EP3507591A1 - Méthode et dispositif pour augmenter la sensibilité de la mesure en ligne de la propreté de surface des bandes d'acier - Google Patents

Méthode et dispositif pour augmenter la sensibilité de la mesure en ligne de la propreté de surface des bandes d'acier

Info

Publication number
EP3507591A1
EP3507591A1 EP17754136.4A EP17754136A EP3507591A1 EP 3507591 A1 EP3507591 A1 EP 3507591A1 EP 17754136 A EP17754136 A EP 17754136A EP 3507591 A1 EP3507591 A1 EP 3507591A1
Authority
EP
European Patent Office
Prior art keywords
strip
line
plasma
sheet
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP17754136.4A
Other languages
German (de)
English (en)
Other versions
EP3507591B1 (fr
Inventor
Guy Monfort
Geneviève MOREAS
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre de Recherches Metallurgiques CRM ASBL
Original Assignee
Centre de Recherches Metallurgiques CRM ASBL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre de Recherches Metallurgiques CRM ASBL filed Critical Centre de Recherches Metallurgiques CRM ASBL
Publication of EP3507591A1 publication Critical patent/EP3507591A1/fr
Application granted granted Critical
Publication of EP3507591B1 publication Critical patent/EP3507591B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/71Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
    • G01N21/718Laser microanalysis, i.e. with formation of sample plasma
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N2021/6417Spectrofluorimetric devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N2021/6463Optics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N2021/6484Optical fibres

