EP3509657A1 - Verfahren zur herstellung eines implantates mit calciumcarbonat-enthaltendem verbundpulver mit mikrostrukturierten teilchen - Google Patents

Verfahren zur herstellung eines implantates mit calciumcarbonat-enthaltendem verbundpulver mit mikrostrukturierten teilchen

Info

Publication number
EP3509657A1
EP3509657A1 EP17758109.7A EP17758109A EP3509657A1 EP 3509657 A1 EP3509657 A1 EP 3509657A1 EP 17758109 A EP17758109 A EP 17758109A EP 3509657 A1 EP3509657 A1 EP 3509657A1
Authority
EP
European Patent Office
Prior art keywords
particles
calcium carbonate
composite powder
range
μιτι
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP17758109.7A
Other languages
German (de)
English (en)
French (fr)
Inventor
Frank Reinauer
Siegmund LUGER
Marijan Vucak
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Karl Leibinger Medizintechnik GmbH and Co KG
Original Assignee
Karl Leibinger Medizintechnik GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Karl Leibinger Medizintechnik GmbH and Co KG filed Critical Karl Leibinger Medizintechnik GmbH and Co KG
Publication of EP3509657A1 publication Critical patent/EP3509657A1/de
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L27/44Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
    • A61L27/446Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix with other specific inorganic fillers other than those covered by A61L27/443 or A61L27/46
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/025Other specific inorganic materials not covered by A61L27/04 - A61L27/12
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/18Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L27/44Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/58Materials at least partially resorbable by the body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/18Carbonates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/18Carbonates
    • C01F11/182Preparation of calcium carbonate by carbonation of aqueous solutions and characterised by an additive other than CaCO3-seeds
    • C01F11/183Preparation of calcium carbonate by carbonation of aqueous solutions and characterised by an additive other than CaCO3-seeds the additive being an organic compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/124Treatment for improving the free-flowing characteristics
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/203Solid polymers with solid and/or liquid additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/0081Composite particulate pigments or fillers, i.e. containing at least two solid phases, except those consisting of coated particles of one compound
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/02Compounds of alkaline earth metals or magnesium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/02Compounds of alkaline earth metals or magnesium
    • C09C1/021Calcium carbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • B29K2067/04Polyesters derived from hydroxycarboxylic acids
    • B29K2067/046PLA, i.e. polylactic acid or polylactide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0059Degradable
    • B29K2995/006Bio-degradable, e.g. bioabsorbable, bioresorbable or bioerodible
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/753Medical equipment; Accessories therefor
    • B29L2031/7532Artificial members, protheses
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • C08K2003/265Calcium, strontium or barium carbonate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/16Solid spheres
    • C08K7/18Solid spheres inorganic

