EP3526456B1 - Method for starting an internal combustion engine - Google Patents

Method for starting an internal combustion engine Download PDF

Info

Publication number
EP3526456B1
EP3526456B1 EP17742158.3A EP17742158A EP3526456B1 EP 3526456 B1 EP3526456 B1 EP 3526456B1 EP 17742158 A EP17742158 A EP 17742158A EP 3526456 B1 EP3526456 B1 EP 3526456B1
Authority
EP
European Patent Office
Prior art keywords
compressed air
starting
starter
speed
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17742158.3A
Other languages
German (de)
French (fr)
Other versions
EP3526456A1 (en
Inventor
Andreas Mehr
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rolls Royce Solutions GmbH
Original Assignee
Rolls Royce Solutions GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rolls Royce Solutions GmbH filed Critical Rolls Royce Solutions GmbH
Publication of EP3526456A1 publication Critical patent/EP3526456A1/en
Application granted granted Critical
Publication of EP3526456B1 publication Critical patent/EP3526456B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N9/00Starting of engines by supplying auxiliary pressure fluid to their working chambers
    • F02N9/04Starting of engines by supplying auxiliary pressure fluid to their working chambers the pressure fluid being generated otherwise, e.g. by compressing air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N15/00Other power-operated starting apparatus; Component parts, details, or accessories, not provided for in, or of interest apart from groups F02N5/00 - F02N13/00
    • F02N15/10Safety devices not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N7/00Starting apparatus having fluid-driven auxiliary engines or apparatus
    • F02N7/08Starting apparatus having fluid-driven auxiliary engines or apparatus the engines being of rotary type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B21/00Engines characterised by air-storage chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition

Definitions

  • the invention relates to a method for starting an internal combustion engine by means of a compressed air starter system, in which the starter is engaged by means of compressed air in a first start sequence and the starter is acted upon with compressed air in a second start sequence.
  • An internal combustion engine is started either by means of an electrically operated starter or by means of a compressed air starter.
  • Compressed air starting systems are for example from the DE 26 32 015 OS that U.S. 3,667,442 A and the U.S. 4,494,499 A known.
  • a starting process in a compressed air starting system consists of a first and a second starting sequence. In the first start sequence the starter is engaged by means of compressed air and in the second start sequence the starter is set in a rotary motion by means of the compressed air. The second start sequence is ended when the internal combustion engine has reached an idling speed, for example 350 revolutions / minute. Then the internal combustion engine operation begins by injecting the fuel.
  • the cylinders are equipped with decompression valves to relieve the cylinder working space. Any water that may have penetrated during the second start sequence is pumped away from the cylinder chamber via this.
  • the problem arises that the starter has to apply a considerable breakaway torque in order to initially crank the internal combustion engine. If the breakaway torque is overcome, the internal combustion engine briefly rotates at high speed. In connection with residual water in the cylinder space, this is critical for the connecting rod.
  • the invention is therefore based on the object of providing an improved method for starting an internal combustion engine with a compressed air system.
  • This object is achieved in particular by a method in which, in a first starting sequence, the starter is engaged by means of compressed air, a decompression valve is applied in the opening direction to relieve the cylinder working space, and the internal combustion engine is started by applying pulsed compressed air to the starter . In a second starting sequence, the decompression valve is then acted upon in the closing direction and the starter is acted upon with constant compressed air.
  • a system controller defines a compressed air path for engaging the starter via an engagement valve and a compressed air path for cranking the starter in the first starting sequence and turning the starter in the second starting sequence is established using a starting valve.
  • the pulsed compressed air is generated by controlling the start valve as a function of a target engine speed via a PWM signal during the first start sequence.
  • the starter is continuously and gently turned on via the PWM signal and the pulsed compressed air. A hard transition from a stationary internal combustion engine to a rotating internal combustion engine is avoided.
  • the target speed is increased in the form of a ramp from a first target speed value to a second target speed value.
  • the first start sequence ends positively when a speed control deviation from the setpoint to the actual speed is detected within a tolerance band, for example 10 revolutions / minute.
  • the process offers a high level of process security and, as an additional security measure, allows sales-promoting argumentation.
  • the invention can be retrofitted without any problems, since the function only accesses the already existing components.
  • the Figure 1 shows a system diagram of an internal combustion engine 1 with a compressed air starting system 2.
  • the compressed air starting system 2 comprises a compressed air storage device 10 for providing the compressed air, an engaging valve 5 and a starting valve 6.
  • the engaging valve 5 and the starting valve 6 are designed as 2/2 valves. Alternatively, 3/2 valves can also be used.
  • the engagement valve 5 is shown in position 1, so that there is a continuous compressed air path from the compressed air reservoir 10 via the engagement valve 5 to the starter 3. In this position the starter is engaged.
  • the start valve 6 is shown in the zero position, in which the compressed air path from the compressed air reservoir 10 to the starter is blocked, that is, the starter does not rotate.
  • the operating state of the overall system is determined by a system controller 4.
  • An operator specifies his activation / deactivation request or his performance request via the system controller 4.
  • a monitoring unit 7 (EMU), an interface unit 8 (EIM) and an engine control device 9 are connected to the system controller 4 via a CAN bus.
  • the monitoring unit 7 determines the switching state of the engagement valve 5 and the start valve 6. This is typically done via a PWM signal.
  • the function of the monitoring unit 7 and the interface unit 8 are carried out in conjunction with the Figure 2 explained in more detail.
  • the engine control unit 9 controls and regulates the state of the internal combustion engine 1. In internal combustion engine operation, these are, for example, a rail pressure, a start of injection and an end of injection.
  • the further input and output variables are shown with the reference symbol on / off, for example a switching signal for the switchable exhaust gas turbocharger in the case of register charging.
  • FIG. 2 a program flow chart is shown.
  • the Figure 2 consists of the sub-figures 2A, 2B and 2C.
  • the Figure 2A the part of the program for preparation and testing of the start process
  • Figure 2B shows the program part of the first start sequence
  • Figure 2C the program part of the second start sequence.
  • the program sequence in the monitoring unit 7 is identified by the reference symbol EMU.
  • the sequence in the interface unit 8 is identified by the reference symbol EIM.
  • the interface unit 8 (EIM) and the monitoring unit 7 (EMU) communicate via CAN bus. Information that is set or queried on the CAN bus is shown as dashed arrows.
  • step S2A the air pressure sensor sets its status signal on the CAN bus, reference character B. This status signal is read in from the CAN bus, reference character B, in step S3 of the interface unit 8 (EIM).
  • Step S1A the status of the decompression valve open / closed is determined and set as a value on the CAN bus, reference number A.
  • S2A the state of the compressed air sensor and the compressed air is determined and set as a status value, reference character B, on the CAN bus.
  • Steps S3A to S8A identify an error query and indicate the operational readiness of the monitoring unit. First, a check is made at S3A to determine whether an error has been detected. If an error is detected, query result S3A: yes, an alarm is displayed at S4A and this is set on the CAN bus, reference character C, for further processing.
  • Step S9A to S11A characterize the procedure in the event of an aborted start.
  • EIM monitoring unit
  • the program run of the interface unit begins at S1 with the query of the start mode. This is specified by the operator via the system controller. Accordingly, either the engine start using a generator, step S2, or a start using a compressed air system is selected.
  • the start blocking is queried at S3.
  • the set status of the decompression valve reference symbol A
  • the air pressure sensor reference symbol B
  • an external stop signal are queried on the CAN bus.
  • the stop signal, reference F is set by the system controller on the CAN bus.
  • the result of the start blocking is then queried at S4. If a shift lock is set, the start is aborted at S9 and displayed on the CAN bus, reference number D.
  • a branch is made to the oil lubrication subroutine and then at S6 a check is made to see whether the oil pressure p ⁇ L is greater than a Limit value GW is.
  • query result S6 no, an alarm is set for the operator at S7 and a branch is made to S8.
  • Query result S6 yes, it is then checked at S8 whether the monitoring unit (EMU) is ready for operation. For this purpose, the operational readiness on the CAN bus, reference character C, is read out. If it was determined at S8 that the monitoring unit (EMU) is ready for operation, then it becomes Figure 2B branched. If the test result is negative, that is, the monitoring unit (EMU) is not ready for operation, a branch is made to S9, the start process is aborted and this status is set on the CAN bus, reference character D.
  • the Figure 2B shows the program part of the first start sequence.
  • the program run of the monitoring unit (EMU) is described first.
  • S12A it is checked whether the actual speed nIST is greater than a limit value GW.
  • the limit value here corresponds to the maximum permissible speed during cranking, for example 20 revolutions / minute.
  • the status of the monitoring unit (EIM), reference G is queried. If too high an actual speed was detected, query result S12A: yes, the program branches to the program part with steps S20A to S22A. If the actual speed nIST is not greater than the limit value GW, query result S12A: no, the engagement valve is activated at S13A, whereby the starter is pressurized with compressed air and engages.
  • a time step is run through which corresponds to the period of the meshing.
  • a regulation is activated at S15A.
  • the main features of this regulation are in the Figure 3 shown.
  • the following input variables are available at a PI controller 11: the PWM frequency fPWM for controlling the engagement valve ( Fig. 1 : 5) and the start valve ( Fig. 1 : 6), a minimum pulse-pause ratio PWM (min), a maximum pulse-pause ratio PWM (max) to control the engagement and start valve, two speed setpoints nSL1 and nSL2, a tolerance band for the speed, a proportional coefficient kp and an integral coefficient ki.
  • the PI controller 11 is supplied with the actual speed nIST, the value of which is available on the CAN bus, reference symbol K ( Figure 2B ).
  • the monitoring unit can also use its own speed sensor.
  • the output variables of the PI controller 11 are the cranking status and the position of the setpoint / actual deviation dn of the speed in relation to a first limit value GW1 and a second limit value GW2.
  • step S16A Figure 2B further rated. If during a time dt the speed control deviation dn lies within the tolerance band TB, query result S16A: yes, the cranking is recognized as complete at S18A and set as a data value on the CAN bus, reference character J. If, however, the speed was not yet stable at S16A If the control deviation is detected, a time step t is compared with a limit value GW at S17A. If the timer t has expired, query result S17A: yes, the program sequence is continued at S20A. If, on the other hand, the time stage t is still running, query result S17A: no, the system branches back to S15A.
  • a timer is activated in S19A. During this time step it is checked whether from the first start sequence to the second start sequence ( Figure 2C ) should be changed, whether the timer has expired without result or whether the status should be set to idle. For this purpose, the status on the CAN bus, reference L, is queried during the time stage. If the time step has expired without result or if the status idling is set, the start valve is then deactivated at S20A, the engagement valve is deactivated at S21A and the cranking is ended at S22A.
  • the interface unit sets the following states on the CAN bus, reference symbol G: No injection, activate decompression valve, i.e. actuate in opening positions and turn on a state variable CTS. It is then checked at S11 whether the turning is in progress. For this purpose, the corresponding value, reference symbol H, is read in on the CAN bus. If the test result is negative, the cranking is aborted and a branch is made to S10. If the cranking was recognized as activated at S11, query result S11: yes, the status variable CTS is set accordingly at S12 and a check is made at S13 to determine whether the cranking has taken place completely. During this test, the status of the monitoring unit (EMU), reference character J, is queried.
  • EMU monitoring unit
  • the Figure 2C shows the program parts of the second start sequence.
  • the program run of the monitoring unit EMU
  • the second start sequence is set and set as the status on the CAN bus, reference number N.
  • PWM one hundred percent
  • the starter is now fully pressurized with compressed air.
  • the interface unit deactivates the decompression valve, that is, the decompression valve is actuated in the closing direction.
  • the status variable CTS is set to the status Start. It is then checked at S22 whether the second start sequence is running. For this purpose, the status on the CAN bus, reference N, is taken into account. If the start process has not yet been set, a branch is made back to S21. If an error was detected in S22, the start process is aborted with S27. If it was recognized at S22 that the starting process is running, then at S23 the status variable CTS is set to Start and at S24 the starting process is set as completed. In S24, the status on the CAN bus, reference symbol O, is also taken into account. The status is then set to idling at S25, the starting process is ended with S26 and the engine is switched to operation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Description

Die Erfindung betrifft ein Verfahren zum Starten einer Brennkraftmaschine mittels Druckluftstartanlage, bei dem in einer ersten Startabfolge ein Einrücken des Starters mittels Druckluft bewirkt wird und in einer zweiten Startabfolge der Starter mit Druckluft beaufschlagt wird.The invention relates to a method for starting an internal combustion engine by means of a compressed air starter system, in which the starter is engaged by means of compressed air in a first start sequence and the starter is acted upon with compressed air in a second start sequence.