Definitions

  • the present invention relates to a method for increasing the sensitivity of the online measurement of the surface cleanness of a strip or metal sheet in continuous scrolling, based on the LIBS method (for laser-induced breakdown spectroscopy or spectroscopy on laser-induced plasma).
  • the invention also relates to a device for implementing the method.
  • the method proposed by the Applicant is effective after cold rolling where the level of carbon pollution is of the order of several hundred milligrams of carbon per square meter. On the other hand, after degreasing, this level falls to less than a few tens of milligrams per square meter and the use of a carbon line partially absorbed by the oxygen of the air is insufficient to guarantee a precise measurement at these levels of cleanliness. Furthermore, it is known from the literature that the carbon present in organic compounds can be advantageously measured by the reaction thereof in a plasma with atomic nitrogen from air or an atmosphere of carbon dioxide. nitrogen gas surrounding the plasma.
  • This technique has in particular been used for the analysis of thin deposits of carbon nitrides (CN emission spectroscopy study of carbon plasma in nitrogen environmenf, S. Abdelli-Messaci et al., Spectrochimica Acta Part B 60 (2005) 955 - 959) and for differentiation of explosives, P. Lucena et al., Spectrochimica Acta Part B 66 (201 1) 12-20).
  • the document WO 2009/138262 A1 provides a method for measuring the cleanliness of an in-line automated steel strip, consisting in analyzing by image processing an oxidized ring created on the surface of the strip. by a laser or electron beam.
  • the present invention aims to provide a method of measuring the surface cleanness of a web or metal sheet in continuous scrolling obtained by cold rolling at the outlet of the degreasing lines. This is to allow a separate measurement of surface carbon pollution and fine iron which is possible in the current state of the art at the exit of the cold rolling line where pollution levels are significantly higher.
  • This invention also aims to provide a device to achieve the desired accuracy in the measurement of surface cleanness of steel sheets at the exit of the degreasing lines.
  • a first aspect of the present invention relates to an automated, online method of measuring the differentiated carbon surface cleanliness of a continuously moving strip or sheet metal having a surface pollution level of less than 100 mg / m 2 , preferably less than 50 mg / m 2 , characterized by the following steps:
  • a beam of radiation is generated by means of a source
  • the beam of radiation is focused by means of a focusing device so that the energy density deposited on the strip or metal sheet is sufficient to create a plasma and to generate CN radicals in the plasma if it contains carbon and nitrogen;
  • a nitrogen atmosphere is created around the plasma by means of a scanning system with a flow rate capable of preventing any oxygen from being present in the plasma;
  • the light emitted by the plasma is analyzed by means of an optical collection device and this emitted light is redirected towards a spectrometer or any other means for separating the wavelengths of the emitted light;
  • the intensity of an intense vibration line of the radical CN is measured and this intensity is compared with that of a line of vibration of the nitrogen, in order to compensate for the fluctuations related to the radiation beam and to the radiation-matter interactions , the intense vibration line of the radical CN being the vibration line at 388.25 nm and the vibration line of the nitrogen being the vibration line at 500.51 nm, and the ratio obtained is used to characterize the cleanliness of the surface of the strip or metal sheet in terms of carbon pollution.
  • Preferred embodiments of the method of the invention also include, in combination, one or more of the following features:
  • said radiation beam is a laser beam or an electron beam
  • the desired energy density on the strip or sheet surface is obtained by means of a laser beam of adequate power and focal diameter, the beam being focused on said surface either directly or by improved focusing by an optical device; prior expansion of the beam;
  • the laser is a pulsed laser, said laser and the focusing device being chosen to create an energy density at the surface of the strip or metal sheet between 10 and 100 GW / cm 2 and preferably between 30 and 60 GW / cm 2 ;
  • the optical collection device is a plurality of lenses or mirrors or a combination of the two which image the plasma on the end of an optical fiber, which itself redirects the light beam towards the spectrometer or another means of separating the wavelengths of the emitted light;
  • the strip or metal sheet is a steel strip
  • the running speed of the strip or the metal sheet (3) is greater than 0.5 m / s;
  • the method is used in the case of a cold rolling line and after passing through a degreasing bath.
  • Another aspect of the invention relates to a device for online measurement, automated, surface cleanliness of a strip or metal sheet in continuous scrolling, characterized in that it comprises:
  • a pulsed laser generating a beam with a diameter of between 0.5 and 10 mm, in the form of pulses of duration between 0.5 and 15 ns, with a energy between 1 and 300 mJ per pulse, for the generation of a plasma on the surface of the strip or metal sheet;
  • a focusing device allowing beam expansion by a factor of between 2 and 10 and making it possible to focus the beam on the strip or metal sheet at a distance of between 10 and 200 cm;
  • a nitrogen scavenging system in the vicinity of the plasma on the strip or metal sheet with a flow rate capable of preventing any presence of oxygen from the air in the plasma;
  • an optical collection device comprising a plurality of lenses, mirrors or a combination of both, for imaging the light emitted by the plasma on an optical fiber;
