EP3525286B1 - Ferrite rod antenna and transmitting and receiving unit with corresponding ferrite rod antenna - Google Patents

Ferrite rod antenna and transmitting and receiving unit with corresponding ferrite rod antenna Download PDF

Info

Publication number
EP3525286B1
EP3525286B1 EP19155667.9A EP19155667A EP3525286B1 EP 3525286 B1 EP3525286 B1 EP 3525286B1 EP 19155667 A EP19155667 A EP 19155667A EP 3525286 B1 EP3525286 B1 EP 3525286B1
Authority
EP
European Patent Office
Prior art keywords
ferrite core
ferrite
winding
core portion
rod antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19155667.9A
Other languages
German (de)
French (fr)
Other versions
EP3525286A1 (en
Inventor
Michael Baumann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumida Components and Modules GmbH
Original Assignee
Sumida Components and Modules GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumida Components and Modules GmbH filed Critical Sumida Components and Modules GmbH
Publication of EP3525286A1 publication Critical patent/EP3525286A1/en
Application granted granted Critical
Publication of EP3525286B1 publication Critical patent/EP3525286B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • H01Q7/06Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop with core of ferromagnetic material
    • H01Q7/08Ferrite rod or like elongated core
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/29Combinations of different interacting antenna units for giving a desired directional characteristic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • H01Q1/3208Adaptation for use in or on road or rail vehicles characterised by the application wherein the antenna is used
    • H01Q1/3233Adaptation for use in or on road or rail vehicles characterised by the application wherein the antenna is used particular used as part of a sensor or in a security system, e.g. for automotive radar, navigation systems
    • H01Q1/3241Adaptation for use in or on road or rail vehicles characterised by the application wherein the antenna is used particular used as part of a sensor or in a security system, e.g. for automotive radar, navigation systems particular used in keyless entry systems