Gestartet wird eine Brennkraftmaschine entweder mittels eines elektrisch betätigten Anlassers oder mittels eines Druckluftstarters. Druckluftstartanlagen sind beispielsweise aus der DE 26 32 015 OS, der US 3 667 442 A und der US 4 494 499 A bekannt. Typischerweise besteht ein Startvorgang bei einer Druckluftstartanlage aus einer ersten und zweiten Startabfolge. In der ersten Startabfolge wird der Starter mittels Druckluft eingerückt und in der zweiten Startabfolge der Starter über die Druckluft in eine Drehbewegung versetzt. Beendet wird die zweite Startabfolge, wenn die Brennkraftmaschine eine Leerlaufdrehzahl, zum Beispiel 350 Umdrehungen/Minute, erreicht hat. Danach beginnt der verbrennungsmotorische Betrieb, indem der Kraftstoff eingespritzt wird. Bei einer als Schiffsantrieb verwendeten Brennkraftmaschine sind die Zylinder mit Dekompressionsventilen zum Entlasten des Zylinderarbeitsraums ausgestattet. Über diese wird bei der zweiten Startabfolge eventuell eingedrungenes Wasser aus dem Zylinderraum weggefördert. In der Praxis tritt nun das Problem auf, dass der Starter ein erhebliches Losreißmoment zum initialen Andrehen der Brennkraftmaschine aufbringen muss. Wird das Losreißmoment überwunden, so dreht die Brennkraftmaschine kurzzeitig mit hoher Drehzahl. In Verbindung mit Restwasser im Zylinderraum ist dies für das Pleuel kritisch.An internal combustion engine is started either by means of an electrically operated starter or by means of a compressed air starter. Compressed air starting systems are for example from the DE 26 32 015 OS that U.S. 3,667,442 A and the U.S. 4,494,499 A known. Typically, a starting process in a compressed air starting system consists of a first and a second starting sequence. In the first start sequence the starter is engaged by means of compressed air and in the second start sequence the starter is set in a rotary motion by means of the compressed air. The second start sequence is ended when the internal combustion engine has reached an idling speed, for example 350 revolutions / minute. Then the internal combustion engine operation begins by injecting the fuel. In an internal combustion engine used as a ship propulsion system, the cylinders are equipped with decompression valves to relieve the cylinder working space. Any water that may have penetrated during the second start sequence is pumped away from the cylinder chamber via this. In practice, the problem arises that the starter has to apply a considerable breakaway torque in order to initially crank the internal combustion engine. If the breakaway torque is overcome, the internal combustion engine briefly rotates at high speed. In connection with residual water in the cylinder space, this is critical for the connecting rod.

Der Erfindung liegt daher die Aufgabe zugrunde, ein verbessertes Verfahren zum Starten einer Brennkraftmaschine mit Druckluftanlage bereit zu stellen.The invention is therefore based on the object of providing an improved method for starting an internal combustion engine with a compressed air system.

Die Aufgabe wird gelöst, indem ein Verfahren mit den Merkmalen des Anspruchs 1 geschaffen wird. Vorteilhafte Ausgestaltungen ergeben sich aus den Unteransprüchen.The object is achieved in that a method having the features of claim 1 is created. Advantageous refinements result from the subclaims.

Gelöst wird diese Aufgabe insbesondere durch ein Verfahren, bei dem in einer ersten Startabfolge ein Einrücken des Starters mittels Druckluft bewirkt wird, ein Dekompressionsventil zum Entlasten des Zylinderarbeitsraums in Öffnungsrichtung beaufschlagt wird sowie ein Andrehen der Brennkraftmaschine initiiert wird, indem der Starter mit gepulster Druckluft beaufschlagt wird. In einer zweiten Startabfolge wird dann das Dekompressionsventil in Schließrichtung beaufschlagt und der Starter mit konstanter Druckluft beaufschlagt.This object is achieved in particular by a method in which, in a first starting sequence, the starter is engaged by means of compressed air, a decompression valve is applied in the opening direction to relieve the cylinder working space, and the internal combustion engine is started by applying pulsed compressed air to the starter . In a second starting sequence, the decompression valve is then acted upon in the closing direction and the starter is acted upon with constant compressed air.

Hierbei wird von einem Anlagenregler über ein Einrückventil ein Druckluftpfad zum Einrücken des Starters festgelegt und über ein Startventil ein Druckluftpfad zum Andrehen des Starters in der ersten Startabfolge sowie zum Drehen des Starters in der zweiten Startabfolge festgelegt. Erzeugt wird die gepulste Druckluft indem während der ersten Startabfolge das Startventil in Abhängigkeit einer Soll-Motordrehzahl über ein PWM-Signal angesteuert wird. Mit anderen Worten: Über das PWM-Signal und die gepulste Druckluft wird der Starter kontinuierlich, sanft angedreht. Vermieden wird also ein harter Übergang von stillstehender Brennkraftmaschine auf eine drehende Brennkraftmaschine.Here, a system controller defines a compressed air path for engaging the starter via an engagement valve and a compressed air path for cranking the starter in the first starting sequence and turning the starter in the second starting sequence is established using a starting valve. The pulsed compressed air is generated by controlling the start valve as a function of a target engine speed via a PWM signal during the first start sequence. In other words: the starter is continuously and gently turned on via the PWM signal and the pulsed compressed air. A hard transition from a stationary internal combustion engine to a rotating internal combustion engine is avoided.

In Ergänzung ist vorgesehen, dass die Soll-Drehzahl rampenförmig von einem ersten Soll-Drehzahlwert auf einen zweiten Soll-Drehzahlwert erhöht wird. Positiv beendet wird die erste Startabfolge, wenn eine Drehzahl-Regelabweichung aus Soll- zu Ist-Drehzahl innerhalb eines Toleranzbandes, zum Beispiel 10 Umdrehungen/Minute, detektiert wird.In addition, it is provided that the target speed is increased in the form of a ramp from a first target speed value to a second target speed value. The first start sequence ends positively when a speed control deviation from the setpoint to the actual speed is detected within a tolerance band, for example 10 revolutions / minute.

Das Verfahren bietet insgesamt eine hohe Prozesssicherheit und gestattet als zusätzliche Sicherheitsmaßnahme eine verkaufsfördernde Argumentation. Als reine Softwarelösung ist diese nahezu kostenneutral. Zudem ist die Erfindung problemlos nachrüstbar, da die Funktion lediglich auf die bereits bestehenden Komponenten zugreift.Overall, the process offers a high level of process security and, as an additional security measure, allows sales-promoting argumentation. As a pure software solution, it is almost cost-neutral. In addition, the invention can be retrofitted without any problems, since the function only accesses the already existing components.

In den Figuren ist ein bevorzugtes Ausführungsbeispiel dargestellt. Es zeigen:

Figur 1
ein Systemschaubild,
Figur 2
einen Programm-Ablaufplan und
Figur 3
einen Ausschnitt aus dem Programm-Ablaufplan
A preferred embodiment is shown in the figures. Show it:
Figure 1
a system diagram,
Figure 2
a program schedule and
Figure 3
an excerpt from the program schedule