Definitions

  • the present invention relates to an implant with calcium carbonate-containing composite powder having microstructured particles, in particular those by selective laser sintering grafted implants, for example those for
  • the invention does not relate to the preparation of the starting material for the implant and not the use for purposes other than the production of an implant, in particular one prepared for applications in the field of neuro, oral, maxillofacial, maxillofacial, and ear surgery as well as hand, foot, thoracic, rib and shoulder surgery.
  • Calcium carbonate is a calcium salt of carbonic acid that is used in many areas of daily life today. It will be like this
  • plastics, inks, adhesives and pharmaceuticals used.
  • calcium carbonate serves primarily as a filler to replace the relatively expensive polymer.
  • connection is usually by fabric or form-fitting or a combination of both.
  • microstructured composite particles containing calcium salts in particular calcium carbonate, are also known per se.
  • WO 2012/126600 A2 discloses microstructured composite particles obtainable by a process in which large particles are combined with small particles, wherein
  • the large particles have a mean particle diameter in the range of 0.1 ⁇ to 10 mm, the average particle diameter of the small particles is at most 1/10 of the mean particle diameter of the large particles,
  • the large particles comprise at least one polymer
  • the small particles comprise calcium carbonate
  • the small particles are arranged on the surface of the large particles
  • small particles precipitated calcium carbonate particles having an average particle size in the range of 0.01 ⁇ to 1, 0 mm.
  • WO 2012/126600 A2 describes microstructured composite particles obtainable by a process in which large particles are combined with small particles, wherein
  • the large particles have a mean particle diameter in the range of 0.1 ⁇ to 10 mm,
  • the mean particle diameter of the small particles is at most 1/10 of the
  • the large particles comprise at least one polymer
  • the small particles comprise at least one calcium salt
  • the small particles are arranged on the surface of the large particles
  • the large particles comprise at least one resorbable polyester having a number average molecular weight in the range of 500 g / mol to 1, 000,000 g / mol.
  • the composite particles shown in WO 2012/126600 A2 should be used primarily as an additive, in particular as a polymer additive, as an additive or
  • SLM method selective laser sintering
  • a disadvantage of the composite particles of WO 2012/126600 A2 is in particular their poor flowability, which can only be partially reduced by the use of flow aids. Especially for the
  • Manufacture of implants are additives of such flow aids not advantageous because they usually the properties of the resulting implant, in particular its biocompatibility and biodegradability, disadvantageous influence. Furthermore, it is difficult to transport in the laser sintering plant because of the poor flowability.
  • an improvement for implants in particular for the field of neuro, oral, maxillofacial, ear, nose and throat surgery and hand, foot, thorax, rib and shoulder surgery is desirable.
  • a material with improved laser sintering properties should be used for an implant, which in particular has an improved flowability, enables the production of components with improved surface quality and surface quality as well as improved component density in laser sintering, and in particular better shrinkage behavior and improved
  • a particularly advantageous implant is provided, which is obtainable by selective laser sintering of a composition containing a said composite powder, and in particular is designed as an implant for applications in the field of neuro, oral, Maxillofacial, facial, ear, nose and throat surgery as well as hand, foot, thoracic, rib and shoulder surgery.
  • the large particles have a mean particle diameter in the range of 0.1 ⁇ to 10 mm,
  • the large particles comprise at least one polymer
  • the small particles are arranged on the surface of the large particles
  • the small particles spherical precipitated calcium carbonate particles having a mean diameter in the range of 0.05 ⁇ to 50.0 ⁇ , preferably in the range of 2.5 ⁇ to 30.0 ⁇ include,
  • Aminotrialkylenphosphonklare admits succeeds in not easily predictable way to make available a calcium carbonate-containing composite powder having improved properties, which are particularly well suited for use in laser sintering process.
  • Compound powder according to the invention has an improved flowability, enables the production of components with improved surface quality and surface quality as well as improved during laser sintering
  • the said composite powder allows a more efficient production of implants, in particular according to the laser sintering method.
  • the melt flow of the melt obtainable using the composite powder according to the invention is significantly increased (improved).
  • the composite powder according to the invention can be processed better in comparison with conventional materials, in particular by the SLM process, and enables a significantly better one
  • the using the inventive Composite powders obtainable by the SLM process are characterized by an extremely high quality and have significantly fewer defects, a higher component density, preferably greater than 95%, in particular greater than 97, in comparison with components produced using conventional materials by the SLM process %, as well as a lower porosity. At the same time, the content of decomposition products in the resulting components is significantly lower and the cell compatibility of the components extremely high.
  • the other properties of the implants available in this way are excellent.
  • the implants have very good mechanical properties and a very good pH stability.
  • Another advantage of the present invention is the fact that the properties of the said composite powder, in particular the
  • Calcium carbonate particles can be controlled and adjusted specifically.
  • the composite powder in particular the calcium carbonate content of the composite powder and the flow properties of the composite powder can be changed and specifically adapted to the respective application.
  • polylactides which are preferably contained in the composite powder, are biodegradable polymers based on lactic acid. In the organism polylactides are degraded by hydrolysis. Calcium salts, especially calcium phosphate and calcium carbonate, are mineral materials based on calcium and are broken down in the body through the natural regeneration process of the bone. Calcium carbonate has the particularly advantageous property of buffering the occasionally toxic acid environment for bone cells during degradation of the polylactides. Compared to calcium phosphate (pH 4) buffers Calcium carbonate already at a pH of about 7, ie near the physiological value of 7.4. The molecular chain length and the chemical composition of the polymer, in particular the polylactide, can be used to adjust the time until complete degradation. The same is possible for the mechanical properties of the polymer.
  • the said composite powder can be processed into implant structures with the aid of the additive manufacturing process Selective Laser Melting (SLM).
  • SLM Selective Laser Melting
  • a targeted adaptation of material and manufacturing processes to each other and to the medical requirements is possible.
  • the use of generative production and the associated freedom of geometry offers the possibility of providing the implant with an internal and open pore structure which corresponds to the wishes of the surgeon and which ensures a continuous supply of the implant.
  • generatively customized implants such as for the supply of large area
  • Composite powder for processing by means of SLM consists in particular in that the polymer can be melted by the laser radiation at relatively low temperatures, preferably less than 300 ° C., and the calcium carbonate particles remain thermally stable at these temperatures.
  • the calcium carbonate particles can be embedded homogeneously in the entire volume of the implant in a matrix of polylactide without thermal damage by the laser radiation.
  • the strength of the implant is determined by the polylactide matrix and by the morphology of the implant
  • the implants are bioactive, because they have a choice of material and the subsequent coating with a
  • rhBMP-2 actively stimulates the surrounding bone tissue to build up bone and replace the framework (implant).
  • Optimum buffering By using calcium carbonate, the acidic degradation of the material polylactide is already buffered at a pH of approx. In addition, degradation processes of the polymer, in particular of the lactic acid polymer, are suppressed as effectively as possible o High Strength: The SLM process becomes a more complete and efficient way of avoiding the resulting acidic environment in the vicinity of the implant and thus an inflammatory or cytotoxic effect
  • the present invention accordingly provides composite powders with microstructured particles (composite powder) in an implant, the composite powder being obtainable by a process in which large particles are combined with small particles.
  • the microscopic properties of a material are referred to. These include, among other things, the dissolvable fine structure and the microstructure. For liquids and gases, these are not present.
  • the individual atoms or molecules are in a disordered state.
  • Amorphous solids usually have a structural proximity in the vicinity of the neighboring atoms, but none
  • Crystalline solids have an ordered lattice structure not only in the near range but also in the far range.
  • the large particles include
  • thermoplastic polymer expediently a biopolymer, a rubber, in particular natural rubber or synthetic rubber, and / or a polyurethane.
  • thermoplastic polymer in this context refers to a plastic which can be deformed (thermoplastically) in a specific temperature range, preferably in the range from 25 ° C. to 350 ° C. This process is reversible, that is to say it can be cooled by Reheating until the molten state can be repeated as often as long as the so-called thermal decomposition of the material does not start as a result of overheating, in which thermoplastic polymers differ from the thermosets and
  • biopolymer refers to a material that consists of biogenic raw materials (renewable raw materials) and / or is biodegradable
  • biodegradable polymer (biogenic and / or biodegradable polymer). This term therefore includes bio-based biopolymers that are biodegradable or non-biodegradable, as well as petroleum-based polymers that are biodegradable. This is a distinction from the conventional, petroleum-based materials or plastics that are not biodegradable, such. As polyethylene (PE), polypropylene (PP) and polyvinyl chloride (PVC).
  • PE polyethylene
  • PP polypropylene
  • PVC polyvinyl chloride
  • rubber refers to a high molecular weight, uncrosslinked polymeric material having rubber-elastic properties at room temperature (25 ° C). At higher temperatures or under the influence of deformation forces, a rubber will show increasing viscous flow allowing its forming under suitable conditions.
  • Rubber-elastic behavior is characterized by a relatively low shear modulus with a rather low temperature dependence. It is caused by entropy changes. By hiding the rubber-elastic material is forced into a more orderly configuration, which leads to a
  • Entropieab leads. After removal of the force, the polymers therefore return to their original position and the entropy increases again.
  • polyurethane (PU, DIN abbreviation: PUR) denotes a
  • Plastic or a synthetic resin which or which of the
  • Polyaddition reaction of diols or polyols with polyisocyanates is formed. Characteristic of a polyurethane is the urethane group.
  • thermoplastic polymers are particularly preferably used.
  • Particularly suitable polymers include the following polymers: acrylonitrile-ethylene-propylene- (diene) -styrene copolymer, Acrylonitrile-methacrylate copolymer, acrylonitrile-methyl methacrylate copolymer, acrylonitrile-chlorinated polyethylene-styrene copolymer, acrylonitrile-butadiene-styrene copolymer, acrylonitrile-ethylene-propylene-styrene copolymer, aromatic polyester, acrylonitrile-styrene-acrylic ester copolymer, butadiene-styrene copolymer,
  • Polyfluoroethylenepropylene methylmethacrylate-acrylonitrile-butadiene-styrene copolymer, methylmethacrylate-butadiene-styrene copolymer, methylcellulose, polyamide 1 1, polyamide 12, polyamide 46, polyamide 6, polyamide 6-3-T, polyamide 6-terephthalic acid copolymer, polyamide 66, polyamide 69, polyamide 610, polyamide 612, polyamide 61, polyamide MXD 6, polyamide PDA-T, polyamide, polyarylether, polyaryletherketone, polyamideimide, polyarylamide, polyaminobismaleimide,
  • Polyarylates polybutene-1, polybutyl acrylate, polybenzimidazole, polybismaleimide, polyoxadiazobenzimidazole, polybutylene terephthalate, polycarbonate,
  • Polychlorotrifluoroethylene polyethylene, polyestercarbonate, polyaryletherketone, polyetheretherketone, polyetherimide, polyetherketone, polyethyleneoxide,
  • Polyarylethersulfone polyethylene terephthalate, polyimide, polyisobutylene,
  • Polyisocyanurate polyimidesulfone, polymethacrylimide, polymethacrylate, poly-4-methylpentene-1, polyacetal, polypropylene, polyphenylene oxide, polypropylene oxide, polyphenylene sulfide, polyphenylene sulfone, polystyrene, polysulfone,
  • Polyvinyl butyral polyvinyl chloride, polyvinylidene chloride, polyvinylidene fluoride, polyvinyl fluoride, polyvinyl methyl ether, polyvinyl pyrrolidone, styrene-butadiene copolymer, styrene-isoprene copolymer, styrene-maleic anhydride copolymer, styrene-maleic anhydride-butadiene copolymer, styrene-methyl methacrylate copolymer, styrene-methylstyrene Copolymer, styrene-acrylonitrile copolymer,
