EP3511649B1 - Procédé et dispositif de refroidissement d'un consommateur et système comprenant un dispositif correspondant et consommateur - Google Patents

Procédé et dispositif de refroidissement d'un consommateur et système comprenant un dispositif correspondant et consommateur Download PDF

Info

Publication number
EP3511649B1
EP3511649B1 EP18020651.8A EP18020651A EP3511649B1 EP 3511649 B1 EP3511649 B1 EP 3511649B1 EP 18020651 A EP18020651 A EP 18020651A EP 3511649 B1 EP3511649 B1 EP 3511649B1
Authority
EP
European Patent Office
Prior art keywords
cooling
nitrogen
circulating flow
liquid nitrogen
reservoir
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18020651.8A
Other languages
German (de)
English (en)
Other versions
EP3511649A1 (fr
Inventor
Lutz Decker
Alexander Alekseev
Wim van Dorth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde Kryotechnik AG
Linde GmbH
Original Assignee
Linde Kryotechnik AG
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde Kryotechnik AG, Linde GmbH filed Critical Linde Kryotechnik AG
Publication of EP3511649A1 publication Critical patent/EP3511649A1/fr
Application granted granted Critical
Publication of EP3511649B1 publication Critical patent/EP3511649B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B19/00Machines, plants or systems, using evaporation of a refrigerant but without recovery of the vapour
    • F25B19/005Machines, plants or systems, using evaporation of a refrigerant but without recovery of the vapour the refrigerant being a liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B23/00Machines, plants or systems, with a single mode of operation not covered by groups F25B1/00 - F25B21/00, e.g. using selective radiation effect
    • F25B23/006Machines, plants or systems, with a single mode of operation not covered by groups F25B1/00 - F25B21/00, e.g. using selective radiation effect boiling cooling systems