Die Figur 1 zeigt ein Systemschaubild einer Brennkraftmaschine 1 mit Druckluftstartanlage 2. Die Druckluftstartanlage 2 umfasst einen Druckluftspeicher 10 zum Bereitstellen der Druckluft, ein Einrückventil 5 und ein Startventil 6. Das Einrückventil 5 und das Startventil 6 sind als 2/2-Ventile ausgeführt. Alternativ sind auch 3/2-Ventile anwendbar. In der Figur 1 ist das Einrückventil 5 in der Stellung 1 dargestellt, sodass ein durchgehender Druckluftpfad vom Druckluftspeicher 10 via Einrückventil 5 zum Starter 3 besteht. In dieser Stellung ist der Starter eingerückt. Das Startventil 6 ist in der Stellung Null dargestellt, in welcher der Druckluftpfad vom Druckluftspeicher 10 zum Starter gesperrt ist, das heißt, der Starter dreht nicht. Bestimmt wird der Betriebszustand der Gesamtanlage von einem Anlagenregler 4. Ein Bediener gibt über den Anlagenregler 4 seinen Aktivierungs-/Deaktivierungswunsch oder seine Leistungswunsch vor. Über einen CAN-Bus sind eine Überwachungseinheit 7 (EMU), eine Schnittstelleneinheit 8 (EIM) und ein Motorsteuergerät 9 mit dem Anlagenregler 4 verbunden. Die Überwachungseinheit 7 wiederum bestimmt den Schaltzustand des Einrückventils 5 und des Startventils 6. Dies geschieht typischerweise über ein PWM-Signal. Die Funktion der Überwachungseinheit 7 und der Schnittstelleneinheit 8 werden in Verbindung mit der Figur 2 näher erläutert. Das Motorsteuergerät 9 steuert und regelt den Zustand der Brennkraftmaschine 1. Im verbrennungsmotorischen Betrieb sind dies beispielsweise ein Raildruck, ein Spritzbeginn und ein Spritzende. In der Figur sind die weiteren Eingangs- und Ausgangsgrößen mit dem Bezugszeichen Ein/Aus dargestellt, beispielsweise ein Schaltsignal für den zuschaltbaren Abgasturbolader bei einer Registeraufladung.the Figure 1 shows a system diagram of an internal combustion engine 1 with a compressed air starting system 2. The compressed air starting system 2 comprises a compressed air storage device 10 for providing the compressed air, an engaging valve 5 and a starting valve 6. The engaging valve 5 and the starting valve 6 are designed as 2/2 valves. Alternatively, 3/2 valves can also be used. In the Figure 1 the engagement valve 5 is shown in position 1, so that there is a continuous compressed air path from the compressed air reservoir 10 via the engagement valve 5 to the starter 3. In this position the starter is engaged. The start valve 6 is shown in the zero position, in which the compressed air path from the compressed air reservoir 10 to the starter is blocked, that is, the starter does not rotate. The operating state of the overall system is determined by a system controller 4. An operator specifies his activation / deactivation request or his performance request via the system controller 4. A monitoring unit 7 (EMU), an interface unit 8 (EIM) and an engine control device 9 are connected to the system controller 4 via a CAN bus. The monitoring unit 7 in turn determines the switching state of the engagement valve 5 and the start valve 6. This is typically done via a PWM signal. The function of the monitoring unit 7 and the interface unit 8 are carried out in conjunction with the Figure 2 explained in more detail. The engine control unit 9 controls and regulates the state of the internal combustion engine 1. In internal combustion engine operation, these are, for example, a rail pressure, a start of injection and an end of injection. In the figure, the further input and output variables are shown with the reference symbol on / off, for example a switching signal for the switchable exhaust gas turbocharger in the case of register charging.

In der Figur 2 ist ein Programm-Ablaufplan dargestellt. Die Figur 2 besteht aus den Teilfiguren 2A, 2B und 2C. Hierbei zeigt die Figur 2A den Programmteil zur Vorbereitung und zur Prüfung des Startvorgangs, Figur 2B zeigt den Programmteil der erste Startabfolge und Figur 2C den Programmteil der zweiten Startabfolge. Mit dem Bezugszeichen EMU ist der Programmablauf in der Überwachungseinheit 7 gekennzeichnet. Mit dem Bezugszeichen EIM ist der Ablauf in der Schnittstelleneinheit 8 gekennzeichnet. Die Schnittstelleneinheit 8 (EIM) und die Überwachungseinheit 7 (EMU) kommunizieren via CAN-Bus. Informationen, welche auf dem CAN-Bus gesetzt oder abgefragt werden sind als gestrichelte Pfeile eingezeichnet. Beispielsweise setzt im Schritt S2A der Luftdrucksensor sein Statussignal auf dem CAN-Bus, Bezugszeichen B. Eingelesen wird dieses Statussignal vom CAN-Bus, Bezugszeichen B, im Schritt S3 der Schnittstelleneinheit 8 (EIM).In the Figure 2 a program flow chart is shown. the Figure 2 consists of the sub-figures 2A, 2B and 2C. Here the Figure 2A the part of the program for preparation and testing of the start process, Figure 2B shows the program part of the first start sequence and Figure 2C the program part of the second start sequence. The program sequence in the monitoring unit 7 is identified by the reference symbol EMU. The sequence in the interface unit 8 is identified by the reference symbol EIM. The interface unit 8 (EIM) and the monitoring unit 7 (EMU) communicate via CAN bus. Information that is set or queried on the CAN bus is shown as dashed arrows. For example, in step S2A the air pressure sensor sets its status signal on the CAN bus, reference character B. This status signal is read in from the CAN bus, reference character B, in step S3 of the interface unit 8 (EIM).

Im Folgenden wird zuerst der Programmdurchlauf der Überwachungseinheit (EMU) beschrieben. Bei S1A wird der Status des Dekompressionsventils offen/geschlossen festgestellt und als Wert auf dem CAN-Bus gesetzt, Bezugszeichen A. Bei S2A wird der Zustand des Druckluftsensors sowie der Druckluft festgestellt und als Statuswert, Bezugszeichen B, auf dem CAN-Bus gesetzt. Die Schritte S3A bis S8A kennzeichnen eine Fehlerabfrage und zeigen die Betriebsbereitschaft der Überwachungseinheit an. Zuerst wird bei S3A geprüft, ob ein Fehler erkannt wurde. Bei detektiertem Fehler, Abfrageergebnis S3A: ja, wird bei S4A eine Alarm angezeigt und dieser zur weiteren Verarbeitung auf dem CAN-Bus, Bezugszeichen C, gesetzt. Wird bei S3A die Fehlerfreiheit festgestellt, so wird bei S5A die Funktionsfreigabe erteilt, Bezugszeichen C, und anschließend bei S6A der Status des Einrückventils (Fig. 1: 5), bei S7A der Status des Startventils (Fig. 1: 6) und bei S8A der Status des Drehzahlsensors abgefragt. Im Anschluss wird dann zum Schritt S3A zurück verzweigt. Die Schritte S9A bis S11A kennzeichnen die Vorgehensweise bei einem Startabbruch. Bei S9A wird geprüft, ob ein Startabbruch von der Überwachungseinheit (EIM) auf dem CAN-Bus gesetzt wurde, Bezugszeichen D. Bei initiiertem Startabbruch werden dann bei S10A das Startventil und bei S11A das Einrückventil deaktiviert und dies auf dem CAN-Bus zur weiteren Verarbeitung angezeigt, Bezugszeichen E.In the following, the program run of the monitoring unit (EMU) is described first. With S1A, the status of the decompression valve open / closed is determined and set as a value on the CAN bus, reference number A. With S2A, the state of the compressed air sensor and the compressed air is determined and set as a status value, reference character B, on the CAN bus. Steps S3A to S8A identify an error query and indicate the operational readiness of the monitoring unit. First, a check is made at S3A to determine whether an error has been detected. If an error is detected, query result S3A: yes, an alarm is displayed at S4A and this is set on the CAN bus, reference character C, for further processing. If the fault-free condition is determined at S3A, the function release is issued at S5A, reference character C, and then at S6A the status of the engagement valve ( Fig. 1 : 5), with S7A the status of the start valve ( Fig. 1 : 6) and the status of the speed sensor is queried at S8A. A branch is then made back to step S3A. Steps S9A to S11A characterize the procedure in the event of an aborted start. At S9A it is checked whether the monitoring unit (EIM) has set a start abort on the CAN bus, reference character D. If the start abort is initiated, the start valve is then deactivated at S10A and the engagement valve at S11A and this is done on the CAN bus for further processing indicated, reference symbol E.