  • the use of the following rubbers is also particularly advantageous: naturally occurring polyisoprene, in particular cis-1, 4-polyisoprene (natural rubber, NR) and trans-1,4-polyisoprene (gutta-percha) all natural rubber; Nitrile rubber (copolymer of butadiene and acrylonitrile; poly (acrylonitrile-co-1,3-butadiene; NBR; so-called Buna N rubber);
  • Butadiene rubber polybutadiene; BR; Acrylic rubber (polyacrylic rubber, ACM, ABR); Fluororubber (FPM); Styrene-butadiene rubber (copolymer of styrene and butadiene; SBR); Styrene-isoprene-butadiene rubber (copolymer of styrene, isoprene and butadiene; SIBR); polybutadiene; synthetic
  • Isoprene rubber polyisoprene; IR
  • Ethylene-propylene rubber copolymer of ethylene and propylene; EPM
  • Ethylene-propylene-diene rubber terpolymer of ethylene, propylene and a diene component; EPDM
  • butyl rubber butyl rubber
  • Polychloromethyloxirane epichlorohydrin polymer; CO
  • ethylene oxide oxirane
  • chloromethyloxirane epichlorohydrin polymer
  • ECO epichlorohydrin - ethylene oxide - allyl glycidyl ether terpolymer
  • GECO epichlorohydrin - allyl glycidyl ether copolymer
  • GPO propylene oxide - allyl glycidyl ether copolymer
  • Polynorbornene rubber polymer of bicyclo [2.2.1] hept-2-ene (2-norbornene; PNR
  • PNR polynorbornene rubber
  • Polyalkenylene polymer of cycloolefins
  • Silicone rubber Q
  • Silicone rubber with only methyl substituents on the polymer chain (MQ, eg, dimethylpolysiloxane), silicone rubber with methylvinyl and
  • VMQ polymer chain vinyl substituent groups
  • PMQ phenyl- and methyl-substituted silicone rubber on the polymer chain
  • FMQ fluorocarbon and methylated fluorocarbon rubber on the polymer chain
  • FVMQ fluoro, methyl, and vinyl on the polymer chain
  • BIIR Bromobutyl rubber
  • CNR chlorobutyl rubber
  • CM Chlorinated polyethylene
  • CSM Chlorosulfonyl polyethylene
  • HNBR hydrogenated nitrile rubber
  • polyphosphazene polyphosphazene
  • nitrile rubbers include random terpolymers of acrylonitrile, butadiene and a carboxylic acid, such as methacrylic acid.
  • the nitrile rubber preferably comprises, based on the total weight of the polymer, the following main components: 15.0% by weight to 42.0% by weight of acrylonitrile polymer; 1, 0 wt .-% to 10.0 wt .-% carboxylic acid and the remainder is predominantly butadiene (eg., 38.0 wt .-% to 75.0 wt .-%).
  • the composition is: 20.0% to 40.0% by weight.
  • Acrylonitrile polymer 3.0 wt% to 8.0 wt% carboxylic acid and 40.0 wt% to 65.0 wt% or 67.0 wt% are butadiene. Especially preferred
  • Nitrile rubbers include a terpolymer of acrylonitrile, butadiene and a carboxylic acid in which the acrylonitrile content is less than 35.0% by weight, and the carboxylic acid content is less than 10.0% by weight, the butadiene content corresponding to the remainder. Even more preferred nitrile rubbers may comprise the following amounts: 20.0% to 30.0% by weight of acrylonitrile polymer, 4.0 to 6.0% by weight of carboxylic acid and the remainder being predominantly butadiene.
  • nitrogen-containing polymers in particular of polyamides, is particularly favorable in the context of the present invention. Particular preference is given to polyamide 1 1, polyamide 12, polyamide 46, polyamide 6, polyamide 6-3-T, polyamide 6-terephthalic acid copolymer, polyamide 66, polyamide 69, polyamide 610, polyamide 612, polyamide 61, polyamide MXD 6 and / or polyamide PDA-T, in particular polyamide 12.
  • ultra-high molecular weight polyethylenes are particularly advantageous for the purposes of the present invention, especially those having an average molecular weight greater than 1000 kg / mol, preferably greater than 2000 kg / mol, more preferably greater than 3000 kg / mol, in particular greater than 5000 kg / mol.
  • the average molecular weight is desirably at most 10000 kg / mol.
  • Polyethylene is in the range of 0.94-0.99 g / cm 3 .
  • the crystallinity of particularly suitable ultra-high molecular weight polyethylenes is in the range of 50% to 90%.
  • the tensile strength particularly suitable ultra high molecular weight polyethylene is in the range of 30N / mm 2 to 50N / mm 2.
  • the tensile modulus of particularly suitable ultra-high molecular weight polyethylenes is in the range of 800 N / mm 2 to
  • the melting range of particularly suitable ultra-high molecular weight polyethylenes is in the range of 135 ° C to 155 ° C.
  • resorbable polymers are particularly useful.
  • absorbant "absorb”
  • absorbant "absorb”
  • absorb means the uptake of substances in biological systems, in particular in the human organism.
  • materials which can be used for the production of resorbable implants are those materials which can be used for the production of resorbable implants.
  • Resorbable polymers particularly preferred according to the invention include repeating units of lactic acid, hydroxybutyric acid and / or glycolic acid, preferably lactic acid and / or glycolic acid, in particular lactic acid.
  • Polylactic acids are particularly preferred.
  • polylactic acid polylactides
  • polymers polymers which are composed of lactic acid units Usually prepared by condensation of lactic acids, but are also obtained in the ring-opening polymerization of lactides under suitable conditions.
  • Resorbable polymers particularly suitable according to the invention include poly (glycolide-co-L-lactide), poly (L-lactide), poly (L-lactide-co-s-caprolactone), poly (L-lactide-co-glycolide), poly (L-lactide-co-D, L-lactide), poly (D, L-lactide-co-glycolide) and poly (dioxanone), wherein lactic acid polymers, especially poly-D, poly-L or poly D, L-lactic acids, especially poly-L-lactic acids (PLLA) and poly-D, L-lactic acids, are very particularly preferred according to the invention, wherein in particular the use of poly-L-lactic acids (PLLA) is very particularly advantageous.
  • PLLA poly-L-lactic acids
  • poly-L-lactic acid preferably has the following structure
  • n is an integer, preferably greater than 10.
  • Pol D, L-lactic acid preferably has the following structure
  • n is an integer, preferably greater than 10.
  • suitable lactic acid polymers are, for example, from Evonik Nutrition & Care GmbH under the
  • Resorbable polymers which are particularly advantageous for the purposes of the present invention, preferably resorbable polyesters, preferably lactic acid polymers, more preferably poly-D, poly-L or poly-D, L-lactic acids, in particular poly-L-lactic acids, have a number average molecular weight (Mn), preferably determined by
  • a number-average molecular weight in the range from 500 g / mol to 50,000 g / mol has proven particularly useful in the context of the present invention.
  • the weight-average molecular weight (Mw) of more preferably resorbable polymers are resorbable polyesters, desirably lactic acid polymers, more preferably poly-D, poly-L or poly-D, L-lactic acids, in particular poly-L Milk acids, preferably determined by gel permeation chromatography against narrowly distributed polystyrene standards, is preferably in the range of 750 g / mol to 5,000,000 g / mol, preferably in the range of 750 g / mol to 1 .000,000 g / mol, more preferably in the range from 750 g / mol to 500,000 g / mol, especially in the range of 750 g / mol to 250,000 g / mol, and the polydispersity of these polymers is favorably in the range of 1.5 to 5.
  • the inherent viscosity of particularly suitable resorbable polymers are preferably lactic acid polymers, particularly preferably poly-D, poly-L or poly-D, L-lactic acids, in particular poly-L-lactic acids, measured in chloroform 25 ° C, 0.1% polymer concentration, is in the range of 0.3 dl / g to 8.0 dl / g, preferably in the range of 0.5 dl / g to 7.0 dl / g, more preferably in the range from 0.8 dl / g to 2.0 dl / g, in particular in the range of 0.8 dl / g to 1, 2 dl / g.
  • lactic acid polymers more preferably poly-D, poly-L or poly-D, L-lactic acids, in particular poly-L-lactic acids, measured in Hexafluoro-2-propanol at 30 ° C, 0.1%
  • Polymer concentration in the range of 1, 0 dl / g to 2.6 dl / g, in particular in the range of 1, 3 dl / g to 2.3 dl / g.
  • polymers in the context of the present invention, polymers,
  • thermoplastic polymers preferably lactic acid polymers, more preferably poly-D, poly-L or poly-D, L-lactic acids, in particular poly-L-lactic acids, having a glass transition temperature greater than 20 ° C,
  • the glass transition temperature of the polymer is in the range of 35 ° C to 70 ° C, conveniently in the range of 55 ° C to 65 ° C, especially in the range of 60 ° C to 65 ° C.
  • polymers advantageously thermoplastic polymers, preferably lactic acid polymers, particularly preferably poly-D, poly-L or poly-D, L-lactic acids, in particular poly-L-lactic acids, particularly suitable, the melting point greater than 50 ° C, conveniently of at least 60 ° C, preferably greater than 150 ° C, more preferably in the range of 130 ° C to 210 ° C, in particular in the range of 175 ° C to 195 ° C.
  • the glass transition temperature and the melting temperature of the polymer are preferably determined by means of differential scanning calorimetry (DSC).
  • DSC differential scanning calorimetry
  • DSC measurement under nitrogen on a Mettler-Toledo DSC 30S The calibration is preferably carried out with indium.
  • the measurements are preferably carried out under dry, oxygen-free nitrogen
  • Sample weight is preferably chosen between 15 mg and 20 mg.
  • the samples are first heated from 0 ° C to preferably a temperature above the melting temperature of the polymer to be tested, then cooled to 0 ° C and heated a second time from 0 ° C to said temperature at a heating rate of 10 ° C / min.
  • thermoplastic polymers are polyamides, UHMWPE and resorbable polymers, especially resorbable polyesters, such as polybutyric acid, polyglycolic acid (PGA), lactic acid polymers (PLA) and
  • Lactic acid copolymers wherein lactic acid polymers
  • Lactic acid copolymers in particular poly-L-lactide, poly-D, L-lactide, copolymers of D, L-PLA and PGA, according to the invention have proven particularly useful.
  • poly-L-lactide poly-D, L-lactide, copolymers of D, L-PLA and PGA
  • Poly-L-lactide preferably having an inherent viscosity in the range of 0.5 dl / g to 2.5 dl / g, desirably in the range of 0.8 dl / g to 2.0 dl / g , in particular in the range from 0.8 dl / g to 1, 2 dl / g (each measured 0.1% in chloroform at 25 ° C), preferably with a glass transition temperature in
  • Range of 60 ° C to 65 ° C further preferably having a melting temperature in the range of 180 ° C to 185 ° C, moreover preferably ester-terminated;
  • a poly-L-lactide which preferably has an inherent viscosity in the range of 0.5 dl / g to 2.5 dl / g, conveniently in the range of 0.8 dl / g to 2, 0 dl / g, in particular in the range of 0.8 dl / g to 1, 2 dl / g (each measured 0.1% in chloroform at 25 ° C), preferably a glass transition temperature in the range of 60 ° C to 65 ° C, further preferably has a melting temperature in the range of 180 ° C to 185 ° C and moreover is preferably ester-terminated.
  • the small particles (second material) which can be used for the production of the said composite powder comprise spherical precipitated calcium carbonate particles.
  • the calcium carbonate particles are therefore not z. B. from needles, rhombohedra or Skalenoeder (precipitated
  • PCC calcium carbonate
  • GCC ground calcium carbonate
  • the term "spherical precipitated calcium carbonate particles” also includes fragments (fragments) of spherical particles which are obtainable, for example, by grinding the calcium carbonate, but the proportion of the spherical fragments is preferably less than 95%, preferably less than 75%, particularly preferably less than 50%. , in particular less than 25%, in each case based on the total amount of spherical precipitated calcium carbonate.
  • the average diameter of the spherical calcium carbonate particles is in the range of 0.05 ⁇ to 50.0 ⁇ , in particular in the range of 2.5 ⁇ to 30.0 ⁇ .
  • the mean particle diameter is expediently greater than 2.5 ⁇ m, advantageously greater than 3.0 ⁇ m, preferably greater than 4.0 ⁇ m,
  • the average particle diameter is expediently less than 30.0 ⁇ m, advantageously less than 20.0 ⁇ m, preferably less than 18.0 ⁇ m, particularly preferably less than 16.0 ⁇ m, in particular less than 14.0 ⁇ m.
  • Scanning electron micrographs determined, preferably only particles having a size of at least 0.01 ⁇
  • the size distribution of the calcium carbonate particles is desirably comparatively narrow and preferably such that at least 90.0% by weight of all calcium carbonate particles have a particle diameter in the range of average particle diameter -30% to mean particle diameter +30%.
  • the form factor of the calcium carbonate particles herein defined as the
  • Particle diameter is expediently at least 90%
  • the calcium carbonate particles are further characterized by a comparatively low water content. You point, based on her
  • Total weight suitably a water content (residual moisture at 200 ° C) of at most 5.0 wt .-%, preferably of at most 2.5 wt .-%, preferably not more than 1, 0 wt .-%, particularly preferably of at most 0.5 wt .-%, even more preferably less than 0.4 wt .-%, advantageously less than 0.3 wt .-%, advantageously less than 0.2 Wt .-%, in particular in the range of> 0.1 wt .-% to ⁇ 0.2 wt .-%, on.
  • the water content of the calcium salt particles, in particular the calcium carbonate particles preferably by means of thermogravimetry or by means of a Infrarotschnelltrockners, z. B. MA35 or MA45 from Sartorius or halogen moisture meter HB43 Mettler determined, the measurement preferably under nitrogen (nitrogen flow rate preferably 20 ml / min) and conveniently over the
  • Temperature range of 40 ° C or lower to 250 ° C or higher is performed. Furthermore, the measurement is preferably carried out at a heating rate of
  • the specific surface area of the calcium carbonate particles is preferably less than 3.0 m 2 / g, preferably less than 2.0 m 2 / g, in particular less than 1.5 m 2 / g. Furthermore, the specific surface is favorably greater than 0.25 m 2 / g, preferably greater than 0.5 m 2 / g, in particular greater than 0.75 m 2 / g.
  • the calcium carbonate particles are preferably spherical and substantially amorphous.