  • Figure 1 shows a block diagram of the device used according to the present invention, incorporating the main elements such as the radiation source, the focusing optics, the strip or sheet running, the feed system of the invention. nitrogen around or near the plasma, the light collecting device and the analysis spectrometer.
  • FIG. 2 shows an example of a spectrum containing the CN and N specific lines used for the determination of surface carbon pollution.
  • Figure 3 shows, in one example, a comparison between the measurements made according to the method and with the device of the invention and the measurements made in the laboratory by a reference method (combustion method). Description of a preferred embodiment of the invention
  • the method and the device proposed according to the present invention improve the method and the device described in the state of the art for the analysis by LIBS of the carbon surface cleanliness of the strips and metal sheets in scrolling, by example steel.
  • the method described is based on the measurement of radical lines CN, which is known from the literature but, to the knowledge of the inventors, has never been implemented to improve the measurement of the surface cleanness of metal strips or sheets. .
  • the principle of improvement is described below, with an example of implementation.
  • the beam of a laser 1, preferably pulsed, is focused with the aid of an appropriate optical device 2, on the surface of the sheet metal or scrolling metal strip 3.
  • the power of the laser and the focal diameter are advantageously chosen so that the power density obtained on the sheet is sufficient to create a plasma on the surface of the sheet.
  • the energy of the laser pulses and the focusing device are chosen so as to create an energy density of between 10 and 100 GW / cm 2 , ideally between 30 and 60 GW / cm 2 so as to generate CN radicals in the presence of nitrogen and carbon.
  • such an energy density can be obtained using a laser, generating a beam of 3 mm in diameter, in the form of pulses of 8 ns and an energy of 50 mJ per pulse, associated with an optical device that causes an expansion of the beam by a factor of 8 and then focuses said beam at a distance of 30 centimeters. Under these conditions, a focal point of 150 ⁇ in diameter and a power density of approximately 35 GW / cm 2 are obtained.
  • the zone in the vicinity of the sheet where the plasma is created is subjected to a nitrogen sweep 4 so as to obtain CN radicals in the presence surface carbon pollution while preventing some of this carbon from reacting with oxygen in the air.
  • the light emitted by the plasma is then collected by a set of lenses 5 which image the plasma on the end of an optical fiber 6 which, itself, redirects the light to an analysis device such as a spectrometer 7.
  • the method according to the invention then uses the vibration line (0-
  • any other suitable line, CN radicals optimally created by the choice of device described above.
  • the intensity of this line is advantageously related to a nitrogen line (in that the ratio of their respective intensities is carried out), preferably the line at 500.51 nm, which is sufficiently intense and which presents little interference with other elements. This ratio makes it possible to dispense with fluctuations in the overall luminous intensity of the plasma related, for example, to variations in the intensity of the laser beam or the radiation-material coupling.
  • an iron line is used as a reference.
  • the presence of iron fines causes relative variations in the intensity of the iron lines, depending on the energy required to create them.
  • the use of an iron line is therefore less reliable than that of nitrogen, which will be more stable given the nitrogen saturation around the plasma following the use of the nitrogen scanner 4.
  • FIG. 2 gives an example of a spectrum chosen on a sheet before degreasing in order to highlight the lines used to apply the method of the invention.
  • FIG. 3 gives an example of a comparison between the measurements made by the method and the device of the invention on the one hand and the results of the analyzes by a laboratory reference method (combustion method). The different cases correspond to three different steels analyzed under the following conditions (ie three groups of three points from right to left in Figure 3):
  • the method of the invention makes it possible to discriminate surface pollution levels varying from the cold rolling output state to very low levels of pollution.
  • This method has the advantage of determining the surface carbon pollution using a CN line whose measurement conditions (laser energy coupled with the focusing device, nitrogen scavenging ) optimize the intensity.
  • the use of the CN line located in the near UV eliminates the absorption of oxygen from the air, unlike the intense carbon line at 193 nm.
  • the nitrogen atmosphere created around the plasma prevents the formation of an oxide layer around the impact zone of the laser after the extinction of the plasma.
  • the formation of this oxide could, disadvantageously, locally change the thermal emissivity of the sheet and very locally change the absorption of thermal energy during passage in the furnaces, before galvanizing for example.

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

La présente invention se rapporte à une méthode de mesure en ligne,automatisée,de la propreté de surface d'une bande ou tôle métallique (3) en défilement continu, en termes de pollution au carbone, caractérisée par une étape de mesure de l'intensité lumineuse d'une raie de vibration intense du radical CN que l'on rapporte à la mesure de l'intensité d'une raie de vibration de l'azote, afin de compenser les fluctuations liées au faisceau de rayonnement et aux interactions rayonnement –matière.