Der Programmdurchlauf der Schnittstelleneinheit (EIM) beginnt bei S1 mit der Abfrage des Startmodus. Dieser wird vom Bediener über den Anlagenregler vorgegeben. Entsprechend wird entweder der Motorstart mittels Generator, Schritt S2, oder ein Start mittels Druckluftanlage ausgewählt. Bei S3 wird die Startverblockung abgefragt. Hierzu werden auf dem CAN-Bus die gesetzten Status des Dekompressionsventils (Bezugszeichen A), des Luftdrucksensors (Bezugszeichen B) und eines externen Stoppsignals abgefragt. Das Stoppsignal, Bezugszeichen F, wird vom Anlagenregler auf dem CAN-Bus gesetzt. Danach wird bei S4 das Ergebnis der Startverblockung abgefragt. Ist eine Schaltsperre gesetzt, so wird der Start bei S9 abgebrochen und auf dem CAN-Bus angezeigt, Bezugszeichen D. Liegt keine Schaltsperre vor, so wird bei S5 zum Unterprogramm der Ölschmierung verzweigt und anschließend bei S6 geprüft, ob der Öldruck pÖL größer als ein Grenzwert GW ist. Im Fehlerfall, Abfrageergebnis S6: nein, wird bei S7 ein Alarm für den Bediener gesetzt und zu S8 verzweigt. Bei korrekter Ölschmierung, Abfrageergebnis S6: ja, wird im Anschluss bei S8 geprüft, ob die Überwachungseinheit (EMU) betriebsbereit ist. Hierzu wird die Betriebsbereitschaft auf dem CAN-Bus, Bezugseichen C, ausgelesen. Wurde bei S8 festgestellt, dass die Überwachungseinheit (EMU) betriebsbereit ist, so wird zur Figur 2B verzweigt. Bei negativem Prüfergebnis, das heißt, die Überwachungseinheit (EMU) ist nicht betriebsbereit, wird zu S9 verzweigt, der Startvorgang abgebrochen und dieser Status auf dem CAN-Bus, Bezugszeichen D, gesetzt.The program run of the interface unit (EIM) begins at S1 with the query of the start mode. This is specified by the operator via the system controller. Accordingly, either the engine start using a generator, step S2, or a start using a compressed air system is selected. The start blocking is queried at S3. For this purpose, the set status of the decompression valve (reference symbol A), the air pressure sensor (reference symbol B) and an external stop signal are queried on the CAN bus. The stop signal, reference F, is set by the system controller on the CAN bus. The result of the start blocking is then queried at S4. If a shift lock is set, the start is aborted at S9 and displayed on the CAN bus, reference number D. If there is no shift lock, then at S5 a branch is made to the oil lubrication subroutine and then at S6 a check is made to see whether the oil pressure pÖL is greater than a Limit value GW is. In the event of an error, query result S6: no, an alarm is set for the operator at S7 and a branch is made to S8. With correct oil lubrication, Query result S6: yes, it is then checked at S8 whether the monitoring unit (EMU) is ready for operation. For this purpose, the operational readiness on the CAN bus, reference character C, is read out. If it was determined at S8 that the monitoring unit (EMU) is ready for operation, then it becomes Figure 2B branched. If the test result is negative, that is, the monitoring unit (EMU) is not ready for operation, a branch is made to S9, the start process is aborted and this status is set on the CAN bus, reference character D.

Die Figur 2B zeigt den Programmteil der ersten Startabfolge. Im Folgenden wird zuerst der Programmdurchlauf der Überwachungseinheit (EMU) beschrieben. Bei S12A wird geprüft, ob die Ist-Drehzahl nIST größer als ein Grenzwert GW ist. Der Grenzwert entspricht hierbei der maximal zulässigen Drehzahl während des Andrehens, zum Beispiel 20 Umdrehungen/Minute. Ergänzend wird der Status der Überwachungseinheit (EIM), Bezugszeichen G, abgefragt. Wurde eine zu hohe Ist-Drehzahl detektiert, Abfrageergebnis S12A: ja, so wird zum Programmteil mit den Schritten S20A bis S22A verzweigt. Ist die Ist-Drehzahl nIST nicht größer als der Grenzwert GW, Abfrageergebnis S12A: nein, so wird bei S13A das Einrückventil aktiviert, wodurch der Starter mit Druckluft beaufschlagt wird und einspurt. Bei S14A wird eine Zeitstufe durchlaufen, welche dem Zeitraum des Einspurens entspricht. Bei S15A wird eine Regelung aktiviert. Die Grundzüge dieser Regelung sind in der Figur 3 dargestellt. An einem PI-Regler 11 stehen folgende Eingangsgrößen an: die PWM-Frequenz fPWM zur Ansteuerung des Einrückventils (Fig. 1: 5) und des Startventils (Fig. 1: 6), ein minimales Impuls-Pausenverhältnis PWM(min), ein maximales Impuls-Pausenverhältnis PWM(max) zur Ansteuerung des Einrück- und Startventils, zwei Drehzahl-Sollwerte nSL1 sowie nSL2, ein Toleranzband der Drehzahl, ein Proportional-Beiwert kp und eine Intergral-Beiwert ki. Typische Werte für diese Eingangsgrößen sind: fPWM=8Hz, PWM(min)=0%, PWM(max)=20%, nSL1=2 1/min; nSL2=10 1/min und Toleranzband=10 1/min. Ergänzend wird dem PI-Regler 11 die Ist-Drehzahl nIST zugeführt, deren Wert auf dem CAN-Bus verfügbar ist, Bezugszeichen K (Fig. 2B). Alternativ kann die Überwachungseinheit auch auf einen eigenen Drehzahlsensor zurückgreifen. Die Ausgangsgrößen des PI-Reglers 11 sind der Status des Andrehens und die Lage der Soll-Istabweichung dn der Drehzahl in Bezug auf einen ersten Grenzwert GW1 und einen zweiten Grenzwert GW2.the Figure 2B shows the program part of the first start sequence. In the following, the program run of the monitoring unit (EMU) is described first. At S12A it is checked whether the actual speed nIST is greater than a limit value GW. The limit value here corresponds to the maximum permissible speed during cranking, for example 20 revolutions / minute. In addition, the status of the monitoring unit (EIM), reference G, is queried. If too high an actual speed was detected, query result S12A: yes, the program branches to the program part with steps S20A to S22A. If the actual speed nIST is not greater than the limit value GW, query result S12A: no, the engagement valve is activated at S13A, whereby the starter is pressurized with compressed air and engages. At S14A, a time step is run through which corresponds to the period of the meshing. A regulation is activated at S15A. The main features of this regulation are in the Figure 3 shown. The following input variables are available at a PI controller 11: the PWM frequency fPWM for controlling the engagement valve ( Fig. 1 : 5) and the start valve ( Fig. 1 : 6), a minimum pulse-pause ratio PWM (min), a maximum pulse-pause ratio PWM (max) to control the engagement and start valve, two speed setpoints nSL1 and nSL2, a tolerance band for the speed, a proportional coefficient kp and an integral coefficient ki. Typical values for these input variables are: fPWM = 8Hz, PWM (min) = 0%, PWM (max) = 20%, nSL1 = 2 1 / min; nSL2 = 10 1 / min and tolerance band = 10 1 / min. In addition, the PI controller 11 is supplied with the actual speed nIST, the value of which is available on the CAN bus, reference symbol K ( Figure 2B ). Alternatively, the monitoring unit can also use its own speed sensor. The output variables of the PI controller 11 are the cranking status and the position of the setpoint / actual deviation dn of the speed in relation to a first limit value GW1 and a second limit value GW2.