  • amorphous refers here to those calcium carbonate modifications in which the atoms form at least in part no ordered structures, but an irregular pattern and therefore have only a short order, but not a remote order to distinguish this are crystalline modifications of the Calcium carbonate, such as calcite, vaterite and aragonite, in which the atoms have both a close and a long range order.
  • the proportion of crystalline calcium carbonate is preferably less than 50% by weight, more preferably less than 30% by weight, very preferably less than 15% by weight, in particular less than 10% by weight.
  • the proportion of crystalline calcium carbonate is less than 8.0% by weight, preferably less than 6.0% by weight, advantageously less than 4.0% by weight, particularly preferably less than 2.0 Wt .-%, most preferably less than 1, 0 wt .-%, in particular less than 0.5 wt .-%, each based on the total weight of calcium carbonate.
  • the preferably amorphous calcium carbonate particles are advantageously obtained by at least one substance, in particular at least one
  • stabilized surfactant which is preferably arranged on the surface of the preferably spherical calcium carbonate particles.
  • Invention expediently organic compounds which accumulate strongly from their solution at interfaces (water / calcium carbonate particles) and thereby the surface tension, preferably measured at 25 ° C,
  • the substance in particular the surface-active substance, preferably has a molecular weight greater than 100 g / mol, preferably greater than 125 g / mol, in particular greater than 150 g / mol, and satisfies the formula RX n .
  • the radical R stands for at least 1, preferably at least 2, preferably at least 4, particularly preferably at least 6, in particular at least 8, carbon atoms comprising radical, preferably an aliphatic or cycloaliphatic radical which may optionally comprise further radicals X and the optionally . may have one or more ether linkages.
  • the radical X is a group which has at least one oxygen atom and at least one carbon atom, sulfur atom, phosphorus atom and / or
  • Nitrogen atom preferably at least one phosphorus atom and / or at least one carbon atom. Particularly preferred are the following groups:
  • Phosphonic acid groups -PO3H2 Phosphonate groups -PO3H " , ⁇ PO3 2" ,
  • carboxylic acid groups in particular carboxylic acid groups, carboxylate groups, phosphonic acid groups and phosphonate groups.
  • each other is hydrogen or an alkyl group having 1 to 5 carbon atoms.
  • One of the radicals R 1, R 2 and R 3 can also be a radical R.
  • Metal cations in particular alkali metal cations, preferably Na + and K + , and ammonium ions.
  • n is a preferably integer in the range from 1 to 20, preferably in the range from 1 to 10, in particular in the range from 1 to 5.
  • Substances particularly suitable for the purposes of the present invention include alkylcarboxylic acids, alkylcarboxylates, alkylsulfonic acids, alkylsulfonates, alkylsulfates, alkyl ether sulfates preferably having 1 to 4
  • Ethylene glycol ether units fatty alcohol ethoxylates having preferably 2 to 20 ethylene glycol ether units, alkylphenol ethoxylates, optionally substituted ones
  • Alkylphosphonic acids optionally substituted alkylphosphonates, sorbitan fatty acid esters, alkylpolyglucosides, N-methylglucamides, homo- and copolymers of acrylic acid and their corresponding salt forms and block copolymers.
  • a first group of very particularly advantageous substances are optionally substituted alkylphosphonic acids, in particular amino-tri- (methylenephosphonic acid), 1-hydroxyethylene- (1, 1-diphosphonic acid), ethylenediaminetetra (methylenephosphonic acid), hexamethylenediamine-tetra- (methylenephosphonic acid), Diethylenetriamine penta- (methylenephosphonic acid), and optionally substituted
  • Alkylphosphonates in particular the abovementioned acids.
  • Compounds are known as multifunctional sequestering agents for metal ions and rock inhibitors. Furthermore, homo- and copolymers, preferably homopolymers, of acrylic acid and their corresponding salt forms have proven to be particularly useful, especially those having a weight average molecular weight in the range of 1, 000 g / mol to 10,000 g / mol.
  • block copolymers preferably of double-hydrophilic block copolymers, in particular of polyethylene oxide or
  • Polypropylene oxide particularly favorable.
  • the proportion of preferably surface-active substances can in principle be chosen freely and adjusted specifically for the particular application. However, it is preferably in the range of 0.1 wt .-% to 5.0 wt .-%, in particular in the range of 0.3 wt .-% to 1, 0 wt .-%, based on the calcium carbonate content of particles.
  • the preparation of the preferably spherical, preferably amorphous calcium carbonate particles can be known per se, for. B. by hydrolysis of dialkyl carbonate or alkylene carbonate in a calcium cations comprehensive solution.
  • non-stabilized, spherical calcium carbonate particles The preparation of non-stabilized, spherical calcium carbonate particles is described in detail, for example, in the patent application WO 2008/122358, the disclosure of which, in particular with regard to particularly expedient variants of the production of such non-stabilized, spherical
  • preferred substances comprising Ca 2+ ions are calcium halides, preferably CaC, CaBr 2, especially CaC, and calcium hydroxide.
  • CaCl 2 is used.
  • Ca (OH) 2 is used.
  • dialkyl carbonate particularly suitable dialkyl carbonates comprise 3 to 20, preferably 3 to 9, carbon atoms, in particular dimethyl carbonate, diethyl carbonate, di-n-propyl carbonate, di-iso-propyl carbonate, di-n-butyl carbonate, di-sec-butyl carbonate and di-tert-butyl carbonate, dimethyl carbonate in this context being completely
  • an alkylene carbonate is reacted.
  • Suitable alkylene carbonates comprise 3 to 20, preferably 3 to 9, particularly preferably 3 to 6, carbon atoms and include in particular those
  • alkali metal hydroxides in particular NaOH
  • NaOH sodium hydroxides
  • Calcium hydroxide proved to be particularly suitable.
  • NaOH is used.
  • Ca (OH) 2 is used.
  • the molar ratio of Ca 2+ , preferably of calcium chloride, to OH " , preferably alkali metal hydroxide, in the reaction mixture is preferably greater than 0.5: 1 and more preferably in the range of> 0.5: 1 to 1: 1, in particular Range from 0.6: 1 to 0.9: 1.
  • the molar ratio of Ca 2+ , preferably of calcium chloride, to dialkyl carbonate and / or alkylene carbonate in the reaction mixture is favorably in the range of 0.9: 1, 5 to 1, 1: 1, more preferably in the range of 0.95: 1 to 1: 0,95.
  • the molar ratio of Ca 2+ , preferably of calcium chloride, to dialkyl carbonate and / or alkylene carbonate in the reaction mixture is favorably in the range of 0.9: 1, 5 to 1, 1: 1, more preferably in the range of 0.95: 1 to 1: 0,95.
  • Ca (OH) 2 is not used as OH "source
  • the components for the reaction is conveniently relies in the following concentrations: a.) Ca 2+:> 10 mmol / l to 50 mmol / l, preferably 15 mmol / l to 45 mmol / l, in particular 17 mmol / l to 35 mmol / l;
  • dialkyl carbonate and / or Alkylene carbonate > 10 mmol / l to 50 mmol / l, preferably 15 mmol / l to 45 mmol / l, in particular 17 mmol / l to 35 mmol / l;
  • the present invention uses Ca (OH) 2, preferably lime milk, in particular saturated lime milk, as OH " source
  • Alkylene carbonate > 5 mmol / l to 25 mmol / l, preferably 7.5 mmol / l to 22.5 mmol / l, in particular 8.5 mmol / l to 15.5 mmol / l.
  • the reaction of the components is preferably carried out at a temperature in the range of 15 ° C to 30 ° C.
  • the concrete size of the calcium carbonate particles can be controlled in a conventional manner via the supersaturation.
  • the calcium carbonate particles precipitate out of the reaction mixture under the above conditions.
  • the stabilization of the preferably amorphous calcium carbonate particles is expediently carried out by adding the preferably surface-active substance to the reaction mixture. This addition of the substance should take place only after the beginning of the reaction to form the calcium carbonate particles, ie only after the addition of the educts, preferably at the earliest 1 minute, preferably at the earliest 2 minutes,
  • the time of addition should be chosen so that the
  • preferably surfactant is added shortly before the end of the precipitation and as soon as possible before the beginning of the conversion of the preferably amorphous calcium carbonate in a crystalline modifications, since in this way maximize the yield and purity of the "stabilized, spherical, amorphous calcium carbonate particles" If the addition of the preferably surface-active substance takes place earlier, a bimodal product is generally obtained which, in addition to the desired, stabilized, spherical, amorphous calcium carbonate particles, is ultrafine, amorphous
  • the preferably surface-active substance is preferably added at a pH less than or equal to 1 1, 5, preferably less than or equal to 1 1, 3, in particular less than or equal to 1 1, 0.
  • Particularly advantageous is an addition at a pH in the range of 1 1, 5 to 10.0, preferably in the range of 1 1, 3 to 10.5, in particular in the range of 1 1, 0 to 10.8, in each case measured at the reaction temperature, preferably at 25 ° C.
  • Calcium carbonate particles can be known per se, for. B. by centrifugation, dehydrated and dried. Washing with acetone and / or drying in a vacuum drying oven is no longer absolutely necessary.
  • Calcium carbonate particles preferably dried so that they have the desired residual water content.
  • a procedure has proven particularly useful in which the calcium carbonate particles preferably first preheated at a temperature up to 150 ° C and then the Calcium carbonate particles preferably at a temperature in the range of greater than 150 ° C to 250 ° C, preferably in the range of 170 ° C to 230 ° C, more preferably in the range of 180 ° C to 220 ° C, in particular in the range of 190 ° C up to 210 ° C, dried.
  • the drying is preferably carried out in a circulating air dryer.
  • the calcium carbonate particles are expediently dried for at least 3 h, more preferably at least 6 h, in particular at least 20 h.
  • calcitic calcium carbonate greater than 10% by weight, preferably greater than 25% by weight, favorably greater than 50% by weight, particularly preferably greater than 70% by weight, very particularly preferably greater than 80% by weight, in particular greater than 90 wt .-%.
  • the basicity of the calcium carbonate particles is comparatively low. Its pH, measured according to EN ISO 787-9, is preferably less than 1, 5, preferably less than 1, 0, in particular less than 10.5.
  • the preparation of the spherical calcium carbonate particles can by
  • Carbonation of an aqueous calcium hydroxide (Ca (OH) 2) suspension take place.
  • CO 2 or a CO 2 -containing gas mixture is expediently passed into a calcium hydroxide suspension.
  • the concentration of the calcium hydroxide suspension is not particularly limited. However, a concentration in the range of 1 g CaO / l to 100 g CaO / l, preferably in the range of 10 g CaO / l to 90 g CaO / l, in particular in the range of 50 g CaO / l to 80 g CaO is particularly favorable / l.
  • Aminotrialkylenphosphonklare are preferably
  • the amount of CO2 introduced can control the conversion of the reaction. However one leads the introduction of the carbon dioxide or the
  • Carbon dioxide-containing gas mixture preferably as long as until the
  • Reaction mixture has a pH of less than 9, preferably less than e, in particular less than 7.5.
  • the carbon dioxide or the carbon dioxide-containing gas mixture expediently with a gas flow rate in the range from 0.02 l CO2 / (h * g Ca (OH) 2 ) to 2.0 l CO2 / (h * g Ca (OH) 2 ), preferably in the range from 0.04 l CO2 / (h * g Ca (OH) 2) to 1.0 l CO2 / (h * g Ca (OH) 2), particularly preferably in the range of 0.08 l CO2 / (h * g Ca (OH) 2 ) to 0.4 l CO2 / (h * g Ca (OH) 2 ), in particular in the range of 0.12 l CO2 / (h * g Ca (OH) 2 ) to 0.2 l CO2 / (h * g Ca (OH) 2 ), in the
  • the reaction of the calcium hydroxide suspension with the carbon dioxide or the carbon dioxide-containing gas mixture is preferably carried out at a temperature of less than 25 ° C., preferably less than 20 ° C., in particular less than 15 ° C.
  • the reaction temperature is preferably greater than 0 ° C., preferably greater than 5 ° C., in particular greater than 7 ° C.
  • the addition of the at least one aminotrialkylenephosphonic acid is expediently carried out in the course of the reaction, preferably after an abrupt drop in the conductance of the reaction mixture.
  • the at least one Aminotrialkylenphosphonklare is added as soon as the
  • Conductivity of the reaction mixture decreases by more than 0.5 mS / cm / min.
  • the decrease in the conductance of the reaction mixture is preferably at least 0.25 mS / cm within 30 seconds, in particular at least 0.5 mS / cm within 60 seconds.
  • the addition of the at least one Aminotrialkylenphosphonklare takes place at the end of the precipitation of the basic
  • the composite powder used according to the invention in the implant contains not only calcium carbonate but also other calcium salts, preferably calcium phosphates, in particular Ca 3 (PO 4) 2, CaHPO 4, Ca (H 2 PO 4) 2 and / or Ca 5 (PO 4) s (OH ).
  • the weight ratio of calcium carbonate to calcium phosphate is preferably in the range from 99: 1 to 1:99, in particular in the range from 50:50 to 99: 1.
  • the small particles comprise calcium carbonate inhibiting particles.
  • Calcium carbonate inhibiting particles in this context refers to calcium carbonate particles which, as an additive in polymers, in the best case completely suppress the acid-catalyzed degradation of the polymer in comparison with the same polymer without an additive.
  • the small particles are obtainable by a process which comprises calcium carbonate particles having a composition
  • the anions of the calcium complexing agent and the conjugate base may be the same in this embodiment, although this is not a mandatory requirement.