Description

MÉTHODE ET DISPOSITIF POUR AUGMENTER LA SENSIBILITÉ
DE LA MESURE EN LIGNE DE LA PROPRETÉ DE SURFACE DES BANDES
D'ACIER
Objet de l'invention
[0001] La présente invention se rapporte à une méthode pour augmenter la sensibilité de la mesure en ligne de la propreté de surface d'une bande ou tôle métallique en défilement continu, basée sur la méthode LIBS (pour laser-induced breakdown spectroscopy ou spectroscopie sur plasma induit par laser).
[0002] L'invention se rapporte également à un dispositif pour la mise en œuvre du procédé.
Arrière-plan technologique et état de la technique [0003] Lors de la fabrication de tôles d'acier, le processus de laminage à froid génère essentiellement deux types d'impuretés à la surface des tôles : d'une part du carbone de surface, qui provient de la dégradation des huiles de laminage et d'autre part des fines de fer dont l'origine se trouve dans les interactions avec les cylindres utilisés pour le laminage. [0004] Cette pollution de surface est gênante car elle nécessite un nettoyage plus fréquent des cylindres et les bains de décapage sont plus rapidement pollués. Ceci occasionne évidemment des coûts supplémentaires. Les tôles sales doivent également être recuites plus longtemps, ce qui est aussi plus coûteux. De plus, dans les étapes ultérieures de galvanisation ou de mise en peinture, ces dépôts se traduisent par des défauts d'adhérence qui ont des conséquences sur la tenue à la corrosion des produits finis. Enfin, dans les fours de recuit, notamment avant galvanisation, les pollutions carbonées génèrent à la longue des suies qui se déposent sur les parois du four ce qui nécessite un nettoyage plus fréquent. De même, les fines de fer peuvent s'accumuler à la longue sur les rouleaux du four, ce qui peut entraîner des défauts sur la tôle. [0005] La mesure de cette pollution en ligne a fait l'objet de plusieurs développements ces dernières années. Les trois principales méthodes à l'heure actuelle sont les suivantes :
- une méthode relativement récente est basée sur une absorption de rayonnement infrarouge. Elle est essentiellement influencée par le carbone de surface et assez peu par les fines de fer. La sensibilité est limitée et il n'y a pas encore beaucoup de recul industriel (voir Krauth P.J., "Contrôle de la propreté des surfaces d'acier", La Revue de Métallurgie - CIT, Juin 2002) ;
- une autre méthode se base sur l'analyse de l'intensité lumineuse d'un plasma généré à la surface de la tôle par un faisceau laser focalisé. Au départ, le dispositif mesurait le bruit généré par le plasma ("A real time method for surface cleanliness measurement", G. M. Bilmes et al., Appl. Phys. B 82, 643-648, 2006). Cependant, le système actuel mesure plutôt l'intensité lumineuse globale du plasma. ("Practical Expériences with Novel Non- Contact, Online, Surface Cleanliness Measurement System", E. Almquist, U. Crossa, Proceedings Galvatech 2015). Ce système est essentiellement sensible aux fines de fer et assez peu à la pollution en carbone ;
- enfin, à la connaissance des inventeurs, le seul dispositif permettant actuellement de mesurer en ligne simultanément et indépendamment les fines de fer et le carbone de surface est basé sur la méthode LIBS et a été développé par la Demanderesse dans le cadre d'un projet de recherche européen {Lowwear Project, RFCS Contract No RFSR-CT-2006-00010 - 1 July 2006 to 31 December 2009). Cette méthode, appliquée à la sortie de la ligne de laminage à froid, mesure le niveau de fines de fer en comparant l'intensité de deux raies de fer d'énergies différentes. En effet, plus il y a de particules fines pour alimenter le plasma, plus la vaporisation est aisée et plus il reste d'énergie dans l'impulsion laser pour exciter les atomes du plasma à un niveau énergétique élevé. Pour la mesure du carbone de surface, une raie intense du carbone est utilisée, typiquement la raie à 193 nm. L'inconvénient de cette mesure est que la longueur d'onde de cette raie se situe dans l'UV lointain et donc qu'elle est absorbée par l'oxygène de l'air, ce qui réduit l'intensité utile lors d'une mesure à distance. Une autre raie sensible existe à 247,8 nm qui est peu absorbée mais qui se superpose à une raie de fer, ce qui rend son utilisation difficile.
[0006] D'autre part, dans la production moderne d'aciers de qualité, il est important de garantir une très grande propreté de surface, notamment avant galvanisation. Pour s'en assurer, il est habituel de nettoyer la surface dans des bains de dégraissage dans lesquels une solution chimique enlève les salissures, essentiellement de nature organique, tandis qu'un ou plusieurs brossages permet de débarrasser la tôle de pollutions solides telles que les fines de fer. Une méthode d'analyse en ligne qui différencierait clairement le carbone des fines de fer serait donc intéressante puisqu'elle permettrait non seulement d'évaluer l'efficacité du dégraissage mais aussi de déterminer si un manque de propreté est plutôt lié à une défectuosité du brossage ou à celle de la composition de la solution de nettoyage.
[0007] La méthode proposée par la Demanderesse (voir ci-dessus) se montre efficace après laminage à froid où le niveau de pollution en carbone est de l'ordre de plusieurs centaines de milligrammes de carbone par mètre carré. Par contre, après dégraissage, ce niveau tombe à moins de quelques dizaines de milligrammes par mètre carré et l'utilisation d'une raie de carbone partiellement absorbée par l'oxygène de l'air est insuffisante pour garantir une mesure précise à ces niveaux de propreté. [0008] Par ailleurs, il est connu par la littérature que le carbone présent dans des composés organiques peut être avantageusement mesuré par la réaction de celui-ci dans un plasma avec l'azote atomique provenant de l'air ou d'une atmosphère d'azote gazeux entourant le plasma.
[0009] Cette technique a notamment été utilisée pour l'analyse de dépôts minces de nitrures de carbone ("CN émission spectroscopy study of carbon plasma in nitrogen environmenf , S. Abdelli-Messaci et al., Spectrochimica Acta Part B 60 (2005) 955 - 959) et pour la différenciation d'explosifs ("New challenges and insights in the détection and spectral identification of organic explosives by laser induced breakdown spectroscopy" , P. Lucena et al., Spectrochimica Acta Part B 66 (201 1 ) 12-20).