Definitions

  • the invention relates to a method and a device for cooling a consumer and a system with a corresponding device and a consumer according to the preambles of the independent patent claims.
  • High and medium voltage cables and busbars can be designed as high-temperature superconductors (HTSC). Such cables and busbars can carry direct current or alternating current and are also referred to as »HTSC current guides «. They require cooling to a temperature of less than 100 K, preferably less than 80 K.
  • HTSC high-temperature superconductors
  • DE 10 2012 016 292 A1 discloses a method and a device for cooling objects, in which a cooling medium is fed from a first reservoir via a first cooling medium line to an object to be cooled, brought into thermal contact with it and is then discharged via a second coolant line. After the thermal contact with the object, the cooling medium is fed to a second storage container via the second cooling medium line and stored there until a predetermined filling level is reached in the first or in the second storage container. The cooling medium is then fed from the second reservoir to the object for the purpose of cooling and brought into thermal contact with it and then fed back into the first reservoir, whereupon it is again available for cooling the object. Due to the pendulum guidance of the cooling medium between the two reservoirs, the same flow paths should at least partially be able to be used in both flow directions. The method and the device should be particularly suitable for cooling superconducting cables.
  • the present invention proposes a method and a device for cooling a consumer, in particular a power supply, preferably an HTSC power supply, and a system with a corresponding device and a consumer with the features of the independent patent claims.
  • a power supply preferably an HTSC power supply
  • Preferred configurations are the subject matter of the dependent patent claims and the following description.
  • the liquid nitrogen in the systems mentioned at the outset is conveyed by means of a pump (so-called circulation pump) and subcooled to the required cooling temperature in a subcooler.
  • the liquid nitrogen is routed to the consumer, where it is warmed up and fed back to the circulation pump.
  • the liquid nitrogen that is circulated in this way is also referred to as “circulated nitrogen”.
  • «supercooler» is used because liquid nitrogen, after appropriate cooling, is a supercooled liquid.
  • the heat exchanger in a subcooler is a coiled tube that is placed in a nitrogen bath ("bath nitrogen").
  • bath nitrogen The warmer circulating nitrogen is guided inside the pipe coil and cooled by the colder bath nitrogen lying outside.
  • the nitrogen in the bath evaporates continuously.
  • coiled-tube heat exchangers other types of heat exchangers can be used.
  • the pressure in the cooling circuit downstream of the pump is selected in such a way that the circuit nitrogen always remains liquid and no vapor bubbles form. From a thermodynamic point of view, this means that the pressure in the circuit should always be higher than in the subcooler bath and that the circuit nitrogen must not be heated above the boiling point.
  • the lowest temperature of the cycle nitrogen is reached at the exit from the subcooler. This temperature is essentially determined by the temperature of the bath nitrogen used in the subcooler (and the heat transfer in the subcooler). In order to bring about supercooling, the nitrogen bath must therefore be brought to an appropriate temperature.
  • the pressure of the bath nitrogen can be reduced by a pressure reduction in which evaporating nitrogen is continuously pumped off using a mechanical (e.g. oil-lubricated) vacuum pump.
  • the lower limit of the temperature that can be reached by reducing the pressure is about 63 K, which corresponds to a vapor pressure of about 0.13 bar.
  • the nitrogen in the bath would freeze.
  • a corresponding pressure reduction typically leads to nitrogen and cold losses because of the Pumped nitrogen and its cold can usually not be recovered or only with great effort.
  • the losses of bath nitrogen occurring in the subcooler as a result of evaporation are typically compensated for by topping up with fresh liquid nitrogen from a suitable reservoir, for example a cryogenic tank.
  • a suitable reservoir for example a cryogenic tank.
  • the reservoir is filled, for example, using an air separation plant or a nitrogen liquefier.
  • the temperature of the bath nitrogen can also be reduced by incorporating one or more closed loop coolers (also known as cryocoolers) into the subcooler.
  • the one or more refrigerating machines cool and liquefy/recondense the bath nitrogen which evaporates during cooling down to the required cooling temperature; a vacuum pump is not required in this case. In this way, nitrogen and cold losses can be reduced.
  • Brayton or Stirling coolers are typically used as cryocoolers.
  • the term "closed" cooling device is understood here to mean a device in which gaseous nitrogen is not discharged from the system due to the process, but is returned to the system in liquefied form.
  • the cooling section thus extends between the first end and a second end.
  • the liquid nitrogen is in such systems in the form of a circulatory stream repeatedly (i.e. continuously circulating) subjected to a first cooling, fed to the cooling line at the first end, transported from the first end to the second end along the cooling line, the cooling line at the second end removed, subjected to a second cooling, fed back to the cooling line at the second end, transported from the second end to the first end along the cooling line and removed again from the cooling line at the first end.