Die Ausgangsgrößen des PI-Reglers werden nun im Schritt S16A der Figur 2B weiter bewertet. Liegt während einer Zeit dt die Drehzahl-Regelabweichung dn innerhalb des Toleranzbandes TB, Abfrageergebnis S16A: ja, so wird bei S18A das Andrehen als vollständig erkannt und als Datenwert auf dem CAN-Bus gesetzt, Bezugszeichen J. Wurde hingegen bei S16A noch keine stabile Drehzahl-Regelabweichung erkannt, so wird bei S17A eine Zeitstufe t mit einem Grenzwert GW verglichen. Ist die Zeitstufe t abgelaufen, Abfrageergebnis S17A: ja, so wird der Programablauf bei S20A fortgesetzt. Läuft hingegen die Zeitstufe t noch, Abfrageergebnis S17A: nein, so wird zu S15A zurück verzweigt. Wurde bei S18A das Andrehen als vollständig gesetzt, so wird bei S19A eine Zeitstufe aktiviert. Während dieser Zeitstufe wird geprüft, ob von der ersten Startabfolge in die zweite Startabfolge (Fig. 2C) gewechselt werden soll, ob die Zeitstufe ergebnislos abgelaufen ist oder ob der Status auf Leerlauf gesetzt werden soll. Hierzu wird während der Zeitstufe der Status auf dem CAN-Bus, Bezugszeichen L, abgefragt. Bei ergebnislos abgelaufener Zeitstufe oder wenn der Status Leerlauf gesetzt ist, wird dann bei S20A das Startventil deaktiviert, bei S21A das Einrückventil deaktiviert und bei S22A das Andrehen beendet.The output variables of the PI controller are now in step S16A Figure 2B further rated. If during a time dt the speed control deviation dn lies within the tolerance band TB, query result S16A: yes, the cranking is recognized as complete at S18A and set as a data value on the CAN bus, reference character J. If, however, the speed was not yet stable at S16A If the control deviation is detected, a time step t is compared with a limit value GW at S17A. If the timer t has expired, query result S17A: yes, the program sequence is continued at S20A. If, on the other hand, the time stage t is still running, query result S17A: no, the system branches back to S15A. If the cranking was set as complete in S18A, a timer is activated in S19A. During this time step it is checked whether from the first start sequence to the second start sequence ( Figure 2C ) should be changed, whether the timer has expired without result or whether the status should be set to idle. For this purpose, the status on the CAN bus, reference L, is queried during the time stage. If the time step has expired without result or if the status idling is set, the start valve is then deactivated at S20A, the engagement valve is deactivated at S21A and the cranking is ended at S22A.

Bei S10 setzt die Schnittstelleneinheit (EIM) folgende Zustände auf dem CAN-Bus, Bezugszeichen G: Keine Einspritzung, Dekompressionsventil aktivieren, also in Öffnungsstellen betätigen und eine Zustandsvariabel CTS auf Andrehen. Danach wird bei S11 geprüft, ob das Andrehen läuft. Hierzu wird auf dem CAN-Bus der entsprechende Wert, Bezugszeichen H, eingelesen. Bei negativem Prüfergebnis, wird das Andrehen abgebrochen und zu S10 verzweigt. Wurde bei S11 das Andrehen als aktiviert erkannt, Abfrageergebnis S11: ja, so wird bei S12 die Zustandsvariable CTS entsprechend gesetzt und bei S13 geprüft, ob das Andrehen vollständig erfolgt ist. Bei dieser Prüfung wird der Status der Überwachungseinheit (EMU), Bezugszeichen J, abgefragt. Ist das Andrehen noch nicht vervollständigt, so wird zu S12 zurück verzweigt. Ergänzend erfolgt eine Fehlerabfrage, welche einen Startabbruch bewirken kann. Ist das Andrehen beendet, Abfrageergebnis S13: ja, erfolgt bei S14 die Entscheidung, ob die zweite Startabfolge nach Figur 2C erfolgen soll oder ob bei S15 die Laufvariabel CTS auf Leerlauf gesetzt werden soll. Soll das Andrehen beendet werden, dann wird bei S15 die Zustandsvariable CTS auf Leerlauf gesetzt und ergänzend auf dem CAN-Bus, Bezugszeichen L, gesetzt. Danach wird bei S16 die Ist-Drehzahl nIST auf Stillstand (nIST=0) geprüft. Bei negativem Prüfergebnis, das heißt, die Brennkraftmaschine dreht bereits, erfolgt ein Abbruch des Programmablaufs, Schritt S19 und Bezugszeichen M. Ist die Prüfung bei S16 positiv, so wird bei S17 das Dekompressionsventil in Schließrichtung betätigt und bei S18 das Andrehen als beendet gesetzt.At S10, the interface unit (EIM) sets the following states on the CAN bus, reference symbol G: No injection, activate decompression valve, i.e. actuate in opening positions and turn on a state variable CTS. It is then checked at S11 whether the turning is in progress. For this purpose, the corresponding value, reference symbol H, is read in on the CAN bus. If the test result is negative, the cranking is aborted and a branch is made to S10. If the cranking was recognized as activated at S11, query result S11: yes, the status variable CTS is set accordingly at S12 and a check is made at S13 to determine whether the cranking has taken place completely. During this test, the status of the monitoring unit (EMU), reference character J, is queried. If the turning has not yet been completed, a branch is made back to S12. In addition, there is an error query, which can cause the start to be aborted. If the cranking is ended, query result S13: yes, the decision is made at S14 whether the second starting sequence is after Figure 2C should take place or whether the run variable CTS should be set to idle at S15. If the cranking is to be ended, then the status variable CTS is set to idle at S15 and, in addition, is set on the CAN bus, reference character L. Then at S16 the actual speed nIST is checked for standstill (nIST = 0). With negative Test result, that is, the internal combustion engine is already turning, the program sequence is aborted, step S19 and reference symbol M. If the test at S16 is positive, the decompression valve is actuated in the closing direction at S17 and the cranking is set to be ended at S18.