[0010] De plus, certaines études sur matériaux organiques ont permis d'expliquer les mécanismes de formation du radical CN dans le plasma et de déterminer les densités d'énergie nécessaires à la création de ce type de radical ("Vibrational émission analysis of the CN molécules in laser-induced breakdown spectroscopy of organic compounds", Ângel Fernândez-Bravo et al., Spectrochimica Acta Part B 89 (2013) 77-83). [0011] Dans Aguilera J. A. et al., "Détermination of carbon content in steel using laser-induced breakdown spectroscopy", Applied Spectroscopy, vol. 46, no. 9 (1992), pages 1382-1387, on démontre que l'on peut utiliser la méthode LIBS pour déterminer la teneur en carbone dans un acier, avec une précision et une limite de détection comparable avec celles obenues par spectroscopie d'émission atomique. Ce document montre en outre qu'il faut travailler sous atmosphère d'azote ou d'argon pour éviter que la mesure du C soit influencée par la décomposition du CO2 atmosphérique. Les courbes de calibration ont été obtenues en utilisant le rapport de la raie du C à 193 nm et la raie du Fe à 201 nm (cette raie du Fe n'interfère pas avec d'autres raies). On ne peut pas utiliser la raie du C à 248 nm car elle interfère avec la raie du Fe à cette même longueur d'onde.
[0012] Enfin, le document WO 2009/138262 A1 fournit une méthode de mesure de la propreté d'une bande d'acier en ligne et automatisée, consistant à analyser par traitement d'image une couronne oxydée créée à la surface de la bande par un faisceau laser ou d'électrons.
Buts de l'invention
[0013] La présente invention vise à fournir une méthode de mesure de la propreté de surface d'une bande ou tôle métallique en défilement continu obtenue par laminage à froid à la sortie des lignes de dégraissage. Il s'agit de permettre une mesure séparée de la pollution en carbone de surface et en fines de fer qui n'est possible dans l'état actuel de la technique qu'à la sortie de la ligne de laminage à froid où les niveaux de pollution sont nettement plus élevés.
[0014] Cette invention a aussi pour but de procurer un dispositif permettant d'atteindre la précision voulue dans la mesure de la propreté de surface des tôles d'acier à la sortie des lignes de dégraissage.
Principaux éléments caractéristiques de l'invention
[0015] Un premier aspect de la présente invention se rapporte à une méthode de mesure en ligne, automatisée, de la propreté de surface différentiée en carbone d'une bande ou tôle métallique en défilement continu, présentant un niveau de pollution de surface inférieur à 100 mg/m2, de préférence inférieur à 50 mg/m2, caractérisée par les étapes suivantes :
- on génère un faisceau de rayonnement au moyen d'une source ;
- on focalise le faisceau de rayonnement au moyen d'un dispositif de focalisation de manière à ce que la densité d'énergie déposée sur la bande ou tôle métallique soit suffisante pour créer un plasma et pour générer des radicaux CN dans le plasma si celui-ci contient du carbone et de l'azote ;
- on crée autour du plasma une atmosphère d'azote grâce à un système de balayage avec un débit apte à éviter toute présence d'oxygène de l'air dans le plasma ;
- on analyse, au moyen d'un dispositif optique de collecte, la lumière émise par le plasma et on redirige cette lumière émise vers un spectromètre ou tout autre moyen de séparation des longueurs d'onde de la lumière émise ;
- on mesure l'intensité d'une raie de vibration intense du radical CN et on rapporte cette intensité à celle d'une raie de vibration de l'azote, afin de compenser les fluctuations liées au faisceau de rayonnement et aux interactions rayonnement - matière, la raie de vibration intense du radical CN étant la raie de vibration à 388,25 nm et la raie de vibration de l'azote étant la raie de vibration à 500,51 nm, et - on utilise le rapport obtenu pour caractériser la propreté de la surface de la bande ou tôle métallique en termes de pollution au carbone.
[0016] Des modes d'exécution préférés de la méthode de l'invention reprennent en outre, en combinaison, une ou plusieurs des caractéristiques ci- après :
- ledit faisceau de rayonnement est un faisceau laser ou un faisceau d'électrons ;
- la densité d'énergie désirée sur la surface de bande ou tôle est obtenue grâce à un faisceau laser de puissance et de diamètre focal adéquats, le faisceau étant focalisé sur ladite surface soit directement, soit par une focalisation améliorée par un dispositif optique d'expansion préalable du faisceau ;
- le laser est un laser à impulsions, ledit laser et le dispositif de focalisation étant choisis pour créer une densité d'énergie à la surface de la bande ou tôle métallique comprise entre 10 et 100 GW/cm2 et de préférence comprise entre 30 et 60 GW/cm2 ;
- le dispositif optique de collecte est une pluralité de lentilles ou de miroirs ou encore une combinaison des deux qui imagent le plasma sur l'extrémité d'une fibre optique, qui elle-même redirige le faisceau lumineux vers le spectromètre ou un autre moyen de séparation les longueurs d'onde de la lumière émise ;
- la bande ou tôle métallique est une bande d'acier ;
- la vitesse de défilement de la bande ou la tôle métallique (3) est supérieure à 0,5 m/s ;
- la méthode est utilisée dans le cas d'une ligne de laminage à froid et après passage dans un bain de dégraissage.
[0017] Un autre aspect de l'invention se rapporte à un dispositif de mesure en ligne, automatisée, de la propreté de surface d'une bande ou tôle métallique en défilement continu, caractérisé en ce qu'il comprend :
- un laser puisé, générant un faisceau de diamètre compris entre 0,5 et 10 mm, sous forme d'impulsions de durée comprise entre 0,5 et 15 ns, avec une énergie comprise entre 1 et 300 mJ par impulsion, pour la génération d'un plasma à la surface de la bande ou tôle métallique ;
- un dispositif de focalisation permettant une expansion de faisceau d'un facteur compris entre 2 et 10 et permettant de focaliser le faisceau sur la bande ou tôle métallique à une distance comprise entre 10 et 200 cm ;
- un système de balayage d'azote au voisinage du plasma sur la bande ou tôle métallique avec un débit apte à éviter toute présence d'oxygène de l'air dans le plasma ;
- un dispositif optique de collecte comprenant une pluralité de lentilles, de miroirs ou une combinaison des deux, pour imager la lumière émise par le plasma sur une fibre optique ;
- une fibre optique ;
- un spectromètre relié à la fibre optique ;
- un analyseur de spectre permettant de calculer le rapport de l'intensité de la raie de vibration du carbone à 388,25 nm et de la raie de vibration de l'azote à 500,51 nm.
Brève description des figures