Definitions

  • the present invention relates to a ferrite rod antenna and a transmitting and receiving unit with a ferrite rod antenna.
  • a ferrite rod antenna refers to a magnetic antenna in which a coil is attached to a ferrite rod.
  • the B-field component of an electromagnetic wave induces a voltage in the coil that is tapped.
  • Ferrite rod antennas are mainly used for short-range communication, but ferrite rod antennas are also suitable in radio and radio technology for the reception of long, medium or possibly also short waves, especially for the reception of radio waves with frequencies below 2 MHz.
  • ferrite rod antennas are less efficient than loop antennas and, due to their shape, have a high degree of directional sensitivity, they are only suitable to a limited extent as transmission antennas, at best for low transmission powers.
  • ferrite rod antennas arise, for example, in RFID (radio frequency identity) technology, such as opening cars without a key or in search devices that are used, for example, to locate buried subjects in the alpine area.
  • Tourers carry a small device with them that is operated in transmit mode. If a skier is buried in an avalanche, group members can switch the identical device that they are carrying with them from a transmit mode to a receive mode in order to locate the buried victim by bearing.
  • the pamphlet EP1439400 A2 shows a search device for locating people buried in avalanches, with three orthogonal ferrite rod antennas housed in a compact housing and connected to a receiving unit. In a transmission mode, a ferrite rod antenna is connected to a transmission unit, while in a reception mode the three orthogonal ferrite rod antennas are alternately connected to a reception unit.
  • WO 2012/120302 A1 discloses a system for providing course information with a three-fold orthogonally wound cube-shaped core as a transmitting and receiving device.
  • the one in Scripture DE 10 2013 113 244 A1 relates to a coil arrangement for an inductive energy transmission system, which has at least one plate-shaped coil core made of ferrite.
  • the at least one plate-shaped coil core is surrounded by at least one winding each with at least one turn, the coil arrangement having at least two windings, the winding axes of which are arranged at an angle of greater than 50 ° to one another.
  • the turns of the windings arranged at an angle to one another are arranged without crossing one another. Crossing turns cross their windings only in the area of a recess or an area with a reduced thickness of the plate-shaped coil core.
  • the font WO 2015/194036 A1 describes an antenna device with a core.
  • the core has a first leg portion and a second leg portion which extend in opposite directions relative to one another, and a third leg portion which extends in a direction perpendicular to the direction of extension of the first leg portion and the second leg portion from a middle portion between the first leg portion and the second Leg portion extends.
  • the antenna device is also provided with a first coil formed by connecting in series a first small coil wound on the first leg portion and a second small coil wound on the second small leg portion.
  • the antenna device also includes a first signal source that supplies power to the first coil, a second coil that is wound on the third leg portion, and a second signal source that supplies power to the second coil.
  • a three-axis antenna module with a keyless entry system which has three coils which are respectively arranged wound around an X-axis, a Y-axis and a Z-axis, which are mutually orthogonal, and which further comprises a magnetic core consisting of a magnetic material and at least one receiving space formed therein for receiving one around the Having a first coil wound around the X-axis and a second coil wound around the Y-axis.
  • the magnetic core supports a third coil wound around the Z-axis along the circumferential direction.
  • a plurality of connections are provided which are formed on at least one surface of the magnetic core in order to enable an electrical connection to the outside.
  • known ferrite rod antennas are used for transmitting and also for the Reception operation are provided, either with regard to the transmission power or the reception power is an unacceptable compromise with modern requirements.
  • multiply wound cores for ferrite rod antennas there is the problem that one winding is in the stray field of at least one other winding.
  • a ferrite rod antenna having a ferrite core having a first ferrite core portion, a second ferrite core portion and a third ferrite core portion, the first ferrite core portion and the third Ferrite core portion are spaced apart from one another by the second ferrite core portion.
  • the ferrite core is at least partially tapered at the second ferrite core section relative to the first and third ferrite core sections in at least one direction.
  • the ferrite rod antenna furthermore has a first winding which is arranged over the first ferrite core section and / or the third ferrite core section and defines a first winding axis, and a second winding which is arranged over the second ferrite core section and a second Defines winding axis that is not parallel to the first winding axis, the ferrite core has a smallest dimension on the second ferrite core section in a direction parallel to the first winding axis relative to the first and third ferrite core sections.
  • the ferrite core provided in the first aspect of the invention enables a compact design of a ferrite rod antenna which is suitable for transmitting and receiving magnetic fields.
  • the second ferrite core section which is tapered relative to the first and third ferrite core sections, the second winding is provided with a low direct current resistance.
  • the taper in the second ferrite core section enables the second winding to be arranged above the ferrite core, so that the second winding is influenced to a minimal extent by stray fields caused by the first winding, despite a compact design of the ferrite core and a multiple winding provided above it .
  • a winding on the second ferrite core section can advantageously be included in the contour. It is therefore easy to wrap the ferrite core on the second ferrite core section. Furthermore, the tapering at the second ferrite core section leads to a concentration of the magnetic flux density at the second ferrite core section and thus to an increase in the winding provided around the second ferrite core section.
  • the ferrite rod antenna thus has improved properties as a receiving antenna.
  • the first aspect can be exemplified by a ferrite rod antenna comprising a ferrite core formed by at least three ferrite core sections.
  • the ferrite core sections can be designed as individual elongated ferrite rods, two of these elongated ferrite rods having a first length dimension that is greater than a second length dimension of the other of the three elongated ferrite rods, for example the first length dimension can be at least a factor of "1.5" or be at least a factor "2" or at least a factor "3" or at least a factor "5" greater than the second length dimension.
  • the elongated ferrite rod with the second length dimension is arranged perpendicular or substantially perpendicular to the two elongated ferrite rods with the first length dimension, so that they are spaced apart from one another by the elongate ferrite rod with the second length dimension.
  • the two elongated ferrite rods with the first length dimension can be arranged parallel to one another and the ferrite core can have an H-shaped configuration in a side view of the three ferrite rods.
  • the ferrite rod having the second length dimension is formed in a cylindrical shape.
  • the ferrite core has an elongated shape which defines a longitudinal direction.
  • a dimension of the second ferrite core section is smaller at least along the longitudinal direction than a dimension of the first ferrite core section along the longitudinal direction and / or a dimension of the third ferrite core section along the longitudinal direction.
  • a taper in the ferrite core on the second ferrite core section is thereby provided in a simple manner.
  • the ferrite rod antenna is configured such that the first and third ferrite core sections are spaced apart from each other along a connection direction perpendicular to the longitudinal direction of the first and third ferrite core sections by the second ferrite core section and a dimension of the second ferrite core section in a width direction perpendicular to the longitudinal direction and perpendicular to the connection direction is less than or equal is a smallest dimension of dimensions of the first and third ferrite core portions in their respective width directions.
  • This provides a second ferrite core section which enables a small cross-sectional area and consequently a concentration of the B field lines in the second ferrite core section in a receiving mode, with a direct current resistance of the second winding also being kept low due to the small cross section.
  • the ferrite rod antenna is designed such that the second ferrite core section has a cylindrical shape, the first and third ferrite core sections are arranged on opposite end faces of the second ferrite core section, and the second winding is arranged over part of a lateral surface of the second ferrite core section.
  • the ferrite rod antenna is designed such that the first winding axis is oriented parallel to the longitudinal direction.
  • the first winding provides an advantageous radiation characteristic for the ferrite rod antenna along the longitudinal direction.
  • the ferrite rod antenna is further designed such that the first and third ferrite core sections are spaced apart from one another along a connecting direction perpendicular to the longitudinal direction of the first and third ferrite core sections by the second ferrite core section.
  • This provides a simple geometric arrangement of the first to third ferrite core sections, the second ferrite core section being able to be wound along a direction which is oriented perpendicular to the longitudinal direction. In this way, surfaces with surface normals which are oriented perpendicular to the longitudinal direction can advantageously be used for receiving the B-field component of electromagnetic radiation.
  • the first winding is arranged over areas of a lateral surface of the ferrite rod antenna at opposite ends of the ferrite rod antenna on the first and third ferrite core sections, with in particular end faces of the ferrite rod antenna and the second ferrite core section being exposed with respect to the first winding.
  • the end faces of the ferrite rod antenna can be used effectively for radiation in a transmission mode of the ferrite rod antenna.
  • the first ferrite core section and the third ferrite core section have at least one rounded edge as a support surface for the first winding. This provides an advantageous embodiment of the first and third ferrite core sections in order to simply wind the ferrite core reliably and in a manner suitable for machine production.
  • the first ferrite core section and the third ferrite core section each have a recess in which the second ferrite core section is partially received.
  • This provides a simple and reliable configuration for the ferrite core which is modularly formed from the first to third ferrite core sections.
  • ferrite cores with different dimensions can be manufactured in production by providing appropriately sized first to third ferrite core sections and assembled in a modular manner with a view to a special application.
  • ferrite rod antenna comprising a ferrite core which is formed by at least five interconnected ferrite rods, and a first winding and a second winding, which are each arranged over the ferrite core, wherein four ferrite rods of the at least five ferrite rods have a first length dimension and the other ferrite rod of the at least five ferrite rods has a second length dimension which is smaller than the first length dimension, the four ferrite rods with the first length dimension each being arranged parallel to one another on the ferrite rod with the second length dimension and through the ferrite rod with the second length dimension in each case to one another are spaced.
  • the ferrite rod is arranged with the second length dimension perpendicular or substantially perpendicular to the four ferrite rods with the first length dimension and the first winding is arranged over the ferrite rods with the first length dimension, while the second winding is arranged over the ferrite rod with the second length dimension, wherein the ferrite core has an H-shaped shape in a side view of the five ferrite rods.
  • a transmitting and receiving unit with the ferrite rod antenna according to the first or the second aspect is provided, further comprising a electronic transmitter circuit which is electrically connected to the winding, and an electronic receiver circuit which is electrically connected to at least the second winding.
  • a transmission and reception unit with improved reception performance is provided, which can be implemented in a compact design without the transmission performance or reception performance being significantly impaired at the expense of the reception performance or transmission performance.
  • denotes the magnetic flux
  • I the current intensity
  • L the inductance of a transmitter coil of the ferrite rod antenna
  • A the magnetic cross section
  • l the length of the ferrite core of the ferrite rod antenna
  • B the magnetic flux density transmitted along the longitudinal direction.
  • a ferrite rod antenna for good transmission characteristics should primarily have the largest possible value for l due to the exponents of A and l , if the remaining parameters are assumed to be fixed.
  • Eq. 2 it can be seen that a ferrite rod antenna should have the largest possible area A perpendicular to the field lines for good reception characteristics.
  • the criteria for an optimal transmitting antenna are the opposite of an optimal receiving antenna.
  • the invention provides a ferrite rod antenna which, based on a core design according to the invention for the ferrite core of the ferrite rod antenna, allows the transmission characteristics and the reception characteristics to be optimized.
  • FIG. 1 a ferrite rod antenna 1 with a ferrite core, the first Ferrite core section 3, a second ferrite core section 5 and a third ferrite core section 7.
  • the first ferrite core section 3 and the third ferrite core section 7 are spaced apart from one another by the second ferrite core section 5.
  • the first ferrite core section 3 and the third ferrite core section 7 have an elongated shape so that they each define a longitudinal direction.
  • first ferrite core section 3 and the third ferrite core section 7 are oriented to one another in such a way that both longitudinal directions are oriented in parallel and thus only one longitudinal direction is defined overall by the first ferrite core section 3 and the third ferrite core section 7.
  • a first winding W1 which defines a first winding axis A1 is arranged above the first ferrite core section 3 and the third ferrite core section 7.
  • the winding axis A1 represents a direction which is rotated by the individual turns of the first winding W1 and which is oriented parallel to a pitch between two successive turns of the first winding W1.
  • the first winding axis A1 represents a normal to a plane in which one turn of the first winding W1 lies (here, one turn of a winding is understood to mean a complete azimuthal revolution of 2 ⁇ ).
  • the first winding axis A1 represents an axis of symmetry of the first winding W1 with respect to a rotation in a winding plane or a projection of a winding plane onto a plane which is oriented orthogonally to a pitch between adjacent windings of the first winding W1.
  • the first winding axis A1 runs in particular along the longitudinal direction of the first and third ferrite core sections 3, 7.
  • first winding W1 is shown as being arranged above the first ferrite core section 3 and above the third ferrite core section 7. This does not represent a limitation of the present invention and the first winding W1 can alternatively be arranged only over the first ferrite core section 3 or the third ferrite core section 7.
  • a second winding W2 is arranged over the second ferrite core section 5.
  • the second winding W2 defines a second winding axis A3.
  • the second winding axis A3 can be understood as a direction which is rotated by the individual turns of the second winding W2 and which is oriented parallel to a pitch between two successive turns of the second winding W2.
  • the first winding axis A1 and the second winding axis A3 are not oriented parallel to one another.
  • the first winding axis A1 and the second winding axis A3 can intersect at one point or be arranged skewed to one another.
  • the first winding axis A1 and the second winding axis A3 are oriented perpendicular to each other.
  • the ferrite core on the second ferrite core section 5 has at least one small dimension relative to the first ferrite core section 3 and third ferrite core sections 7 in at least one direction.
  • the ferrite core on the second ferrite core portion 5 has a small dimension in a direction parallel to the first winding axis A1 relative to the first and third ferrite core portions 3, 7.
  • the second ferrite core section 5 can at least partially have a dimension along a direction parallel to the first winding axis A1, which is smaller than a dimension of the first and / or third ferrite core section 3, 7 along a direction parallel to the first winding axis A1.
  • a dimension of at least one tapered section of the second ferrite core section 5, normalized to a dimension of the first ferrite core section 3 or the third ferrite core section 7, can be less than 0.8, preferably less than 0.5, more preferably less than 0, 3.
  • a ratio of a dimension of the second ferrite core section 5 to a dimension of the first ferrite core section 3 and / or the third ferrite core section 7 along a direction parallel to the first winding axis A1 can be, for example, 0.2 or less, for example 0.1 or less be.
  • the taper on the second ferrite core section 5 is formed in such a way that a dimension of the ferrite core in a direction parallel to the first winding axis is small relative to the first and third ferrite core sections 3, 7 Ferrite core section 5 are advantageously included in the contour. Furthermore, the magnetic flux density in the ferrite core is concentrated in a receiving mode.
  • the first and third ferrite core sections 3, 7 can be formed as individual elongated ferrite rods attached to the second ferrite core section 5, as in FIG Fig. 1 is shown.
  • the ferrite core sections 3, 7 can be parallel or essentially parallel to one another.
  • the second ferrite core section 5 can be arranged perpendicularly or substantially perpendicularly to each of the first and third ferrite core sections 3, 7.
  • the second ferrite core section 5 is shown in FIG Fig. 1 formed as a cylindrical ferrite rod, which has a smaller dimension in accordance with the above explanations, as will be described in more detail below.
  • the ferrite core has an H-shape in a view of the ferrite core along a direction perpendicular to the winding axes A1 and A3.
  • the second ferrite core section 5 of the ferrite rod antenna 1 has a dimension ("second length dimension") which is smaller than one dimension along a direction perpendicular to a parallel line of the first winding axis A1 (and thus perpendicular to the longitudinal direction of the first and third ferrite core sections 3, 7) of the ferrite core of the ferrite rod antenna 1 along this direction perpendicular to a direction parallel to the first winding axis A1 (in particular, a direction perpendicular to the longitudinal direction of the first and third ferrite core sections 3, 7 or "first length dimension").
  • the second winding W2 is smaller Winding diameter provided, which results in a relatively low DC resistance for the winding W2.
  • the second length dimension can be a factor of “1.5” or at least a factor “2” or at least a factor “3” or at least a factor “5” smaller than the first length dimension
  • the ferrite core of the ferrite rod antenna 1 has an elongated shape which is defined by the shape of the first and third ferrite core sections 3, 7.
  • a longitudinal direction can thus be assigned to the ferrite core of the ferrite rod antenna 1 corresponding to the longitudinal direction of the first and third ferrite core sections 3, 7, which according to the illustration in FIG Fig. 1 is oriented essentially parallel to the first winding axis A1 and essentially perpendicular to the second winding axis A3.
  • a dimension of the second ferrite core section 5 at least along the longitudinal direction is smaller than a dimension of the first ferrite core section 3 along the longitudinal direction and / or a dimension of the third ferrite core section 7 along the longitudinal direction, so that the ferrite core of the ferrite rod antenna 1 tapers in the second ferrite core section 5 is.
  • the ferrite core of the ferrite rod antenna 1 is tapered along the second ferrite core section 5.
  • This does not represent a limitation of the invention and only a section of the second ferrite core section 5 can be tapered.
  • a dimension of the second ferrite core section 5 to the first ferrite core section 3 and / or to the third ferrite core section 7 can be steadily matched to a dimension of the first ferrite core section 3 and / or to a dimension of the third ferrite core section 7, in particular there is no step between the second Ferrite core section 5 and at least one adjacent ferrite core section 3 and / or 7 formed.
  • Fig. 1 are the first ferrite core portion 3 and third ferrite core portion 7 along a connection direction that is substantially parallel to second winding axis A3 and is oriented essentially perpendicular to the longitudinal direction of the first and third ferrite core sections 3, 7, spaced apart from one another by the second ferrite core section 5.
  • a winding diameter of the first winding W1 by a dimension of the first and third ferrite core sections 3, 7 along a direction parallel to the second winding axis A3 and a dimension of the second ferrite core section 5 extending between the first ferrite core section 3 and the third ferrite core section 7 along the Connection direction, in particular parallel to the second winding axis A3, is determined.
  • a winding diameter of the second winding W2 is given only by a cross-sectional area of the second ferrite core section 5 perpendicular to the second winding axis A3.
  • a dimension of the second ferrite core portion 5 in a width direction perpendicular to the longitudinal direction and perpendicular to the connection direction may be less than or equal to a smallest dimension of dimensions of the first and third ferrite core portions 3, 7 in the width direction, as in FIG Fig. 1 is shown.
  • the first ferrite core section 3 and the third ferrite core section 7 are arranged on opposite end faces of the second ferrite core section 5 and the second winding W2 is arranged over part of a lateral surface of the second ferrite core section 5.
  • This provides a configuration in which the second winding axis A3 is oriented essentially parallel to surface normals of the lateral surfaces of the first and third ferrite core sections 3, 7, while the first winding axis A1 is essentially parallel to surface normals of opposite end faces 9a, 9b of the third ferrite core section 7 or opposite end faces 8a, 8b of the first ferrite core section 3, which are arranged on opposite ends 4, 6 of the first and third ferrite core sections 3, 7 in the longitudinal direction.
  • the outer surface of the first ferrite core section 3 is in Fig. 1 denoted by the reference number "11" for illustration.
  • the "outer surface” of the first ferrite core section 3 is to be understood as the amount of surfaces of the first ferrite core section 3 that are not in mechanical contact with the second ferrite core section 5, are directed away from the latter and are not identical to the end faces 8a, 8b of the first ferrite core section 3 are.
  • the term “jacket surface” is to be applied accordingly to the third ferrite core section 7.
  • “Jacket surfaces” of the second ferrite core section 5 are to be understood as the surfaces of the second ferrite core section 5 that are exposed in the ferrite core of the ferrite rod antenna 1.
  • the first winding W1 of the ferrite rod antenna 1 is arranged over a region of the lateral surface of the first and third ferrite core sections 3, 7.
  • the outer surfaces of the first and third ferrite core sections 3, 7 form the outer surface of the ferrite rod antenna 1, via which magnetic field components of electromagnetic waves are received by the ferrite rod antenna 1 or are coupled into the ferrite core of the ferrite rod antenna 1, as indicated by arrows P1 in Fig. 1 is shown to illustrate magnetic field components.
  • the first winding W1 can cover the outer surface of the ferrite rod antenna 1 at the opposite ends 4, 6 of the ferrite rod antenna 1 or be arranged above it and in particular leave end faces 8a, 8b, 9a, 9b of the ferrite rod antenna 1 free, as well as a section of the outer surface of the The ferrite rod antenna 1 is essentially free between the opposite ends 4, 6 of the ferrite rod antenna 1.
  • the first winding W1 can be operated by suitably connecting terminals A0, A2 of the first winding W1 to a transmitting unit (not shown) for radiating magnetic field components according to arrows P2 or anti-parallel thereto.
  • magnetic field components which hit the outer surface of the ferrite rod antenna 1 according to the arrows P1 can be concentrated in the second ferrite core section 5 and induce a voltage signal in the second winding W2, which is transmitted via connections A3, A4 of the second winding W2 can be tapped.
  • the ferrite rod antenna shown here therefore provides a core geometry for the ferrite core, the ferrite core having a large surface area and at the same time the second winding W2 being able to be provided with a low direct current resistance. Furthermore, the ferrite core of the ferrite rod antenna 1 by means of the end faces 8a, 8b, 9a, 9b of the first and third ferrite core sections 3, 7 provides the possibility of a directed radiation of a magnetic field according to the arrows P2 or anti-parallel to the arrows P2 in operation as a transmitting antenna , in which the connections A0, A2 of the first winding W1 are suitably connected to a transmitter unit (not shown).
  • edges of the first and third ferrite core sections 3, 7 in the outer surface of the ferrite core can be rounded and thus serve as bearing surfaces against which winding sections of individual turns of the first winding W1 are applied. This allows the in Fig. 1
  • the ferrite core shown can be wound in a simple manner without the risk of damaging the winding W1.
  • FIG. 11 schematically shows, in a disassembled perspective view, a ferrite core portion 41 corresponding to the first ferrite core portion 3 Figure 1 or the third ferrite core portion 7 Figure 1
  • a recess 45 is formed which at least partially penetrates the ferrite core section 41.
  • the recess 45 is formed or dimensioned in such a way that a ferrite core section 43 corresponds to the second ferrite core section 5 Figure 1 can be partially inserted into the recess 45.
  • a shape of the recess 45 is coordinated with a shape of the second ferrite core section 43 such that the second ferrite core section 43 can be received in the recess 45 (possibly with additional adhesives).
  • the first to third ferrite core sections 3, 5, 7 shown in FIG Figure 1 are shown, deviating from the description Figure 3 be designed as sections of an integrally formed ferrite core, for example the second ferrite core section 5 in Figure 1 be formed by cutting a cuboid ferrite core blank.
  • the ferrite core of the ferrite rod antenna 1 can be formed by pressing the ferrite core in the manner shown in FIG Figure 1 or the ferrite core can be formed by gluing the ferrite core sections 3, 5, 7 to one another, the individual ferrite core sections 3, 5, 7 being glued to one another on flat surface sections so that the correspondingly formed ferrite core has an H-shaped shape as referring to Fig. 1 is described.
  • Figure 2 shows a ferrite rod antenna 20 with a ferrite core comprising a first ferrite core portion 21, a second ferrite core portion 29 and a third ferrite core portion 23, the second ferrite core portion 29 spacing the first ferrite core portion 21 and the third ferrite core portion 23 from one another. Furthermore, the ferrite core of the ferrite rod antenna 20 has a fourth ferrite core section 27 and a fifth ferrite core section 25, which are connected both to one another and to the first and third ferrite core portions 21, 23 are spaced apart by the second ferrite core portion 29.
  • the second ferrite core section 29 is cube-shaped or cuboid
  • the first ferrite core section 21, the third ferrite core section 23, the fourth ferrite core section 27 and the fifth ferrite core section 25 are arranged along mutually parallel edges of the second ferrite core section 29.
  • the ferrite core sections 21, 23, 25 and 27 are designed as ferrite rods. These can be similar to the Fig. 1 described ferrite core sections 3, 7 be formed.
  • the representation in Fig. 2 is for illustrative purposes only and is not necessarily to be understood as being to scale. Dimensions can be enlarged / reduced to accommodate individual features in the representation of the Fig. 2 to be able to represent it more clearly.
  • the ferrite rods 21, 23, 25, 27 can be compared to the illustration in FIG Fig. 2 be less filigree to stabilize the core.
  • the first ferrite core section 21 is spaced apart from the fourth ferrite core section 27 by a first distance Sp1 and spaced apart from the third ferrite core section 23 by a second distance Sp2.
  • the fifth ferrite core section 25 is arranged from the third ferrite core section 23 under a third section Sp3 and arranged relative to the fourth ferrite core section 27 under a fourth section Sp4. Due to the geometry of the second ferrite core section 29 and the arrangement of the ferrite core sections 21, 23, 25 and 27 on the second ferrite core section 29, for example, the second distance Sp2 and the fourth distance Sp4 are the same, while the first distance Sp1 and the third distance Sp3 are the same can.
  • at least one of the distances Sp1 to Sp4 can also differ from at least one other of the distances Sp1 to Sp4.
  • the ferrite core portions 21, 23, 25, 27 and 29 represent directions along the y-axis and / or the z-axis Connection directions which are oriented perpendicular to the longitudinal direction and along which the ferrite core sections 21, 23, 25, 27 are spaced apart from one another by the second ferrite core section 29.
  • the distances Sp1, Sp2, Sp3 and Sp4 are each measured along one of the y-axis and the z-axis perpendicular to the longitudinal direction (the x-axis).
  • the longitudinal dimensions of the ferrite core sections 21, 23, 25 and 27 are greater than a longitudinal dimension of the second ferrite core section 29.
  • the longitudinal dimension of the second ferrite core section 29 is at most 80% of a largest longitudinal dimension from the longitudinal dimensions of the ferrite core sections 21, 23, 25 and 27 or the longitudinal dimension of the ferrite core sections 21, 23, 25 and 27, if the ferrite core sections 21, 23, 25 and 27 (apart from tolerances) are of the same longitudinal dimension.
  • the longitudinal dimension of the second ferrite core section 29 is at most 70% or at most 50% or at most 30% of a maximum longitudinal dimension of the longitudinal dimensions of the ferrite core sections 21, 23, 25 and 27 or the longitudinal dimension of the ferrite core sections 21, 23, 25 and 27, if the ferrite core sections 21, 23, 25 and 27 (apart from tolerances) are of the same longitudinal dimension.
  • each of the ferrite core portions 21, 23, 25 and 27 has an elongated shape; That is, the longitudinal dimensions of the ferrite core portions 21, 23, 25 and 27 are larger than dimensions of the ferrite core portions 21, 23, 25 and 27 along the y-axis and the z-axis.
  • a ratio of the longitudinal dimension of the ferrite core sections 21, 23, 25 and 27 to dimensions of the ferrite core sections 21, 23, 25 and 27 along the x-axis and along the z-axis can be at least two or at least five or at least ten.
  • the second ferrite core section 29 can be formed in a cube-shaped or cuboid shape.
  • the first ferrite core portion 21 and the fourth ferrite core portion 27 are in contact with one side surface of the second ferrite core portion 25, while the third ferrite core portion 23 and the fifth ferrite core portion 25 are in contact with an opposite side surface of the second ferrite core portion 25.
  • the ferrite core sections 21, 23, 25 and 27 contact different side surfaces of the second ferrite core section 29, the surface normals of which are each parallel or antiparallel to a connection direction (y-axis or z-axis in Figure 2 ) are.
  • Each of the ferrite core sections 21, 23, 25 and 27 has a side surface which is in contact with the second ferrite core section 29, and end surfaces 31 whose surface normals are parallel to the longitudinal direction (x-axis in Figure 2 ) are oriented. End faces opposite to end faces 31 are shown in FIG Figure 2 not designated and should be regarded as falling under the term "end faces 31". Furthermore, each of the ferrite core sections 21, 23, 25 and 27 has, in addition to the end faces, a respective lateral surface 33, which represents an outwardly exposed surface of each ferrite core section 21, 23, 25 and 27.
  • the ferrite rod antenna 20 further comprises a first winding W10, which is arranged above the ferrite core sections 21, 23, 25 and 27 and a first winding axis is oriented in the direction of the x-axis.
  • first winding W10 is shown for the sake of clarity, which shows a spatial orientation of the first winding W10 with respect to the x-axis.
  • the x-axis is therefore assigned to the first winding W10 as the “first winding axis”.
  • the first winding W10 is arranged above the ferrite core sections 21, 23, 25 and 27, so that the jacket surfaces 33 of the ferrite core sections 21, 23, 25 and 27 act as contact surfaces for individual turns of the first winding W10 at end areas EA and EB of the ferrite core sections 21, 23, 25 and 27 are arranged.
  • the end areas EA and EB of the ferrite core sections 21, 23, 25 and 27 are to be understood as areas of the ferrite core sections 21, 23, 25 and 27 which are arranged at opposite ends of the ferrite core sections 21, 23, 25 and 27 on which the ferrite core sections 21 , 23, 25 and 27 are not in contact with the second ferrite core portion 29.
  • the end regions EA and EB thus represent regions of the ferrite core sections 21, 23, 25 and 27 which extend along the longitudinal direction (x-axis in FIG Figure 2 ) extend over the second ferrite core section 29.
  • a connection area is arranged between the end areas EA and EB, which denotes areas of the ferrite core sections 21, 23, 25 and 27, along which the ferrite core sections 21, 23, 25 and 27 with the second ferrite core section 29 along the longitudinal direction (x-axis in Figure 2 ) are in mechanical contact.
  • the first winding W10 is divided into winding sections W1a, W1b and W1c according to the end regions EA, EB and the connection region.
  • the winding sections W1a and W1b are arranged over the end regions EA and EB of the ferrite core sections 21, 23, 25 and 27 and represent turns of the first winding W10 that circulate around the ferrite core sections 21, 23, 25 and 27.
  • the winding section W1c of the first winding W10 runs along the connection area M essentially parallel to the longitudinal direction (x-axis in Figure 2 ), where "essentially" means that the winding section W1c does not completely circulate the ferrite core sections 21, 23, 25 and 27 along the connecting area M, in particular a number of rotations assigned to the winding section W1c with regard to the ferrite core sections 21, 23, 25 and 27 measured in Radians are less than 2 ⁇ .
  • the winding section W1c is only in contact with the ferrite core section 27 along the connection area M or is guided along the ferrite core section 27.
  • first winding W10 does not represent a restriction of the present invention and the winding W10 can only be arranged over a region of the ferrite core sections 21, 23, 25 and 27, for example only over the region EA or only over the region M or only over the area EB or only over the areas EA and M or only over the areas EB and M.
  • Connections of the first winding W10 are in Figure 2 denoted by the reference characters A11 and A12.
  • a second winding W12 and a third winding W14 are also arranged above the second ferrite core section 29.
  • the windings W12 and W14 are oriented orthogonally to one another, as in the coordinate system in FIG Figure 2 is drawn for illustration.
  • the second winding W12 is assigned a second winding axis which is identified with the z-axis.
  • the third winding W14 is assigned a third winding axis which is identified with the y-axis.
  • connections of the second winding W12 are labeled A21 and A22. Connections of the third winding W14 are in Figure 2 labeled A41 and A42.
  • the first to third winding axes are perpendicular to each other in pairs.
  • the ferrite rod antenna 20 can function as a transmitting antenna in a transmitting mode, the first winding W10 being connected to a transmitting unit (not shown) via connections A11 and A12 and emitting a magnetic field via the end faces 31.
  • the second winding W12 via connections A21 and A22 and / or the third winding W14 via connections A41 and A42 are connected to a receiving unit (not shown) in order to receive a signal via the lateral surfaces 33.
  • the longitudinal winding W10 between A11 and A12 contrary to the illustration in FIG Fig. 2 in the entire x-direction along the ferrite core sections 21, 23, 25, 27 away.
  • the winding is continued in the winding section W1c.
  • the transmitting and receiving unit 100 can comprise a ferrite rod antenna as above with regard to the ferrite rod antenna 1 in FIG Figure 1 and the ferrite rod antenna 20 in Figure 2 is described.
  • One winding 101 corresponds to the above-described first winding W1 or W10
  • one winding 103 corresponds to the above-described second winding W2 or W12.
  • a third winding 105 is also provided, which corresponds to the third winding W14 described above.
  • the winding 105 is optional, which is shown in Figure 4 indicated by the brackets.
  • the winding 103 and / or 105 is connected to an electronic receiver circuit 112.
  • the winding 101 is electrically connected to a transmission unit 114.
  • the transmitting unit 114 and receiving unit 112 can be connected to a digital signal processor module 110, which can furthermore be connected to an audio signal output unit (not shown) for outputting audio signals and an audio signal input unit for receiving audio signals.
  • the transmission unit 114 can comprise a transmission oscillator circuit which can be connected to the winding 101 by means of a switch 116 and which can be connected to the digital signal processor module 110.
  • the digital signal processor module 110 can transmit signals to the transmission unit 114 which represent audio signals converted into electrical signals by the digital signal processor module 110.
  • the digital signal processor module 110 exchange signals with the transmission unit 114 in order to output audio signals via an audio output device (not shown), such as a loudspeaker, headphones, etc., for example.
  • the ferrite rod antenna (see 1 in Fig. 1 ; see 20 in Fig. 2 ) connected in series with a capacitor (not shown).
  • the reactances compensate each other and the resonant circuit becomes low-resistance, as a result of which a maximum current flows through the winding 101.
  • the winding 101 in the ferrite rod antenna (cf. 1 in Fig. 1 ; see 20 in Fig. 2 ) a corresponding flux density B, which over the end faces of the ferrite rod antenna (see. 1 in Fig. 1 ; see 20 in Fig. 2 ) is decoupled as described above.
  • the ferrite rod antenna In receive mode, the ferrite rod antenna (see 1 in Fig. 1 ; see 20 in Fig. 2 ) connected in parallel to a capacitor (not shown).
  • the resonant circuit consisting of winding 103 and / or 105 and capacitor (not shown) has a high resistance and an induced voltage is applied to winding 103 and / or winding 105.
  • a ferrite rod antenna 20 which comprises a ferrite core formed by five interconnected ferrite rods 21, 23, 25, 27, 29, and a first winding W10 and a second winding W14, each arranged above the ferrite core, wherein four ferrite rods 21, 23, 25, 27 of the ferrite core have a first length dimension and the other ferrite rod 29 of the ferrite core has a second length dimension which is smaller than the first length dimension.
  • the ferrite rod 29 with the second length dimension is arranged perpendicular or essentially perpendicular to the four ferrite rods 21, 23, 25, 27 with the first length dimension, so that they are spaced from one another by the ferrite rod 29 with the second length dimension.
  • first winding W10 is arranged over the ferrite rods 21, 23, 25, 27 with the first length dimension
  • second winding W14 is arranged over the ferrite rod 29 with the second length dimension
  • a third winding W12 can be arranged above the ferrite rod 29 with the second length dimension, the winding axes of the windings W10, W12, W14 being oriented in pairs perpendicular or substantially perpendicular to one another.
  • the four ferrite rods 21, 23, 25, 27 with the first length dimension can be arranged in pairs parallel to one another or essentially parallel on the ferrite rod 29 with the second length dimension.
  • the ferrite rod 29 can have a block-like or cuboid shape (in a specific example a cube-shaped shape) opposite the four ferrite rods 21, 23, 25, 27, the four ferrite rods 21, 23, 25, 27 running along parallel edges of this block-like shape or cuboid ferrite rod 29 can extend, as in Fig. 2 is illustrated.
  • the four ferrite rods 21, 23, 25, 27 are each spaced apart from one another by the block-like or cuboid ferrite rod 29.
  • Fig. 2 shows the ferrite core in a planar side view along one of the directions x, y and z in Fig. 2 an H-shaped shape.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Coils Or Transformers For Communication (AREA)

Description

Die vorliegende Erfindung betrifft eine Ferritstabantenne und eine Sende- und Empfangseinheit mit einer Ferritstabantenne.The present invention relates to a ferrite rod antenna and a transmitting and receiving unit with a ferrite rod antenna.

Im Allgemeinen bezeichnet eine Ferritstabantenne eine Magnetantenne, bei der eine Spule auf einem Ferritstab aufgebracht ist. Der B-Feldanteil einer elektromagnetischen Welle induziert in der Spule eine Spannung, die abgegriffen wird.In general, a ferrite rod antenna refers to a magnetic antenna in which a coil is attached to a ferrite rod. The B-field component of an electromagnetic wave induces a voltage in the coil that is tapped.