  • the first cooldown is performed using a first subcooled nitrogen bath in a subcooler and the second cooldown is performed using a second supercooled nitrogen bath in a second subcooler.
  • the first nitrogen bath can be at least partially supercooled by means of a closed cooling device and the second nitrogen bath can be at least partially supercooled by pressure reduction to a subatmospheric pressure level.
  • the pressure reduction takes place in that gaseous nitrogen is pumped out of a headspace above the nitrogen bath from a supercooler by means of a vacuum pump, in particular a mechanical one, and in particular is discharged to the surrounding atmosphere.
  • the nitrogen losses caused by the pumping out to reduce the pressure are compensated for by feeding in nitrogen from a reservoir, which can be filled with liquid nitrogen, for example using an air separation plant.
  • the present invention now proposes arranging the reservoir and the closed cooling device at the first end of the cooling section, and the vacuum pump required for pressure reduction at the other end of the cooling section.
  • a corresponding vacuum pump represents a comparatively small unit that can be accommodated much more easily at the second end, in particular if the installation space at the second end is limited.
  • a corresponding vacuum pump can also be connected via a line to the subcooler provided at the second end of the cooling section and does not have to be arranged in the immediate vicinity of it. In this way, a further favorable adaptation to the available space can be made by repositioning.
  • the nitrogen losses occurring in the second nitrogen bath due to the pressure reduction caused by pumping out are also compensated for from a reservoir, which, however, is now arranged at the opposite end of the cooling section.
  • the nitrogen taken from the reservoir to compensate for the losses is fed into the circulatory flow at the end of the cooling section where the reservoir is located and discharged from the circulatory flow at the other end of the cooling section, where the pressure reduction takes place, and used to fill up the nitrogen bath arranged there.
  • the circulating flow is therefore used to transport this nitrogen.
  • the present invention is based on a method for cooling a consumer via a cooling section that extends between a first end and a second end.
  • liquid nitrogen is repeatedly subjected to a first cooling in the form of a circulating stream, i.e. continuously in the circuit and in particular without intermediate storage in a container, fed to the cooling section at the first end, transported from the first end to the second end along the cooling section, the Taken out cooling line at the second end, subjected to a second cooling, the cooling line at the second Fed end, transported from the second end to the first end along the cooling section and removed from the cooling section at the first end.
  • the circulatory flow is in particular always guided in the same direction and is not experienced, as for example in the DE 10 2012 016 292 A1 , a reversal of direction.
  • the first cooldown is performed using a first subcooled nitrogen bath and the second cooldown using a second subcooled nitrogen bath, the first nitrogen bath being at least partially supercooled by means of a closed cooling device and the second nitrogen bath being at least partially supercooled by pressure reduction to a subatmospheric pressure level .
  • a quantity of nitrogen evaporating from the second nitrogen bath due to the pressure reduction to the subatmospheric pressure level is at least partially compensated for in the process from a reservoir.
  • the liquid nitrogen is conducted in the form of the circulating stream through one or more first cooling passages, in particular during transport from the first end to the second end along the cooling section, and through one during transport from the second end to the first end along the cooling section or a plurality of second cooling passages fluidly separated from the one or more first cooling passages.
  • One or more different cooling passages are therefore provided for guiding from the first to the second end than for guiding from the second end to the first end.
  • a “cooling passage” refers to a fluid-guiding structure that is provided with heat-exchange surfaces.
  • the circulatory flow is and can therefore not be performed in the same cooling passages in the context of the present invention, as in the DE 10 2012 016 292 A1 is the case due to the shuttle service there. If a "fluidic separation" of the cooling passages is mentioned here, it is of course not excluded that the cooling passages are open at their terminal ends and are connected to one another via lines that carry the circulating flow.
  • the cooling section comprises a first feed opening, a first extraction opening, a second feed opening and a second extraction opening for the liquid nitrogen, the first feed opening being connected to the first extraction opening in particular via the first Cooling passage(s) and the second feed opening with the second extraction opening, in particular via the second cooling passage(s) mentioned are connected.
  • the first feed opening and the second removal opening are located at the first end, the first removal opening and the second feed opening at the second end of the cooling section.
  • an “opening” designates a connection of any type, for example a flange or connecting piece.
  • the liquid nitrogen in the circulating stream is fed via the first feed opening at the first end of the cooling section to this cooling section or to the first cooling passage or passages and removed via the first removal opening at the second end.