[0018] La figure 1 montre un schéma de principe du dispositif utilisé selon la présente invention, reprenant les éléments principaux tels que la source de rayonnement, l'optique de focalisation, la bande ou tôle en défilement, le système d'amenée de l'azote autour ou au voisinage du plasma, le dispositif de collecte de la lumière et le spectromètre d'analyse.
[0019] La figure 2 montre un exemple de spectre contenant les raies spécifiques CN et N utilisées pour la détermination de la pollution en carbone de surface.
[0020] La figure 3 montre, sur un exemple, une comparaison entre les mesures effectuées selon la méthode et avec le dispositif de l'invention et les mesures réalisées en laboratoire par une méthode de référence (méthode par combustion). Description d'une forme d'exécution préférée de l'invention
[0021] La méthode et le dispositif proposés selon la présente invention améliorent la méthode et le dispositif décrits dans l'état de l'art pour l'analyse par LIBS de la propreté de surface en carbone des bandes et tôles métalliques en défilement, par exemple en acier. La méthode décrite se base sur la mesure des raies de radicaux CN, qui est connue de la littérature mais, à la connaissance des inventeurs, n'a jamais été mise en œuvre pour améliorer la mesure de la propreté de surface de bandes ou tôles métalliques. [0022] Le principe de l'amélioration est décrit ci-après, avec un exemple d'implémentation.
[0023] Comme montré à la figure 1 , le faisceau d'un laser 1 , de préférence puisé, est focalisé à l'aide d'un dispositif optique approprié 2, sur la surface de la tôle ou bande métallique en défilement 3. La puissance du laser et le diamètre focal sont avantageusement choisis de manière à ce que la densité de puissance obtenue sur la tôle soit suffisante pour créer un plasma à la surface de la tôle. De plus, et en supplément de la pratique courante, l'énergie des impulsions laser et le dispositif de focalisation sont choisis de manière à créer une densité d'énergie comprise entre 10 et 100 GW/cm2, idéalement entre 30 et 60 GW/cm2 de manière à générer des radicaux CN en présence d'azote et de carbone.
[0024] A titre d'exemple, une telle densité d'énergie peut être obtenue à l'aide d'un laser, générant un faisceau de 3 mm de diamètre, sous forme d'impulsions de 8 ns et d'une énergie de 50 mJ par impulsion, associé à un dispositif optique qui provoque une expansion du faisceau d'un facteur 8 puis focalise ledit faisceau à une distance de 30 centimètres. Dans ces conditions, on obtient un point focal de 150 μιτι de diamètre et une densité de puissance d'environ 35 GW/cm2.
[0025] La zone au voisinage de la tôle où est créé le plasma est soumise à un balayage à l'azote 4 de manière à obtenir des radicaux CN en présence d'une pollution en carbone de surface tout en évitant qu'une partie de ce carbone ne réagisse avec l'oxygène de l'air.
[0026] La lumière émise par le plasma est ensuite collectée par un ensemble de lentilles 5 qui imagent le plasma sur l'extrémité d'une fibre optique 6 qui, elle-même, redirige la lumière vers un dispositif d'analyse tel qu'un spectromètre 7.
[0027] La méthode selon l'invention utilise alors la raie de vibration (0-
0), ou toute autre raie adéquate, des radicaux CN, créés de manière optimale par le choix du dispositif décrit ci-dessus. L'intensité de cette raie est avantageusement rapportée à une raie d'azote (en ce sens que l'on effectue le rapport de leurs intensités respectives), de préférence la raie à 500,51 nm, qui est suffisamment intense et qui présente peu d'interférences avec d'autres éléments. Ce ratio permet de s'affranchir de fluctuations de l'intensité lumineuse globale du plasma liées, par exemple, aux variations de l'intensité du faisceau laser ou du couplage rayonnement-matière. D'habitude, sur acier, on utilise une raie de fer comme référence. Cependant, dans le cas de mesures de propreté de surface, la présence de fines de fer entraîne des variations relatives dans l'intensité des raies de fer, en fonction de l'énergie nécessaire pour les créer. L'utilisation d'une raie de fer est donc moins fiable que celle de l'azote qui sera plus stable vu la saturation en azote autour du plasma suite à l'utilisation du dispositif de balayage à l'azote 4.
[0028] La figure 2 donne un exemple de spectre, choisi sur une tôle avant dégraissage pour bien mettre en évidence les raies utilisées pour appliquer la méthode de l'invention. [0029] La figure 3 donne un exemple de comparaison entre les mesures effectuées par la méthode et le dispositif de l'invention d'une part et les résultats des analyses par une méthode de référence de laboratoire (méthode par combustion). Les différents cas correspondent à trois aciers différents analysés dans les conditions suivantes (soit trois groupes de trois points en allant de droite à gauche sur la figure 3) :
- en sortie de laminoir ; - après un dégraissage partiel sur une ligne pilote de dégraissage en continu de la Demanderesse ;
- après un dégraissage plus intensif, variant selon l'acier testé, obtenu par deux passages successifs sur la même ligne pilote de dégraissage. [0030] On peut ainsi constater que la méthode de l'invention permet de discriminer des niveaux de pollution de surface variant depuis l'état en sortie de laminage à froid jusqu'à des niveaux de pollution très faibles.
Avantages de la méthode [0031] Cette méthode a l'avantage de déterminer la pollution en carbone de surface à l'aide d'une raie CN dont les conditions de mesure (énergie laser couplée avec le dispositif de focalisation, balayage à l'azote) optimisent l'intensité.
[0032] L'utilisation de la raie CN située dans l'UV proche permet de s'affranchir de l'absorption par l'oxygène de l'air, au contraire de la raie intense du carbone à 193 nm.
[0033] L'atmosphère d'azote créée autour du plasma empêche la formation d'une couche d'oxyde autour de la zone d'impact du laser après l'extinction du plasma. La formation de cet oxyde pourrait, de manière désavantageuse, modifier localement l'émissivité thermique de la tôle et changer très localement l'absorption d'énergie thermique lors du passage dans les fours, avant galvanisation par exemple.
[0034] L'ensemble de ces avantages, importants par eux-mêmes, se traduit par une sensibilité accrue pour l'analyse des pollutions en carbone de surface des bandes et tôles métalliques. Ceci permet donc de faire des mesures significatives non seulement en sortie de laminage à froid mais aussi en sortie de bain de dégraissage.