  • sodium phosphates i. Sodium salts of phosphoric acids, in particular sodium salts of orthophosphoric acid,
  • Preferred sodium phosphates include sodium orthophosphates, such as primary sodium dihydrogen phosphate NaH 2 PO 4, secondary
  • Sodium isopolyphosphates such as tetrasodium diphosphate (sodium pyrophosphate) Na4P2O7, pentasodium triphosphate (sodium tripolyphosphate) NasPsO-io; and higher molecular weight sodium phosphates, such as sodium metaphosphates and Sodium polyphosphates, such as melting or calcined phosphates, Graham's salt (approximate composition Na2O * P2Os, sometimes also as
  • Sodium hexametaphosphate used.
  • the use of the abovementioned phosphates is particularly advantageous, in particular in a composite powder for implants, since in this case the phosphates promote bone formation
  • Suitable calcium chelating agents include common polydentate, chelating ligands, especially ethylenediaminetetraacetic acid (EDTA), triethylenetetramine, diethylenetriamine, o-phenanthroline, oxalic acid, and mixtures thereof.
  • EDTA ethylenediaminetetraacetic acid
  • triethylenetetramine diethylenetriamine
  • o-phenanthroline oxalic acid
  • particularly suitable weak acids have a pKa value, measured at 25 ° C, greater than 1, 0, preferably greater than 1, 5, in particular greater than 2.0, on.
  • the pKa value of suitable weak acids, measured at 25 ° C. is preferably less than 20.0, preferably less than 10.0, particularly preferably less than 5.0, advantageously less than 4.0, in particular less than 3.0.
  • Very particularly suitable weak acids according to the invention include phosphoric acid, metaphosphoric acid, hexametaphosphoric acid, citric acid, boric acid, sulfurous acid, acetic acid and mixtures thereof. Phosphoric acid is most preferably used as the weak acid.
  • Conjugated bases which are preferred according to the invention include, in particular, sodium or calcium salts of the abovementioned weak acids, with sodium hexametaphosphate being very particularly preferred.
  • the preparation of the calcium carbonate inhibiting particles can be accomplished in a manner known per se by coating calcium carbonate particles with a composition which shares at least one calcium complexing agent and / or at least one conjugated base which is an alkali metal or calcium salt of a weak acid comprising at least one weak acid.
  • an aqueous suspension of the calcium carbonate particles to be coated which, based on their total weight, desirably a content of calcium carbonate particles in the range of 1, 0 wt .-% to 80.0 wt .-%, preferably in the range of 5.0 wt .-% to 50.0 wt .-%, in particular in the range of 10.0 wt .-% to 25.0 wt .-%, having.
  • the coating of the calcium carbonate particles is conveniently carried out by adding said substances in pure form or in aqueous solution, wherein aqueous solutions of said components have been found according to the invention to be very particularly advantageous to a homogeneous as possible
  • the calcination complexing agent and / or the conjugated base which is an alkali metal or calcium salt of a weak acid, before the weak acid.
  • the calcium complexing agent or the conjugated base is preferably used in an amount in the range of 0.1 parts by weight to 25.0 parts by weight, preferably in the range of 0.5 parts by weight to 10.0 parts by weight. Parts, in particular in the range of 1, 0 parts by weight to 5.0 parts by weight, in each case based on 100 parts by weight of the zu
  • the amount of the calcium complexing agent or the conjugated base is expediently chosen such that a complete coating of the surface of the
  • Calcium carbonate particles is achieved with the calcium complexing agent of the conjugated base.
  • the weak acid is preferably contained in an amount in the range of 0.1 parts by weight to 30.0 parts by weight, preferably in the range of 0.5 parts by weight to 15.0 parts by weight, more preferably in the range of Range from 1, 0 parts by weight to 10.0 parts by weight, in particular in the range of 4.0 parts by weight to 8.0 parts by weight, in each case based on 100 parts by weight of the calcium carbonate to be coated Particles, used.
  • the inhibiting calcium carbonate particles obtainable in this way are stable in a moderately acidic environment, this ability being limited to one
  • Buffering action by the absorbed or reacted calcium complexing agent or the conjugated base on the surface of the calcium carbonate particles and the weak acid is recycled in solution, wherein the application of the calcium complexing agent and / or the conjugate base on the surface of the calcium carbonate particles turn the solubility of the surface of the
  • Said composite powder is obtainable by a method of combining large particles with small particles, wherein -
  • the large particles have an average particle diameter in the range of 0.1 ⁇ to 10 mm, preferably in the range of 5 ⁇ to 10 mm, more preferably in the range of 10 m to 10 mm, conveniently in the range of 20 ⁇ to 10 mm, advantageously in the range of 30 ⁇ to 2.0 mm,
  • the average particle diameter of the small particles is preferably at most 1/5, preferably at most 1/10, particularly preferably at most 1/20, in particular at most 1/1000, of the mean particle diameter of the large particles.
  • the small particles are on the surface of the large particles
  • a “nonhomogeneous" distribution of the small particles or fragments thereof within the large particles herein means a non-homogeneous (uniform) distribution of the small particles or fragments thereof within the large particles
  • Particles comprises.
  • the weight ratio of polymer, in particular polyamide, to precipitated calcium carbonate in the particle interior is greater than 50:50, preferably greater than 60:40, favorably greater than 70:30, more preferably greater than 80:20, even more preferably greater than 90:10, most preferably greater 95: 5, in particular greater 99: 1.
  • the weight ratio of precipitated calcium carbonate to polymer, in particular polyamide, in the outer region of the particles, preferably in the outer preferred range of the particles, is greater than 50:50, preferably greater than 60:40, more preferably greater than 70:30, particularly preferably greater than 80:20, even more preferably greater than 90:10, most preferably greater than 95: 5, in particular greater than 99: 1.
  • the small particles are arranged on the surface of the large particles and preferably not completely cover the large particles.
  • at least 0.1%, preferably at least 5.0%, especially 50.0%, of the surface of the large particles are not with the
  • Coated spherical calcium carbonate particles This effect is preferably enhanced by the gaps between individual calcium carbonate particles which are preferably present and lead to the formation of corresponding microchannels for fluid substances, in particular for a melt of the polymer of the large particles. This structure is especially for applications of the
  • thermoplastic polymer particularly preferably of the absorbable polymer, in particular of the lactic acid polymer is ensured.
  • the composite powder used in the implant according to the invention is characterized by a specific particle size distribution.
  • the particles of the composite powder preferably have an average particle size dso in the range of 10 ⁇ to less than 200 ⁇ , preferably in the range of 20 ⁇ to less than 200 ⁇ , more preferably in the range of 20 ⁇ to less than 150 ⁇ , conveniently in the range of 20 ⁇ to less than 100 ⁇ , especially in
  • the fine grain content of the composite powder is preferably less than 50.0% by volume, preferably less than 45.0% by volume, more preferably less than 40.0% by volume, even more preferably less than 20.0% by volume, and advantageously less 15.0 vol .-%, advantageously less than 10.0 vol .-%, in particular less than 5.0 vol .-%.
  • the fine grain content according to the invention denotes the proportion of the smallest
  • Particle population with a bimodal or multimodal particle size distribution based on the total quantity in the cumulative distribution curve.
  • the fine grain fraction is defined according to the invention as 0.0% by volume.
  • the fine grain fraction is preferably such that the proportion of particles in the product having a particle size of less than 20 ⁇ m preferably less than 50.0% by volume, preferably less than 45 ⁇ m.
  • particles in this context in particular comprising particles of the composite powder according to the invention, small particles according to the invention and fragments or fragments of the large and / or small particles according to the invention if they have the said particle size.
  • the fine grain fraction is preferably such that the proportion of particles in the product having a particle size of less than 5 ⁇ m preferably less than 50.0% by volume, preferably less than 45.0% by volume %, more preferably less than 40.0% by volume, even more preferably less than 20.0% by volume, advantageously less than 15.0% by volume, advantageously less than 10.0% by volume, in particular less than 5% by weight , 0 Vol .-%, wherein "particles" in this context, in particular particles of
  • Composite powders according to the invention small particles in the sense of the invention and fragments or fragments of the large and / or small particles within the meaning of the invention, insofar as they have the said particle size.
  • the density of the fine grain fraction is preferably less than 2.6 g / cm 3 , preferably less than 2.5 g / cm 3 , more preferably less than 2.4 g / cm 3 , in particular in the range of greater than 1.2 g / cm 3 smaller 2.4 g / cm 3 , this value preferably by separation of the fine grain content by means of sieves and
  • Density measurement of the separated fraction is determined.
  • the particles of the composite powder have a particle size d9o of less than 350 ⁇ , preferably less than 300 ⁇ , preferably less than 250 ⁇ , more preferably less than 200 ⁇ , in particular less than 150 ⁇ on.
  • the particle size d9o is preferably greater than 50 ⁇ , preferably greater than 75 ⁇ , in particular greater than 100 ⁇ .
  • the ratio d2o / dso is less than 100%, preferably less than 75%, preferably less than 65%, particularly preferably less than 60%, in particular less than 55%. Furthermore, the ratio d2o / dso is expediently greater than 10%, preferably greater than 20%, preferably greater than 30%, particularly preferably greater than 40%, in particular greater than 50%.
  • the above-mentioned quantities d2o, dso and d9o are within the scope of
  • d2o denotes the particle size of the particle size distribution in which 20% of the particles have a particle size smaller than the specified value and 80% of the particles have a particle size greater than or equal to the stated value.
  • dso denotes the mean particle size of the particle size distribution. 50% of the particles have a particle size less than the specified value and 50% of the particles have a particle size greater than or equal to the stated value.
  • d9o denotes the particle size of the particle size distribution at which 90% of the particles have a particle size smaller than the specified value and 10% of the particles have a particle size greater than or equal to the stated value.
  • the particle size distribution of this embodiment can be achieved in a manner known per se by classifying the composite powder, i. by separating a dispersed solid mixture into fractions.
  • a classification is carried out according to the particle size or particle density.
  • Particularly advantageous are dry screening, wet screening and air jet screening, in particular air jet screening, and stream classification, in particular by means of air classification.
  • the composite powder is classified in a first step to the
  • Coarse fraction greater than 800 ⁇ preferably greater than 500 ⁇ , in particular greater than 250 ⁇ , if possible to remove.
  • a Coarse fraction greater than 800 ⁇ preferably greater than 500 ⁇ , in particular greater than 250 ⁇ , if possible to remove.
  • Dry sieves on a coarse sieve particularly proven which are preferably a size, meaning the size of the openings, in the range of 250 ⁇ to 800 ⁇ , preferably in the range of 250 ⁇ to 500 ⁇ , in particular of 250 ⁇ having.
  • the composite powder is preferably classified in order to remove the fine fraction ⁇ 20 ⁇ as possible.
  • air jet screening and air classification have proven to be particularly favorable.
  • the mean diameters of the particles of the composite powder, the large particles and the small particles, the particle sizes d2o, dso, d9o and the above mentioned length sizes are inventively determined by means of microscopic images, if necessary, based on electron micrographs. For the determination of the mean diameters of the large particles and the small particles as well as the particles of the composite powder and for the
  • Particle sizes d2o, dso, d9o also sedimentation are particularly advantageous, in which case the use of a Sedigraphs 5100 (Micromeritics GmbH) is particularly favorable.
  • Particle size analyzes using laser diffraction have also proved particularly suitable for the particles of the composite powder, in which connection the use of a HELOS / F laser diffraction sensor from Sympatec GmbH is particularly advantageous. This includes
  • this information refers to a temperature of 23 ° C.
  • the composite powder according to the invention is comparatively compact.
  • Composite powder having a density of less than 0.5 g / cm 3 , in particular less than 0.25 g / cm 3 , less than 10.0%, preferably less than 5.0%, in particular less than 1, 0%, each based on the Total volume of the composite powder.
  • the proportion by weight of the spherical calcium carbonate particles, based on the total weight of the composite powder, is preferably at least 0.1% by weight, preferably at least 1.0% by weight, particularly preferably at least 5.0% by weight, and is expediently in the range of 5.0% to 80.0% by weight, more preferably in the range of 10.0% to 60.0% by weight, desirably in the range of 20.0% by weight. % to 50.0% by weight.
