft modem with a single microcontroller
DE102015105887A1 (de) * 2015-04-17 2016-10-20 Endress + Hauser Process Solutions Ag Verfahren zum automatischen Hinzu- oder Wegschalten eines Kommunikationswiderstandes eines HART-Gerätes
WO2017025140A1 (de) * 2015-08-12 2017-02-16 Festo Ag & Co. Kg Feldgerät-koppeleinrichtung und system
DE102015115275A1 (de) * 2015-09-10 2017-03-16 Endress+Hauser Gmbh+Co. Kg Verfahren zur Energieverwaltung eines Feldgeräts der Prozessautomatisierung
WO2017119054A1 (ja) * 2016-01-04 2017-07-13 日立オートモティブシステムズ株式会社 電力線通信装置、および電力線通信装置を備えた電子制御装置
DE102016107491A1 (de) * 2016-04-22 2017-10-26 Beckhoff Automation Gmbh Verbindungseinheit, Überwachungssystem und Verfahren zum Betreiben eines Automatisierungssystems
DE102016119548A1 (de) * 2016-10-13 2018-04-19 Endress+Hauser SE+Co. KG Verfahren zur Datenübertragung zwischen einem Feldgerät der Automatisierungstechnik und einer Kommunikationsbox
DE102016120254A1 (de) * 2016-10-24 2018-04-26 Endress+Hauser Conducta Gmbh+Co. Kg Schaltung zur Energieversorgung eines Verbrauchers und zum Empfang von vom Verbraucher gesendeten Nutzsignalen
US10429870B2 (en) * 2016-11-30 2019-10-01 Honeywell International Inc. Startup control for multi-drop transmitters powered by current limited power supplies
DE102017111928A1 (de) * 2017-05-31 2018-12-06 Endress+Hauser Conducta Gmbh+Co. Kg Verfahren zur autorisierten Aktualisierung eines Feldgeräts der Automatisierungstechnik
EP3451087B1 (de) * 2017-09-05 2020-08-12 Bürkert Werke GmbH & Co. KG System und verfahren zur auswahl und identifikation von feldgeräten

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190268038A1 (en) * 2016-10-13 2019-08-29 Endress+Hauser SE+Co. KG Method for transferring data between an automation field device and a communication box
US10840973B2 (en) * 2016-10-13 2020-11-17 Endress+Hauser SE+Co. KG Method for transferring data between an automation field device and a communication box

Also Published As

Publication number Publication date
US20190268038A1 (en) 2019-08-29
WO2018068941A1 (de) 2018-04-19
CN109923831A (zh) 2019-06-21
DE102016119548A1 (de) 2018-04-19
US10840973B2 (en) 2020-11-17
CN109923831B (zh) 2022-06-07

Similar Documents

Publication Publication Date Title
WO2018068941A1 (de) Verfahren zur datenübertragung zwischen einem feldgerät der automatisierungstechnik und einer kommunikationsbox
EP2340468A1 (de) Autarkes feldgerät
DE102006036909A1 (de) Trenneinheit für eine herkömmliche 2-Leiter-Kommunikations-verbindung, die einen Sensor, einen Messumformer und eine Steuereinheit umfasst
EP3283928B1 (de) Verfahren zum automatischen hinzu- oder wegschalten eines kommunikationswiderstandes eines hart-gerätes
EP2457060A2 (de) Feldgerät zur prozessinstrumentierung
DE102005043478A1 (de) Automatisierungstechnische Einrichtung
EP3355139B1 (de) Verfahren zum betreiben eines automatisierungssystems sowie automatisierungssystem, feldgerät und steuerung zur durchführung des verfahrens
DE102009047535A1 (de) Verfahren zum Ermitteln einer Anschlusskonfiguration eines Feldgerätes an einem Wireless Adapter
DE102005043482A1 (de) Automatisierungstechnische Einrichtung
DE102005043489A1 (de) Automatisierungstechnische Einrichtung
EP2223054A2 (de) Vorrichtung zur übertragung von elektrischer energie und information
DE102005043483A1 (de) Automatisierungstechnische Einrichtung
EP3894970A1 (de) Feldgeräteadapter zur drahtlosen datenübertragung
EP3555714B1 (de) Verfahren zur applikationsspezifischen einstellung eines feldgeräts
WO2018184766A1 (de) Power over ethernet-basiertes feldgerät der automatisierungstechnik
WO2009149945A2 (de) Fernmesstechnische einrichtung mit einem schleifengespeisten gerät und verfahren zu dessen betriebsspannungsversorgung
DE102005043488A1 (de) Automatisierungstechnische Einrichtung
DE102005043485A1 (de) Automatisierungstechnische Einrichtung
DE102005026826B4 (de) Verfahren zum Betreiben eines Kommunikationsnetzwerkes mit mindestens einem Slave-Gerät und maximal drei Master-Geräten
DE19626502A1 (de) Sensor-Aktor-Bussystem
WO2012084444A1 (de) Messgerät
EP3413282B1 (de) Messumformerspeisegerät und system
EP3153938B1 (de) Messanordnung
WO2009063033A2 (de) Modem mit verbesserter empfangsleistung zum anschliessen an eine zweileiter-stromschleife sowie messumformer, stellungsregler und ein- und ausgabebaugruppe mit einem derartigen modem
EP2027516A1 (de) Feldgerät und verfahren zum verarbeiten mindestens einer messgrösse in einem feldgerät

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190307

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210528

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230512

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20230923