Claims

REVENDICATIONS
1. Méthode de mesure en ligne, automatisée, de la propreté de surface différentiée en carbone d'une bande ou tôle métallique (3) en défilement continu, présentant un niveau de pollution de surface en carbone inférieur à 100 mg/m2, de préférence inférieur à 50 mg/m2, caractérisée par les étapes suivantes :
- on génère un faisceau de rayonnement au moyen d'une source (1 ) ;
- on focalise le faisceau de rayonnement au moyen d'un dispositif de focalisation (2) de manière à ce que la densité d'énergie déposée sur la bande ou tôle métallique (3) soit suffisante pour créer un plasma et pour générer des radicaux CN dans le plasma si celui-ci contient du carbone et de l'azote ;
- on crée autour du plasma une atmosphère d'azote grâce à un système de balayage (4) avec un débit apte à éviter toute présence d'oxygène de l'air dans le plasma ;
- on analyse, au moyen d'un dispositif optique de collecte (5), la lumière émise par le plasma et on redirige cette lumière émise vers un spectromètre ou tout autre moyen de séparation des longueurs d'onde de la lumière émise (7) ;
- on mesure l'intensité d'une raie de vibration intense du radical CN et on rapporte cette intensité à celle d'une raie de vibration de l'azote, afin de compenser les fluctuations liées au faisceau de rayonnement et aux interactions rayonnement - matière, la raie de vibration intense du radical CN étant la raie de vibration à 388,25 nm et la raie de vibration de l'azote étant la raie de vibration à 500,51 nm, et - on utilise le rapport obtenu pour caractériser la propreté de la surface de la bande ou tôle métallique (3), en termes de pollution au carbone.
2. Méthode de mesure en ligne, automatisée, de la propreté de surface d'une bande ou tôle métallique (3) en défilement continu selon la revendication 1 , caractérisée en ce que ledit faisceau de rayonnement est un faisceau laser ou un faisceau d'électrons.
3. Méthode de mesure en ligne, automatisée, de la propreté de surface d'une bande ou tôle métallique (3) en défilement continu selon la revendication 1 ou 2, caractérisée en ce que la densité d'énergie désirée sur la surface de bande ou tôle est obtenue grâce à un faisceau laser (1 ) de puissance et de diamètre focal adéquats, le faisceau étant focalisé sur ladite surface soit directement, soit par une focalisation améliorée par un dispositif optique d'expansion préalable du faisceau (2).
4. Méthode de mesure en ligne, automatisée, de la propreté de surface d'une bande ou tôle métallique (3) en défilement continu selon la revendication 3, caractérisée en ce que le laser (1 ) est un laser à impulsions, ledit laser (1 ) et le dispositif de focalisation (2) étant choisis pour créer une densité d'énergie à la surface de la bande ou tôle métallique (3) comprise entre 10 et 100 GW/cm2 et de préférence comprise entre 30 et 60 GW/cm2.
5. Méthode de mesure en ligne, automatisée, de la propreté de surface d'une bande ou tôle métallique (3) en défilement continu selon la revendication 1 , caractérisée en ce que le dispositif optique de collecte (5) est une pluralité de lentilles ou de miroirs ou encore une combinaison des deux qui imagent le plasma sur l'extrémité d'une fibre optique (6), qui elle-même redirige le faisceau lumineux vers le spectromètre ou un autre moyen de séparation les longueurs d'onde de la lumière émise (7).
6. Méthode de mesure en ligne, automatisée, de la propreté de surface d'une bande ou tôle métallique (3) en défilement continu selon la revendication 1 , caractérisée en ce que la bande ou tôle métallique (3) est une bande d'acier.
7. Méthode de mesure en ligne, automatisée, de la propreté de surface d'une bande ou tôle métallique (3) en défilement continu selon la revendication 1 , caractérisée en ce que la vitesse de défilement de la bande ou la tôle métallique (3) est supérieure à 0,5 m/s.
8. Méthode de mesure en ligne, automatisée, de la propreté de surface d'une bande ou tôle métallique (3) en défilement continu selon la revendication 1 , dans le cas d'une ligne de laminage à froid et après passage dans un bain de dégraissage.
9. Dispositif de mesure en ligne, automatisée, de la propreté de surface d'une bande ou tôle métallique (3) en défilement continu, caractérisé en ce qu'il comprend :
- un laser puisé (1 ), générant un faisceau de diamètre compris entre 0,5 et 10 mm, sous forme d'impulsions de durée comprise entre 0,5 et 15 ns, avec une énergie comprise entre 1 et 300 mJ par impulsion, pour la génération d'un plasma à la surface de la bande ou tôle métallique (3) ;
- un dispositif de focalisation (2) permettant une expansion de faisceau d'un facteur compris entre 2 et 10 et permettant de focaliser le faisceau sur la bande ou tôle métallique (3) à une distance comprise entre 10 et 200 cm ;
- un système de balayage d'azote (4) au voisinage du plasma sur la bande ou tôle métallique (3) avec un débit apte à éviter toute présence d'oxygène de l'air dans le plasma ;
- un dispositif optique de collecte (5) comprenant une pluralité de lentilles, de miroirs ou une combinaison des deux, pour imager la lumière émise par le plasma sur une fibre optique ;
- une fibre optique (6) ;
- un spectromètre (7) relié à la fibre optique (6) ;
- un analyseur de spectre permettant de calculer le rapport de l'intensité de la raie de vibration du carbone à 388,25 nm et de la raie de vibration de l'azote à 500,51 nm.
EP17754136.4A 2016-09-02 2017-08-10 Méthode et dispositif pour augmenter la sensibilité de la mesure en ligne de la propreté de surface des bandes d'acier Active EP3507591B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BE2016/5674A BE1024529B1 (fr) 2016-09-02 2016-09-02 Méthode et dispositif pour augmenter la sensibilité de la mesure en ligne de la propreté de surface des bandes d'acier
PCT/EP2017/070373 WO2018041597A1 (fr) 2016-09-02 2017-08-10 Méthode et dispositif pour augmenter la sensibilité de la mesure en ligne de la propreté de surface des bandes d'acier

Publications (2)

Publication Number Publication Date
EP3507591A1 true EP3507591A1 (fr) 2019-07-10
EP3507591B1 EP3507591B1 (fr) 2020-07-08

Family

ID=56990187

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17754136.4A Active EP3507591B1 (fr) 2016-09-02 2017-08-10 Méthode et dispositif pour augmenter la sensibilité de la mesure en ligne de la propreté de surface des bandes d'acier

Country Status (6)

Country Link
US (1) US11215561B2 (fr)
EP (1) EP3507591B1 (fr)
CN (1) CN109564164B (fr)
BE (1) BE1024529B1 (fr)
ES (1) ES2812706T3 (fr)
WO (1) WO2018041597A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024165632A1 (fr) * 2023-02-09 2024-08-15 Refractory Intellectual Property Gmbh & Co. Kg Procédé et dispositif d'examen pour détermination de la composition chimique d'un matériau réfractaire usagé