Die Figur 2C zeigt die Programmteile der zweiten Startabfolge. Zunächst wird der Programmdurchlauf der Überwachungseinheit (EMU) beschrieben. Bei S23A wird die zweite Startabfolge gesetzt und auf dem CAN-Bus als Status gesetzt, Bezugszeichen N. Danach wird bei S24A das Startventil aktiviert, wobei das Impuls-Pausenverhältnis auf einhundert Prozent gesetzt wird (PWM=100%). Hierdurch wird der Starter jetzt mit der vollen Druckluft beaufschlagt. Bei S25A wird geprüft, ob die Ist-Drehzahl nIST größer als die Leerlaufdrehzahl LL, zum Beispiel LL=350 1/min, ist. Ist dies noch nicht der Fall, Abfrageergebnis S25A: nein, so wird bei S26A eine Zeitstufe t, beispielsweise t=20s, gesetzt. Ist diese Zeitstufe noch nicht abgelaufen, dann wird zu S25A zurück verzweigt. Anderenfalls wird der Programmablauf mit S27A fortgesetzt. Wurde bei S25A erkannt, dass die Ist-Drehzahl größer als die Leerlaufdrehzahl LL ist, dann wird bei S27A das Startventil deaktiviert, bei S28A das Einrückventil deaktiviert und bei S29A die zweite Startabfolge als vollständig gesetzt, Bezugszeichen O. Bei S30A ist dann dieser Programmablauf beendet.the Figure 2C shows the program parts of the second start sequence. First, the program run of the monitoring unit (EMU) is described. At S23A, the second start sequence is set and set as the status on the CAN bus, reference number N. Then, at S24A, the start valve is activated, with the pulse-pause ratio being set to one hundred percent (PWM = 100%). As a result, the starter is now fully pressurized with compressed air. At S25A it is checked whether the actual speed nIST is greater than the idling speed LL, for example LL = 350 rpm. If this is not yet the case, query result S25A: no, a time step t, for example t = 20s, is set at S26A. If this time stage has not yet expired, a branch is made back to S25A. Otherwise the program sequence is continued with S27A. If it was recognized in S25A that the actual speed is greater than the idle speed LL, then the start valve is deactivated in S27A, the engagement valve deactivated in S28A and the second start sequence set as complete in S29A, reference symbol O. In S30A, this program sequence is ended .

Bei S20 deaktiviert die Schnittstelleneinheit (EIM) das Dekompressionsventil, das heißt, das Dekompressionsventil wird in Schließrichtung betätigt. Bei S21 wird die Zustandsvariable CTS auf den Status Start gesetzt. Danach wird bei S22 geprüft, ob die zweite Startabfolge läuft. Hierzu wird der Status auf dem CAN-Bus, Bezugszeichen N, berücksichtigt. Ist der Startvorgang noch nicht gesetzt, so wird zu S21 zurück verzweigt. Wurde bei S22 ein Fehler erkannt, so wird mit S27 der Startvorgang abgebrochen. Wurde bei S22 erkannt, dass der Startvorgang läuft, so wird bei S23 die Zustandsvariable CTS auf Start gesetzt und bei S24 der Startvorgang als vervollständigt gesetzt. Bei S24 wird ergänzend der Status auf dem CAN-Bus, Bezugszeichen O, mit berücksichtigt. Anschließend wird bei S25 der Status auf Leerlauf gesetzt, mit S26 der Startvorgang beendet und in den verbrennungsmotorischen Betrieb gewechselt.At S20, the interface unit (EIM) deactivates the decompression valve, that is, the decompression valve is actuated in the closing direction. At S21 the status variable CTS is set to the status Start. It is then checked at S22 whether the second start sequence is running. For this purpose, the status on the CAN bus, reference N, is taken into account. If the start process has not yet been set, a branch is made back to S21. If an error was detected in S22, the start process is aborted with S27. If it was recognized at S22 that the starting process is running, then at S23 the status variable CTS is set to Start and at S24 the starting process is set as completed. In S24, the status on the CAN bus, reference symbol O, is also taken into account. The status is then set to idling at S25, the starting process is ended with S26 and the engine is switched to operation.

BezugszeichenReference number

11
BrennkraftmaschineInternal combustion engine
22
DruckluftstartanlageCompressed air starting system
33
Starterstarter
44th
AnlagenreglerSystem controller
55
EinrückventilEngagement valve
66th
StartventilStart valve
77th
Überwachungseinheit (EMU)Monitoring Unit (EMU)
88th
Schnittstelleneinheit (EIM)Interface Unit (EIM)
99
MotorsteuergerätEngine control unit
1010
DruckluftspeicherCompressed air storage
1111th
PI-ReglerPI controller

Claims (5)

  1. Method for starting an internal combustion engine (1) by means of a compressed air starting system (2), in which in a first starting sequence an engagement of the starter (3) is effected by means of compressed air, a decompression valve for relieving the cylinder working chamber is impinged in the opening direction and a turning-on of the internal combustion engine (1) is initiated, in that the starter (3) is applied with pulsed compressed air, and in which, in a second starting sequence, the decompression valve is impinged in the closing direction and the starter (3) is applied with constant compressed air, wherein a compressed air path for engaging the starter (3) is defined by a system controller (4) via an engagement valve (5) and a compressed air path for turning-on the starter (3) in the first starting sequence and for rotating the starter (3) in the second starting sequence is defined via a starting valve (6), characterised in that during the first starting sequence the starting valve (6) is controlled as a function of a setpoint engine speed (nSL) via a PWM signal.
  2. Method according to claim 1, characterised in that the setpoint engine speed (nSL) is increased in a ramp-like manner from a first setpoint speed value (nSL1) to a second setpoint speed value (nSL2).
  3. Method according to claim 2, characterised in that a speed control deviation (dn) is calculated from the setpoint speed (nSL) to the actual speed (nIST) and the first starting sequence is terminated positively when the speed control deviation (dn) is determined within a tolerance band (TB).
  4. Method according to claim 3, characterised in that a time period of the speed control deviation (dn) is additionally checked.
  5. Method according to one of the preceding claims, characterised in that during the second starting sequence the actual speed (nIST) is compared with a no-load value (LL), when the no-load value (nIST>LL) is exceeded the second starting sequence is terminated positively and a change is made to internal combustion engine operation.
EP17742158.3A 2016-10-17 2017-07-13 Method for starting an internal combustion engine Active EP3526456B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016012403.2A DE102016012403B4 (en) 2016-10-17 2016-10-17 Method for starting an internal combustion engine
PCT/EP2017/000838 WO2018072859A1 (en) 2016-10-17 2017-07-13 Method for starting an internal combustion engine