  • the liquid nitrogen if a corresponding circulatory flow is formed, is fed via the second feed opening at the second end of the cooling section to this cooling section or to the second cooling passage or passages and removed via the second removal opening at the first end.
  • a first pressure level of the liquid nitrogen supplied at the first end of the cooling section is always above a second pressure level of the liquid nitrogen removed at the second end of the cooling section.
  • a third pressure level of the liquid nitrogen supplied at the second end of the cooling section is always at or below the second pressure level.
  • a fourth pressure level of the liquid nitrogen removed at the first end of the cooling section is below the third pressure level.
  • the liquid nitrogen is advantageously not subjected to any pressure-increasing measures at the second end of the cooling section. So here is, for example, in contrast to the one mentioned several times DE 10 2012 016 292 A1 , no device for pressure build-up evaporation and no pump. A corresponding increase in pressure takes place within the scope of the present invention, in particular only at the first end of the cooling section using a circulation pump. Furthermore, within the scope of the present invention, the liquid nitrogen of the circulating stream is used, ie no switching valves are provided.
  • liquid nitrogen is removed from the reservoir and introduced into the circulatory stream before the circulatory stream is fed to the cooling section at the first end, and that liquid nitrogen is discharged from the circulatory stream and at least partially fed into the second nitrogen bath after the Circulation stream of the cooling section is removed at the second end.
  • the liquid nitrogen taken from the reservoir and introduced into the circulatory stream is advantageously introduced into the circulatory stream using a mixing device. In this way, it is possible to avoid unequal temperature distributions and set a homogeneous mixed temperature level, particularly when the introduced nitrogen and the already present circulating nitrogen have different temperature levels.
  • the liquid nitrogen in the form of the circulating stream is therefore advantageously passed through a circulating pump, after it has been removed at the first end of the cooling section and before it is fed in again at the first end of the cooling section, at which a suitable pressure difference can also be set.
  • the liquid nitrogen conducted in the form of the circulating flow can be fed to the circulating pump at a first pressure level of at least 2 bar (abs.).
  • the first pressure level can be about 10 bar (abs.).
  • a corresponding pressure level results in particular from the pressure level downstream of the circulating pump, which can be above the first pressure level and, for example, at approx. 15 bar (abs.), and from the pressure losses over the cooling section.
  • the liquid nitrogen taken from the reservoir and introduced into the circulatory flow is taken from the reservoir in particular at a second pressure level above the first pressure level.
  • the injected nitrogen is in particular likewise fed to the circulation pump together with the circulation stream.
  • a corresponding setting of the first and second pressure levels always results in a mandatory flow direction from the reservoir to the point of entry into the circulatory flow.
  • the injected nitrogen is typically expanded from the second to the first pressure level by means of a suitable valve before it is introduced into the circulating stream.
  • cooling can be used.
  • the liquid nitrogen carried in the form of the circulating flow can be subjected to the first cooling before and/or after it is passed through the circulating pump. Details are also explained in more detail with reference to the drawings, in which the Figures 4 to 6 embodiments of the present invention shown provide cooling before and after the circulation pump.
  • the liquid nitrogen in the reservoir is typically in a non-supercooled state, while subcooled nitrogen is present in the recycle stream, if the nitrogen injected from the reservoir is not subjected to any further cooling prior to being injected into the recycle stream, a significant cooling will occur Temperature increase that must be compensated for by a corresponding cooling capacity in the assigned subcooler. This can prove to be disadvantageous. Therefore, according to a particularly preferred embodiment of the present invention, it is provided that the liquid nitrogen removed from the reservoir and introduced into the circulation flow is cooled using a third subcooled nitrogen bath before it is introduced into the circulation flow.
  • Such a cooling of the injected nitrogen can therefore be carried out in particular by using a further (third) supercooled nitrogen bath.
  • the third supercooled nitrogen bath is provided by removing further liquid nitrogen from the reservoir at the first pressure level and expanding it to a third pressure level with partial evaporation.
  • the third pressure level can, for example, be at atmospheric pressure or slightly, ie in particular at most 0.5 bar, above atmospheric pressure. In this way, corresponding additional cold can be generated and there is a partial evaporation of the expanded nitrogen.
  • a portion of the additional liquid nitrogen from the reservoir that is not vaporized during the expansion to the third pressure level can be at least partially fed to the third nitrogen bath and a portion of the additional liquid nitrogen from the reservoir that has evaporated during the expansion to the third pressure level can be at least partially used as a coolant in the closed cooling device can be used.