Ferritstabantennen werden hauptsächlich für die Kommunikation im Nahbereich eingesetzt, doch eignen sich Ferritstabantennen auch in der Radio- und Funktechnik für den Empfang von Lang-, Mittel- oder gegebenenfalls auch Kurzwellen, insbesondere für den Empfang von Funkwellen mit Frequenzen unter 2 MHz. Da jedoch Ferritstabantennen gegenüber Rahmenantennen einen schlechteren Wirkungsgrad und aufgrund ihrer Form eine starke Richtungsempfindlichkeit aufweisen, sind sie nur bedingt als Sendeantennen geeignet, allenfalls für kleine Sendeleistungen.Ferrite rod antennas are mainly used for short-range communication, but ferrite rod antennas are also suitable in radio and radio technology for the reception of long, medium or possibly also short waves, especially for the reception of radio waves with frequencies below 2 MHz. However, since ferrite rod antennas are less efficient than loop antennas and, due to their shape, have a high degree of directional sensitivity, they are only suitable to a limited extent as transmission antennas, at best for low transmission powers.

Anwendungen für Ferritstabantennen ergeben sich beispielsweise in der RFID (radiofrequency-identity) -Technik, wie etwa beim Öffnen von Autos ohne Schlüssel oder in Suchgeräten, die z.B. zur Ortung von Verschütteten im alpinen Bereich verwendet werden. Hierbei tragen Tourengänger ein kleines Gerät bei sich, das im Sendemodus betrieben wird. Wird ein Skifahrer von einer Lawine verschüttet, können Gruppenmitglieder das baugleiche Gerät, das sie bei sich tragen, von einem Sendemodus auf einen Empfangsmodus umschalten, um den Verschütteten durch Peilung zu orten.Applications for ferrite rod antennas arise, for example, in RFID (radio frequency identity) technology, such as opening cars without a key or in search devices that are used, for example, to locate buried subjects in the alpine area. Tourers carry a small device with them that is operated in transmit mode. If a skier is buried in an avalanche, group members can switch the identical device that they are carrying with them from a transmit mode to a receive mode in order to locate the buried victim by bearing.

Die Druckschrift EP1439400 A2 zeigt ein Suchgerät für die Ortung verschütteter Personen in Lawinen, wobei drei orthogonale Ferritstabantennen in einem kompakten Gehäuse untergebracht und mit einer Empfangseinheit verbunden sind. In einem Sendemodus wird eine Ferritstabantenne mit einer Sendeeinheit verbunden, während in einem Empfangsmodus die drei orthogonalen Ferritstabantennen abwechselnd mit einer Empfangseinheit verbunden werden.The pamphlet EP1439400 A2 shows a search device for locating people buried in avalanches, with three orthogonal ferrite rod antennas housed in a compact housing and connected to a receiving unit. In a transmission mode, a ferrite rod antenna is connected to a transmission unit, while in a reception mode the three orthogonal ferrite rod antennas are alternately connected to a reception unit.

Dokument US 6134420 zeigt ein drahtloses Kommunikationssystem mit einer Empfangseinrichtung mit einem einfach bewickelten Stabkern und einer Sendeeinrichtung mit einem orthogonal bewickelten Stabkern, dessen Bewicklung senkrecht zur Bewicklung des Stabkerns der Empfangseinrichtung ist. Alternativ wird ein dreifach orthogonal bewickelter Kugelkern offenbart.document US 6134420 shows a wireless communication system with a receiving device with a single wound rod core and a transmitting device with an orthogonally wound rod core, the winding of which is perpendicular to the winding of the rod core of the receiving device. Alternatively, a triple orthogonally wound spherical core is disclosed.

Dokument WO 2012/120302 A1 offenbart ein System zur Bereitstellung von Kursinformation mit einem dreifach orthogonal bewickelten würfelförmigen Kern als Sende- und Empfangsvorrichtung.document WO 2012/120302 A1 discloses a system for providing course information with a three-fold orthogonally wound cube-shaped core as a transmitting and receiving device.

Aus der Schrift US 3 750 180 ist eine Magnetantenne mit einem plattenförmigen Magnetkern bekannt, in dem zwei Öffnungen gebildet sind. Hierbei sind zwei Wicklungen an den Öffnungen mit zueinander senkrechten Wickelachsen gebildet. Die Bewicklung des Magnetkerns gestaltet sich schwierig, da hier der Wickeldraht durch die Öffnungen zu fädeln ist.From scripture U.S. 3,750,180 a magnetic antenna having a plate-shaped magnetic core in which two openings are formed is known. Here, two windings are formed at the openings with winding axes perpendicular to one another. The winding of the magnetic core is difficult because the winding wire has to be threaded through the openings.

Der in der Schrift DE 10 2013 113 244 A1 beschriebene Gegenstand betrifft eine Spulenanordnung für ein induktives Energieübertragungssystem, die mindestens einen plattenförmigen Spulenkern aus Ferrit aufweist. Der mindestens eine plattenförmige Spulenkern ist jeweils von mindestens einer Wicklung mit jeweils mindestens einer Windung umgeben, wobei die Spulenanordnung mindestens zwei Wicklungen aufweist, deren Wicklungsachsen in einem Winkel von größer 50° zueinander angeordnet sind. Die Windungen der im Winkel zueinander angeordneten Wicklungen sind kreuzungsfrei zueinander angeordnet. Sich kreuzende Windungen kreuzen ihren Wicklungen nur im Bereich einer Ausnehmung oder einem Bereich mit verringerte Dicke des plattenförmigen Spulenkerns.The one in Scripture DE 10 2013 113 244 A1 The subject described relates to a coil arrangement for an inductive energy transmission system, which has at least one plate-shaped coil core made of ferrite. The at least one plate-shaped coil core is surrounded by at least one winding each with at least one turn, the coil arrangement having at least two windings, the winding axes of which are arranged at an angle of greater than 50 ° to one another. The turns of the windings arranged at an angle to one another are arranged without crossing one another. Crossing turns cross their windings only in the area of a recess or an area with a reduced thickness of the plate-shaped coil core.

Die Schrift WO 2015/194036 A1 beschreibt eine Antennenvorrichtung mit einem Kern. Der Kern weist einen ersten Schenkelabschnitt und einen zweiten Schenkelabschnitt, die sich relativ zueinander in umgekehrten Richtungen erstrecken, und einen dritten Schenkelabschnitt auf, der sich einer Richtung senkrecht zur Erstreckungsrichtung des ersten Schenkelabschnitts und des zweiten Schenkelabschnitts von einem Mittelabschnitt zwischen dem ersten Schenkelabschnitt und dem zweiten Schenkelabschnitt erstreckt. Die Antennenvorrichtung ist auch mit einer ersten Spule versehen, die durch Reihenschaltung einer ersten kleinen Spule, die auf den ersten Schenkelabschnitt gewickelt ist, und einer zweiten kleinen Spule gebildet wird, die auf den zweiten kleinen Schenkelabschnitt gewickelt ist. Die Antennenvorrichtung umfasst auch eine erste Signalquelle, die die erste Spule mit Strom versorgt, eine zweite Spule, die auf den dritten Schenkelabschnitt gewickelt ist, und eine zweite Signalquelle, die die zweite Spule mit Strom versorgt.The font WO 2015/194036 A1 describes an antenna device with a core. The core has a first leg portion and a second leg portion which extend in opposite directions relative to one another, and a third leg portion which extends in a direction perpendicular to the direction of extension of the first leg portion and the second leg portion from a middle portion between the first leg portion and the second Leg portion extends. The antenna device is also provided with a first coil formed by connecting in series a first small coil wound on the first leg portion and a second small coil wound on the second small leg portion. The antenna device also includes a first signal source that supplies power to the first coil, a second coil that is wound on the third leg portion, and a second signal source that supplies power to the second coil.

Aus der Schrift WO 2017/183934 A1 ist ein dreiachsiges Antennenmodul mit einem schlüssellosen Zugangssystem bekannt, das drei Spulen aufweist, die jeweils um eine X-Achse, eine Y-Achse und eine Z-Achse gewickelt angeordnet sind, die zueinander orthogonal sind, und das ferner einen Magnetkern umfasst, der aus einem magnetischen Material gebildet ist und mindestens einen darin ausgebildeten Aufnahmeraum zum Aufnehmen einer um die X-Achse gewickelten ersten Spule und einer um die Y-Achse gewickelten zweiten Spule aufweist. Der Magnetkern haltert eine um die Z-Achse entlang der Umfangsrichtung gewickelte dritte Spule. Ferner sind mehrere Anschlüsse vorgesehen, die an mindestens einer Oberfläche des Magnetkerns ausgebildet sind, um eine elektrische Verbindung mit der Außenseite zu ermöglichen.From scripture WO 2017/183934 A1 a three-axis antenna module with a keyless entry system is known which has three coils which are respectively arranged wound around an X-axis, a Y-axis and a Z-axis, which are mutually orthogonal, and which further comprises a magnetic core consisting of a magnetic material and at least one receiving space formed therein for receiving one around the Having a first coil wound around the X-axis and a second coil wound around the Y-axis. The magnetic core supports a third coil wound around the Z-axis along the circumferential direction. Furthermore, a plurality of connections are provided which are formed on at least one surface of the magnetic core in order to enable an electrical connection to the outside.

In der Schrift US 6,407,677 B1 ist eine Vorrichtung zur niederfrequenten Kommunikation durch magnetische Kopplung des Typs mit einem Magnetfeldsender und einem Empfänger gezeigt, die in einem Identifikationselement angeordnet sind, wobei der Sender oder der Empfänger mit einer Rahmenantenne ausgestattet ist, bei der der andere aus entweder dem Sender oder dem Empfänger aus der Vereinigung von drei Spulen gebildet ist, die um drei senkrechte Achsen gewickelt sind, die ein Tetraeder definieren, so dass ein omnidirektionales Magnetfeld erhalten wird, indem die Spulen mit Ströme gleicher Frequenz versorgt werden.In scripture US 6,407,677 B1 there is shown a device for low frequency communication by magnetic coupling of the type having a magnetic field transmitter and a receiver located in an identification element, the transmitter or the receiver being provided with a loop antenna, the other being composed of either the transmitter or the receiver is formed by the union of three coils wound around three perpendicular axes defining a tetrahedron, so that an omnidirectional magnetic field is obtained by supplying the coils with currents of the same frequency.

Da die Anforderungen an eine gute Sendeantenne und eine gute Empfangsantenne gegensätzlich sind (eine Sendeantenne soll in erster Linie länglich sein, während eine Empfangsantenne eine möglichst große Fläche senkrecht zu empfangenen Feldlinien aufweisen soll), stellen bekannte Ferritstabantennen, die für den Sendebetrieb und auch für den Empfangsbetrieb vorgesehen sind, entweder hinsichtlich der Sendeleistung oder der Empfangsleistung einen mit modernen Anforderungen nicht akzeptablen Kompromiss dar. Weiterhin besteht bei bekannten mehrfach bewickelten Kernen für Ferritstabantennen das Problem, dass sich eine Wicklung im Streufeld von wenigstens einer anderen Wicklung befindet. Außerdem ist bei bekannten mehrfach bewickelten Kernen für Ferritstabantennen wenigstens eine Wicklung vorhanden, die einen hohen Gleichstromwiderstand aufweist.Since the requirements for a good transmitting antenna and a good receiving antenna are contradictory (a transmitting antenna should primarily be elongated, while a receiving antenna should have as large an area as possible perpendicular to the received field lines), known ferrite rod antennas are used for transmitting and also for the Reception operation are provided, either with regard to the transmission power or the reception power is an unacceptable compromise with modern requirements. Furthermore, with known multiply wound cores for ferrite rod antennas, there is the problem that one winding is in the stray field of at least one other winding. In addition, in known cores with multiple coils for ferrite rod antennas, there is at least one winding which has a high DC resistance.

Angesichts der oben genannten Probleme besteht eine Aufgabe darin, eine Ferritstabantenne für den Einsatz als Sende- und Empfangsantenne mit einer ausreichenden Empfangsleistung und Sendeleistung bereitzustellen, die modernen Anforderungen genügt.In view of the above-mentioned problems, it is an object to provide a ferrite rod antenna for use as a transmitting and receiving antenna with sufficient receiving power and transmitting power that meets modern requirements.

Die oben genannten Probleme und Aufgaben werden gelöst durch eine Ferritstabantenne nach Anspruch 1 und eine Ferritstabantenne nach Anspruch 6. Vorteilhafte Ausgestaltungen sind in den abhängigen Ansprüchen 2 bis 5 definiert.The above-mentioned problems and objects are achieved by a ferrite rod antenna according to claim 1 and a ferrite rod antenna according to claim 6. Advantageous embodiments are defined in the dependent claims 2 to 5.

Weiterhin werden die oben genannten Probleme und Aufgaben gelöst durch eine Sende- und Empfangseinheit nach Anspruch 7 mit einer entsprechenden Ferritstabantenne.Furthermore, the above-mentioned problems and objects are achieved by a transmitting and receiving unit according to claim 7 with a corresponding ferrite rod antenna.

In einem ersten Aspekt der Erfindung wird eine Ferritstabantenne mit einem Ferritkern bereitgestellt, der einen ersten Ferritkernabschnitt, einen zweiten Ferritkernabschnitt und einen dritten Ferritkernabschnitt aufweist, wobei der erste Ferritkernabschnitt und der dritte Ferritkernabschnitt durch den zweiten Ferritkernabschnitt voneinander beabstandet sind. Der Ferritkern ist am zweiten Ferritkernabschnitt relativ zum ersten und dritten Ferritkernabschnitt in wenigstens einer Richtung wenigstens teilweise verjüngt. Die Ferritstabantenne weist ferner eine erste Wicklung, die über dem ersten Ferritkernabschnitt und/oder dem dritten Ferritkernabschnitt angeordnet ist und eine erste Wicklungsachse festlegt, und eine zweite Wicklung auf, die über dem zweiten Ferritkernabschnitt angeordnet ist und eine zweite Wicklungsachse festlegt, die zur ersten Wicklungsachse nicht parallel ist, Der Ferritkern weist dabei am zweiten Ferritkernabschnitt in einer Richtung parallel zur ersten Wicklungsachse relativ zu den ersten und dritten Ferritkernabschnitten eine kleinste Abmessung auf.In a first aspect of the invention there is provided a ferrite rod antenna having a ferrite core having a first ferrite core portion, a second ferrite core portion and a third ferrite core portion, the first ferrite core portion and the third Ferrite core portion are spaced apart from one another by the second ferrite core portion. The ferrite core is at least partially tapered at the second ferrite core section relative to the first and third ferrite core sections in at least one direction. The ferrite rod antenna furthermore has a first winding which is arranged over the first ferrite core section and / or the third ferrite core section and defines a first winding axis, and a second winding which is arranged over the second ferrite core section and a second Defines winding axis that is not parallel to the first winding axis, the ferrite core has a smallest dimension on the second ferrite core section in a direction parallel to the first winding axis relative to the first and third ferrite core sections.

Der im ersten Aspekt der Erfindung bereitgestellte Ferritkern ermöglicht eine kompakte Ausgestaltung einer Ferritstabantenne, die zum Senden und Empfangen von Magnetfeldern geeignet ist. Durch den relativ zu den ersten und dritten Ferritkernabschnitten verjüngten zweiten Ferritkernabschnitt wird die zweite Wicklung mit einem geringen Gleichstromwiderstand bereitgestellt. Außerdem ermöglicht die Verjüngung im zweiten Ferritkernabschnitt eine Anordnung der zweiten Wicklung über dem Ferritkern, so dass die zweite Wicklung trotz einer kompakten Ausgestaltung des Ferritkerns und einer darüber vorgesehenen Mehrfachbewicklung von Streufeldern, die von der ersten Wicklung hervorgerufen werden, in einem höchstens geringen Maß beeinflusst wird. Aufgrund der Verjüngung, die in der Kontur des Ferritkerns derart gebildet ist, dass eine Abmessung des Ferritkerns in einer Richtung parallel zur ersten Wicklungsachse relativ zu den ersten und dritten Ferritkernabschnitten am kleinsten ist, kann eine Wicklung am zweiten Ferritkernabschnitt vorteilhaft in die Kontur aufgenommen werden. Eine Bewicklung des Ferritkerns am zweiten Ferritkernabschnitt gestaltet sich somit einfach. Ferner führt die Verjüngung am zweiten Ferritkernabschnitt zu einer Konzentration der magnetischen Flussdichte am zweiten Ferritkernabschnitt und somit zu einer Erhöhung der in der um den zweiten Ferritkernabschnitt vorgesehenen Wicklung. Die Ferritstabantenne weist damit verbesserte Eigenschaften als Empfangsantenne auf.The ferrite core provided in the first aspect of the invention enables a compact design of a ferrite rod antenna which is suitable for transmitting and receiving magnetic fields. As a result of the second ferrite core section which is tapered relative to the first and third ferrite core sections, the second winding is provided with a low direct current resistance. In addition, the taper in the second ferrite core section enables the second winding to be arranged above the ferrite core, so that the second winding is influenced to a minimal extent by stray fields caused by the first winding, despite a compact design of the ferrite core and a multiple winding provided above it . Due to the taper, which is formed in the contour of the ferrite core in such a way that a dimension of the ferrite core in a direction parallel to the first winding axis is smallest relative to the first and third ferrite core sections, a winding on the second ferrite core section can advantageously be included in the contour. It is therefore easy to wrap the ferrite core on the second ferrite core section. Furthermore, the tapering at the second ferrite core section leads to a concentration of the magnetic flux density at the second ferrite core section and thus to an increase in the winding provided around the second ferrite core section. The ferrite rod antenna thus has improved properties as a receiving antenna.

Der erste Aspekt kann zum Beispiel durch eine Ferritstabantenne veranschaulicht werden, die einen Ferritkern umfasst, der durch wenigstens drei Ferritkernabschnitte gebildet wird. Die Ferritkernabschnitte können dabei als einzelne längliche Ferritstäbe ausgebildet sein, wobei zwei dieser länglichen Ferritstäbe eine erste Längenabmessung aufweisen, die größer ist als eine zweite Längenabmessung des anderen der drei länglichen Ferritstäbe, beispielsweise kann die erste Längenabmessung wenigstens um einen Faktor "1,5" oder wenigstens um einen Faktor "2" oder wenigstens um einen Faktor "3" oder wenigstens um einen Faktor "5" größer sein als die zweite Längenabmessung. Im Ferritkern ist der längliche Ferritstab mit der zweiten Längenabmessung senkrecht oder im Wesentlichen senkrecht zu den zwei länglichen Ferritstäben mit der ersten Längenabmessung angeordnet, so dass diese durch den länglichen Ferritstab mit der zweiten Längenabmessung zueinander beabstandet sind. Gemäß speziellen anschaulichen Beispielen hierin können die zwei länglichen Ferritstäbe mit der ersten Längenabmessung zueinander parallel angeordnet sein und der Ferritkern kann in einer Seitenansicht auf die drei Ferritstäbe eine H-förmige Gestalt aufweisen. Der Ferritstab mit der zweiten Längenabmessung ist in einer zylindrischen Gestalt ausgebildet.The first aspect can be exemplified by a ferrite rod antenna comprising a ferrite core formed by at least three ferrite core sections. The ferrite core sections can be designed as individual elongated ferrite rods, two of these elongated ferrite rods having a first length dimension that is greater than a second length dimension of the other of the three elongated ferrite rods, for example the first length dimension can be at least a factor of "1.5" or be at least a factor "2" or at least a factor "3" or at least a factor "5" greater than the second length dimension. In the ferrite core, the elongated ferrite rod with the second length dimension is arranged perpendicular or substantially perpendicular to the two elongated ferrite rods with the first length dimension, so that they are spaced apart from one another by the elongate ferrite rod with the second length dimension. According to specific illustrative examples herein, the two elongated ferrite rods with the first length dimension can be arranged parallel to one another and the ferrite core can have an H-shaped configuration in a side view of the three ferrite rods. The ferrite rod having the second length dimension is formed in a cylindrical shape.