Publications (2)

Publication Number Publication Date
EP3526456A1 EP3526456A1 (en) 2019-08-21
EP3526456B1 true EP3526456B1 (en) 2021-11-17

Family

ID=59381234

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17742158.3A Active EP3526456B1 (en) 2016-10-17 2017-07-13 Method for starting an internal combustion engine

Country Status (8)

Country Link
US (1) US10794352B2 (en)
EP (1) EP3526456B1 (en)
JP (1) JP6920429B2 (en)
KR (1) KR102380226B1 (en)
CN (1) CN109804147B (en)
AU (1) AU2017346327B2 (en)
DE (1) DE102016012403B4 (en)
WO (1) WO2018072859A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019211508A1 (en) * 2018-05-04 2019-11-07 Wärtsilä Finland Oy A method for starting a four-stroke reciprocating internal combustion piston engine and a four-stroke reciprocating internal combustion piston engine
CN111058953A (en) * 2019-12-28 2020-04-24 潍柴动力股份有限公司 Engine starting system, engine and engine starting method

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH491290A (en) * 1968-05-10 1970-05-31 Nova Werke Ferber & Wran Compressed air starter system for diesel engines with a device for draining the water from the cylinders before starting
US3667442A (en) * 1970-02-16 1972-06-06 White Sales Corp Graham Pneumatic starting system for diesel engines
DE2632015A1 (en) 1976-07-16 1978-01-19 Motoren Turbinen Union DIESEL COMBUSTION ENGINE
DE3020930C2 (en) * 1980-06-03 1982-12-23 G. Düsterloh GmbH, 4322 Sprockhövel Method for starting a prime mover and starter for a prime mover
US4494499A (en) * 1983-05-09 1985-01-22 Tech Development Inc. System and apparatus providing a two step starting cycle for diesel engines using a pneumatic starter
DE19724921C2 (en) 1997-06-12 1999-08-12 Mannesmann Sachs Ag Drive system for a motor vehicle and method for operating an internal combustion engine
JPH1113608A (en) * 1997-06-25 1999-01-19 Niigata Eng Co Ltd Pre-lubrication method for emergency diesel engine and its device
US9360025B2 (en) * 2010-07-22 2016-06-07 Maradyne Corporation Hydraulic soft start system
AT511612B1 (en) * 2011-06-17 2013-01-15 Ge Jenbacher Gmbh & Co Ohg METHOD FOR STARTING AN INTERNAL COMBUSTION ENGINE
FI123333B (en) * 2011-11-23 2013-02-28 Waertsilae Finland Oy Liquid detection system for an internal combustion engine, method for operating the liquid detection system and method for improving an internal combustion engine
CN106460765B (en) * 2014-04-07 2020-08-11 通用电气航空系统有限责任公司 Method for slow starting of reciprocating engine with pneumatic starter in diagnosing presence of hydrostatic lock
KR102057748B1 (en) * 2015-03-04 2019-12-19 현대중공업 주식회사 Starting Air Supply System of Electronic Type with Manual Type
CN105626342A (en) * 2015-12-24 2016-06-01 沪东重机有限公司 Slow-turning starting system for marine diesel engine

Also Published As

Publication number Publication date
JP2019530828A (en) 2019-10-24
KR20190060857A (en) 2019-06-03
WO2018072859A1 (en) 2018-04-26
JP6920429B2 (en) 2021-08-18
DE102016012403B4 (en) 2018-11-08
CN109804147A (en) 2019-05-24
US10794352B2 (en) 2020-10-06
EP3526456A1 (en) 2019-08-21
KR102380226B1 (en) 2022-03-29
DE102016012403A1 (en) 2018-04-19
US20190277238A1 (en) 2019-09-12
AU2017346327A1 (en) 2019-04-11
AU2017346327B2 (en) 2023-02-02
CN109804147B (en) 2021-08-20

Similar Documents

Publication Publication Date Title
DE10329331B3 (en) Method for diagnosing a volume flow control valve in an internal combustion engine with high-pressure accumulator injection system
EP3526456B1 (en) Method for starting an internal combustion engine
DE102010030226A1 (en) Vehicle with automatic transmission and an automatic engine start / stop function
EP1399656B1 (en) Method for monitoring a coolant circuit of an internal combustion engine
EP1611333B1 (en) Method for engine speed control
EP3183446B1 (en) Compressor unit and method for operating the same
DE10156637C1 (en) Method for controlling and regulating the starting operation of an internal combustion engine
DE4405688A1 (en) Starter control
DE102006053950B4 (en) Method for functional testing of a pressure detection unit of an injection system of an internal combustion engine
DE102012219297A1 (en) Method for operating motor car, involves starting camshaft adjustable control unit after switching off internal combustion engine and before start-up of engine control unit
DE10323877B4 (en) Arrangement for hydraulic valve lift changeover has oil pressure measurement device, arrangement for detecting time between driving switching valve and characteristic change in oil pressure
DE4229540A1 (en) Controlling Diesel IC engine - initially activating power-determining regulating mechanism in first stage so that it assumes a start position, and operating starter in following stage
EP1278950B1 (en) Method for operating a fuel supply system for an internal combustion engine, especially in a motor vehicle
DE102015220098B3 (en) Method and apparatus for operating an internal combustion engine with a high-pressure fuel injection system
DE102008035455A1 (en) Method for controlling oil supply unit of internal combustion engine, involves detecting speed of internal combustion engine and temperature of oil, where target pressure level is provided for oil pump as oil supply unit
DE102016215125B4 (en) Method for controlling an emergency device, flap control device and control device for an internal combustion engine and internal combustion engine
DE19951132A1 (en) Method of releasing fuel pressure in a non-return fuel supply system
DE19925099A1 (en) Operating method for automobile engine fuel system provides fault diagnosis by evaluating difference between pressure signals corresponding to alternate selected fuel pressure values
DE102014213253A1 (en) Method for operating a camshaft adjuster and regulating device for a phaser
WO2019057666A1 (en) Method for operating an internal combustion engine having an injection system, and injection system for carrying out such a method
DE4142647C1 (en) Controlling return of exhaust gas of IC engine - operating control valve from setting signals dependent on working parameter(s) after delay from start=up time
DE102007034190A1 (en) Method for operating combustion engine, involves activating null-set calibration function in engine temperature above temperature threshold to determine correction value for injector
DE102016124544B4 (en) Method for controlling an emergency device
DE102020108060A1 (en) Method and device for starting an internal combustion engine by means of a belt drive with a belt starter generator in a vehicle
DE10317652A1 (en) Method for controlling a camshaft adjustment device

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190517

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210601

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ROLLS-ROYCE SOLUTIONS GMBH

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017012048

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1448225

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211215

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20211117

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20211117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220317

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220317

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220218

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017012048

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220713

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220731

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220713

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1448225

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220713

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20230721

Year of fee payment: 7

Ref country code: IT

Payment date: 20230724

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240719

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240725

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240730

Year of fee payment: 8