  • a cooling device with a Brayton cooler is used in particular as the closed cooling device, there is a further saving in energy.
  • the present invention also extends to a device for cooling a consumer via a cooling path that extends between a first end and a second end.
  • the device has means that are set up to repeatedly subject liquid nitrogen in the form of a circulatory stream, ie continuously in the circuit and in particular without intermediate storage in a container, to a first cooling, feeding it to the cooling section at the first end, from the first end to to be transported along the cooling line at the second end, to be taken from the cooling line at the second end, to be subjected to a second cooling, to be fed to the cooling line at the second end, to be transported from the second end to the first end along the cooling line and to the cooling line at the to be taken from the first end.
  • the means are set up in particular to always lead in the same direction, so that this is not, as for example in the DE 10 2012 016 292 A1 , experiences a reversal of direction.
  • These means include, in particular, appropriate lines and a circulation pump.
  • the device has means which are set up to carry out the first cooling using a first supercooled nitrogen bath and the second cooling using a second supercooled nitrogen bath.
  • the apparatus includes respective first and second nitrogen baths. It further comprises a closed cooling device arranged to cool the first nitrogen bath and means arranged to at least partially supercool the second nitrogen bath by pressure reduction to a sub-atmospheric pressure level.
  • the latter include in particular an appropriate vacuum pump.
  • Means are also provided which are set up to at least partially compensate for a quantity of nitrogen evaporating from a reservoir as a result of the pressure reduction to the subatmospheric pressure level from the second nitrogen bath. A corresponding reservoir is also part of the proposed device.
  • the device provided according to the invention is characterized in particular by means that are set up to remove liquid nitrogen from the reservoir and introduce it into the circulatory flow before the circulatory flow is fed to the cooling section at the first end, and to discharge liquid nitrogen from the circulatory flow and at least partially to the second nitrogen bath after the recycle stream is withdrawn from the cooling section at the second end.
  • these means can also include corresponding lines and the like.
  • one or more first cooling passages are provided and for transporting from the second end to the first end along the cooling section one or more second cooling passages, which are fluidically connected from the one or more first cooling passages is or are separate.
  • FIG 1 a system according to an embodiment not according to the invention is shown in a simplified schematic representation.
  • the system shown comprises a consumer 1, which, as mentioned, can in particular be an (HTSL) cable system.
  • the consumer 1 is cooled using liquid nitrogen, which is conducted in a circulatory flow 2 .
  • the liquid nitrogen in cycle stream 2 is cooled in a heat exchanger 3 in the example shown, fed to a circulation pump 4, cooled in another heat exchanger 5, and used again to cool consumer 1.
  • a circulation pump 4 cooled in another heat exchanger 5
  • only one of the two heat exchangers 3 and 5 can also be provided.
  • the heat exchangers 3 and 5, if present, are each arranged in a subcooled nitrogen bath in a subcooler 6.
  • the nitrogen in the circulating stream 2 can be cooled to a temperature level of, for example, approximately 67 K and can be used at this temperature level to cool the consumer 1 .
  • cooling consumer 1 heats up to a temperature level of, for example, approx. 73 K.
  • the sub-cooling of the nitrogen bath in the sub-cooler 6 is effected by pressure reduction using a pump 7 which pumps out nitrogen evaporating from the nitrogen bath and in this way reduces the pressure level in the sub-cooler 6 .
  • the nitrogen pumped out is, for example, discharged to the atmosphere (amb). Nitrogen losses caused by pumping out are compensated for by liquid nitrogen from a reservoir 8 via a valve 9 .
  • the reservoir 8 can be fed by means of an air separation plant.
  • the reservoir 8 is provided with a pressure build-up evaporator 10 here.
  • a bidirectional connection, not specifically designated, to the reservoir 8 is provided in the example shown.
  • the pressure level of the nitrogen in the circulating flow 2 upstream of the circulating pump 4 and at the same time in the reservoir is typically above 2 bar (abs.), for example approximately 10 bar (abs.).
  • the pressure level of the nitrogen in the circulating stream 2 downstream of the Circulation pump 4 is above this, for example at about 15 bar (abs.).
  • the pressure level in the subcooler 6 is below atmospheric pressure, in particular at 0.1 to 0.5 bar (abs.), for example at approx. 0.2 bar (abs.).
  • FIG 2 a system according to a further embodiment not according to the invention is shown in a simplified schematic representation.
  • a closed cooling device 11 can also be used, which is used in the system according to FIG figure 2 is provided in addition to the pump 7.
  • the nitrogen from the sub-cooler 6 is additionally cooled using a suitable refrigeration machine, which can in particular include one or more Stirling coolers and/or one or more Brayton coolers operated using neon and/or helium.
  • the nitrogen enters the cooling device 11 in gaseous form and is returned to the subcooler 6 in liquid form.