Weiterhin weist der Ferritkern eine längliche Gestalt auf, die eine Längsrichtung festlegt. Eine Abmessung des zweiten Ferritkernabschnitts ist wenigstens entlang der Längsrichtung kleiner als eine Abmessung des ersten Ferritkernabschnitts entlang der Längsrichtung und/oder eine Abmessung des dritten Ferritkernabschnitts entlang der Längsrichtung. Dadurch wird auf einfache Weise eine Verjüngung im Ferritkern am zweiten Ferritkernabschnitt bereitgestellt.Furthermore, the ferrite core has an elongated shape which defines a longitudinal direction. A dimension of the second ferrite core section is smaller at least along the longitudinal direction than a dimension of the first ferrite core section along the longitudinal direction and / or a dimension of the third ferrite core section along the longitudinal direction. A taper in the ferrite core on the second ferrite core section is thereby provided in a simple manner.

Außerdem ist die Ferritstabantenne derart ausgebildet, dass die ersten und dritten Ferritkernabschnitte entlang einer Verbindungsrichtung senkrecht zur Längsrichtung der ersten und dritten Ferritkernabschnitte durch den zweiten Ferritkernabschnitt voneinander beabstandet sind und eine Abmessung des zweiten Ferritkernabschnitts in einer Breitenrichtung senkrecht zur Längsrichtung und senkrecht zur Verbindungsrichtung kleiner oder gleich einer kleinsten Abmessung von Abmessungen der ersten und dritten Ferritkernabschnitte in deren jeweiligen Breitenrichtung ist. Dadurch wird ein zweiter Ferritkernabschnitt bereitgestellt, der eine geringe Querschnittfläche und folglich eine Konzentration der B-Feldlinien im zweiten Ferritkernabschnitt in einem Empfangsmodus ermöglicht, wobei zusätzlich aufgrund des geringen Querschnitts ein Gleichstromwiderstand der zweiten Wicklung gering gehalten wird.In addition, the ferrite rod antenna is configured such that the first and third ferrite core sections are spaced apart from each other along a connection direction perpendicular to the longitudinal direction of the first and third ferrite core sections by the second ferrite core section and a dimension of the second ferrite core section in a width direction perpendicular to the longitudinal direction and perpendicular to the connection direction is less than or equal is a smallest dimension of dimensions of the first and third ferrite core portions in their respective width directions. This provides a second ferrite core section which enables a small cross-sectional area and consequently a concentration of the B field lines in the second ferrite core section in a receiving mode, with a direct current resistance of the second winding also being kept low due to the small cross section.

Ferner ist die Ferritstabantenne derart ausgeführt, dass der zweite Ferritkernabschnitt eine zylindrische Gestalt aufweist, die ersten und dritten Ferritkernabschnitte an gegenüberliegenden Stirnflächen des zweiten Ferritkernabschnitts angeordnet sind und die zweite Wicklung über einem Teil einer Mantelfläche des zweiten Ferritkernabschnitts angeordnet ist. Dies stellt eine einfache Weise zur Bereitstellung einer kompakten Ferritstabantenne mit einer Sendespule und einer Empfangsspule bereit.Furthermore, the ferrite rod antenna is designed such that the second ferrite core section has a cylindrical shape, the first and third ferrite core sections are arranged on opposite end faces of the second ferrite core section, and the second winding is arranged over part of a lateral surface of the second ferrite core section. This provides a simple way of providing a compact ferrite rod antenna with a transmitting coil and a receiving coil.

In einer ersten Ausgestaltung der Ferritstabantenne des ersten Aspekts ist die Ferritstabantenne derart ausgeführt, dass die erste Wicklungsachse zu der Längsrichtung parallel orientiert ist. Dadurch wird für die Ferritstabantenne durch die erste Wicklung eine vorteilhafte Abstrahlungscharakteristik entlang der Längsrichtung bereitgestellt.In a first embodiment of the ferrite rod antenna of the first aspect, the ferrite rod antenna is designed such that the first winding axis is oriented parallel to the longitudinal direction. As a result, the first winding provides an advantageous radiation characteristic for the ferrite rod antenna along the longitudinal direction.

In einer zweiten Ausgestaltung der Ferritstabantenne des ersten Aspekts ist die Ferritstabantenne weiterhin derart ausgeführt, dass die ersten und dritten Ferritkernabschnitte entlang einer Verbindungsrichtung senkrecht zur Längsrichtung der ersten und dritten Ferritkernabschnitte durch den zweiten Ferritkernabschnitt voneinander beabstandet sind. Dies stellt eine einfache geometrische Anordnung der ersten bis dritten Ferritkernabschnitte bereit, wobei der zweite Ferritkernabschnitt entlang einer Richtung bewickelbar ist, die senkrecht zur Längsrichtung orientiert ist. Damit können Flächen mit Flächennormalen, die zur Längsrichtung senkrecht orientiert sind, vorteilhaft für den Empfang des B-Feldanteils von elektromagnetischer Strahlung verwendet werden.In a second embodiment of the ferrite rod antenna of the first aspect, the ferrite rod antenna is further designed such that the first and third ferrite core sections are spaced apart from one another along a connecting direction perpendicular to the longitudinal direction of the first and third ferrite core sections by the second ferrite core section. This provides a simple geometric arrangement of the first to third ferrite core sections, the second ferrite core section being able to be wound along a direction which is oriented perpendicular to the longitudinal direction. In this way, surfaces with surface normals which are oriented perpendicular to the longitudinal direction can advantageously be used for receiving the B-field component of electromagnetic radiation.

In einer dritten Ausgestaltung der Ferritstabantenne des ersten Aspekts ist die erste Wicklung über Bereichen einer Mantelfläche der Ferritstabantenne an gegenüberliegenden Enden der Ferritstabantenne an den ersten und dritten Ferritkernabschnitten angeordnet, wobei insbesondere Stirnflächen der Ferritstabantenne und der zweite Ferritkernabschnitt bezüglich der ersten Wicklung freiliegen. Dadurch sind die Stirnflächen der Ferritstabantenne effektiv zur Abstrahlung in einem Sendemodus der Ferritstabantenne nutzbar.In a third embodiment of the ferrite rod antenna of the first aspect, the first winding is arranged over areas of a lateral surface of the ferrite rod antenna at opposite ends of the ferrite rod antenna on the first and third ferrite core sections, with in particular end faces of the ferrite rod antenna and the second ferrite core section being exposed with respect to the first winding. As a result, the end faces of the ferrite rod antenna can be used effectively for radiation in a transmission mode of the ferrite rod antenna.

In einer vierten Ausgestaltung der Ferritstabantenne des ersten Aspekts weisen der erste Ferritkernabschnitt und der dritte Ferritkernabschnitt wenigstens eine abgerundete Kante als Auflagefläche für die erste Wicklung auf. Dies stellt eine vorteilhafte Ausgestaltung der ersten und dritten Ferritkernabschnitte bereit, um den Ferritkern zuverlässig und geeignet für die maschinelle Fertigung einfach zu bewickeln.In a fourth embodiment of the ferrite rod antenna of the first aspect, the first ferrite core section and the third ferrite core section have at least one rounded edge as a support surface for the first winding. This provides an advantageous embodiment of the first and third ferrite core sections in order to simply wind the ferrite core reliably and in a manner suitable for machine production.

In einer fünften Ausgestaltung der Ferritstabantenne des ersten Aspekts weisen der erste Ferritkernabschnitt und der dritte Ferritkernabschnitt jeweils eine Vertiefung auf, in die der zweite Ferritkernabschnitt teilweise aufgenommen ist. Dies stellt eine einfache und zuverlässige Konfiguration für den Ferritkern bereit, der aus den ersten bis dritten Ferritkernabschnitten modular gebildet wird. Beispielsweise lassen sich in der Fertigung Ferritkerne mit unterschiedlichen Abmessungen durch die Bereitstellung entsprechend abgemessener erster bis dritte Ferritkernabschnitte fertigen und im Hinblick auf eine spezielle Anwendung modular montieren.In a fifth embodiment of the ferrite rod antenna of the first aspect, the first ferrite core section and the third ferrite core section each have a recess in which the second ferrite core section is partially received. This provides a simple and reliable configuration for the ferrite core which is modularly formed from the first to third ferrite core sections. For example, ferrite cores with different dimensions can be manufactured in production by providing appropriately sized first to third ferrite core sections and assembled in a modular manner with a view to a special application.

In einem zweiten Aspekt wird Ferritstabantenne bereitgestellt, umfassend einen Ferritkern, der durch wenigstens fünf miteinander verbundene Ferritstäbe gebildet wird, und eine erste Wicklung und eine zweite Wicklung, die jeweils über dem Ferritkern angeordnet sind, wobei vier Ferritstäbe der wenigstens fünf Ferritstäbe eine erste Längenabmessung aufweisen und der andere Ferritstab der wenigstens fünf Ferritstäbe eine zweite Längenabmessung aufweist, die kleiner ist als die erste Längenabmessung, wobei die vier Ferritstäbe mit der ersten Längenabmessung jeweils parallel zueinander an dem Ferritstab mit der zweiten Längenabmessung angeordnet und durch den Ferritstab mit der zweiten Längenabmessung jeweils zueinander beabstandet sind. Der Ferritstab ist mit der zweiten Längenabmessung senkrecht oder im Wesentlichen senkrecht zu den vier Ferritstäbe mit der ersten Längenabmessung angeordnet ist und die erste Wicklung ist über den Ferritstäben mit der ersten Längenabmessung angeordnet, während die zweite Wicklung über dem Ferritstab mit der zweiten Längenabmessung angeordnet ist, wobei der Ferritkern in einer Seitenansicht auf die fünf Ferritstäbe eine H-förmige Gestalt aufweist.In a second aspect, ferrite rod antenna is provided, comprising a ferrite core which is formed by at least five interconnected ferrite rods, and a first winding and a second winding, which are each arranged over the ferrite core, wherein four ferrite rods of the at least five ferrite rods have a first length dimension and the other ferrite rod of the at least five ferrite rods has a second length dimension which is smaller than the first length dimension, the four ferrite rods with the first length dimension each being arranged parallel to one another on the ferrite rod with the second length dimension and through the ferrite rod with the second length dimension in each case to one another are spaced. The ferrite rod is arranged with the second length dimension perpendicular or substantially perpendicular to the four ferrite rods with the first length dimension and the first winding is arranged over the ferrite rods with the first length dimension, while the second winding is arranged over the ferrite rod with the second length dimension, wherein the ferrite core has an H-shaped shape in a side view of the five ferrite rods.

In einem dritten Aspekt wird eine Sende- und Empfangseinheit mit der Ferritstabantenne gemäß dem ersten oder dem zweiten Aspekt bereitgestellt, ferner umfassend eine elektronische Senderschaltung, die mit der Wicklung elektrisch verbunden ist, und eine elektronische Empfängerschaltung, die wenigstens mit der zweiten Wicklung elektrisch verbunden ist. Es wird eine Sende- und Empfangseinheit mit verbesserter Empfangsleistung bereitgestellt, die in einem kompakten Design ausgeführt sein kann, ohne dass hierbei die Sendeleistung bzw. Empfangsleistung auf Kosten der Empfangsleistung bzw. Sendeleistung wesentlich verschlechtert wird.In a third aspect, a transmitting and receiving unit with the ferrite rod antenna according to the first or the second aspect is provided, further comprising a electronic transmitter circuit which is electrically connected to the winding, and an electronic receiver circuit which is electrically connected to at least the second winding. A transmission and reception unit with improved reception performance is provided, which can be implemented in a compact design without the transmission performance or reception performance being significantly impaired at the expense of the reception performance or transmission performance.

Weitere Vorteile und Merkmale der Erfindung gehen aus der nachfolgenden Beschreibung spezieller Ausführungsformen der Erfindung hervor, wobei:

Fig. 1
schematisch eine perspektivische Ansicht einer Ferritstabantenne gemäß anschaulicher Ausführungsformen der Erfindung darstellt;
Fig. 2
schematisch eine perspektivische Ansicht einer Ferritstabantenne gemäß anderer anschaulicher Ausführungsformen der Erfindung darstellt;
Fig. 3
schematisch eine Konfiguration zweier Ferritkernabschnitte eines Ferritkerns gemäß einiger Ausführungsformen der Erfindung darstellt; und
Fig. 4
schematisch ein Schaltbild einer Sende- und Empfangseinheit gemäß anschaulicher Ausführungsformen der vorliegenden Erfindung darstellt.
Further advantages and features of the invention emerge from the following description of specific embodiments of the invention, wherein:
Fig. 1
schematically depicts a perspective view of a ferrite rod antenna in accordance with illustrative embodiments of the invention;
Fig. 2
schematically depicts a perspective view of a ferrite rod antenna in accordance with other illustrative embodiments of the invention;
Fig. 3
schematically illustrates a configuration of two ferrite core portions of a ferrite core according to some embodiments of the invention; and
Fig. 4
schematically represents a circuit diagram of a transmitting and receiving unit according to illustrative embodiments of the present invention.

Der Erfinder gibt für das ausgesendete B-Feld einer Ferritstabantenne in einer gewissen Entfernung z entlang einer Längsrichtung der Ferritstabantenne, unter Berücksichtigung des Zusammenhangs (z) = 1/(2π) · φl / z 3 die folgende Gleichung Gl. 1 an: B ^ z = 1 π μ 0 2 I L z 3 A 0,15 l 1,2

Figure imgb0001
For the transmitted B field of a ferrite rod antenna at a certain distance z along a longitudinal direction of the ferrite rod antenna, taking into account the relationship ( z ) = 1 / (2 π ) · φl / z 3, the following equation Eq. 1 to: B. ^ z = 1 π μ 0 2 I. L. z 3 A. 0.15 l 1.2
Figure imgb0001

Hierbei bezeichnet Φ den magnetischen Fluss, I die Stromstärke, L die Induktivität einer Sendespule der Ferritstabantenne, A den magnetischen Querschnitt, l die Länge des Ferritkerns der Ferritstabantenne und B die entlang der Längsrichtung gesendete magnetische Flussdichte.Here Φ denotes the magnetic flux, I the current intensity, L the inductance of a transmitter coil of the ferrite rod antenna, A the magnetic cross section, l the length of the ferrite core of the ferrite rod antenna and B the magnetic flux density transmitted along the longitudinal direction.

Für eine bei Empfang eines B-Felds in einer Spule der Ferritstabantenne induzierten Spannung U gibt der Erfinder unter Berücksichtigung der Transformatorformel = 2πBANf , wobei f die Frequenz des empfangen Feldes und N die Windungszahl der Empfangsspule bezeichnet, die folgende Gleichung Gl. 2 an: Û z = π 2 μ 0 B z f L A 0,85 l 0,2

Figure imgb0002
For upon reception of a B-field in a coil of the ferrite bar antenna induced voltage U is of the inventors in consideration of the transformer formula U = 2 πBANf, wherein the frequency of the received field, and N f is the number of turns of the receiver coil designated, the following equation Eq. 2 to: Û z = π 2 μ 0 B. z f L. A. 0.85 l 0.2
Figure imgb0002

Anhand von Gl. 1 ist ersichtlich, dass eine Ferritstabantenne für eine gute Sendecharakteristik aufgrund der Exponenten von A und l in erster Linie für l einen möglichst großen Wert aufweisen soll, wenn die restlichen Parameter als fest gegeben angenommen werden. Anhand von Gl. 2 ist jedoch ersichtlich, dass eine Ferritstabantenne für eine gute Empfangscharakteristik eine möglichst große Fläche A senkrecht zu den Feldlinien aufweisen soll.Using Eq. 1 it can be seen that a ferrite rod antenna for good transmission characteristics should primarily have the largest possible value for l due to the exponents of A and l , if the remaining parameters are assumed to be fixed. Using Eq. 2, however, it can be seen that a ferrite rod antenna should have the largest possible area A perpendicular to the field lines for good reception characteristics.

Demzufolge sind die Kriterien für eine optimale Sendeantenne gegensätzlich zu einer optimalen Empfangsantenne.As a result, the criteria for an optimal transmitting antenna are the opposite of an optimal receiving antenna.

Angesichts der obigen Erkenntnisse stellt die Erfindung eine Ferritstabantenne bereit, die aufgrund eines erfindungsgemäßen Kerndesigns für den Ferritkern der Ferritstabantenne eine Optimierung der Sendecharakteristik und der Empfangscharakteristik erlaubt.In view of the above findings, the invention provides a ferrite rod antenna which, based on a core design according to the invention for the ferrite core of the ferrite rod antenna, allows the transmission characteristics and the reception characteristics to be optimized.

Nachfolgend werden einige anschauliche Ausführungsformen mit Bezug auf Fig. 1 beschrieben. Dabei zeigt Fig. 1 eine Ferritstabantenne 1 mit einem Ferritkern, der einen ersten Ferritkernabschnitt 3, einen zweiten Ferritkernabschnitt 5 und einen dritten Ferritkernabschnitt 7 aufweist. Der erste Ferritkernabschnitt 3 und der dritte Ferritkernabschnitt 7 sind durch den zweiten Ferritkernabschnitt 5 voneinander beabstandet. Der erste Ferritkernabschnitt 3 und der dritte Ferritkernabschnitt 7 weisen eine längliche Gestalt auf, so dass sie jeweils eine Längsrichtung festlegen. Weiterhin sind der erste Ferritkernabschnitt 3 und der dritte Ferritkernabschnitt 7 derart zueinander orientiert, dass beide Längsrichtungen parallel orientiert sind und somit durch den ersten Ferritkernabschnitt 3 und den dritten Ferritkernabschnitt 7 insgesamt nur eine Längsrichtung festgelegt wird.Below are some illustrative embodiments with reference to FIG Fig. 1 described. It shows Fig. 1 a ferrite rod antenna 1 with a ferrite core, the first Ferrite core section 3, a second ferrite core section 5 and a third ferrite core section 7. The first ferrite core section 3 and the third ferrite core section 7 are spaced apart from one another by the second ferrite core section 5. The first ferrite core section 3 and the third ferrite core section 7 have an elongated shape so that they each define a longitudinal direction. Furthermore, the first ferrite core section 3 and the third ferrite core section 7 are oriented to one another in such a way that both longitudinal directions are oriented in parallel and thus only one longitudinal direction is defined overall by the first ferrite core section 3 and the third ferrite core section 7.