  • spherical calcium carbonate particles which, based on the total amount
  • spherical calcium carbonate particles more than 15.0 wt .-% of particles having a size smaller than 20 ⁇ and / or particles having a size greater than 250 ⁇ contain, has a total amount of spherical calcium carbonate particles in the range of 35.0 wt. % to 45.0 wt .-% proven especially.
  • spherical calcium carbonate particles which, based on the
  • Total amount of spherical calcium carbonate particles at most 15.0 wt .-% of particles having a size smaller than 20 ⁇ and / or particles having a size greater than 250 ⁇ contain, has a total amount of spherical calcium carbonate particles in the range of 20.0 wt .-% to 30.0 wt .-% proven especially.
  • the proportion by weight of the polymer, preferably of the thermoplastic polymer, based on the total weight of the composite powder is preferably at least 0.1% by weight, preferably at least 1.0% by weight, more preferably at least 5.0% by weight, and is suitably in the range from 20.0% by weight to 95.0% by weight, in the range from 40.0% by weight to 90.0% by weight,
  • a total amount of polymer in the range of 55.0% by weight to 65.0% by weight has been found to be particularly useful.
  • the composite powder is characterized inter alia by a very good connection of the first material with the second material.
  • the solid connection of the first material with the second material can be preferably by mechanical stress of the composite powder, in particular by
  • the shaking time is
  • At least 60% by weight preferably at least 70% by weight, preferably at least 80% by weight, particularly preferably at least 90% by weight,
  • the particles of the composite powder in terms of their composition, their size and preferably their shape is not changed.
  • a particularly suitable non-solvent in this context is water, in particular for polyamide-containing composite powder.
  • the particles of the composite powder used in the implant according to the invention usually have a comparatively isotropic particle shape, which is advantageous in particular for applications of the composite powder in SLM processes.
  • Composite powder usually leads to an avoidance or at least to a reduction of negative influences, such as distortion or shrinkage.
  • conventional powder particles obtained, for example, by cryogenic milling have an irregular (amorphous) particle shape with sharp edges and sharp corners.
  • Such powders are, however, not advantageous for SLM processes because of their disadvantageous particle shape and additionally because of their comparatively broad particle size distribution and because of their comparatively high fines content of particles ⁇ 20 ⁇ m.
  • the calcium carbonate particles, in particular the precipitated calcium carbonate particles allow very good buffering and pH stabilization of the polymer, in particular of the thermoplastic polymer.
  • the biocompatibility of the polymer, in particular of the thermoplastic polymer, by the calcium carbonate particles, in particular by the precipitated calcium carbonate particles significantly improved.
  • the inhibiting calcium carbonate particles are used, a marked suppression of the thermal degradation of the polymer, especially the thermoplastic polymer, is observed.
  • Composite powder can be prepared in a manner known per se, for example by a one-step process, in particular by precipitation or coating,
  • a procedure is particularly suitable in which one precipitates polymer particles from a polymer solution, which additionally contains small particles in the context of the invention, preferably in suspended form.
  • a procedure has proven particularly useful in which polymer particles and spherical calcium carbonate particles are brought into contact with one another and joined together by the action of mechanical forces.
  • This is expediently carried out in a suitable mixer or in a mill, in particular in an impact mill, pin mill or in an ultrasound mill.
  • the rotor speed is preferably greater than 1 m / s, preferably greater than 10 m / s, particularly preferably greater than 25 m / s, in particular in the range from 50 m / s to 100 m / s.
  • the temperature at which the preparation of the composite powder takes place can basically be chosen freely. However, especially advantageous are
  • the temperature is advantageously less than 120 ° C, preferably less than 100 ° C, preferably less than 70 ° C, more preferably less than 50 ° C, in particular less than 40 ° C.
  • Temperatures in the range from greater than 0 ° C. to less than 50 ° C., in particular in the range from greater than 5 ° C. to less than 40 ° C. have proven particularly useful.
  • the mixer or the mill in particular the impact mill, the pin mill or the ultra-rotor mill, during the manufacture of the
  • Cooled composite powder according to the invention to dissipate the energy released.
  • cooling takes place with a cooling medium which has a temperature of less than 25 ° C., preferably in the range of less than 25 ° C. to -60 ° C., particularly preferably in the range of less than 20 ° C. to -40 ° C., advantageously in the range of less 20 ° C to -20 ° C, in particular in the range of less than 15 ° C to 0 ° C, having.
  • the cooling is preferably dimensioned such that at the end of the mixing or grinding process, preferably the milling process, the temperature in the mixing or grinding chamber, preferably in the grinding chamber, less than 120 ° C, preferably less than 100 ° C, preferably less than 70 ° C particularly preferably less than 50 ° C, in particular less than 40 ° C, is.
  • the preparation of the composite powder is based on that in the
  • Patent application JP62083029 A described procedure.
  • This is a first material (so-called mother particles) coated with a second material, which consists of smaller particles (called baby particles) on the surface.
  • a first material so-called mother particles
  • a second material which consists of smaller particles (called baby particles) on the surface.
  • NARA hybridization systems which preferably have a rotor outer diameter of 1 18 mm, in particular from a hybridization system with the designation NHS-0 or NHS-1 from NARA Machinery Co., Ltd., has become particularly relevant in this connection proven.
  • the mother particles and the baby particles are mixed, preferably
  • Preferred rotor speeds are in the range of 50 m / s to 100 m / s, based on the peripheral speed.
  • JP62083029 A the disclosure of which, including the particularly expedient method variants, is explicitly included in the present application by reference.
  • the composite powder is produced on the basis of the procedure described in patent application DE 42 44 254 A1. Accordingly, a method for producing a composite powder by fixing a substance on the surface of a thermoplastic material is particularly favorable when the thermoplastic material has an average particle diameter of 100 ⁇ m to 10 mm, and the substance has a smaller particle diameter and better heat resistance than the thermoplastic material .
  • the method comprises the steps of:
  • thermoplastic material o first heating the substance having the smaller particle diameter and the better heat resistance than the thermoplastic material to a temperature which is preferably not lower than the softening point of the thermoplastic material with stirring in a device which
  • thermoplastic material into the device; and o fixing the substance with the better heat resistance on the
  • the composite powder is produced on the basis of the procedure described in the patent application EP 0 922 488 A1 and / or in the patent US Pat. No. 6,403,219 B1. Accordingly, a method for
  • Preparation of a composite powder by attaching or adhering fine particles on the surface of a solid particle functioning as a core by applying an impact and then growing one or more crystals on the core surface particularly advantageously.
  • Composite powder is preferably carried out by thermal plasma spraying, whereby a vacuum plasma spraying device is preferably used which preferably has a power of at least 30 kW, in particular the device described in EP 0 523 372 A1.
  • the composite powder used in the implant according to the invention is distinguished by an outstanding property profile, which suggests its use, in particular in laser sintering processes. Its excellent flowability and excellent flowability make it possible to manufacture by laser sintering of components with excellent surface quality and
  • said composite powder shows a very good shrinkage behavior and excellent dimensional stability. Furthermore, a better one
  • the said composite powder has a comparatively high isotropy, which enables an extremely uniform melting of the composite powder. This behavior can be exploited in SLM processes for producing high quality, high component density, low porosity, and low number of parts
  • the presence of the spherical calcium carbonate particles in the composite powder allows excellent pH stabilization (buffering) in later applications, especially in such polymers
  • Contain acid groups or can release acids under certain conditions include, for example, polyvinyl chloride and polylactic acid.
  • the moisture of said composite powder is preferably less than 2.5% by weight, preferably less than 1.5% by weight, more preferably less than 1.0% by weight, even more preferably less than 0.9% by weight. %, Conveniently less than 0.8 wt .-%, advantageously less than 0.6 wt .-%, most preferably less than 0.5 wt .-%, in particular less than 0.25 wt .-%.
  • the moisture of said composite powder is preferably greater than 0.000% by weight, preferably greater than 0.010% by weight, in particular greater than 0.025% by weight.
  • the desired moisture of the composite powder can be achieved by prior art predrying of the composite powder prior to processing, wherein drying in the production process is basically recommended. Drying to a moisture content in the range from 0.01% by weight to 0.1% by weight has proven to be particularly favorable for stable process control in this connection. Furthermore, the use of a
  • Microwave vacuum dryer especially proven.
  • the further processing of the composite powder can be carried out in a comparatively simple manner, since only one component (the composite powder) and not two components (spherical calcium carbonate particles and polymer) are to be processed. Dispersion problems are not observed due to the solid bond between the polymer and the spherical calcium carbonate particles.
  • Flow behavior of the composite powder can be controlled specifically. These properties of the composite powder can, in turn, be used to determine the final structure of the resulting implants, in particular their biocompatibility
  • Composite powder in particular in the pharmaceutical and food sectors.
  • the composite powder can be used directly as such. Due to its excellent property profile, however, the composite powder is particularly suitable as an additive, particularly preferably as a polymer additive, as an additive or starting material for compounding, for the production of implants, for applications in medical technology and / or in microtechnology and / or for the production of foamed implants. Especially preferred
  • Medical applications preferably include resorbable Implants.
  • Particularly useful application areas include injection-molded screws, pressed plates, in particular melt-pressed plates, foamed implants and free-flowing powders for selective
  • the total particle size of the particles of the composite powder is preferably less than 3 mm and preferably greater than 5.0 ⁇ .
  • the composite powder is preferably added to at least one polymer, in particular a thermoplastic polymer, as the matrix polymer.
  • a polymer in particular a thermoplastic polymer
  • the polymers which are also known as
  • Component of the composite powder can be used. Around
  • Very particularly preferred matrix polymers include polyvinyl chloride (PVC), polyurethane (PU), silicone, polypropylene (PP), polyethylene (PE), especially UHMWPE, and polylactic acid (PLA).
  • the matrix polymer and the polymer of the composite powder are miscible with each other at the temperature of use, more preferably chemically identical.
  • compositions contain from 40.0% to 99.9% by weight of at least one matrix polymer and from 0.1% to 50.0% by weight of at least one said composite powder.
  • the preparation of the composition can be carried out in a manner known per se by mixing the components.
  • composition may then be further processed, in particular granulated, ground, extruded, injection-molded, foamed or also used in 3D printing processes.
  • the composite powder directly, d. H. without the addition of additional polymers, further processed and / or used.
  • the advantages of the composite powder can be observed in particular during granulation, milling, extrusion, injection molding, melt pressing, foaming and / or SD printing of the composite powder.
  • the production of polymer foams is preferably carried out by the
  • Producing or introducing a gaseous phase into a composition comprising the composite powder and optionally at least one matrix polymer.
  • the aim is to distribute the gas as evenly as possible in the composition in order to achieve a uniform and homogeneous foam structure.
  • the introduction of the gas can be done in various ways.
  • the generation of the gas phase preferably takes place by adding a blowing agent.
  • Propellants are substances that release gases through chemical reactions (chemical blowing agents) or through phase transition (physical blowing agents).
  • chemical blowing agent in the form of a masterbatch is added to the composition or physical blowing agent directly into the melt
  • Injected composition under pressure The injection is called direct gassing and finds particular use in the processing of thermoplastic polymers.
  • the said composite powder per se is particularly suitable for the production of implants, the conventional implants made of metal
  • the implants serve to fix the bones until the healing of the fracture. While implants made of metal