  • a pressure control device 21 is provided, which instead of in the system according to figure 1 provided connection is set up with the reservoir 8 for pressure adjustment. In this way the pressure level in the reservoir 8 can be adjusted to a value which is independent of the pressure level upstream of the circulation pump 4 .
  • FIG 3 a system according to a further embodiment not according to the invention is shown in a simplified schematic representation.
  • FIG. 3 The system according to figure 3 is particularly advantageous when a longer cooling distance is to be overcome.
  • a further sub-cooler 12 with a heat exchanger 13 is arranged at one end of the consumer 1 or a corresponding cooling section of the sub-cooler 6 with the heat exchangers 3 and/or 5 and at the other end of the consumer 1 or the corresponding cooling section.
  • the sub-cooler 6 is provided with the pump 7
  • the further sub-cooler 12 is equipped with the cooling device 11 . In this way, excessive heating of the nitrogen in the circulating stream 2 over the (long) cooling section can be prevented.
  • FIG. 4 a system according to an embodiment of the invention is shown in a simplified schematic representation and is denoted overall by 100.
  • FIG. 1 a system according to an embodiment of the invention is shown in a simplified schematic representation and is denoted overall by 100.
  • the cooling device 11 and the reservoir 8 at the same end of the consumer 1 or a corresponding cooling section and are assigned to the subcooler 6 arranged there.
  • the subcooler 12 arranged at the other end is equipped with the pump 7 .
  • the pump 7, on the other hand can be arranged at the other end, taking up little installation space, at which there may be a lack of space or where other devices are arranged.
  • nitrogen is introduced from the reservoir 8 at one end into the circulating flow 2 via the valve 9 and not into a corresponding subcooler.
  • This additionally injected nitrogen is mixed into the circulating flow 2 by means of a mixing device 14 .
  • this nitrogen is removed from the circulating stream 2 again and fed via a valve 15 and a corresponding line to the subcooler 12 provided there.
  • the pressure level in the reservoir 8 is therefore (slightly) higher than the pressure level of the nitrogen in the circulatory stream 2 upstream of the circulatory pump 4.
  • the pressure difference used can in principle be higher or lower than the pressure level of the nitrogen in the circulatory stream 2 upstream of the circulatory pump 4.
  • figure 5 1 shows a system according to a further embodiment of the invention in a simplified schematic representation and is denoted overall by 200 .
  • a second or further sub-cooler 18 with a corresponding heat exchanger 16 is used here.
  • the nitrogen to be fed into the circulating stream 2 is expanded by means of the valve 9 after it has been removed from the reservoir 8 and passed through the heat exchanger 16 .
  • a nitrogen bath in the further subcooler 18 is provided by further nitrogen which is taken from the reservoir 8 and expanded to atmospheric pressure or slightly above by means of a further valve 17 . Some of the nitrogen released via the valve 17 evaporates. The vaporized portion is vented to the atmosphere (atm). The portion that remains in liquid form is supercooled and can therefore be used as a cooling medium.
  • the pressure level in the further sub-cooler 18 is at or slightly above atmospheric pressure, i.e. typically a maximum of 0.5 bar.
  • the nitrogen to be fed into the circulating flow 2 is already at a temperature level of typically less than 80 K, so that corresponding losses during mixing in via the mixing device are avoided.
  • the required cooling capacity of the cooling device 11 can also be reduced to a corresponding extent in this way.
  • FIG 6 a system according to a further embodiment of the invention is shown in a simplified schematic representation and is denoted overall by 300 .
  • gaseous nitrogen flowing out of the further subcooler 18 is also used as a cooling medium in the cooling device 11, which can have a Brayton cooler here in particular.
  • a corresponding heat exchanger 19 is provided for this purpose. In this way, energy losses can be further reduced.
  • FIG. 7 illustrates a cooling line that can be provided in a system according to the previous figures. This is summarized here with 1000.
  • a consumer is indicated by 1 and a circulating stream by 2.
  • Cooling passages separated by a dashed line 1100 are labeled 1010 and 1020 illustrated.
  • the cooling passages 1010 and 1020 are for transporting the liquid nitrogen in the form of the circulating stream 2 from the first end to the second end along the cooling line on the one hand (“first cooling passage” 1010) and for transporting it from the second end to the first end along the cooling line on the other hand (“second cooling passage” 1020) provided and fluidically separated from each other in the sense explained above.
  • the first end of the cooling section 1000 has the reference number 1001, the second end of the cooling section has the reference number 1002.
  • a feed opening (for the circulating flow 2 at the first end 1001 into the cooling section 1000 or the first cooling passage 1010) is denoted by 1011 ("first feed opening”).
  • a removal opening (for the circuit stream 2 at the second end 1002 from the cooling section 1000 or the first cooling passage 1010) is denoted by 1012 ("first removal opening”).
  • a feed opening (for the circuit flow 2 at the second end 1002 in the cooling section 1000 or the second cooling passage 1020) is denoted by 1021 (“second feed opening”).
  • a removal opening (for the circulatory flow 2 at the first end 1001 from the cooling section 1000 or the second cooling passage 1020) is denoted by 1022 (“second removal opening").

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)

Claims (13)

  1. Procédé de refroidissement d'un consommateur (1) par le biais d'une ligne de refroidissement, qui s'étend entre une première extrémité et une seconde extrémité, dans lequel
    - de l'azote liquide sous la forme d'un flux de circulation (2) est soumis en continu et en circulation répétée à un premier refroidissement, alimenté à la ligne de refroidissement au niveau de la première extrémité, transporté de la première extrémité à la seconde extrémité le long de la ligne de refroidissement, prélevé de la ligne de refroidissement au niveau de la seconde extrémité, soumis à un second refroidissement, alimenté à la ligne de refroidissement au niveau de la seconde extrémité, transporté de la seconde extrémité à la première extrémité le long de la ligne de refroidissement et prélevé de la ligne de refroidissement au niveau de la première extrémité,
    - le premier refroidissement est réalisé à l'aide d'un premier bain d'azote sous-refroidi et le second refroidissement est réalisé à l'aide un deuxième bain d'azote sous-refroidi, le premier bain d'azote étant sous-refroidi au moins partiellement au moyen d'un dispositif de refroidissement fermé (11) et le deuxième bain d'azote étant sous-refroidi au moins partiellement par réduction de pression à un niveau de pression sous-atmosphérique,
    - une quantité d'azote s'évaporant du deuxième bain d'azote en raison de la réduction de pression au niveau de pression sous-atmosphérique est compensée au moins partiellement à partir d'un réservoir (8),
    - de l'azote liquide est prélevé du réservoir (8) et introduit dans le flux de circulation (2), avant que le flux de circulation (2) soit alimenté à la ligne de refroidissement au niveau de la première extrémité et
    - de l'azote liquide est extrait du flux de circulation (2) et au moins partiellement alimenté au second bain d'azote, après que le flux de circulation (2) a été prélevé de la ligne de refroidissement au niveau de la seconde extrémité,
    - caractérisé en ce que l'azote liquide sous forme de flux de circulation (2) est guidé, lors du transport de la première extrémité à la seconde extrémité le long de la ligne de refroidissement, à travers un ou plusieurs premiers passages de refroidissement et, lors du transport de la seconde extrémité à la première extrémité le long de la ligne de refroidissement, à travers un ou plusieurs seconds passages de refroidissement, qui sont séparés fluidiquement dudit un ou desdits premiers passages de refroidissement.
  2. Procédé selon la revendication 1, dans lequel l'azote liquide prélevé du réservoir (8) et introduit dans le flux de circulation (2) est introduit dans le flux de circulation (2) à l'aide d'un dispositif de mélange (14).
  3. Procédé selon l'une quelconque des revendications précédentes, dans lequel l'azote liquide guidé sous forme de flux de circulation (2) est guidé, après son prélèvement au niveau de la première extrémité de la ligne de refroidissement et avant une nouvelles alimentation au niveau de la première extrémité de la ligne de refroidissement, à travers une pompe de circulation (4).
  4. Procédé selon la revendication 3, dans lequel l'azote liquide guidé sous forme de flux de circulation (2) est alimenté à la pompe de circulation (4) à un premier niveau de pression d'au moins 2 bars (abs.).
  5. Procédé selon la revendication 4, dans lequel l'azote liquide prélevé du réservoir (8) et introduit dans le flux de circulation (2) est prélevé du réservoir (8) à un second niveau de pression supérieur au premier.
  6. Procédé selon la revendication 5, dans lequel l'azote liquide guidé sous forme de flux de circulation (2) est soumis au premier refroidissement avant et/ou après avoir été guidé à travers la pompe de circulation (4).
  7. Procédé selon l'une quelconque des revendications 3 à 6, dans lequel l'azote liquide prélevé du réservoir (8) et introduit dans le flux de circulation (2) est introduit dans le flux de circulation (2) avant que le flux de circulation (2) ne soit guidé à travers la pompe de circulation (4).
  8. Procédé selon l'une quelconque des revendications 3 à 7, dans lequel l'azote liquide prélevé du réservoir (8) et introduit dans le flux de circulation (2) est refroidi à l'aide d'un troisième bain d'azote sous-refroidi avant d'être introduit dans le flux de circulation (2).
  9. Procédé selon la revendication 8, dans lequel le le troisième bain d'azote sous-refroidi est préparé en ce que de l'azote liquide supplémentaire est prélevé du réservoir (8) au premier niveau de pression et détendu par évaporation partielle à un troisième niveau de pression.
  10. Procédé selon la revendication 9, dans lequel une proportion de l'azote liquide supplémentaire provenant du réservoir (8), non évaporée lors de la détente au troisième niveau de pression, est alimentée au moins partiellement au troisième bain d'azote et une proportion de l'azote liquide supplémentaire provenant du réservoir (8), évaporée lors de la détente au troisième niveau de pression est utilisée au moins partiellement comme moyen de refroidissement dans le dispositif de refroidissement fermé (11).
  11. Procédé selon la revendication 10, dans lequel, en guise de dispositif de refroidissement fermé (11), un dispositif de refroidissement pourvu d'un refroidisseur Brayton est utilisé.
  12. Dispositif de refroidissement d'un consommateur (1) par le biais d'une ligne de refroidissement (1000), qui s'étend entre une première extrémité et une seconde extrémité, le dispositif comprenant au moins les éléments suivants :
    - au moins deux échangeurs de chaleur (3, 5, 13) et une pompe de circulation (4), qui sont conçus et sont reliés de sorte que de l'azote liquide sous la forme d'un flux de circulation (2) est guidé en continu en circulation et soumis de manière répétée à un premier refroidissement au niveau d'un premier échangeur de chaleur (5), ensuite alimenté à la ligne de refroidissement au niveau de la première extrémité, transporté de la première extrémité à la seconde extrémité le long de la ligne de refroidissement, prélevé de la ligne de refroidissement au niveau de la seconde extrémité et soumis à un second refroidissement dans un second échangeur de chaleur (13), puis alimenté à la ligne de refroidissement au niveau de la seconde extrémité et ensuite transporté de la seconde extrémité à la première extrémité le long de la ligne de refroidissement et prélevé de nouveau de la ligne de refroidissement au niveau de la première extrémité,
    - le premier refroidissement étant réalisé à l'aide d'un premier bain d'azote sous-refroidi (6), qui entoure le premier échangeur de chaleur (5), et le second refroidissement étant réalisé à l'aide d'un deuxième bain d'azote sous-refroidi (12), qui entoure le second échangeur de chaleur (13), un dispositif de refroidissement fermé (11) étant réalisé de sorte que le premier bain d'azote (6) est refroidi et est en liaison avec celui-ci et une pompe à vide (7) est réalisée de sorte que le deuxième bain d'azote (12) est sous-refroidi au moins partiellement par une réduction de pression à un niveau de pression sous-atmosphérique et est ainsi en liaison avec le deuxième bain d'azote (12)
    - un réservoir (8), qui est conçu pour compenser au moins partiellement une quantité d'azote évaporée du deuxième bain d'azote (12) en raison de la réduction de pression au niveau de pression sous-atmosphérique, ce pour quoi
    - le réservoir (8) est en liaison avec le flux de circulation (2) par le biais d'une soupape (9), afin de prélever de l'azote liquide et de l'introduire dans le flux de circulation (2), avant que le flux de circulation (2) soit alimenté à la ligne de refroidissement au niveau de la première extrémité, et de l'azote liquide est extrait du flux de circulation (2) et au moins partiellement alimenté au deuxième bain d'azote (12), après que le flux de circulation (2) a été prélevé de la ligne de refroidissement au niveau de la seconde extrémité, ce pour quoi le flux de circulation (2) est en liaison avec le deuxième bain d'azote (12) par le biais d'une soupape (15),
    - caractérisé en ce que, pour le transport de l'azote liquide sous forme de flux de circulation (2) de la première extrémité à la seconde extrémité le long de la ligne de refroidissement, un ou plusieurs premiers passages de refroidissement (1010) sont mis à disposition et, pour le transport de la seconde extrémité à la première extrémité le long de la ligne de refroidissement, un ou plusieurs seconds passages de refroidissement (1020), qui sont séparés fluidiquement du ou des premiers passages de refroidissement, sont mis à disposition.
  13. Système (100, 200, 300, 400) comprenant un consommateur (1) à refroidir, caractérisé par un dispositif selon la revendication 12.
EP18020651.8A 2018-01-12 2018-12-21 Procédé et dispositif de refroidissement d'un consommateur et système comprenant un dispositif correspondant et consommateur Active EP3511649B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP18020015 2018-01-12