Über dem ersten Ferritkernabschnitt 3 und dem dritten Ferritkernabschnitt 7 ist eine erste Wicklung W1 angeordnet, die eine erste Wicklungsachse A1 festlegt. Zum Beispiel stellt die Wicklungsachse A1 eine Richtung dar, die von den einzelnen Windungen der ersten Wicklung W1 umlaufen wird und die zu einer Ganghöhe zwischen zwei sukzessive aufeinanderfolgenden Windungen der ersten Wicklung W1 parallel orientiert ist. In einem anschaulichen Beispiel stellt die erste Wicklungsachse A1 eine Normale zu einer Ebene dar, in der eine Windung der ersten Wicklung W1 liegt (hierbei wird unter einer Windung einer Wicklung ein vollständiger azimutaler Umlauf von 2π verstanden). Mit anderen Worten, die erste Wicklungsachse A1 stellt eine Symmetrieachse der ersten Wicklung W1 bezüglich einer Drehung in einer Windungsebene oder einer Projektion einer Windungsebene auf eine Ebene dar, die zu einer Ganghöhe zwischen benachbarten Windungen der ersten Wicklung W1 orthogonal orientiert ist. Die erste Wicklungsachse A1 verläuft insbesondere entlang der Längsrichtung der ersten und dritten Ferritkernabschnitte 3, 7.A first winding W1, which defines a first winding axis A1, is arranged above the first ferrite core section 3 and the third ferrite core section 7. For example, the winding axis A1 represents a direction which is rotated by the individual turns of the first winding W1 and which is oriented parallel to a pitch between two successive turns of the first winding W1. In an illustrative example, the first winding axis A1 represents a normal to a plane in which one turn of the first winding W1 lies (here, one turn of a winding is understood to mean a complete azimuthal revolution of 2π). In other words, the first winding axis A1 represents an axis of symmetry of the first winding W1 with respect to a rotation in a winding plane or a projection of a winding plane onto a plane which is oriented orthogonally to a pitch between adjacent windings of the first winding W1. The first winding axis A1 runs in particular along the longitudinal direction of the first and third ferrite core sections 3, 7.

In Fig. 1 ist die erste Wicklung W1 als über dem ersten Ferritkernabschnitt 3 und über dem dritten Ferritkernabschnitt 7 angeordnet dargestellt. Dies stellt keine Beschränkung der vorliegenden Erfindung dar und die erste Wicklung W1 kann alternativ lediglich über dem ersten Ferritkernabschnitt 3 oder dem dritten Ferritkernabschnitt 7 angeordnet sein.In Fig. 1 the first winding W1 is shown as being arranged above the first ferrite core section 3 and above the third ferrite core section 7. This does not represent a limitation of the present invention and the first winding W1 can alternatively be arranged only over the first ferrite core section 3 or the third ferrite core section 7.

Weiterhin ist eine zweite Wicklung W2 über dem zweiten Ferritkernabschnitt 5 angeordnet. Die zweite Wicklung W2 legt eine zweite Wicklungsachse A3 fest. Die zweite Wicklungsachse A3 kann entsprechend den Erläuterungen zur ersten Wicklungsachse A1 als eine Richtung verstanden werden, die von den einzelnen Windungen der zweiten Wicklung W2 umlaufen wird und die zu einer Ganghöhe zwischen zwei sukzessive aufeinanderfolgenden Windungen der zweiten Wicklung W2 parallel orientiert ist.Furthermore, a second winding W2 is arranged over the second ferrite core section 5. The second winding W2 defines a second winding axis A3. According to the explanations for the first winding axis A1, the second winding axis A3 can be understood as a direction which is rotated by the individual turns of the second winding W2 and which is oriented parallel to a pitch between two successive turns of the second winding W2.

In anschaulichen Ausführungsformen der Erfindung sind die erste Wicklungsachse A1 und die zweite Wicklungsachse A3 nicht parallel zueinander orientiert. Zum Beispiel können sich die erste Wicklungsachse A1 und die zweite Wicklungsachse A3 in einem Punkt schneiden oder zueinander windschief angeordnet sein. Gemäß einem speziellen anschaulichen Beispiel, wie in Fig. 1 dargestellt ist, sind die erste Wicklungsachse A1 und die zweite Wicklungsachse A3 zueinander senkrecht orientiert.In illustrative embodiments of the invention, the first winding axis A1 and the second winding axis A3 are not oriented parallel to one another. For example, the first winding axis A1 and the second winding axis A3 can intersect at one point or be arranged skewed to one another. According to a specific illustrative example of how in Fig. 1 is shown, the first winding axis A1 and the second winding axis A3 are oriented perpendicular to each other.

In anschaulichen Ausführungsformen weist der Ferritkern am zweiten Ferritkernabschnitt 5 relativ zum ersten Ferritkernabschnitt 3 und dritten Ferritkernabschnitten 7 in wenigstens einer Richtung wenigstens eine kleine Abmessung auf. Zum Beispiel weist der Ferritkern am zweiten Ferritkernabschnitt 5 in einer Richtung parallel zur ersten Wicklungsachse A1 relativ zu den ersten und dritten Ferritkernabschnitten 3, 7 eine kleine Abmessung auf. Insbesondere kann der zweite Ferritkernabschnitt 5 wenigstens teilweise eine Abmessung entlang einer Richtung parallel zur ersten Wicklungsachse A1 aufweisen, die kleiner ist als eine Abmessung des ersten und/oder dritten Ferritkernabschnitts 3, 7 entlang einer Richtung parallel zur ersten Wicklungsachse A1. In anschaulichen Beispielen hierin kann eine Abmessung von wenigstens einem verjüngten Abschnitt des zweiten Ferritkernabschnitts 5 normiert auf eine Abmessung des ersten Ferritkernabschnitts 3 oder des dritten Ferritkernabschnitts 7 weniger als 0,8 betragen, vorzugsweise weniger als 0,5 betragen, weiter bevorzugt weniger als 0,3 betragen. Gemäß speziellen anschaulichen Beispielen hierin kann ein Verhältnis aus einer Abmessung des zweiten Ferritkernabschnitts 5 zu einer Abmessung des ersten Ferritkernabschnitts 3 und/oder des dritten Ferritkernabschnitts 7 entlang einer Richtung parallel zur ersten Wicklungsachse A1 z.B. 0,2 oder weniger, etwa 0,1 oder weniger betragen. Mit anderen Worten, in der Kontur des Ferritkerns ist die Verjüngung am zweiten Ferritkernabschnitt 5 derart gebildet ist, dass eine Abmessung des Ferritkerns in einer Richtung parallel zur ersten Wicklungsachse relativ zu den ersten und dritten Ferritkernabschnitten 3, 7 klein ist, kann eine Wicklung am zweiten Ferritkernabschnitt 5 vorteilhaft in die Kontur aufgenommen werden. Weiterhin erfolgt eine Konzentrierung der magnetischen Flussdichte im Ferritkern in einem Empfangsmodus.In illustrative embodiments, the ferrite core on the second ferrite core section 5 has at least one small dimension relative to the first ferrite core section 3 and third ferrite core sections 7 in at least one direction. For example, the ferrite core on the second ferrite core portion 5 has a small dimension in a direction parallel to the first winding axis A1 relative to the first and third ferrite core portions 3, 7. In particular, the second ferrite core section 5 can at least partially have a dimension along a direction parallel to the first winding axis A1, which is smaller than a dimension of the first and / or third ferrite core section 3, 7 along a direction parallel to the first winding axis A1. In illustrative examples herein, a dimension of at least one tapered section of the second ferrite core section 5, normalized to a dimension of the first ferrite core section 3 or the third ferrite core section 7, can be less than 0.8, preferably less than 0.5, more preferably less than 0, 3. According to specific illustrative examples herein, a ratio of a dimension of the second ferrite core section 5 to a dimension of the first ferrite core section 3 and / or the third ferrite core section 7 along a direction parallel to the first winding axis A1 can be, for example, 0.2 or less, for example 0.1 or less be. In other words, in the contour of the ferrite core, the taper on the second ferrite core section 5 is formed in such a way that a dimension of the ferrite core in a direction parallel to the first winding axis is small relative to the first and third ferrite core sections 3, 7 Ferrite core section 5 are advantageously included in the contour. Furthermore, the magnetic flux density in the ferrite core is concentrated in a receiving mode.

Die ersten und dritten Ferritkernabschnitte 3, 7 können als einzelne längliche Ferritstäbe ausgebildet sein, die an dem zweiten Ferritkernabschnitt 5 angebracht sind, wie in Fig. 1 dargestellt ist. Die Ferritkernabschnitte 3, 7 können zueinander parallel oder im Wesentlichen parallel sein. Der zweite Ferritkernabschnitt 5 kann senkrecht oder im Wesentlichen senkrecht zu jedem der ersten und dritten Ferritkernabschnitte 3, 7 angeordnet sein. Zusätzlich ist der zweite Ferritkernabschnitt 5 gemäß der Darstellung in Fig. 1 als ein zylindrischer Ferritstab ausgebildet, der entsprechend den obigen Erläuterungen eine kleinere Abmessung aufweist, wie nachfolgend genauer beschrieben ist.The first and third ferrite core sections 3, 7 can be formed as individual elongated ferrite rods attached to the second ferrite core section 5, as in FIG Fig. 1 is shown. The ferrite core sections 3, 7 can be parallel or essentially parallel to one another. The second ferrite core section 5 can be arranged perpendicularly or substantially perpendicularly to each of the first and third ferrite core sections 3, 7. In addition, the second ferrite core section 5 is shown in FIG Fig. 1 formed as a cylindrical ferrite rod, which has a smaller dimension in accordance with the above explanations, as will be described in more detail below.

Gemäß der Darstellung in Fig. 1 weist der Ferritkern in einer Ansicht des Ferritkerns entlang einer Richtung senkrecht zu den Wicklungsachsen A1 und A3 eine H-förmige Gestalt auf. Gemäß der Darstellung in Fig. 1 weist der zweite Ferritkernabschnitt 5 der Ferritstabantenne 1 entlang einer Richtung senkrecht zu einer Parallelen der ersten Wicklungsachse A1 (und damit senkrecht zur Längsrichtung der ersten und dritten Ferritkernabschnitte 3,7) eine Abmessung ("zweite Längenabmessung") auf, die kleiner ist als eine Abmessung des Ferritkerns der Ferritstabantenne 1 entlang dieser Richtung senkrecht zu einer Richtung parallel zur ersten Wicklungsachse A1 (insbesondere eine Richtung senkrecht zur Längsrichtung der ersten und dritten Ferritkernabschnitte 3, 7 oder "erste Längenabmessung"). In Ausgestaltungen des zweiten Ferritkernabschnitts 5, in denen der zweite Ferritkernabschnitt 5 relativ zu entsprechenden Abmessungen der ersten und dritten Ferritkernabschnitte 3, 7 kleinere Abmessungen aufweist, insbesondere entlang Richtungen, die nicht parallel zur zweiten Wicklungsachse A3 sind, wird für die zweite Wicklung W2 ein geringer Wicklungsdurchmesser bereitgestellt, wodurch sich für die Wicklung W2 ein relativ geringer Gleichstromwiderstand ergibt. Beispielsweise kann die zweite Längenabmessung um einen Faktor "1,5" oder wenigstens um einen Faktor "2" oder wenigstens um einen Faktor "3" oder wenigstens um einen Faktor "5" kleiner sein als die erste LängenabmessungAs shown in Fig. 1 the ferrite core has an H-shape in a view of the ferrite core along a direction perpendicular to the winding axes A1 and A3. As shown in Fig. 1 the second ferrite core section 5 of the ferrite rod antenna 1 has a dimension ("second length dimension") which is smaller than one dimension along a direction perpendicular to a parallel line of the first winding axis A1 (and thus perpendicular to the longitudinal direction of the first and third ferrite core sections 3, 7) of the ferrite core of the ferrite rod antenna 1 along this direction perpendicular to a direction parallel to the first winding axis A1 (in particular, a direction perpendicular to the longitudinal direction of the first and third ferrite core sections 3, 7 or "first length dimension"). In configurations of the second ferrite core section 5 in which the second ferrite core section 5 has smaller dimensions relative to the corresponding dimensions of the first and third ferrite core sections 3, 7, in particular along directions that are not parallel to the second winding axis A3, the second winding W2 is smaller Winding diameter provided, which results in a relatively low DC resistance for the winding W2. For example, the second length dimension can be a factor of “1.5” or at least a factor “2” or at least a factor “3” or at least a factor “5” smaller than the first length dimension

Gemäß der Darstellung in Fig. 1 weist der Ferritkern der Ferritstabantenne 1 eine längliche Gestalt auf, die durch die Gestalt der ersten und dritten Ferritkernabschnitte 3, 7 festlegt wird. Damit ist dem Ferritkern der Ferritstabantenne 1 entsprechend der Längsrichtung der ersten und dritten Ferritkernabschnitte 3, 7 eine Längsrichtung zuordenbar, die gemäß der Darstellung in Fig. 1 zur ersten Wicklungsachse A1 im Wesentlichen parallel und zur zweiten Wicklungsachse A3 im Wesentlichen senkrecht orientiert ist. In diesem Fall ist eine Abmessung des zweiten Ferritkernabschnitts 5 wenigstens entlang der Längsrichtung kleiner als eine Abmessung des ersten Ferritkernabschnitts 3 entlang der Längsrichtung und/oder eine Abmessung des dritten Ferritkernabschnitts 7 entlang der Längsrichtung, so dass der Ferritkern der Ferritstabantenne 1 im zweiten Ferritkernabschnitt 5 verjüngt ist.As shown in Fig. 1 For example, the ferrite core of the ferrite rod antenna 1 has an elongated shape which is defined by the shape of the first and third ferrite core sections 3, 7. A longitudinal direction can thus be assigned to the ferrite core of the ferrite rod antenna 1 corresponding to the longitudinal direction of the first and third ferrite core sections 3, 7, which according to the illustration in FIG Fig. 1 is oriented essentially parallel to the first winding axis A1 and essentially perpendicular to the second winding axis A3. In this case, a dimension of the second ferrite core section 5 at least along the longitudinal direction is smaller than a dimension of the first ferrite core section 3 along the longitudinal direction and / or a dimension of the third ferrite core section 7 along the longitudinal direction, so that the ferrite core of the ferrite rod antenna 1 tapers in the second ferrite core section 5 is.

Gemäß der in Fig. 1 dargestellten Ausführungsform ist der Ferritkern der Ferritstabantenne 1 entlang des zweiten Ferritkernabschnitts 5 verjüngt. Dies stellt keine Beschränkung der Erfindung dar und es kann lediglich ein Abschnitt des zweiten Ferritkernabschnitts 5 verjüngt sein. Beispielsweise kann sich eine Abmessung des zweiten Ferritkernabschnitts 5 zu dem ersten Ferritkernabschnitt 3 und/oder zu dem dritten Ferritkernabschnitt 7 hin stetig an eine Abmessung des ersten Ferritkernabschnitts 3 und/oder an eine Abmessung des dritten Ferritkernabschnitts 7 angleichen, insbesondere ist keine Stufe zwischen dem zweiten Ferritkernabschnitt 5 und wenigstens einem benachbarten Ferritkernabschnitt 3 und/oder 7 ausgebildet.According to the in Fig. 1 In the illustrated embodiment, the ferrite core of the ferrite rod antenna 1 is tapered along the second ferrite core section 5. This does not represent a limitation of the invention and only a section of the second ferrite core section 5 can be tapered. For example, a dimension of the second ferrite core section 5 to the first ferrite core section 3 and / or to the third ferrite core section 7 can be steadily matched to a dimension of the first ferrite core section 3 and / or to a dimension of the third ferrite core section 7, in particular there is no step between the second Ferrite core section 5 and at least one adjacent ferrite core section 3 and / or 7 formed.

Gemäß der Darstellung in Fig. 1 sind der erste Ferritkernabschnitt 3 und dritte Ferritkernabschnitt 7 entlang einer Verbindungsrichtung, die im Wesentlichen parallel zur zweiten Wicklungsachse A3 orientiert und zur Längsrichtung der ersten und dritten Ferritkernabschnitte 3, 7 im Wesentlichen senkrecht orientiert ist, durch den zweiten Ferritkernabschnitt 5 voneinander beabstandet. Dies bedeutet, dass ein Wicklungsdurchmesser der ersten Wicklung W1 durch eine Abmessung der ersten und dritten Ferritkernabschnitte 3, 7 entlang einer Richtung parallel zur zweiten Wicklungsachse A3 und eine Abmessung des sich zwischen dem ersten Ferritkernabschnitt 3 und dem dritten Ferritkernabschnitt 7 erstreckenden zweiten Ferritkernabschnitt 5 entlang der Verbindungsrichtung, insbesondere parallel zur zweiten Wicklungsachse A3, bestimmt wird. Demgegenüber ist ein Wicklungsdurchmesser der zweiten Wicklung W2 lediglich durch eine Querschnittfläche des zweiten Ferritkernabschnitts 5 senkrecht zur zweiten Wicklungsachse A3 gegeben. Gemäß einem anschaulichen Beispiel hierin kann eine Abmessung des zweiten Ferritkernabschnitts 5 in einer Breitenrichtung senkrecht zur Längsrichtung und senkrecht zur Verbindungsrichtung kleiner oder gleich einer kleinsten Abmessung von Abmessungen der ersten und dritten Ferritkernabschnitte 3, 7 in der Breitenrichtung sein, wie in Fig. 1 dargestellt ist.As shown in Fig. 1 are the first ferrite core portion 3 and third ferrite core portion 7 along a connection direction that is substantially parallel to second winding axis A3 and is oriented essentially perpendicular to the longitudinal direction of the first and third ferrite core sections 3, 7, spaced apart from one another by the second ferrite core section 5. This means that a winding diameter of the first winding W1 by a dimension of the first and third ferrite core sections 3, 7 along a direction parallel to the second winding axis A3 and a dimension of the second ferrite core section 5 extending between the first ferrite core section 3 and the third ferrite core section 7 along the Connection direction, in particular parallel to the second winding axis A3, is determined. In contrast, a winding diameter of the second winding W2 is given only by a cross-sectional area of the second ferrite core section 5 perpendicular to the second winding axis A3. According to an illustrative example herein, a dimension of the second ferrite core portion 5 in a width direction perpendicular to the longitudinal direction and perpendicular to the connection direction may be less than or equal to a smallest dimension of dimensions of the first and third ferrite core portions 3, 7 in the width direction, as in FIG Fig. 1 is shown.

Der erste Ferritkernabschnitt 3 und der dritte Ferritkernabschnitt 7 sind an gegenüberliegenden Stirnflächen des zweiten Ferritkernabschnitts 5 angeordnet und die zweite Wicklung W2 ist über einen Teil einer Mantelfläche des zweiten Ferritkernabschnitts 5 angeordnet. Dadurch wird eine Konfiguration bereitgestellt, in der die zweite Wicklungsachse A3 im Wesentlichen parallel zu Flächennormalen der Mantelflächen der ersten und dritten Ferritkernabschnitte 3, 7 orientiert ist, während die erste Wicklungsachse A1 im Wesentlichen parallel zu Flächennormalen von gegenüberliegenden Stirnflächen 9a, 9b des dritten Ferritkernabschnitts 7 bzw. gegenüberliegenden Stirnflächen 8a, 8b des ersten Ferritkernabschnitts 3 orientiert ist, die an einander in der Längsrichtung gegenüberliegenden Enden 4, 6 der ersten und dritten Ferritkernabschnitte 3, 7 angeordnet sind. Die Mantelfläche des ersten Ferritkernabschnitts 3 ist in Fig. 1 zur Veranschaulichung mit dem Bezugszeichen "11" bezeichnet. Insbesondere ist als "Mantelfläche" des erstes Ferritkernabschnitts 3 die Menge an Oberflächen des ersten Ferritkernabschnitts 3 zu verstehen, die mit dem zweiten Ferritkernabschnitt 5 nicht in mechanischem Kontakt stehen, von diesem weggerichtet sind und nicht mit den Stirnflächen 8a, 8b des ersten Ferritkernabschnitts 3 identisch sind. Der Begriff "Mantelfläche" ist entsprechend auf den dritten Ferritkernabschnitt 7 anzuwenden. Als "Mantelflächen" des zweiten Ferritkernabschnitts 5 sind die Oberflächen des zweiten Ferritkernabschnitts 5 zu verstehen, die im Ferritkern der Ferritstabantenne 1 freiliegen.The first ferrite core section 3 and the third ferrite core section 7 are arranged on opposite end faces of the second ferrite core section 5 and the second winding W2 is arranged over part of a lateral surface of the second ferrite core section 5. This provides a configuration in which the second winding axis A3 is oriented essentially parallel to surface normals of the lateral surfaces of the first and third ferrite core sections 3, 7, while the first winding axis A1 is essentially parallel to surface normals of opposite end faces 9a, 9b of the third ferrite core section 7 or opposite end faces 8a, 8b of the first ferrite core section 3, which are arranged on opposite ends 4, 6 of the first and third ferrite core sections 3, 7 in the longitudinal direction. The outer surface of the first ferrite core section 3 is in Fig. 1 denoted by the reference number "11" for illustration. In particular, the "outer surface" of the first ferrite core section 3 is to be understood as the amount of surfaces of the first ferrite core section 3 that are not in mechanical contact with the second ferrite core section 5, are directed away from the latter and are not identical to the end faces 8a, 8b of the first ferrite core section 3 are. The term "jacket surface" is to be applied accordingly to the third ferrite core section 7. When “Jacket surfaces” of the second ferrite core section 5 are to be understood as the surfaces of the second ferrite core section 5 that are exposed in the ferrite core of the ferrite rod antenna 1.

Die erste Wicklung W1 der Ferritstabantenne 1 ist über einen Bereich der Mantelfläche der ersten und dritten Ferritkernabschnitte 3, 7 angeordnet. Die Mantelflächen der ersten und dritten Ferritkernabschnitte 3, 7 bilden die Mantelfläche der Ferritstabantenne 1, über die Magnetfeldanteile von elektromagnetischen Wellen durch die Ferritstabantenne 1 empfangen werden bzw. in den Ferritkern der Ferritstabantenne 1 eingekoppelt werden, wie mittels Pfeile P1 in Fig.1 zur Veranschaulichung von Magnetfeldanteilen dargestellt ist. Gemäß anschaulicher Beispiele kann die erste Wicklung W1 die Mantelfläche der Ferritstabantenne 1 an den gegenüberliegenden Enden 4, 6 der Ferritstabantenne 1 abdecken bzw. darüber angeordnet sein und insbesondere Stirnflächen 8a, 8b, 9a, 9b der Ferritstabantenne 1 freilassen, sowie einen Abschnitt der Mantelfläche der Ferritstabantenne 1 zwischen den gegenüberliegenden Enden 4, 6 der Ferritstabantenne 1 im Wesentlichen freilassen. Damit kann in einem Betrieb der Ferritstabantenne 1 als Sendeantenne die erste Wicklung W1 durch geeignetes Verbinden von Anschlüsse A0, A2 der ersten Wicklung W1 mit einer Sendeeinheit (nicht dargestellt) zur Abstrahlung von Magnetfeldanteilen gemäß Pfeilen P2 bzw. antiparallel dazu betrieben werden. In einem Betrieb der Ferritstabantenne 1 als Empfangsantenne können Magnetfeldanteile, die entsprechend der Pfeile P1 auf die Mantelfläche der Ferritstabantenne 1 treffen, im zweiten Ferritkernabschnitt 5 konzentriert werden und in der zweiten Wicklung W2 ein Spannungssignal induzieren, das über Anschlüsse A3, A4 der zweiten Wicklung W2 abgegriffen werden kann.The first winding W1 of the ferrite rod antenna 1 is arranged over a region of the lateral surface of the first and third ferrite core sections 3, 7. The outer surfaces of the first and third ferrite core sections 3, 7 form the outer surface of the ferrite rod antenna 1, via which magnetic field components of electromagnetic waves are received by the ferrite rod antenna 1 or are coupled into the ferrite core of the ferrite rod antenna 1, as indicated by arrows P1 in Fig. 1 is shown to illustrate magnetic field components. According to illustrative examples, the first winding W1 can cover the outer surface of the ferrite rod antenna 1 at the opposite ends 4, 6 of the ferrite rod antenna 1 or be arranged above it and in particular leave end faces 8a, 8b, 9a, 9b of the ferrite rod antenna 1 free, as well as a section of the outer surface of the The ferrite rod antenna 1 is essentially free between the opposite ends 4, 6 of the ferrite rod antenna 1. In this way, when the ferrite rod antenna 1 is operated as a transmitting antenna, the first winding W1 can be operated by suitably connecting terminals A0, A2 of the first winding W1 to a transmitting unit (not shown) for radiating magnetic field components according to arrows P2 or anti-parallel thereto. When the ferrite rod antenna 1 is operated as a receiving antenna, magnetic field components which hit the outer surface of the ferrite rod antenna 1 according to the arrows P1 can be concentrated in the second ferrite core section 5 and induce a voltage signal in the second winding W2, which is transmitted via connections A3, A4 of the second winding W2 can be tapped.

Die in Fig. 1 dargestellte Ferritstabantenne stellt daher eine Kerngeometrie für den Ferritkern bereit, wobei der Ferritkern eine große Mantelfläche aufweist und gleichzeitig die zweite Wicklung W2 mit einem geringen Gleichstromwiderstand bereitgestellt werden kann. Weiterhin stellt der Ferritkern der Ferritstabantenne 1 mittels der Stirnflächen 8a, 8b, 9a, 9b der ersten und dritten Ferritkernabschnitte 3, 7 die Möglichkeit zur einer gerichteten Abstrahlung eines Magnetfelds entsprechend der Pfeile P2 bzw. antiparallel zu dem Pfeilen P2 in einem Betrieb als Sendeantenne bereit, in dem die Anschlüsse A0, A2 der ersten Wicklung W1 geeignet mit einer Sendeeinheit (nicht dargestellt) verbunden sind.In the Fig. 1 The ferrite rod antenna shown here therefore provides a core geometry for the ferrite core, the ferrite core having a large surface area and at the same time the second winding W2 being able to be provided with a low direct current resistance. Furthermore, the ferrite core of the ferrite rod antenna 1 by means of the end faces 8a, 8b, 9a, 9b of the first and third ferrite core sections 3, 7 provides the possibility of a directed radiation of a magnetic field according to the arrows P2 or anti-parallel to the arrows P2 in operation as a transmitting antenna , in which the connections A0, A2 of the first winding W1 are suitably connected to a transmitter unit (not shown).

In anschaulichen Ausführungsformen können Kanten der ersten und dritten Ferritkernabschnitte 3, 7 in der Mantelfläche des Ferritkerns abgerundet sein und somit als Auflageflächen dienen, an die sich Wicklungsabschnitte einzelner Windungen der ersten Wicklung W1 anlegen. Damit kann der in Fig. 1 dargestellte Ferritkern auf einfache Weise bewickelt werden, ohne dass die Gefahr der Beschädigung der Wicklung W1 besteht.In illustrative embodiments, edges of the first and third ferrite core sections 3, 7 in the outer surface of the ferrite core can be rounded and thus serve as bearing surfaces against which winding sections of individual turns of the first winding W1 are applied. This allows the in Fig. 1 The ferrite core shown can be wound in a simple manner without the risk of damaging the winding W1.

Mit Bezug auf Figur 3 werden verschiedene Ausführungsformen für einen Ferritkern der Ferritstabantenne 1 beschrieben, die mit Bezug auf Fig. 1 oben beschrieben ist.Regarding Figure 3 various embodiments for a ferrite core of the ferrite rod antenna 1 are described with reference to FIG Fig. 1 is described above.

Figur 3 stellt schematisch, in einer auseinandergenommenen perspektivischen Ansicht, einen Ferritkernabschnitt 41 entsprechend dem ersten Ferritkernabschnitt 3 aus Figur 1 oder dem dritten Ferritkernabschnitt 7 aus Figur 1 dar. In einer Seitenfläche des Ferritkernabschnitts 41 ist eine Ausnehmung 45 gebildet, die den Ferritkernabschnitt 41 wenigstens teilweise durchsetzt. Die Ausnehmung 45 ist derart gebildet bzw. dimensioniert, dass ein Ferritkernabschnitt 43 entsprechend dem zweiten Ferritkernabschnitt 5 aus Figur 1 teilweise in die Ausnehmung 45 eingesetzt werden kann. Insbesondere ist eine Gestalt der Ausnehmung 45 mit einer Gestalt des zweiten Ferritkernabschnitts 43 derart abgestimmt, dass der zweite Ferritkernabschnitt 43 (evtl. mit zusätzlichen Klebemitteln) in die Ausnehmung 45 aufgenommen werden kann. Figure 3 FIG. 11 schematically shows, in a disassembled perspective view, a ferrite core portion 41 corresponding to the first ferrite core portion 3 Figure 1 or the third ferrite core portion 7 Figure 1 In a side face of the ferrite core section 41, a recess 45 is formed which at least partially penetrates the ferrite core section 41. The recess 45 is formed or dimensioned in such a way that a ferrite core section 43 corresponds to the second ferrite core section 5 Figure 1 can be partially inserted into the recess 45. In particular, a shape of the recess 45 is coordinated with a shape of the second ferrite core section 43 such that the second ferrite core section 43 can be received in the recess 45 (possibly with additional adhesives).

Gemäß alternativer Ausführungsformen der Ferritstabantenne 1 können die ersten bis dritten Ferritkernabschnitte 3, 5, 7, die in Figur 1 dargestellt sind, abweichend von der Beschreibung zu Figur 3 als Abschnitte eines einstückig gebildeten Ferritkerns ausgebildet sein, beispielsweise kann der zweite Ferritkernabschnitt 5 in Figur 1 durch Einschneiden eines quaderförmigen Ferritkernrohlings gebildet werden. Alternativ kann der Ferritkern der Ferritstabantenne 1 durch Pressen des Ferritkerns in der in Figur 1 dargestellten Form gebildet werden oder der Ferritkern kann durch planes Verkleben der Ferritkernabschnitte 3, 5, 7 aneinander gebildet werden, wobei die einzelnen Ferritkernabschnitte 3, 5, 7 an ebenen Flächenabschnitten miteinander verklebt werden, so dass der entsprechend gebildete Ferritkern eine H-förmige Gestalt aufweist, wie mit Bezug auf Fig. 1 beschrieben ist.According to alternative embodiments of the ferrite rod antenna 1, the first to third ferrite core sections 3, 5, 7 shown in FIG Figure 1 are shown, deviating from the description Figure 3 be designed as sections of an integrally formed ferrite core, for example the second ferrite core section 5 in Figure 1 be formed by cutting a cuboid ferrite core blank. Alternatively, the ferrite core of the ferrite rod antenna 1 can be formed by pressing the ferrite core in the manner shown in FIG Figure 1 or the ferrite core can be formed by gluing the ferrite core sections 3, 5, 7 to one another, the individual ferrite core sections 3, 5, 7 being glued to one another on flat surface sections so that the correspondingly formed ferrite core has an H-shaped shape as referring to Fig. 1 is described.

Mit Bezug auf Figur 2 werden weitere anschauliche Ausführungsformen der Erfindung beschrieben.Regarding Figure 2 further illustrative embodiments of the invention are described.

Figur 2 stellt eine Ferritstabantenne 20 mit einem Ferritkern dar, der einen ersten Ferritkernabschnitt 21, einen zweiten Ferritkernabschnitt 29 und einen dritten Ferritkernabschnitt 23 aufweist, wobei der zweite Ferritkernabschnitt 29 den ersten Ferritkernabschnitt 21 und den dritten Ferritkernabschnitt 23 voneinander beabstandet. Weiterhin weist der Ferritkern der Ferritstabantenne 20 einen vierten Ferritkernabschnitt 27 und einen fünften Ferritkernabschnitt 25 auf, die sowohl untereinander als auch zu den ersten und dritten Ferritkernabschnitten 21, 23 durch den zweiten Ferritkernabschnitt 29 beabstandet sind. Figure 2 shows a ferrite rod antenna 20 with a ferrite core comprising a first ferrite core portion 21, a second ferrite core portion 29 and a third ferrite core portion 23, the second ferrite core portion 29 spacing the first ferrite core portion 21 and the third ferrite core portion 23 from one another. Furthermore, the ferrite core of the ferrite rod antenna 20 has a fourth ferrite core section 27 and a fifth ferrite core section 25, which are connected both to one another and to the first and third ferrite core portions 21, 23 are spaced apart by the second ferrite core portion 29.

Gemäß anschaulicher, jedoch nicht beschränkender Beispiele, ist der zweite Ferritkernabschnitt 29 würfel- oder quaderförmig gebildet und der erste Ferritkernabschnitt 21, der dritte Ferritkernabschnitt 23, der vierte Ferritkernabschnitt 27 und der fünfte Ferritkernabschnitt 25 sind entlang zueinander parallel verlaufender Kanten des zweiten Ferritkernabschnitts 29 angeordnet. Gemäß der Darstellung in Fig. 2 sind die Ferritkernabschnitte 21, 23, 25 und 27 als Ferritstäbe ausgeführt. Diese können ähnlich den zu Fig. 1 beschriebenen Ferritkernabschnitten 3, 7 ausgebildet sein. Die Darstellung in Fig. 2 dient lediglich der Veranschaulichung und ist nicht unbedingt als maßstäblich zu verstehen. Dimensionen können vergrößert/verkleinert dargestellt sein, um einzelne Merkmale in der Darstellung der Fig. 2 klarer darstellen zu können. Beispielsweise können die Ferritstäbe 21, 23, 25, 27 gegenüber der Darstellung in Fig. 2 weniger filigran sein, um den Kern zu stabilisieren.According to illustrative but non-limiting examples, the second ferrite core section 29 is cube-shaped or cuboid, and the first ferrite core section 21, the third ferrite core section 23, the fourth ferrite core section 27 and the fifth ferrite core section 25 are arranged along mutually parallel edges of the second ferrite core section 29. As shown in Fig. 2 the ferrite core sections 21, 23, 25 and 27 are designed as ferrite rods. These can be similar to the Fig. 1 described ferrite core sections 3, 7 be formed. The representation in Fig. 2 is for illustrative purposes only and is not necessarily to be understood as being to scale. Dimensions can be enlarged / reduced to accommodate individual features in the representation of the Fig. 2 to be able to represent it more clearly. For example, the ferrite rods 21, 23, 25, 27 can be compared to the illustration in FIG Fig. 2 be less filigree to stabilize the core.

Gemäß anschaulicher Ausführungsformen der Ferritstabantenne 20 ist der erste Ferritkernabschnitt 21 von dem vierten Ferritkernabschnitt 27 durch einen ersten Abstand Sp1 beabstandet und von dem dritten Ferritkernabschnitt 23 durch einen zweiten Abstand Sp2 beabstandet. Der fünfte Ferritkernabschnitt 25 ist von dem dritten Ferritkernabschnitt 23 unter einem dritten Abschnitt Sp3 angeordnet und relativ zu dem vierten Ferritkernabschnitt 27 unter einem vierten Abschnitt Sp4 angeordnet. Bedingt durch die Geometrie des zweiten Ferritkernabschnitts 29 und die Anordnung der Ferritkernabschnitte 21, 23, 25 und 27 am zweiten Ferritkernabschnitt 29 sind zum Beispiel der zweite Abstand Sp2 und der vierte Abstand Sp4 gleich, während der erste Abstand Sp1 und der dritte Abstand Sp3 gleich sein können. Dies stellt jedoch keine Beschränkung der vorliegenden Erfindung dar. Durch eine geeignete Anordnung der Ferritkernabschnitte 21, 23, 25 und 27 am zweiten Ferritkernabschnitt 29 können, unabhängig von der Geometrie des zweiten Ferritkernabschnitts 29, auch gleiche Abstände Sp1 = Sp2 = Sp3 = Sp4 eingestellt werden. Alternativ kann sich auch wenigstens einer der Abstände Sp1 bis Sp4 von wenigstens einem anderen der Abstände Sp1 bis Sp4 unterscheiden.According to illustrative embodiments of the ferrite rod antenna 20, the first ferrite core section 21 is spaced apart from the fourth ferrite core section 27 by a first distance Sp1 and spaced apart from the third ferrite core section 23 by a second distance Sp2. The fifth ferrite core section 25 is arranged from the third ferrite core section 23 under a third section Sp3 and arranged relative to the fourth ferrite core section 27 under a fourth section Sp4. Due to the geometry of the second ferrite core section 29 and the arrangement of the ferrite core sections 21, 23, 25 and 27 on the second ferrite core section 29, for example, the second distance Sp2 and the fourth distance Sp4 are the same, while the first distance Sp1 and the third distance Sp3 are the same can. However, this is not a limitation of the present invention. By suitably arranging the ferrite core sections 21, 23, 25 and 27 on the second ferrite core section 29, the same distances Sp1 = Sp2 = Sp3 = Sp4 can also be set regardless of the geometry of the second ferrite core section 29 . Alternatively, at least one of the distances Sp1 to Sp4 can also differ from at least one other of the distances Sp1 to Sp4.

Hinsichtlich einer Geometrie der Ferritkernabschnitte 21, 23, 25, 27, 29 und einer Geometrie von Wicklungen, die über den Ferritkernabschnitten 21, 23, 25, 27, 29 angeordnet sind, wie nachfolgend beschrieben wird, wird auf das in Figur 2 dargestellte Koordinatensystem Bezug genommen, in dem drei Achsen x, y, z zueinander paarweise senkrecht angeordnet sind. Eine Richtung entlang der x-Achse wird als Längsrichtung bezeichnet und eine Abmessung entlang der Längsrichtung wird als Längsabmessung bezeichnet. Hinsichtlich der Ferritkernabschnitte 21, 23, 25, 27 und 29 stellen Richtungen entlang der y-Achse und/oder der z-Achse Verbindungsrichtungen dar, die senkrecht zur Längsrichtung orientiert sind und entlang welcher die Ferritkernabschnitte 21, 23, 25, 27 untereinander durch den zweiten Ferritkernabschnitt 29 beabstandet sind. Insbesondere werden die Abstände Sp1, Sp2, Sp3 und Sp4 jeweils entlang einer der y-Achse und der z-Achse senkrecht zur Längsrichtung (der x-Achse) gemessen.With regard to a geometry of the ferrite core sections 21, 23, 25, 27, 29 and a geometry of windings which are arranged over the ferrite core sections 21, 23, 25, 27, 29, as described below, reference is made to the in Figure 2 Reference is made to the coordinate system shown, in which three axes x, y, z are arranged in pairs perpendicular to one another. A direction along the x-axis is referred to as a longitudinal direction and a dimension along the longitudinal direction is referred to as a longitudinal dimension. Regarding the ferrite core portions 21, 23, 25, 27 and 29 represent directions along the y-axis and / or the z-axis Connection directions which are oriented perpendicular to the longitudinal direction and along which the ferrite core sections 21, 23, 25, 27 are spaced apart from one another by the second ferrite core section 29. In particular, the distances Sp1, Sp2, Sp3 and Sp4 are each measured along one of the y-axis and the z-axis perpendicular to the longitudinal direction (the x-axis).

Gemäß anschaulichen Ausführungsformen sind die Längsabmessungen der Ferritkernabschnitte 21, 23, 25 und 27 größer als eine Längsabmessung des zweiten Ferritkernabschnitts 29. Zum Beispiel beträgt die Längsabmessung des zweiten Ferritkernabschnitts 29 höchstens 80% einer größten Längsabmessung aus den Längsabmessungen der Ferritkernabschnitte 21, 23, 25 und 27 bzw. der Längsabmessung der Ferritkernabschnitte 21, 23, 25 und 27, falls die Ferritkernabschnitte 21, 23, 25 und 27 (bis auf Toleranzen) von gleicher Längsabmessung sind.According to illustrative embodiments, the longitudinal dimensions of the ferrite core sections 21, 23, 25 and 27 are greater than a longitudinal dimension of the second ferrite core section 29. For example, the longitudinal dimension of the second ferrite core section 29 is at most 80% of a largest longitudinal dimension from the longitudinal dimensions of the ferrite core sections 21, 23, 25 and 27 or the longitudinal dimension of the ferrite core sections 21, 23, 25 and 27, if the ferrite core sections 21, 23, 25 and 27 (apart from tolerances) are of the same longitudinal dimension.

Gemäß anschaulicher Beispiele hierin beträgt die Längsabmessung des zweiten Ferritkernabschnitts 29 höchstens 70% oder höchstens 50% oder höchstens 30% einer maximalen Längsabmessung der Längsabmessungen der Ferritkernabschnitte 21, 23, 25 und 27 bzw. der Längsabmessung der Ferritkernabschnitte 21, 23, 25 und 27, falls die Ferritkernabschnitte 21, 23, 25 und 27 (bis auf Toleranzen) von gleicher Längsabmessung sind.According to illustrative examples herein, the longitudinal dimension of the second ferrite core section 29 is at most 70% or at most 50% or at most 30% of a maximum longitudinal dimension of the longitudinal dimensions of the ferrite core sections 21, 23, 25 and 27 or the longitudinal dimension of the ferrite core sections 21, 23, 25 and 27, if the ferrite core sections 21, 23, 25 and 27 (apart from tolerances) are of the same longitudinal dimension.

Gemäß anschaulicher Ausführungsformen weist jeder der Ferritkernabschnitte 21, 23, 25 und 27 eine längliche Gestalt auf, d. h., die Längsabmessungen der Ferritkernabschnitte 21, 23, 25 und 27 sind größer als Abmessungen der Ferritkernabschnitte 21, 23, 25 und 27 entlang der y-Achse und der z-Achse. Zum Beispiel kann ein Verhältnis aus der Längsabmessung der Ferritkernabschnitte 21, 23, 25 und 27 zu Abmessungen der Ferritkernabschnitte 21, 23, 25 und 27 entlang der x-Achse und entlang der z-Achse wenigstens zwei oder wenigstens fünf oder wenigstens zehn betragen.According to illustrative embodiments, each of the ferrite core portions 21, 23, 25 and 27 has an elongated shape; That is, the longitudinal dimensions of the ferrite core portions 21, 23, 25 and 27 are larger than dimensions of the ferrite core portions 21, 23, 25 and 27 along the y-axis and the z-axis. For example, a ratio of the longitudinal dimension of the ferrite core sections 21, 23, 25 and 27 to dimensions of the ferrite core sections 21, 23, 25 and 27 along the x-axis and along the z-axis can be at least two or at least five or at least ten.

Gemäß der Darstellung in Figur 2 kann der zweite Ferritkernabschnitt 29 in einer würfelförmigen oder quaderförmigen Gestalt ausgebildet sein. Dabei sind der erste Ferritkernabschnitt 21 und der vierte Ferritkernabschnitt 27 mit einer Seitenfläche des zweiten Ferritkernabschnitts 25 in Kontakt, während der dritte Ferritkernabschnitt 23 und der fünfte Ferritkernabschnitt 25 mit einer gegenüberliegenden Seitenfläche des zweiten Ferritkernabschnitts 25 in Kontakt stehen. Dies stellt keine Beschränkung der vorliegenden Erfindung dar und der Ferritkernabschnitt 21 kann zusammen mit dem Ferritkernabschnitt 23 eine Seitenfläche des zweiten Ferritkernabschnitts 29 kontaktieren, während die Ferritkernabschnitte 25 und 27 eine gegenüberliegende zweite Fläche des zweiten Ferritkernabschnitts 29 kontaktieren können. Alternativ hierzu können die Ferritkernabschnitte 21, 23, 25 und 27 unterschiedliche Seitenflächen des zweiten Ferritkernabschnitts 29 kontaktieren, deren Flächennormalen jeweils parallel oder antiparallel zu einer Verbindungsrichtung (y-Achse oder z-Achse in Figur 2) sind.As shown in Figure 2 For example, the second ferrite core section 29 can be formed in a cube-shaped or cuboid shape. The first ferrite core portion 21 and the fourth ferrite core portion 27 are in contact with one side surface of the second ferrite core portion 25, while the third ferrite core portion 23 and the fifth ferrite core portion 25 are in contact with an opposite side surface of the second ferrite core portion 25. This is not a limitation of the present invention, and the ferrite core portion 21 together with the ferrite core portion 23 can contact a side surface of the second ferrite core portion 29, while the ferrite core portions 25 and 27 can contact an opposite second surface of the second ferrite core portion 29. Alternatively, the ferrite core sections 21, 23, 25 and 27 contact different side surfaces of the second ferrite core section 29, the surface normals of which are each parallel or antiparallel to a connection direction (y-axis or z-axis in Figure 2 ) are.

Jeder der Ferritkernabschnitte 21, 23, 25 und 27 weist eine Seitenfläche, die mit dem zweiten Ferritkernabschnitt 29 in Kontakt steht, und Stirnflächen 31 auf, deren Flächennormalen parallel zur Längsrichtung (x-Achse in Figur 2) orientiert sind. Den Stirnflächen 31 gegenüberliegende Stirnflächen sind in Figur 2 nicht bezeichnet und sollen als unter den Begriff "Stirnflächen 31" fallend angesehen werden. Weiterhin weist jeder der Ferritkernabschnitte 21, 23, 25 und 27 zusätzlich zu den Stirnflächen jeweils eine Mantelfläche 33 auf, die eine nach außen freiliegende Oberfläche jedes Ferritkernabschnitts 21, 23, 25 und 27 darstellt.Each of the ferrite core sections 21, 23, 25 and 27 has a side surface which is in contact with the second ferrite core section 29, and end surfaces 31 whose surface normals are parallel to the longitudinal direction (x-axis in Figure 2 ) are oriented. End faces opposite to end faces 31 are shown in FIG Figure 2 not designated and should be regarded as falling under the term "end faces 31". Furthermore, each of the ferrite core sections 21, 23, 25 and 27 has, in addition to the end faces, a respective lateral surface 33, which represents an outwardly exposed surface of each ferrite core section 21, 23, 25 and 27.

Die Ferritstabantenne 20 umfasst weiterhin eine erste Wicklung W10, die über den Ferritkernabschnitten 21, 23, 25 und 27 angeordnet ist und eine erste Wicklungsachse in Richtung der x-Achse orientiert ist. In das Koordinatensystem in Figur 2 ist die erste Wicklung W10 übersichtshalber eingezeichnet, die eine räumliche Orientierung der ersten Wicklung W10 bzgl. derx-Achse anzeigt. Im Folgenden wird daher der ersten Wicklung W10 die x-Achse als "erste Wicklungsachse" zugeordnet.The ferrite rod antenna 20 further comprises a first winding W10, which is arranged above the ferrite core sections 21, 23, 25 and 27 and a first winding axis is oriented in the direction of the x-axis. In the coordinate system in Figure 2 the first winding W10 is shown for the sake of clarity, which shows a spatial orientation of the first winding W10 with respect to the x-axis. In the following, the x-axis is therefore assigned to the first winding W10 as the “first winding axis”.

In anschaulichen Ausführungsformen ist die erste Wicklung W10 über den Ferritkernabschnitten 21, 23, 25 und 27 angeordnet, so dass die Mantelflächen 33 der Ferritkernabschnitte 21, 23, 25 und 27 als Auflageflächen für einzelne Windungen der ersten Wicklung W10 an Endbereichen EA und EB der Ferritkernabschnitte 21, 23, 25 und 27 angeordnet sind. Die Endbereiche EA und EB der Ferritkernabschnitte 21, 23, 25 und 27 sind als Bereiche der Ferritkernabschnitte 21, 23, 25 und 27 zu verstehen, die an gegenüberliegenden Enden der Ferritkernabschnitte 21, 23, 25 und 27 angeordnet sind, an denen die Ferritkernabschnitte 21, 23, 25 und 27 nicht mit dem zweiten Ferritkernabschnitt 29 in Kontakt sind. Damit stellen die Endbereiche EA und EB Bereiche der Ferritkernabschnitte 21, 23, 25 und 27 dar, die sich entlang der Längsrichtung (x-Achse in Figur 2) über den zweiten Ferritkernabschnitt 29 erstrecken. Zwischen den Endbereichen EA und EB ist ein Verbindungsbereich angeordnet, der Bereiche der Ferritkernabschnitte 21, 23, 25 und 27 bezeichnet, entlang denen die Ferritkernabschnitte 21, 23, 25 und 27 mit dem zweiten Ferritkernabschnitt 29 entlang der Längsrichtung (x-Achse in Figur 2) in mechanischem Kontakt stehen. Insbesondere wird die erste Wicklung W10 gemäß den Endbereichen EA, EB und dem Verbindungsbereich in Wicklungsabschnitte W1a, W1b und W1c aufgeteilt. Die Wicklungsabschnitte W1a und W1b sind über den Endbereichen EA und EB der Ferritkernabschnitte 21, 23, 25 und 27 angeordnet und stellen Windungen der ersten Wicklung W10 dar, die die Ferritkernabschnitte 21, 23, 25 und 27 umlaufen. Der Wicklungsabschnitt W1c der ersten Wicklung W10 verläuft entlang des Verbindungsbereichs M im Wesentlichen parallel zur Längsrichtung (x-Achse in Figur 2), wobei "im Wesentlichen" bedeutet, dass der Wicklungsabschnitt W1c die Ferritkernabschnitte 21, 23, 25 und 27 entlang des Verbindungsbereichs M nicht vollständig umläuft, insbesondere eine den Wicklungsabschnitt W1c zugeordnete Umlaufzahl bzgl. der Ferritkernabschnitte 21, 23, 25 und 27 gemessen in Bogenmaß kleiner als 2π ist. Der Wicklungsabschnitt W1c steht entlang des Verbindungsbereichs M lediglich mit dem Ferritkernabschnitt 27 in Kontakt bzw. ist entlang des Ferritkernabschnitts 27 geführt.In illustrative embodiments, the first winding W10 is arranged above the ferrite core sections 21, 23, 25 and 27, so that the jacket surfaces 33 of the ferrite core sections 21, 23, 25 and 27 act as contact surfaces for individual turns of the first winding W10 at end areas EA and EB of the ferrite core sections 21, 23, 25 and 27 are arranged. The end areas EA and EB of the ferrite core sections 21, 23, 25 and 27 are to be understood as areas of the ferrite core sections 21, 23, 25 and 27 which are arranged at opposite ends of the ferrite core sections 21, 23, 25 and 27 on which the ferrite core sections 21 , 23, 25 and 27 are not in contact with the second ferrite core portion 29. The end regions EA and EB thus represent regions of the ferrite core sections 21, 23, 25 and 27 which extend along the longitudinal direction (x-axis in FIG Figure 2 ) extend over the second ferrite core section 29. A connection area is arranged between the end areas EA and EB, which denotes areas of the ferrite core sections 21, 23, 25 and 27, along which the ferrite core sections 21, 23, 25 and 27 with the second ferrite core section 29 along the longitudinal direction (x-axis in Figure 2 ) are in mechanical contact. In particular, the first winding W10 is divided into winding sections W1a, W1b and W1c according to the end regions EA, EB and the connection region. The winding sections W1a and W1b are arranged over the end regions EA and EB of the ferrite core sections 21, 23, 25 and 27 and represent turns of the first winding W10 that circulate around the ferrite core sections 21, 23, 25 and 27. The winding section W1c of the first winding W10 runs along the connection area M essentially parallel to the longitudinal direction (x-axis in Figure 2 ), where "essentially" means that the winding section W1c does not completely circulate the ferrite core sections 21, 23, 25 and 27 along the connecting area M, in particular a number of rotations assigned to the winding section W1c with regard to the ferrite core sections 21, 23, 25 and 27 measured in Radians are less than 2π. The winding section W1c is only in contact with the ferrite core section 27 along the connection area M or is guided along the ferrite core section 27.

Die vorangegangene Beschreibung der ersten Wicklung W10 stellt keine Beschränkung der vorliegenden Erfindung dar und die Wicklung W10 kann lediglich über einen Bereich der Ferritkernabschnitte 21, 23, 25 und 27 angeordnet sein, beispielsweise nur über den Bereich EA oder nur über den Bereich M oder nur über den Bereich EB oder nur über den Bereichen EA und M oder nur über den Bereichen EB und M. Anschlüsse der ersten Wicklung W10 sind in Figur 2 mit den Bezugszeichen A11 und A12 bezeichnet.The preceding description of the first winding W10 does not represent a restriction of the present invention and the winding W10 can only be arranged over a region of the ferrite core sections 21, 23, 25 and 27, for example only over the region EA or only over the region M or only over the area EB or only over the areas EA and M or only over the areas EB and M. Connections of the first winding W10 are in Figure 2 denoted by the reference characters A11 and A12.

Über dem zweiten Ferritkernabschnitt 29 sind ferner eine zweite Wicklung W12 und eine dritte Wicklung W14 angeordnet. Die Wicklungen W12 und W14 sind zueinander orthogonal orientiert, wie in das Koordinatensystem in Figur 2 zur Veranschaulichung eingezeichnet ist. Der zweiten Wicklung W12 wird eine zweite Wicklungsachse zugeordnet, die mit der z-Achse identifiziert wird. Der dritten Wicklung W14 wird eine dritte Wicklungsachse zugeordnet, die mit der y-Achse identifiziert wird. In Figur 2 sind Anschlüsse der zweiten Wicklung W12 mit A21 und A22 bezeichnet. Anschlüsse der dritten Wicklung W14 sind in Figur 2 mit A41 und A42 bezeichnet.A second winding W12 and a third winding W14 are also arranged above the second ferrite core section 29. The windings W12 and W14 are oriented orthogonally to one another, as in the coordinate system in FIG Figure 2 is drawn for illustration. The second winding W12 is assigned a second winding axis which is identified with the z-axis. The third winding W14 is assigned a third winding axis which is identified with the y-axis. In Figure 2 connections of the second winding W12 are labeled A21 and A22. Connections of the third winding W14 are in Figure 2 labeled A41 and A42.

Gemäß der Darstellung in Figur 2 sind die ersten bis dritten Wicklungsachsen paarweise aufeinander senkrecht.As shown in Figure 2 the first to third winding axes are perpendicular to each other in pairs.

Die Ferritstabantenne 20 kann in einem Sendebetrieb als Sendeantenne fungieren, wobei die erste Wicklung W10 über Anschlüsse A11 und A12 mit einer Sendeeinheit (nicht dargestellt) verbunden ist und ein Magnetfeld über die Stirnflächen 31 abstrahlt. In einem Empfangsmodus der Ferritstabantenne 20 sind die zweite Wicklung W12 über Anschlüsse A21 und A22 und/oder die dritte Wicklung W14 über Anschlüsse A41 und A42 mit einer Empfangseinheit (nicht dargestellt) verbunden, um ein Signal über die Mantelflächen 33 zu empfangen.The ferrite rod antenna 20 can function as a transmitting antenna in a transmitting mode, the first winding W10 being connected to a transmitting unit (not shown) via connections A11 and A12 and emitting a magnetic field via the end faces 31. In a receiving mode of the ferrite rod antenna 20, the second winding W12 via connections A21 and A22 and / or the third winding W14 via connections A41 and A42 are connected to a receiving unit (not shown) in order to receive a signal via the lateral surfaces 33.

Gemäß einiger anschaulicher Ausführungsformen der Erfindung kann die Längswicklung W10 zwischen A11 und A12 entgegen der Darstellung in Fig. 2 in der gesamten x-Richtung entlang der Ferritkernabschnitte 21, 23, 25, 27 hinweg gewickelt werden. In diesem Fall wird die Wicklung im Wickelabschnitt W1c fortgesetzt.According to some illustrative embodiments of the invention, the longitudinal winding W10 between A11 and A12, contrary to the illustration in FIG Fig. 2 in the entire x-direction along the ferrite core sections 21, 23, 25, 27 away. In this case, the winding is continued in the winding section W1c.

Mit Bezug auf Figur 4 wird nun eine Sende- und Empfangseinheit 100 beschrieben. Die Sende- und Empfangseinheit 100 kann eine Ferritstabantenne umfassen wie vorangehend bzgl. der Ferritstabantenne 1 in Figur 1 und der Ferritstabantenne 20 in Figur 2 beschrieben ist. Dabei entspricht eine Wicklung 101 der oben beschriebenen ersten Wicklung W1 oder W10, eine Wicklung 103 der oben beschriebenen zweiten Wicklung W2 oder W12. Im Falle der oben beschriebenen Ferritstabantenne 20 ist ferner eine dritte Wicklung 105 vorgesehen, die der oben beschriebenen dritten Wicklung W14 entspricht. Die Wicklung 105 ist optional, was in Figur 4 durch die Klammern angezeigt wird.Regarding Figure 4 A transmitting and receiving unit 100 will now be described. The transmitting and receiving unit 100 can comprise a ferrite rod antenna as above with regard to the ferrite rod antenna 1 in FIG Figure 1 and the ferrite rod antenna 20 in Figure 2 is described. One winding 101 corresponds to the above-described first winding W1 or W10, and one winding 103 corresponds to the above-described second winding W2 or W12. In the case of the ferrite rod antenna 20 described above, a third winding 105 is also provided, which corresponds to the third winding W14 described above. The winding 105 is optional, which is shown in Figure 4 indicated by the brackets.