  • the implants available from the composite powder according to the invention act as a temporary helper. They suitably comprise polymers which the body itself can degrade and substances which provide calcium and preferably valuable phosphorus substances for bone formation. The resulting benefits to the patient are clear: no further surgery to remove the implant and accelerated bone regeneration.
  • said composite powder is used for the production of implants by selective laser sintering.
  • densely packed particles of the composite powder according to the invention are easily locally fused or melted (only the polymer) by means of a laser scanner unit, a directly deflected electron beam or an infrared heater with a geometry-imaging mask. They solidify by cooling as a result of heat conduction and thus combine to form a solid layer.
  • the unmelted powder granules remain as support material in the component and are preferably removed after completion of the building process.
  • Laser types particularly suitable for laser sintering methods are all those which bring the polymer of the composite powder according to the invention to sintering, fusing or crosslinking, in particular CO2 laser (10 ⁇ m) ND-YAG laser (1 .060 nm), He-Ne laser (633 nm) or Dye laser (350-1000 nm).
  • CO2 laser 10 ⁇ m
  • ND-YAG laser 1 .060 nm
  • He-Ne laser (633 nm)
  • Dye laser 350-1000 nm.
  • a CO2 laser is used.
  • the energy density in the bed is preferably from 0.1 J / mm 3 to 10 J / mm 3 in the irradiation.
  • the effective diameter of the laser beam is preferably from 0.01 nm to 0.5 nm, preferably 0.1 nm to 0.5 nm, depending on the application.
  • Pulsed lasers are preferably used, with a high pulse frequency, in particular from 1 kHz to 100 kHz, having proven to be particularly suitable.
  • the laser beam strikes the topmost layer of the bedding from the
  • This layer thickness can be from 0.01 mm to 1 mm, preferably from 0.05 mm to 0.5 mm. In this way, the first layer of the desired implants is produced. Subsequently, the working space is lowered by an amount which is lower than the thickness of the
  • Sintered layer The working space is filled to the original height with additional polymer material.
  • the second layer of the implant is sintered and with the
  • the exposure speed when scanning the laser is
  • a speed of about 100 mm / s is used.
  • the melting or melting of the polymer has a heating to a temperature in the range of 60 ° C to 250 ° C, preferably in the range of 100 ° C to 230 ° C, in particular in the range of 150 ° C to 200 ° C especially proven.
  • the present invention also relates to implants which are obtainable by selective laser sintering of a composition comprising a said composite powder, wherein implants for applications in the field of neuro, oral, maxillofacial, ear, nose and throat surgery as well as Hand, foot, thorax, rib and shoulder surgery are particularly preferred as components.
  • the proportion by weight of said composite powder in the composition is preferably at least 50.0% by weight, preferably at least 75.0% by weight, particularly preferably at least 90.0% by weight, in particular at least 99.0% by weight.
  • the composition contains exclusively the composite powder according to the invention.
  • E- excellent E-module preferably 3420 N / mm 2, particularly preferably greater than 3750 N / mm 2, advantageously greater than 4000 N / mm 2, in particular greater than 4500 N / mm 2,
  • the invention also relates to the spherical calcium carbonate particles which can be advantageously used to prepare the composite particles according to the invention and to their use.
  • the present invention also relates to spherical calcium carbonate particles in implants which are obtainable by a process in which
  • Preferred fields of application of the spherical calcium carbonate particles include their use as an additive for paper, plastics, paints and / or coatings, elastomers and adhesives and sealants, in construction chemistry, in
  • compositions comprising, in each case based on the total weight of the composition,
  • Granules 1 poly (L-lactide); inherent viscosity: 0.8-1.2 dl / g (0.1% in
  • Granules 2 (poly (L-lactide); inherent viscosity: 1, 5-2.0 dl / g (0.1% in
  • Granules 3 (poly (D, L-lactide); inherent viscosity: 1.8-2.2 dl / g (0.1% in
  • the average particle diameter of the polylactide granules 1 to 3 was in the range of 1 to 6 mm in each case.
  • CaCO3 content The CaCO3 content was determined by means of thermogravimetry with an STA 6000 from Perkin Elmer under nitrogen in the range from 40 ° C. to 1000 ° C. at a heating rate of 20 ° C./min. It was the
  • Weight loss determined between about 550 ° C and 1000 ° C and calculated therefrom over the factor 2.274 (molecular weight ratio CaCO3: CO2) the CaCO3 content in percent.
  • ⁇ -tricalcium phosphate content ( ⁇ -TCP content): The ⁇ -TCP content was determined by thermogravimetry with a STA 6000 from Perkin Elmer under nitrogen in the range from 40 ° C. to 1000 ° C. at a heating rate of 20 ° C. / min determined. The weight fraction remaining at 1000 ° C. corresponds to the ⁇ -TCP content in
  • the peak temperature Tp was determined by thermogravimetry with a STA 6000 from Perkin Elmer under nitrogen in the range of 40 ° C to 1000 ° C at a heating rate of 20 ° C / min.
  • the peak temperature of the first derivative of the mass loss curve corresponds to the temperature with the largest mass loss in polymer degradation.
  • the water content of the calcium carbonate-containing composite powder was determined by means of Karl Fischer Coulometer C30 from Mettler Toledo at 150 ° C.
  • the water content of the calcium carbonate powder was with the Halogen moisture meter HB43 from Mettler at 130 ° C determined
  • Test specimens were produced with the HAAKE MiniLab II extruder or injection molding with the HAAKE MiniJet II. The process conditions to the
  • Example 3 180 180 80 700 10
  • the cytotoxicity test (FDA GelRed) was carried out as follows:
  • Tissue Culture Polystyrene (TCPS) was used as a reference or negative control.
  • TCPS Tissue Culture Polystyrene
  • the non-sterile samples were provided in a 24 well microtiter plate.
  • the samples and the TCPS platelets were sterilized for 30 min with 70% ethanol (not fermented), then rinsed twice with 1 x PBS (phosphate-buffered saline) for 2 x 30 min and subsequently equilibrated with sterile a-medium. Thereafter, the samples were inoculated with MC3T3-E1 cells at an inoculation density of 25,000 cells / cm 2 (50,000 cells / ml).
  • Track 1 laser: 488 nm, DBS 560 nm, PMT1: 488-560 nm,
  • the material is not cytotoxic (max 5% dead cells)
  • High voltage electron microscope (Zeiss, DSM 962) performed at 15 kV. The samples were sprayed with a gold-palladium layer.
  • reaction mixture was stirred at 350 rpm and the heat of reaction was removed during the reaction.
  • reaction was complete after about 2 h and the
  • Reaction mixture had a pH of 7 at the end of the reaction.
  • the resulting spherical calcium carbonate particles were separated and dried in a conventional manner. They had a mean particle diameter of 12 ⁇ on. A typical SEM image is shown in FIG.
  • FIG. 1 An SEM image of the spherical calcium carbonate particles is shown in FIG. It can be seen on the surface of the spherical calcium carbonate particles, a thin phosphate layer.
  • a composite powder of spherical calcium carbonate particles and a polylactide (PLLA) was prepared on the basis of the method described in JP 62083029 A using the apparatus NHS-1. It was cooled with 12 ° C cold water. As the mother particles, a polylactide granule 1 and, as the baby particles (filler), the spherical calcium carbonate particles of Example 1 were used.
  • FIG. 3a An SEM image of the composite powder obtained is shown in FIG. 3a.
  • Example 5 Other composite powders were prepared analogously to Example 3, wherein in Example 5, the cooling was carried out at about 20 ° C. In each case, 30 g of polylactide granules were mixed with 20 g of CaCO 3 powder. The maximum temperature reached in the grinding chamber of the NHS-1 was 33 ° C. for example 4, 58 ° C. for example 5, 35 ° C. for example 6 and 35 ° C. for example 7. The products were screened to remove the coarse fraction> 250 ⁇ if possible (manual dry sieving through a 250 ⁇ - sieve). In Examples 4, 6 and 7, the fraction ⁇ 20 ⁇ was additionally classified as far as possible by stream classification (by means of air classification) or by sieving (by means of an air jet screening machine).
  • Figures 3a, 3b and 3c show an SEM image of example 3 and images of several doctor blade applications (12.5 mm / s) of example 3 ( Figure 3b: 200 ⁇ m squeegee; Figure 3c: 500 ⁇ m) squeegee).
  • the SEM image of the composite powder obtained is shown in FIG. 3a.
  • the particles of the recovered have
  • Composite powder a very advantageous for SLM process round particle shape or high sphericity.
  • the PLLA surface is sparse with spherical
  • the sample has a broad particle size distribution with increased fines.
  • the powder is restricted flowable (Fig. 3b and 3c).
  • a powder mountain is pushed by the squeegee in front of him. Due to the limited flow behavior, probably triggered by a higher proportion of fine particles, only very thin layers are formed with both doctor blades.
  • Figures 4a, 4b and 4c show an SEM image of Example 4 and images of several doctor blade applications (12.5 mm / s) of Example 4 ( Figure 4b: 200 ⁇ m squeegee; Figure 4c: 500 ⁇ m) squeegee).
  • the SEM image of the composite powder obtained is shown in FIG. 4a.
  • the particles of the recovered have
  • Composite powder a very advantageous for SLM process round particle shape or high sphericity.
  • the PLLA surface is sparse with spherical
  • the sample has a much narrower particle size distribution with less fines.
  • the powder is very easy to flow and can be doctored ( Figures 4b and 4c).
  • the thin layers (200 ⁇ ) can be doctored and are largely free of
  • doctor blade (ruts).
  • the pulverized with 500 ⁇ powder layer is homogeneous, densely packed, smooth and free of doctor blade.
  • 5a, 5b and 5c show an SEM image of Example 5 and images of several doctor blade applications (12.5 mm / s) of Example 5 (Fig. 5b: 200 ⁇ squeegee; Fig. 5c: 500 ⁇ squeegee).
  • the powder is restricted flowable. A powder mountain is pushed by the squeegee in front of him. Due to the limited flow behavior, probably triggered by a higher proportion of
  • 6a, 6b and 6c show an SEM image of example 6 and images of several doctor blade applications (12.5 mm / s) of example 6 (FIG. 6b: 200 ⁇ m squeegee; FIG. 6c: 500 ⁇ ) squeegee).
  • the powder is easy to flow and can be ironed. Even the thin layers (200 ⁇ ) can be doctored.
  • Figures 7a, 7b and 7c show an SEM image of Example 7 and images of several doctor blade applications (12.5 mm / s) of Example 7 ( Figure 7b: 200 ⁇ squeegee; Figure 7c: 500 ⁇ squeegee).
  • the powder is flowable and rakelbar. Even the thin layers (200 ⁇ ) can be doctored. They are not homogeneous and increasingly interspersed with squeegee strips. Slight flow restriction is probably due to coarse powder particles.
  • the pulverized with 500 ⁇ powder layer is homogeneous and free of doctor blade.
  • Microstructured composite particles of spherical calcium carbonate particles of Example 1 and an amorphous polylactide (PDLLA) were prepared on the basis of the method described in JP 62083029 A using the apparatus NHS-1. It was cooled with 12 ° C cold water. As the mother particle was a polylactide granules 3 and as the baby particles, the spherical
  • FIG. 8a, 8b and 8c show an SEM image of Comparison 1 and also images of several doctor blade applications (12.5 mm / s) of Comparison 1 (FIG. 8b: 200 ⁇ squeegee; FIG. 8c: 500 ⁇ ) squeegee).
  • the powder is poorly flowable and can not be lolled to 200 or 500 ⁇ thin layer thicknesses. The coarse, irregular particles get jammed when they are touched up. This results in inhomogeneous layers with very frequent and pronounced squeegee stripes.
  • the SEM analysis shows that the surfaces of the structured composite powders are sparsely populated with spherical calcium carbonate particles and their fragments. Compared to Examples 3 - 7, the particles have a more irregular particle geometry.
  • a composite powder of rhombohedral calcium carbonate particles and a polylactide (PDLLA) was prepared on the basis of the method described in JP 62083029 A using the apparatus NHS-1. It was cooled with 12 ° C cold water. As the mother particle was a polylactide granules 3 and as the baby particles rhombohedral calcium carbonate particles
  • Rotor speed of the unit was set at 6,400 rpm (80 m / s) and the dosed materials processed for 10 min. A total of 5 repetitions were carried out with the same material quantities and machine settings. A total of 232 grams of composite powder was recovered. The product was sieved to remove the coarse fraction> 250 ⁇ if possible (manual dry sieving through a 250 ⁇ sieve). Subsequently, the fine fraction ⁇ 20 ⁇ was separated via a 20 ⁇ sieve by means of a Lucasstrahlsiebmaschine.
  • GCC polylactide granule 3 and calcium carbonate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Veterinary Medicine (AREA)
  • Transplantation (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Dermatology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Composite Materials (AREA)
  • Polymers & Plastics (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Geology (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Materials For Medical Uses (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Prostheses (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
EP17758109.7A 2016-09-08 2017-08-17 Verfahren zur herstellung eines implantates mit calciumcarbonat-enthaltendem verbundpulver mit mikrostrukturierten teilchen Pending EP3509657A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP16187904 2016-09-08
PCT/EP2017/070827 WO2018046269A1 (de) 2016-09-08 2017-08-17 Verfahren zur herstellung eines implantates mit calciumcarbonat-enthaltendem verbundpulver mit mikrostrukturierten teilchen