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2237206A (en) * 1939-12-06 1941-04-01 James R Watson Hydraulic brake impulse regulator for trailers
US5537206A (en) * 1993-11-02 1996-07-16 Nkk Corporation Method for analyzing steel and apparatus therefor
JP3212551B2 (ja) * 1998-02-02 2001-09-25 新日本製鐵株式会社 レーザ溶接方法および装置
US6343877B1 (en) * 1999-04-15 2002-02-05 Kabushiki Kaisha Sankyo Seiki Seisakusho Spindle motor
TW200537695A (en) * 2004-03-19 2005-11-16 Adv Lcd Tech Dev Ct Co Ltd Insulating film forming method, insulating film forming apparatus, and plasma film forming apparatus
JP2005281773A (ja) * 2004-03-30 2005-10-13 Hiroshi Takigawa 防着カバー、物質生成装置、及び被処理物
US8125627B2 (en) * 2007-04-27 2012-02-28 Alakai Defense Systems, Inc. Laser spectroscopy system
BE1018132A3 (fr) 2008-05-14 2010-05-04 Ct Rech Metallurgiques Asbl Methode de mesure de la proprete des bandes d'acier.
CN201955303U (zh) * 2011-01-10 2011-08-31 东南大学 对材料表面清洁度进行检测的装置
CN102147363B (zh) * 2011-01-10 2013-02-13 东南大学 对材料表面清洁度进行检测的装置及方法
CZ2011408A3 (cs) * 2011-07-04 2013-05-09 Ústav prístrojové techniky Akademie ved CR, v.v.i. Zarízení pro svarování laserem a zpusob rízení kvality svaru
CN103324851B (zh) * 2013-06-24 2015-12-02 云南省农业科学院农业环境资源研究所 一种用碳素控制农田土壤氮素面源污染的方法
CN103981330B (zh) * 2014-05-27 2016-03-23 北京佰能电气技术有限公司 一种测量钢水含碳量的方法及装置
JP2015224496A (ja) * 2014-05-29 2015-12-14 東北岡島工業株式会社 グレーチング及びその製造方法
CN204195106U (zh) * 2014-10-31 2015-03-11 浙江久德不锈钢型材有限公司 一种在线带钢清洁装置
CN104568917A (zh) * 2014-12-29 2015-04-29 内蒙古包钢钢联股份有限公司 钢中铌的碳氮化物含量的测定方法
CN105486808B (zh) * 2015-08-25 2017-09-29 武汉钢铁有限公司 便携式带钢表面清洁在线检测装置及使用方法
US9797776B2 (en) * 2015-09-04 2017-10-24 Bwt Property, Inc. Laser induced breakdown spectroscopy (LIBS) apparatus based on high repetition rate pulsed laser
CN105758843B (zh) * 2016-04-19 2018-11-27 长江大学 一种基于激光诱导击穿光谱的油料作物种子含油量检测方法

Also Published As

Publication number Publication date
WO2018041597A1 (fr) 2018-03-08
US11215561B2 (en) 2022-01-04
BE1024529B1 (fr) 2018-04-03
CN109564164A (zh) 2019-04-02
BE1024529A1 (fr) 2018-03-27
ES2812706T3 (es) 2021-03-18
CN109564164B (zh) 2021-12-28
US20210381975A1 (en) 2021-12-09
EP3507591B1 (fr) 2020-07-08

Similar Documents

Publication Publication Date Title
EP3544760B1 (fr) Procédé de décapage laser d'un produit métallique en défilement, et installation pour son exécution
EP2277030B1 (fr) Methode de mesure de la proprete des bandes d'acier
EP0654663B1 (fr) Procédé d'analyse élémentaire par spectrométrie d'émission optique sur plasma produit par laser en présence d'argon
Sibillano et al. Correlation spectroscopy as a tool for detecting losses of ligand elements in laser welding of aluminium alloys
Sibillano et al. Correlation analysis in laser welding plasma
EP3507591B1 (fr) Méthode et dispositif pour augmenter la sensibilité de la mesure en ligne de la propreté de surface des bandes d'acier
Yeo et al. A strategy to prevent signal losses, analyte decomposition, and fluctuating carbon contamination bands in surface-enhanced Raman spectroscopy
WO2008067620A1 (fr) Installation et procede pour le contrôle en ligne d'un bain de galvanisation
Yu et al. Surface-enhanced laser-induced breakdown spectroscopy utilizing metallic target for direct analysis of particle flow
EP2901139B1 (fr) Methode et systeme d'analyse de particules dans un plasma froid
Sibillano et al. Real-time monitoring of laser welding by correlation analysis: the case of AA5083
Hai et al. Use of dual-pulse laser-induced breakdown spectroscopy for characterization of the laser cleaning of a first mirror exposed in HL-2A
Tang et al. Micro-destructive analysis with high sensitivity using double-pulse resonant laser-induced breakdown spectroscopy
Tawfik et al. Damage profile of HDPE polymer using laser-induced plasma
Miller et al. Methods for globally treating silica optics to reduce optical damage
Chen et al. The role of Na+ in Al surface corrosion studied by single-shot laser-induced breakdown spectroscopy
WO2023007221A1 (fr) Procédé et installation de décapage d'une couche d'oxyde d'un produit métallique
Sarantopoulou et al. Removing foxing stains from old paper at 157 nm
EP1549933A1 (fr) PROCEDE ET DISPOSITIF DE SPECTROSCOPIE D EMISSION OPTIQUE D& apos;UN LIQUIDE EXCITE PAR LASER
JP2011112546A (ja) ガス中のガス成分計測装置及び方法
Miyauchi et al. Simultaneous optical second harmonic and sum frequency intensity image observation of hydrogen deficiency on a H–Si (1 1 1) 1× 1 surface after IR light pulse irradiation
Kaplan et al. Analytical performance characteristics of Micro-structured surfaces for laser-induced breakdown spectroscopic analysis of liquids
Krauth Measurement and control of steel sheet surface cleanliness
WO2024135276A1 (fr) Procédé d'analyse d'un liquide contenant des particules, procédé de maintien d'un bain chaud de galvanisation, procédé de production d'une tôle d'acier galvanisée à chaud, et dispositif d'analyse de liquide contenant des particules
Takenaka et al. Spectroscopic Analysis of Blue Diode Laser Induced Plume Generated by Welding of Pure Copper

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190117

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200206

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1288992

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017019489

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1288992

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201109

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201008

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201008

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201009

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201108

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2812706

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20210318

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602017019489

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

26N No opposition filed

Effective date: 20210409

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200810

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230413

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230727

Year of fee payment: 7

Ref country code: ES

Payment date: 20230904

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20240723

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240723

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240723

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240723

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20240723

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240723

Year of fee payment: 8