Publications (2)

Publication Number Publication Date
EP3511649A1 EP3511649A1 (fr) 2019-07-17
EP3511649B1 true EP3511649B1 (fr) 2022-01-26

Family

ID=60990618

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18020651.8A Active EP3511649B1 (fr) 2018-01-12 2018-12-21 Procédé et dispositif de refroidissement d'un consommateur et système comprenant un dispositif correspondant et consommateur

Country Status (1)

Country Link
EP (1) EP3511649B1 (fr)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19755484A1 (de) 1997-12-13 1999-06-17 Univ Dresden Tech Verfahren zur Kälteerzeugung im Temperaturbereich von 50,1 bis 63 Kelvin und Vorrichtung zur Durchführung dieses Verfahrens
DE10217092A1 (de) 2002-04-17 2003-11-06 Linde Ag Kühlung von Hochtemperatursupraleitern
US7263845B2 (en) * 2004-09-29 2007-09-04 The Boc Group, Inc. Backup cryogenic refrigeration system
US20060150639A1 (en) * 2005-01-13 2006-07-13 Zia Jalal H Cable cooling system
DE102012016292B4 (de) 2012-08-16 2023-02-23 Messer Industriegase Gmbh Verfahren und Vorrichtung zum Kühlen von Objekten
DE102013011212B4 (de) 2013-07-04 2015-07-30 Messer Group Gmbh Vorrichtung zum Kühlen eines Verbrauchers mit einer unterkühlten Flüssigkeit in einem Kühlkreislauf

Also Published As

Publication number Publication date
EP3511649A1 (fr) 2019-07-17

Similar Documents

Publication Publication Date Title
EP3017238B1 (fr) Dispositif de refroidissement d'un dissipateur avec un liquide surrefroidi dans un circuit de refroidissement
DE10297837B4 (de) Verfahren zum Befestigen einer Kühlmaschine und Befestigungsvorrichtung dafür
DE602004006674T2 (de) Kryogene Kälteanlage und Verfahren mit Kältespeicher
DE112008003700B4 (de) Vorrichtung zur Steigerung der Heiz- und Kühlleistung einer Wärmepumpe in der Wärmerückgewinnung in Lüftungsgeräten
DE102012016292B4 (de) Verfahren und Vorrichtung zum Kühlen von Objekten
DE2308301A1 (de) Verfahren und vorrichtung zur kuehlung eines kuehlobjektes
DE102016104298A1 (de) Kühlvorrichtung für einen Supraleiter
EP4367449A1 (fr) Circuit de pré-refroidissement et procédé de fourniture de réfrigération à l'hélium
DE102020130063A1 (de) Temperieranlage und Verfahren zum Betreiben einer Temperieranlage
EP3511650B1 (fr) Procédé et dispositif de refroidissement d'un consommateur et système comprenant un dispositif correspondant et consommateur
EP3511649B1 (fr) Procédé et dispositif de refroidissement d'un consommateur et système comprenant un dispositif correspondant et consommateur
EP3749903B1 (fr) Procédé et dispositif de refroidissement d'un porteur de courant supraconducteur
DE102005002361B3 (de) Kälteanlage eines Gerätes der Supraleitungstechnik mit mehreren Kaltköpfen
DE102005021154B4 (de) Abtausystem für Verdampfer von Kälteanlagen und Wärmepumpen sowie ein Verfahren zum Betrieb hierzu
EP3580503B1 (fr) Procédé de refroidissement d'un consommateur
DE102010047300A1 (de) Minimierung von Produktionsverlusten kryogener Medien
DE2721542A1 (de) Hoch 3 he- hoch 4 he-verduennungskuehlmaschine
EP3376133B1 (fr) Procédé et dispositif de refroidissement d'un ensemble pourvu d'une amenée de courant ainsi que système doté du dispositif correspondant
EP3948124B1 (fr) Procédé de fonctionnement d'un échangeur de chaleur, dispositif doté d'un échangeur de chaleur et installation dotée du dispositif correspondant
DE10318895B3 (de) Kühlvorrichtung zum langsamen Abkühlen von supraleitenden Bauelementen
DE102012005768A1 (de) Luftzerlegungsanlage mit gekühlter Supraleiterstruktur
EP4162215A1 (fr) Procédé et dispositif de refroidissement cryogénique d'un consommateur
EP4139613A1 (fr) Appareil et procédé de génération de températures cryogéniques et utilisation correspondante
DE102022209941A1 (de) Vorrichtung zum Transfer von flüssigem Helium, mit verringerten Transfer-Verlusten
EP4036496A1 (fr) Système de refroidissement pour un réfrigérant biphasé

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200114

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200424

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LINDE GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210611

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LINDE KRYOTECHNIK AG

Owner name: LINDE GMBH

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1465575

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018008615

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220526

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220426

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220526

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018008615

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20221027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20221231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221231

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221221

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231220

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20231219

Year of fee payment: 6

Ref country code: FR

Payment date: 20231219

Year of fee payment: 6

Ref country code: DE

Payment date: 20231214

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20181221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126