In einem Empfangsmodus ist die Wicklung 103 und/oder 105 mit einer elektronischen Empfängerschaltung 112 verbunden. In einem Sendemodus ist die Wicklung 101 mit einer Sendeeinheit 114 elektrisch verbunden. Die Sendeeinheit 114 und Empfangseinheit 112 können mit einem digitalen Signalprozessormodul 110 verbunden sein, welches weiterhin mit einer Audiosignalausgabeeinheit (nicht dargestellt) zur Ausgabe von Audiosignalen und einer Audiosignaleingabeeinheit zur Aufnahme von Audiosignalen verbunden sein kann. Zum Beispiel kann die Sendeeinheit 114 eine Sende-Oszillatorschaltung umfassen, die mittels eines Schalters 116 mit der Wicklung 101 verbindbar ist und mit dem digitalen Signalprozessormodul 110 verbunden werden kann. Das digitale Signalprozessormodul 110 kann der Sendeeinheit 114 Signale übermitteln, die durch das digitale Signalprozessormodul 110 in elektrische Signale umgewandelte Audiosignale darstellen. Das digitale Signalprozessormodul 110 mit der Sendeeinheit 114 Signale austauschen, um über eine Audioausgabevorrichtung (nicht dargestellt), wie zum Beispiel einen Lautsprecher, Kopfhörer, usw., Audiosignale auszugeben.In a receive mode, the winding 103 and / or 105 is connected to an electronic receiver circuit 112. In a transmission mode, the winding 101 is electrically connected to a transmission unit 114. The transmitting unit 114 and receiving unit 112 can be connected to a digital signal processor module 110, which can furthermore be connected to an audio signal output unit (not shown) for outputting audio signals and an audio signal input unit for receiving audio signals. For example, the transmission unit 114 can comprise a transmission oscillator circuit which can be connected to the winding 101 by means of a switch 116 and which can be connected to the digital signal processor module 110. The digital signal processor module 110 can transmit signals to the transmission unit 114 which represent audio signals converted into electrical signals by the digital signal processor module 110. The digital signal processor module 110 exchange signals with the transmission unit 114 in order to output audio signals via an audio output device (not shown), such as a loudspeaker, headphones, etc., for example.

Im Sendemodus ist die Ferritstabantenne (vgl. 1 in Fig. 1; vgl. 20 in Fig. 2) mit einem Kondensator (nicht dargestellt) in Reihe geschaltet. Bei der Betriebsfrequenz der Ferritstabantenne (vgl. 1 in Fig. 1; vgl. 20 in Fig. 2) und des Kondensators (nicht dargestellt) kompensieren sich die Blindwiderstände und der Schwingkreis wird niederohmig, demzufolge ein maximaler Strom durch die Wicklung 101 fließt. Dadurch erzeugt die Wicklung 101 in der Ferritstabantenne (vgl. 1 in Fig. 1; vgl. 20 in Fig. 2) eine entsprechende Flussdichte B, die über die Stirnflächen der Ferritstabantenne (vgl. 1 in Fig. 1; vgl. 20 in Fig. 2) ausgekoppelt wird, wie oben beschrieben ist.The ferrite rod antenna (see 1 in Fig. 1 ; see 20 in Fig. 2 ) connected in series with a capacitor (not shown). At the operating frequency of the ferrite rod antenna (see 1 in Fig. 1 ; see 20 in Fig. 2 ) and the capacitor (not shown), the reactances compensate each other and the resonant circuit becomes low-resistance, as a result of which a maximum current flows through the winding 101. As a result, the winding 101 in the ferrite rod antenna (cf. 1 in Fig. 1 ; see 20 in Fig. 2 ) a corresponding flux density B, which over the end faces of the ferrite rod antenna (see. 1 in Fig. 1 ; see 20 in Fig. 2 ) is decoupled as described above.

Im Empfangsmodus ist die Ferritstabantenne (vgl. 1 in Fig. 1; vgl. 20 in Fig. 2) zu einem Kondensator (nicht dargestellt) parallel geschaltet. Demzufolge wird der Schwingkreis bestehend aus Wicklung 103 und /oder 105 und Kondensator (nicht dargestellt) hochohmig und eine induzierte Spannung liegt an der Wicklung 103 und/oder der Wicklung 105 an.In receive mode, the ferrite rod antenna (see 1 in Fig. 1 ; see 20 in Fig. 2 ) connected in parallel to a capacitor (not shown). As a result, the resonant circuit consisting of winding 103 and / or 105 and capacitor (not shown) has a high resistance and an induced voltage is applied to winding 103 and / or winding 105.

Mit Bezug auf Fig. 2 wird ebenfalls eine Ferritstabantenne 20 offenbart, die einen Ferritkern, der durch fünf miteinander verbundene Ferritstäbe 21, 23, 25, 27, 29 gebildet wird, und eine erste Wicklung W10 und eine zweite Wicklung W14 umfasst, die jeweils über dem Ferritkern angeordnet sind, wobei vier Ferritstäbe 21, 23, 25, 27 des Ferritkerns eine erste Längenabmessung aufweisen und der andere Ferritstab 29 des Ferritkerns eine zweite Längenabmessung aufweist, die kleiner ist als die erste Längenabmessung. Dabei ist der Ferritstab 29 mit der zweiten Längenabmessung senkrecht oder im Wesentlichen senkrecht zu den vier Ferritstäben 21, 23, 25, 27 mit der ersten Längenabmessung angeordnet, so dass diese durch den Ferritstab 29 mit der zweiten Längenabmessung zueinander beabstandet sind. Weiterhin ist die erste Wicklung W10 über den Ferritstäben 21, 23, 25, 27 mit der ersten Längenabmessung angeordnet ist, während die zweite Wicklung W14 über dem Ferritstab 29 mit der zweiten Längenabmessung angeordnet ist. Zusätzlich kann, wie in Fig. 2 dargestellt ist, eine dritte Wicklung W12 über dem Ferritstab 29 mit der zweiten Längenabmessung angeordnet sein, wobei Wicklungsachsen der Wicklungen W10, W12, W14 paarweise senkrecht oder im Wesentlichen senkrecht zueinander orientiert sind.Regarding Fig. 2 a ferrite rod antenna 20 is also disclosed which comprises a ferrite core formed by five interconnected ferrite rods 21, 23, 25, 27, 29, and a first winding W10 and a second winding W14, each arranged above the ferrite core, wherein four ferrite rods 21, 23, 25, 27 of the ferrite core have a first length dimension and the other ferrite rod 29 of the ferrite core has a second length dimension which is smaller than the first length dimension. The ferrite rod 29 with the second length dimension is arranged perpendicular or essentially perpendicular to the four ferrite rods 21, 23, 25, 27 with the first length dimension, so that they are spaced from one another by the ferrite rod 29 with the second length dimension. Furthermore, the first winding W10 is arranged over the ferrite rods 21, 23, 25, 27 with the first length dimension, while the second winding W14 is arranged over the ferrite rod 29 with the second length dimension. In addition, as in Fig. 2 is shown, a third winding W12 can be arranged above the ferrite rod 29 with the second length dimension, the winding axes of the windings W10, W12, W14 being oriented in pairs perpendicular or substantially perpendicular to one another.

Weiterhin können die vier Ferritstäbe 21, 23, 25, 27 mit der ersten Längenabmessung paarweise zueinander parallel oder im Wesentlichen parallel an dem Ferritstab 29 mit der zweiten Längenabmessung angeordnet sein. Beispielsweise kann der Ferritstab 29 gegenüber den vier Ferritstäben 21, 23, 25, 27 eine blockartige oder quaderförmige Gestalt (in einem speziellen Beispiel eine würfelförmige Gestalt) aufweisen, wobei die vier Ferritstäbe 21, 23, 25, 27 sich entlang parallel verlaufender Kanten dieses blockartigen oder quaderförmigen Ferritstabs 29 erstrecken können, wie in Fig. 2 veranschaulicht ist. Die vier Ferritstäbe 21, 23, 25, 27 sind jeweils durch den blockartigen oder quaderförmigen Ferritstab 29 voneinander beabstandet.Furthermore, the four ferrite rods 21, 23, 25, 27 with the first length dimension can be arranged in pairs parallel to one another or essentially parallel on the ferrite rod 29 with the second length dimension. For example, the ferrite rod 29 can have a block-like or cuboid shape (in a specific example a cube-shaped shape) opposite the four ferrite rods 21, 23, 25, 27, the four ferrite rods 21, 23, 25, 27 running along parallel edges of this block-like shape or cuboid ferrite rod 29 can extend, as in Fig. 2 is illustrated. The four ferrite rods 21, 23, 25, 27 are each spaced apart from one another by the block-like or cuboid ferrite rod 29.

Gemäß der Darstellung in Fig. 2 weist der Ferritkern in einer ebenen Seitenansicht entlang einer der Richtungen x, y und z in Fig. 2 eine H-förmige Gestalt auf.As shown in Fig. 2 shows the ferrite core in a planar side view along one of the directions x, y and z in Fig. 2 an H-shaped shape.

Claims (7)

  1. A ferrite-rod antenna (1) comprising a ferrite core having a first ferrite core portion (3), a second ferrite core portion (5) and a third ferrite core portion (7), said first ferrite core portion (3) and said third ferrite core portion (7) being spaced apart from each other by said second ferrite core portion (5), and a first winding (W1) disposed above said first ferrite core portion (3) and/or said third ferrite core portion (7) and defining a first winding axis (A1), and a second winding (W2) disposed above said second ferrite core portion (5) and defining a second winding axis (A3) which is not parallel to said first winding axis (A1),
    wherein the ferrite core at the second ferrite core portion (5) is at least partially tapered relative to the first and third ferrite core portions (3, 7) in at least one direction, wherein the ferrite core (1) at the second ferrite core portion (5) has a small dimension in a direction parallel to the first winding axis (A1) relative to the first and third ferrite core portions (3, 7),
    wherein the ferrite core has an elongated shape defining a longitudinal direction, and a dimension of the second ferrite core portion (5) along the longitudinal direction is smaller than a dimension of the first ferrite core portion (3) along the longitudinal direction and/or a dimension of the third ferrite core portion (7) along the longitudinal direction,
    wherein the first and third ferrite core portions (3, 7) are spaced apart from each other by the second ferrite core portion (5) along a connecting direction perpendicular to the longitudinal direction of the first and third ferrite core portions (3, 7),
    wherein a dimension of the second ferrite core portion (5) in a width direction perpendicular to the longitudinal direction and perpendicular to the connecting direction is smaller than or equal to a smallest dimension among dimensions of the first and third ferrite core portions (3, 7) in their respective width directions, and
    wherein said second ferrite core portion (5) has a cylindrical shape, said first and third ferrite core portions (3, 7) are disposed on opposite end faces of said second ferrite core portion (5), and said second winding (W2) is disposed over a part of a circumferential surface of said second ferrite core portion.
  2. The ferrite-rod antenna (1) according to claim 1, wherein the first winding axis (A1) is aligned parallel to the longitudinal direction.
  3. The ferrite-rod antenna (1) according to claim 1 or 2, wherein the first winding (W1) is arranged over regions of a circumferential surface of the ferrite rod antenna (1) at opposite ends (4, 6) of the ferrite rod antenna (1) at the first and third ferrite core portions, wherein in particular end faces (8a, 8b, 9a, 9b) of the ferrite rod antenna (1) and the second ferrite core portion (5) are exposed with respect to the first winding (W1).
  4. The ferrite-rod antenna (1) according to any one of claims 1 to 3, wherein the first ferrite core portion (3) and the third ferrite core portion (7) have at least one rounded edge as a supporting surface for the first winding.
  5. The ferrite-rod antenna (1) according to any one of claims 1 to 4, wherein the first ferrite core portion (3) and the third ferrite core portion (7, 41) each have a recess (45) in which the second ferrite core portion (5, 43) is partially received.
  6. A ferrite rod antenna (20) comprising a ferrite core formed by at least five interconnected ferrite rods (21, 23, 25, 27, 29) and a first winding (W10) and a second winding (W14) each disposed over the ferrite core, wherein four ferrite rods (21, 23, 25, 27, 29) of the at least five ferrite rods (21, 23, 25, 27, 29) have a first length dimension and the other ferrite rod (29) of the at least five ferrite rods (21, 23, 25, 27, 29) has a second length dimension smaller than said first length dimension, wherein said four ferrite rods (21, 23, 25, 27) having the first length dimension each being arranged parallel to each other at the ferrite rod (29) having the second length dimension and each being spaced apart from each other by the ferrite rod (29) having the second length dimension, the ferrite rod (29) having the second length dimension being perpendicular or substantially perpendicular to the four ferrite rods (21, 23, 25, 27) having the first length dimension, and the first winding (W10) is disposed above the four ferrite rods (21, 23, 25, 27) having the first length dimension, while the second winding (W14) is disposed above the ferrite rod (29) having the second length dimension, wherein the ferrite core has an H-shaped configuration in a side view of the five ferrite rods (21, 23, 25, 27, 29).
  7. A transmitter and receiver unit (100) comprising the ferrite rod antenna (1; 20) according to any one of claims 1 to 6, further comprising an electronic transmitter circuit (114) electrically connected to the first winding (W1; W10) and an electronic receiver circuit (112) electrically connected to at least the second winding (W2; W12).
EP19155667.9A 2018-02-09 2019-02-06 Ferrite rod antenna and transmitting and receiving unit with corresponding ferrite rod antenna Active EP3525286B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102018102895.4A DE102018102895B4 (en) 2018-02-09 2018-02-09 Ferrite rod antenna and transmitting and receiving unit with corresponding ferrite rod antenna

Publications (2)

Publication Number Publication Date
EP3525286A1 EP3525286A1 (en) 2019-08-14
EP3525286B1 true EP3525286B1 (en) 2021-04-07

Family

ID=65529230

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19155667.9A Active EP3525286B1 (en) 2018-02-09 2019-02-06 Ferrite rod antenna and transmitting and receiving unit with corresponding ferrite rod antenna

Country Status (2)

Country Link
EP (1) EP3525286B1 (en)
DE (1) DE102018102895B4 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5330976B1 (en) 1971-07-22 1978-08-30
US6134420A (en) 1996-11-01 2000-10-17 Plantronics, Inc. Vector measuring aerial arrays for magnetic induction communication systems
FR2787654A1 (en) * 1998-12-21 2000-06-23 Valeo Securite Habitacle LOW FREQUENCY COMMUNICATION DEVICE BY MAGNETIC COUPLING
AT413449B (en) 2003-01-15 2006-03-15 Seidel Elektronik Gmbh Nfg Kg SEARCH, IN PARTICULAR FOR LOCATING DISPOSED PEOPLE IN LAWINEN, AND METHOD FOR OPERATING A SEARCH
GB201103822D0 (en) 2011-03-07 2011-04-20 Isis Innovation System for providing locality information and associated devices
DE102013113244A1 (en) * 2013-11-29 2015-06-03 Paul Vahle Gmbh & Co. Kg Coil for an inductive energy transfer system
WO2015194036A1 (en) * 2014-06-20 2015-12-23 三菱電機株式会社 Antenna device
WO2017183934A1 (en) * 2016-04-21 2017-10-26 주식회사 아모그린텍 Three-axis antenna module and keyless entry system comprising same
ES2779973T3 (en) * 2017-05-18 2020-08-21 Premo Sa Low profile tri-axial antenna

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3525286A1 (en) 2019-08-14
DE102018102895A1 (en) 2019-08-14
DE102018102895B4 (en) 2019-10-24

Similar Documents

Publication Publication Date Title
EP0337204B1 (en) Arrangement for operating a symmetrical rf-antenna
DE69818768T2 (en) Multi-band antenna for use in a mobile radio
DE102006003402B4 (en) Compact antenna device with circularly polarized wave radiation
DE10324847A1 (en) Receiving antenna, core and portable device
DE3931752A1 (en) COAXIAL SLOT ANTENNA
DE102013219542A1 (en) Charging device for inductive wireless delivery of energy
EP1619750B1 (en) Antenna device for an RFID system
DE112010001202T5 (en) high-frequency coupler
DE10244173A1 (en) Antenna arrangement for a magnetic resonance device
DE19649215A1 (en) antenna
DE102013104059B4 (en) Antenna arrangement and communication device
EP3036793B1 (en) Device and method for combined signal transmission or for combined signal transmission and energy transmission
EP3525286B1 (en) Ferrite rod antenna and transmitting and receiving unit with corresponding ferrite rod antenna
DE60038218T2 (en) Antenna configuration of an electromagnetic detection system and such a system with such an antenna configuration
DE112020001946T5 (en) resolver
DE102018010070A1 (en) Adjustable magnetic antenna
DE19715726C2 (en) Antenna device for mobile radio devices
EP1956680A1 (en) Aerial for near field reader and/or near field transponder
DE202019103465U1 (en) NF-emitter antenna
WO1994005057A1 (en) Antenna combination
DE102013212736A1 (en) Inductive charging device, electric vehicle, charging station and method for inductive charging
DE4122797A1 (en) COIL ARRANGEMENT FOR MEASUREMENTS BY MEANS OF MAGNETIC RESONANCE
EP4104458B1 (en) Space efficient magnetic-inductive antenna for hearing aid
EP2740180B1 (en) Over-voltage protection device having a coil assembly
DE29724042U1 (en) Antenna connector

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20191220

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIC1 Information provided on ipc code assigned before grant

Ipc: H01Q 1/32 20060101ALN20200618BHEP

Ipc: H01Q 7/08 20060101AFI20200618BHEP

Ipc: H01Q 21/24 20060101ALI20200618BHEP

Ipc: H01Q 21/29 20060101ALI20200618BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: H01Q 21/24 20060101ALI20200629BHEP

Ipc: H01Q 1/32 20060101ALN20200629BHEP

Ipc: H01Q 21/29 20060101ALI20200629BHEP

Ipc: H01Q 7/08 20060101AFI20200629BHEP

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

INTG Intention to grant announced

Effective date: 20200730

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
RIC1 Information provided on ipc code assigned before grant

Ipc: H01Q 7/08 20060101AFI20200821BHEP

Ipc: H01Q 1/32 20060101ALN20200821BHEP

Ipc: H01Q 21/24 20060101ALI20200821BHEP

Ipc: H01Q 21/29 20060101ALI20200821BHEP

INTG Intention to grant announced

Effective date: 20200922

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1380873

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210415

Ref country code: CH

Ref legal event code: NV

Representative=s name: BOVARD AG PATENT- UND MARKENANWAELTE, CH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019001133

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210807

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210708

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210809

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019001133

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210807

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220228

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230331

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230206

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240226

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240226

Year of fee payment: 6

Ref country code: CH

Payment date: 20240301

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20190206

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240227

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407