Publications (1)

Publication Number Publication Date
EP3509657A1 true EP3509657A1 (de) 2019-07-17

Family

ID=56943330

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17758109.7A Pending EP3509657A1 (de) 2016-09-08 2017-08-17 Verfahren zur herstellung eines implantates mit calciumcarbonat-enthaltendem verbundpulver mit mikrostrukturierten teilchen

Country Status (9)

Country Link
US (1) US11318229B2 (ru)
EP (1) EP3509657A1 (ru)
JP (1) JP7133545B2 (ru)
CN (1) CN109922841B (ru)
AU (1) AU2017324138B2 (ru)
BR (1) BR112019004490B1 (ru)
CA (1) CA3035803A1 (ru)
RU (1) RU2753283C2 (ru)
WO (1) WO2018046269A1 (ru)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021035795A1 (zh) * 2019-08-31 2021-03-04 深圳市立心科学有限公司 可塑形的人工骨复合材料及其制备方法
CN111572022B (zh) * 2020-05-19 2021-08-17 中南大学 一种利用高岭石改善左旋聚乳酸骨支架降解性能的方法
JP2024105738A (ja) * 2021-03-30 2024-08-07 日本たばこ産業株式会社 口腔用パウチ製品およびその製造方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6283029A (ja) 1985-10-07 1987-04-16 Nara Kikai Seisakusho:Kk 固体粒子の表面改質方法
EP0224659B1 (en) 1985-10-07 1992-12-02 Nara Machinery Co., Ltd. Method of improving quality of surface of solid particles and apparatus thereof
US5043017A (en) * 1990-03-09 1991-08-27 Pfizer Inc. Acid-stabilized calcium carbonate, process for its production and method for its use in the manufacture of acidic paper
JPH06114099A (ja) 1991-06-12 1994-04-26 Nara Kikai Seisakusho:Kk 医用材料とその製造方法
JPH0751288B2 (ja) 1991-12-25 1995-06-05 株式会社奈良機械製作所 粒子の複合化方法
EP0633864A1 (en) * 1992-04-03 1995-01-18 Minerals Technologies, Inc. Clustered precipitated calcium carbonate particles
JP3390863B2 (ja) 1997-12-01 2003-03-31 株式会社奈良機械製作所 複合固体粒子とその製造方法
US20030176544A1 (en) * 2002-03-15 2003-09-18 Polyone Corporation Rigid PVC compounding compositions exhibiting weather resistance and PVC degradation resistance in hot sunny climates
DE602005013262D1 (de) * 2004-10-29 2009-04-23 Smith & Nephew Inc Bioabsorbierbare polymere mit kalziumkarbonat
CN1887364A (zh) 2006-07-20 2007-01-03 中国科学院长春应用化学研究所 一种具有形状记忆的可生物降解的医用体外固定材料
DE102007018975A1 (de) 2007-04-07 2008-10-09 Schaefer Kalk Gmbh & Co. Kg Kugelförmige Calciumcarbonat-Teilchen
CN101319075B (zh) 2008-06-13 2010-06-30 华中科技大学 用于选择性激光烧结的共聚物基粉末材料及其制备方法
RS52297B (en) 2009-06-15 2012-12-31 Omya Development Ag PROCEDURE FOR OBTAINING SURFACE CARBONATE CALCIUM BY THE APPLICATION OF LOW ACID
ES2384017T3 (es) 2009-06-15 2012-06-28 Omya Development Ag Proceso para preparar carbonato de calcio que reacciona en la superficie y su uso
EP2389901B8 (en) * 2010-05-24 2013-05-15 Episurf IP Management AB An implant for cartilage repair
EP2598579B1 (de) * 2010-07-30 2024-09-11 Schaefer Kalk GmbH & Co. KG Kugelförmige, amorphe calciumcarbonat-teilchen
CN102247624A (zh) 2011-01-21 2011-11-23 北京中奥汇成生物材料科技有限公司 一种可吸收骨螺钉及其制备方法
EP2686026B1 (de) * 2011-03-18 2019-03-13 Schaefer Kalk GmbH & Co. KG Mikrostrukturierte verbundteilchen
EP2662416B1 (en) 2012-05-11 2015-07-22 Omya International AG Treatment of calcium carbonate containing materials for increased filler load in paper
WO2014075185A1 (en) 2012-11-14 2014-05-22 Orthopaedic Innovation Center Inc. Antimicrobial articles produced by additive manufacturing
ES2899774T3 (es) 2013-03-14 2022-03-14 Prosidyan Inc Implantes de injerto óseo de compuesto poroso bioactivo
EP2871159A1 (en) 2013-11-08 2015-05-13 Omya International AG Process for improving the particle size distribution of a calcium carbonate-containing material
GB2527492A (en) 2014-04-28 2015-12-30 Sivaprakash Shanmugam 3D Printing material
RU148729U1 (ru) 2014-09-24 2014-12-10 Федеральное государственное бюджетное учреждение "Саратовский научно-исследовательский институт травматологии и ортопедии" Министерства здравоохранения Российской Федерации (ФГБУ "СарНИИТО" Минздрава России) Имплантат для хирургического лечения дефектов костной и хрящевой тканей
CN104910609A (zh) 2015-06-03 2015-09-16 四川大学 一种用于3d打印的聚氨酯复合材料及其制备方法和用途
ES2984033T3 (es) * 2016-09-08 2024-10-28 Schaefer Kalk Gmbh & Co Kg Polvo compuesto que contiene carbonato de calcio con partículas microestructuradas

Also Published As

Publication number Publication date
RU2019109723A3 (ru) 2020-10-27
JP7133545B2 (ja) 2022-09-08
BR112019004490A2 (pt) 2019-05-28
JP2019528870A (ja) 2019-10-17
RU2019109723A (ru) 2020-10-08
BR112019004490B1 (pt) 2022-05-24
AU2017324138A1 (en) 2019-03-28
AU2017324138B2 (en) 2022-04-07
WO2018046269A1 (de) 2018-03-15
RU2753283C2 (ru) 2021-08-12
CN109922841A (zh) 2019-06-21
US20190216980A1 (en) 2019-07-18
CA3035803A1 (en) 2018-03-15
CN109922841B (zh) 2022-05-10
US11318229B2 (en) 2022-05-03

Similar Documents

Publication Publication Date Title
EP3509654B1 (de) Verfahren zum herstellen eines implantats mittels calciumsalz-enthaltendem verbundpulver mit mikrostrukturierten teilchen
EP3509994B1 (de) Calciumcarbonat-enthaltendes verbundpulver mit mikrostrukturierten teilchen
EP3509655B1 (de) Implantat enthaltend inhibierendes calciumcarbonat
EP3509733B1 (de) Calciumsalz-enthaltendes verbundpulver mit mikrostrukturierten teilchen
EP2686026B1 (de) Mikrostrukturierte verbundteilchen
EP3510083A1 (de) Inhibierendes calciumcarbonatadditiv
EP3509993B1 (de) Calciumcarbonat-enthaltendes verbundpulver mit mikrostrukturierten teilchen mit inhibierendem calciumcarbonat
WO2018046269A1 (de) Verfahren zur herstellung eines implantates mit calciumcarbonat-enthaltendem verbundpulver mit mikrostrukturierten teilchen
EP3509656B1 (de) Verfahren zur herstellung eines implantates umfassend calciumcarbonat-enthaltendes verbundpulver mit mikrostrukturierten teilchen mit inhibierendem calciumcarbonat

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190408

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200114

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS