EP3506426B1 - Beam pointing device for antenna system, associated antenna system and platform - Google Patents

Beam pointing device for antenna system, associated antenna system and platform Download PDF

Info

Publication number
EP3506426B1
EP3506426B1 EP18215894.9A EP18215894A EP3506426B1 EP 3506426 B1 EP3506426 B1 EP 3506426B1 EP 18215894 A EP18215894 A EP 18215894A EP 3506426 B1 EP3506426 B1 EP 3506426B1
Authority
EP
European Patent Office
Prior art keywords
quasi
radiating elements
array
antenna system
steering device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18215894.9A
Other languages
German (de)
French (fr)
Other versions
EP3506426A1 (en
Inventor
Friedman Tchoffo Talom
Bertrand BOIN
Guillaume Fondi de Niort
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP3506426A1 publication Critical patent/EP3506426A1/en
Application granted granted Critical
Publication of EP3506426B1 publication Critical patent/EP3506426B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/32Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by mechanical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0031Parallel-plate fed arrays; Lens-fed arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/12Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical relative movement between primary active elements and secondary devices of antennas or antenna systems
    • H01Q3/14Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical relative movement between primary active elements and secondary devices of antennas or antenna systems for varying the relative position of primary active element and a refracting or diffracting device

Definitions

  • the present invention relates to a beam pointing device for a telecommunications antenna system, in particular satellite systems, and preferably in the Ka band.
  • the invention also relates to an antenna system comprising such a beam pointing device, a platform, in particular land, air or space, comprising at least one aforementioned antenna system, and a method of telecommunication between two stations using the antenna system. above.
  • obtaining a good quality communication implies performance for the electromagnetic waves produced by the antenna system used in the communication in terms of gain and level of the sidelobes (ratio between the intensity of side lobes and the intensity of the main lobe).
  • the electromagnetic waves of the Ka band have a frequency between 27.5 GigaHertzs (GHz) and 31 GHz while in reception, the electromagnetic waves of the Ka band have a frequency between 17.3 GHz and 21.2 GHz.
  • the polarizations of the waves in transmission and in reception are generally of the circular type, whether or not they are opposed.
  • solutions of the parabolic antenna type are generally not preferred, particularly in a terrestrial or aerial context.
  • a stationary antenna system is therefore more desirable.
  • a first solution for a stationary antenna system consists in using a passive electronically scanned array (PESA).
  • PESA passive electronically scanned array
  • EIRP equivalent isotropically radiated power
  • a second solution of a stationary antenna system consists in implementing active antenna systems, or active electronically scanned array antenna (AESA) suitable for electronically pointing to describe a hemisphere commonly called 2D electronic depointing.
  • AESA active electronically scanned array antenna
  • This type of immobile active antenna system suitable for implementing multi-directional scanning requires a plurality of active electronic elements, for example patch-type planar antennas supplied by two power supplies to ensure dual polarization, generally distributed over two disjoint antenna panels. , one being dedicated to transmission and the other to reception.
  • active electronic elements for example patch-type planar antennas supplied by two power supplies to ensure dual polarization, generally distributed over two disjoint antenna panels. , one being dedicated to transmission and the other to reception.
  • such an antenna arrangement has a size and high levels of consumption and heat dissipation which are binding for the realization of the platform.
  • the subject of the invention is also an antenna system comprising at least one beam pointing device as described above.
  • the invention also relates to a platform comprising at least one antenna system as described above.
  • the present invention also relates to a method of telecommunications, in particular by satellite, between two stations, the method comprising the use of at least one beam pointing device or of an antenna system as described above.
  • the beam aiming device D P comprises a planar quasi-optical beamformator 10.
  • the beamformer quasi-optics 10 comprises at least one waveguide 12 parallel plate (PPW standing for "Parallel Plate Waveguide") wherein a focusing element 14 is disposed.
  • the waveguide 12 parallel plate (PPW standing for "Parallel Plate Waveguide”) is a transmission guide comprising two stacked metal plates, spaced from each other in a thickness E and G s 'extending, in two longitudinal X and transverse Y directions.
  • the focusing element 14 rests on the lower plate of the waveguide 12 and has a thickness, not shown, less than or equal to that of the parallel plate waveguide 12.
  • the input of the quasi-optical beam former 10 is suitable for being supplied by at least one power source 16 suitable for generating radiofrequency waves
  • the output of the quasi-optical beam former 10 is suitable for supplying an array of radiating elements 18.
  • the input and the output of the planar quasi-optical beam former 10 correspond to the linear openings located between the two parallel plates of the waveguide 12.
  • the source 16 is on. outside the waveguide with parallel plates 12.
  • the source 16, the planar quasi-optical beam former 10 and the array of radiating elements 18 are aligned and juxtaposed in direction D, supplying the array of radiating elements 18 by the source 16, and rest substantially on the same plane, namely the plane of the lower plate of the waveguide 12.
  • the deflection of the power supply to the array of radiating elements 18 by the source 16 passing through the planar quasi-optical beam former 10 is therefore limited and strictly less than 90 °.
  • the deflection of the beam in a plane perpendicular to the parallel plate waveguide 12 (PPW) is substantially zero because the focusing is carried out in transmission in the plane of the PPW.
  • the source 16 is provided with a duplexer suitable for selecting at least the generation of an electromagnetic wave at a first frequency f 1 , dedicated, for example, to the emission of the electromagnetic waves of the Ka band, f 1 then being between 27.5 GHz and 31 GHz, or the generation of an electromagnetic wave at a second frequency f 2 , dedicated, for example, to the reception of the electromagnetic waves of the Ka band, f 2 then being included between 17.3 GHz and 21.2 GHz.
  • a duplexer suitable for selecting at least the generation of an electromagnetic wave at a first frequency f 1 , dedicated, for example, to the emission of the electromagnetic waves of the Ka band, f 1 then being between 27.5 GHz and 31 GHz, or the generation of an electromagnetic wave at a second frequency f 2 , dedicated, for example, to the reception of the electromagnetic waves of the Ka band, f 2 then being included between 17.3 GHz and 21.2 GHz.
  • the pointing device D P further comprises at least one mechanical translation element E TM suitable for moving, one relative to the other, said at least one power source 16 and at least one focusing element 14 of said quasi-optical beam former 10 according to a translational movement T perpendicular to the direction D, supplying the array of radiating elements 18 by the source 16, as shown according to two embodiments illustrated by the figures 1 and 2 .
  • the dimensioning of the pointing device D P is directly dependent on the maximum angular excursion of the desired pointing.
  • the mechanical translation element E TM makes it possible to control the illumination of the beam produced by the focusing element 14 on the line of radiating elements 18 forming an array, which delivers a mechanical depointing of the beam in the plane of the beam. line of radiating elements 18.
  • such a mechanical element exhibits, by its passive nature, low energy consumption and reduced bulk proportional to the size of the array of radiating elements 18 used.
  • the line of radiating elements 18 has a mechanical pointing capacity (hereinafter referred to as 1DM).
  • 1DM mechanical pointing capacity
  • the focusing element 14 is stationary, and the source 16 is movable in the direction T while being movable on a rail, the movement being actuated by the mechanical translation element E TM corresponding to a gear, a spring, an arm of return, etc., automatically actuated by means of a motor, not shown, as a function of the desired deflection.
  • L EF is substantially equal to the width L R along the Y axis of the array of radiating elements 18 which substantially corresponds to the width of the waveguide 12.
  • the mechanical translation element E TM is this time suitable for moving the focusing element 14 in the direction of translation T (collinear with the Y axis on the example of figure 2 ) while the source 16 is stationary.
  • the mechanical translation element E TM corresponds to a worm.
  • the waveguide 12, where the focusing element 14 rests flat on its lower metal plate has a width (substantially corresponding to the width L R of the array of radiating elements 18) greater than the width L EF of the focusing element 14 so as to allow the displacement of the focusing element 14 in the direction T corresponding to the width of the waveguide 12 and, on the example of figure 2 , also in the Y direction of the line of the array of radiating elements 18 contiguous to one another.
  • the width L R along the Y axis of the array of radiating elements 18, substantially equal to that of the waveguide 12, is such that L R ⁇ (L EF + 2 * T EF ).
  • the array of radiating elements 18 contiguous to one another therefore has more radiating elements 18 than illuminated radiating elements suitable for receiving the plane wave focused by the focusing element 14.
  • the waveguide 12 will be dimensioned so that the maximum displacement T EFmax with respect to its initial position (ie by default centered at the point M center of the planes of the parallel plate waveguide 12) is less at half the width L EF , i.e. T EFmax ⁇ LEF / 2.
  • the source 16 is provided with at least one E CPA element for electronic control of the phase and amplitude of the wave supplied by the source 16, which consequently makes it possible to orient the delivered beam. by the pointing device D P in the plane of the networking of the line of radiating elements 18.
  • an electronic pointing capacity in another dimension perpendicular to the line. previous (hereinafter called 1DE).
  • the 1DM mechanical pointing capability is more frequency stable than the 1DE electronic pointing capability, the electronic control element in phase and amplitude being inherently more sensitive to the operating frequency of the D P pointing device than is the case. is a mechanical element whose operation is not impacted by an operating frequency.
  • the invention also relates to an antenna system, not shown, comprising at least one beam pointing device D P as described above.
  • such an antenna system corresponds to the superposition (ie the stack) along the Z axis of a plurality V of beam pointing device D P each comprising an array of W radiating elements 18.
  • V mechanical translation elements E TM are controlled by the same motor or by two motors each dedicated to the displacement on either side of the median line passing through the center M of the planar quasi-optical beam former 10 and the centered position Cs from source 16.
  • Multidirectional electronic scanning is thus obtained while avoiding the use of a mechanical axis in azimuth or in elevation, for example by means of a rotating plate, fixed to the platform.
  • the radiating elements 18 supplied by the planar quasi-optical beam former 10 according to the invention have a parallelepipedal shape as illustrated in the figures.
  • figures 1 and 2 described above include two parts, namely a first polarizing part 20 and a second part or output 22 dedicated to transmission / reception as such.
  • these radiating elements 18 is cylindrical and conforms to the subject of the application.
  • the radiating element 18 comprises a horn 24, a polarizing part 20 comprising dielectric elements 26 and two ports 28, 30 for the waves emitted or received by the radiating element 18.
  • the horn 24 comprises a first transmission-reception part 22 1 suitable for transmitting and receiving a wave according to a state of polarization and a second part according to another state of polarization 22 2 , distinct from the first transmission-reception part 22 1 .
  • each part 22 1 and 22 2 is respectively supplied via the ports 28 and 30 by the previously described planar quasi-optical beam former 10.
  • the parts 22 1 and 22 2 are suitable for being associated in a single block.
  • Each of the first and second transmission-reception parts 22 1 , 22 2 is suitable for transmitting and receiving an electromagnetic wave at a first frequency f 1 or at a second frequency f 2 , the ratio between the second frequency f 2 and the first frequency f 1 is greater than 1.2, and preferably greater than 1.5.
  • the horn 24 has a cylindrical shape giving the emission of each radiating element 18 a broadband character.
  • the band covered by a horn typically extends 40% on either side of the operating frequency f 1 and f 2 .
  • the first transmission-reception part 22 1 and the second transmission-reception part 22 2 each have the shape of a half-disc, the association of the two transmission-reception parts forming the cornet 24.
  • a horn dimensioned to operate over a wide frequency band has external dimensions which are constrained by the operating wavelength corresponding to the lowest of the frequencies to be transmitted or received.
  • the interior of it is empty.
  • the interior of the horn 24 is filled with a dielectric material in order to reduce the physical dimensions of the horn 24.
  • a dielectric material is smaller. than in the corresponding wavelength in air.
  • This dielectric material is a substrate having a permittivity of between two and five depending on the production constraints.
  • the polarizing part 20 of the radiating element 18 comprises a polarizer 32 arranged so as to polarize the waves that the first emission-reception part 22 1 and the second part d 'transmission-reception 22 2 are suitable for transmitting.
  • the polarizer 32 comprises two parts arranged, not shown, so as to circularly polarize in a first direction the waves that the first part transmission-reception 22 1 is suitable for transmitting and circularly polarizing the waves that the second transmission-reception part 22 2 is suitable for transmitting in a direction opposite to the first direction.
  • the first meaning is right-hand polarization.
  • such a radiating element 18 in accordance with the subject of the application FR 3 013 909 A1 is for example suitable for emitting and / or receiving waves having a right circular polarization at the first frequency f 1 .
  • Such a radiating element 18 is also suitable for emitting and / or receiving waves having a left circular polarization at the second frequency f 2 .
  • the polarizer 32 is also part of the horn 24 (i.e. also extends into the horn 24).
  • the dielectric elements 26 are inserted in order to reduce the electrical dimension with respect to the wavelength and thus to obtain an elementary antenna A with dimensions allowing the radiating elements 18 to be brought together sufficiently during the networking in order to facilitate angular scanning over a sufficiently large range while keeping radiation performance compatible with the satellite link type application envisaged.
  • the dielectric elements 26 are preferably only located at the level of the accesses 28, 30 as well as in the polarizer 32. As a variant, the dielectric elements 26 are extended in the parts 22 1 and 22 2 .
  • Each access 28, 30 is opposite a transmission-reception part of the horn 24.
  • an access 28 for a left circular polarized wave is therefore provided opposite the first transmission-reception part 22 1 of the. horn 24 while an access 30 for a right circular polarized wave is provided opposite the second transmission-reception part 22 2 .
  • the first transmission-reception part 22 1 receives electromagnetic waves according to a state of polarization as soon as the horn 24 is electrically excited. This wave is left circular polarized by the polarizer 32. This wave then passes through the port 28 provided for a left circular polarized wave.
  • a right circular polarized wave passes through the port 30 provided for a right circular polarized wave. This wave then passes through the polarizer 32 before being emitted by the second transmission-reception part 22 2 . This transmission-reception operation can be reversed between accesses 28 and 30.
  • a single radiating element 18 makes it possible to ensure both the transmission and reception functions, for two frequencies f 1 and f 2 whose ratio is greater than to 1.2. It is a compact dual-band horn 24 with circular polarization which makes each radiating element 18 dual-band.
  • each radiating element 18 is suitable for emitting and / or receiving waves in two different states of polarization, for example, left and right circular polarizations.
  • the two ports 28, 30 are used simultaneously by applying to them, via the quasi-optical beam former 10, the sources 16 and the electronic control element in phase and in phase.
  • amplitude E CPA a certain phase shift depending on the orientation of the desired polarization, or a single port 28 or 30 is selectively excited by the source 16.
  • the specific pointing device D P based on a mechanical depointing in the plane of a line of an array of radiating elements 18, combined or not with an electronic depointing, allows in association with one or more several radiating elements 18 such as those of the request FR 3 013 909 A1 , or radiating elements 18 of parallelepiped shape having a similar operation, to obtain a very efficient stationary antenna system because it is mainly focusing and able to provide an easily reconfigurable multi-directional scan while having reduced energy consumption and heat dissipation compared to known solutions.

Description

La présente invention concerne un dispositif de pointage de faisceau pour système antennaire de télécommunications, notamment satellitaires, et de préférence dans la bande Ka. L'invention se rapporte aussi à un système antennaire comportant un tel un dispositif de pointage de faisceau, une plateforme, notamment terrestre, aérienne ou spatiale, comportant au moins un système antennaire précité, et un procédé de télécommunication entre deux stations utilisant le système antennaire précité.The present invention relates to a beam pointing device for a telecommunications antenna system, in particular satellite systems, and preferably in the Ka band. The invention also relates to an antenna system comprising such a beam pointing device, a platform, in particular land, air or space, comprising at least one aforementioned antenna system, and a method of telecommunication between two stations using the antenna system. above.

Dans le domaine des communications satellitaires, l'obtention d'une communication de bonne qualité implique des performances pour les ondes électromagnétiques produites par le système antennaire utilisé dans la communication en termes de gain et de niveau des lobes secondaires (rapport entre l'intensité des lobes secondaires et l'intensité du lobe principal).In the field of satellite communications, obtaining a good quality communication implies performance for the electromagnetic waves produced by the antenna system used in the communication in terms of gain and level of the sidelobes (ratio between the intensity of side lobes and the intensity of the main lobe).

Dans le cas particulier de la bande électromagnétique Ka, deux bandes de fréquences distinctes sont impliquées. En effet, en émission, les ondes électromagnétiques de la bande Ka ont une fréquence comprise entre 27,5 GigaHertzs (GHz) et 31 GHz tandis qu'en réception, les ondes électromagnétiques de la bande Ka ont une fréquence comprise entre 17,3 GHz et 21,2 GHz. En outre, les polarisations des ondes en émission et en réception sont généralement de type circulaires opposées ou non.In the particular case of the Ka electromagnetic band, two distinct frequency bands are involved. Indeed, in transmission, the electromagnetic waves of the Ka band have a frequency between 27.5 GigaHertzs (GHz) and 31 GHz while in reception, the electromagnetic waves of the Ka band have a frequency between 17.3 GHz and 21.2 GHz. In addition, the polarizations of the waves in transmission and in reception are generally of the circular type, whether or not they are opposed.

Ces fréquences et ces polarisations circulaires en réception et en émission imposent des contraintes sur le système antennaire.These frequencies and these circular polarizations in reception and in transmission impose constraints on the antenna system.

Pour réduire la signature visuelle (l'encombrement physique), les solutions de type antenne parabolique ne sont généralement pas privilégiées notamment en contexte terrestre ou aérien.To reduce the visual signature (physical size), solutions of the parabolic antenna type are generally not preferred, particularly in a terrestrial or aerial context.

De plus, dans le contexte de liaison satellitaire, il convient d'orienter en temps réel l'antenne afin de pointer en permanence le satellite permettant d'établir la liaison.In addition, in the context of a satellite link, it is advisable to orient the antenna in real time in order to constantly point the satellite making it possible to establish the link.

Pour obtenir un tel balayage électronique multi directionnel, dans un contexte d'intégration plateforme, notamment terrestre, aérienne ou satellitaire, il est connu de mettre en oeuvre un système motorisé de déplacement du système antennaire selon un axe mécanique en azimut ou en élévation, par exemple au moyen d'un plateau tournant, fixé à la plateforme. Cependant, un tel système antennaire motorisé présente alors une excroissance volumineuse limitant le type de plateforme d'intégration possible.To obtain such a multi-directional electronic scan, in a context of platform integration, in particular terrestrial, air or satellite, it is known to implement a motorized system for moving the antenna system along a mechanical axis in azimuth or in elevation, by example by means of a turntable, fixed to the platform. However, such a motorized antenna system then has a bulky protuberance limiting the type of integration platform possible.

Dans ce contexte d'intégration plateforme sujette à d'éventuels mouvements, notamment dans le cas des plateformes contraintes, telles que les plateformes aériennes, un système antennaire immobile est donc davantage recherché.In this context of platform integration subject to possible movements, in particular in the case of constrained platforms, such as aerial platforms, a stationary antenna system is therefore more desirable.

Une première solution de système antennaire immobile consiste à utiliser une antenne à balayage électronique passive (PESA de l'anglais « passive electronically scanned array »). Cependant, la puissance isotrope rayonnée équivalente (PIRE) obtenue est fortement dépendante de l'amplification utilisée et sa mise en œuvre requiert l'utilisation de deux panneaux antennaire dédiés respectivement à l'émission et à la réception dont la masse, la consommation énergétique, et l'encombrement sont peu compatibles selon les cas d'intégration plateforme, notamment le cas des plateformes contraintes, telles que les plateformes aériennes,A first solution for a stationary antenna system consists in using a passive electronically scanned array (PESA). However, the equivalent isotropically radiated power (EIRP) obtained is highly dependent on the amplification used and its implementation requires the use of two antenna panels dedicated respectively to transmission and reception, of which the mass, the energy consumption, and the size are hardly compatible depending on the case of platform integration, in particular the case of constrained platforms, such as aerial platforms

Une deuxième solution de système antennaire immobile consiste à mettre en œuvre des systèmes antennaires actifs, ou antenne à balayage électronique actif (AESA de l'anglais « active electronically scanned array ») propres à dépointer électroniquement pour décrire un hémisphère communément appelé dépointage 2D électronique.A second solution of a stationary antenna system consists in implementing active antenna systems, or active electronically scanned array antenna (AESA) suitable for electronically pointing to describe a hemisphere commonly called 2D electronic depointing.

Ce type de système antennaire immobile actif propre à mettre en œuvre un balayage multi directionnel requiert une pluralité d'éléments électroniques actifs, par exemple des antennes planaires de type patch alimentés par deux alimentations pour assurer une double polarisation, généralement répartis sur deux panneaux antennaires disjoints, l'un étant dédié à l'émission et l'autre à la réception. Cependant, un tel agencement antennaire présente un encombrement et des niveaux de consommation et de dissipation thermique élevés contraignants pour la réalisation de la plateforme.This type of immobile active antenna system suitable for implementing multi-directional scanning requires a plurality of active electronic elements, for example patch-type planar antennas supplied by two power supplies to ensure dual polarization, generally distributed over two disjoint antenna panels. , one being dedicated to transmission and the other to reception. However, such an antenna arrangement has a size and high levels of consumption and heat dissipation which are binding for the realization of the platform.

Il existe donc un besoin pour un système antennaire immobile, propre à mettre en œuvre un balayage multi directionnel, compact et présentant des performances énergétiques réduites par rapport aux solutions connues.There is therefore a need for a stationary antenna system, suitable for implementing multi-directional scanning, compact and exhibiting reduced energy performance compared to known solutions.

A cet effet, l'invention a pour objet un dispositif de pointage de faisceau pour système antennaire de télécommunications, le dispositif comprenant :

  • au moins une source d'alimentation propre à générer des ondes radiofréquences,
  • un formateur de faisceaux quasi-optique planaire dont l'entrée est propre à être alimentée par ladite au moins une source et dont la sortie est propre à alimenter un réseau d'éléments rayonnants, le formateur de faisceaux quasi-optique planaire comprenant un guide d'onde à plaques parallèles, l'entrée et la sortie du formateur de faisceau quasi-optique planaire correspondant aux ouvertures linéaires situées entre les deux plaques parallèles du guide d'onde,
  • ledit réseau d'éléments rayonnants,
le dispositif comprenant en outre au moins un élément de translation mécanique propre à déplacer, l'un par rapport à l'autre, ladite au moins une source d'alimentation et au moins un élément focalisant dudit formateur de faisceaux quasi-optique planaire selon un mouvement de translation perpendiculaire à la direction d'alimentation du réseau d'éléments rayonnants par la source.To this end, the invention relates to a beam pointing device for a telecommunications antenna system, the device comprising:
  • at least one power source suitable for generating radiofrequency waves,
  • a planar quasi-optical beam former, the input of which is suitable for being supplied by said at least one source and the output of which is suitable for supplying an array of radiating elements, the planar quasi-optical beam former comprising a guide d 'wave with parallel plates, the input and the output of the planar quasi-optical beamformator corresponding to the linear openings located between the two parallel plates of the waveguide,
  • said array of radiating elements,
the device further comprising at least one mechanical translation element suitable for moving, one relative to the other, said at least one power source and at least one focusing element of said planar quasi-optical beam former according to a translational movement perpendicular to the supply direction of the array of radiating elements by the source.

Selon des modes de réalisation particuliers de l'invention, le dispositif de pointage de faisceau présente également l'une ou plusieurs des caractéristiques suivantes, prise(s) isolément ou suivant toute(s) combinaison(s) techniquement possible(s) :

  • la source est munie d'au moins un élément de contrôle électronique en phase et en amplitude du faisceau délivré en sortie du réseau d'éléments rayonnants ;
  • l'élément de translation mécanique est propre à déplacer ladite au moins une source d'alimentation par rapport audit élément focalisant dudit formateur de faisceaux quasi-optique planaire immobile ;
  • l'élément de translation mécanique est propre à déplacer ledit au moins un élément focalisant dudit formateur de faisceaux quasi-optique planaire par rapport à ladite au moins une source d'alimentation immobile ;
  • le formateur de faisceaux quasi-optique planaire comprend un guide d'onde à plaques parallèles, le réseau d'éléments rayonnants et le guide d'onde à plaques parallèles présentant une largeur strictement supérieure à la largeur de l'élément focalisant, l'élément de translation mécanique étant propre à déplacer l'élément focalisant selon la largeur du guide d'onde à plaques parallèles ;
  • le déplacement maximal de l'élément focalisant, par rapport à sa position initiale centrée selon la largeur du guide d'onde à plaques parallèles, est inférieur à la moitié de la largeur de l'élément focalisant ;
  • chaque élément rayonnant du réseau d'éléments rayonnants comprend un cornet comprenant une première partie d'émission-réception et une deuxième partie d'émissionréception alimentées par le formateur de faisceaux quasi-optique,
chacune des première et deuxième parties d'émission-réception étant propre à émettre et recevoir une onde électromagnétique à une première fréquence ou à une deuxième fréquence, le rapport entre la deuxième fréquence et la première fréquence étant supérieur à 1,2, de préférence supérieur à 1,5, la première fréquence et la deuxième fréquence appartenant à la bande Ka du spectre électromagnétique.According to particular embodiments of the invention, the beam pointing device also has one or more of the following characteristics, taken in isolation or in any technically possible combination (s):
  • the source is provided with at least one electronic control element in phase and in amplitude of the beam delivered at the output of the array of radiating elements;
  • the mechanical translation element is able to move said at least one power source relative to said focusing element of said stationary planar quasi-optical beam former;
  • the mechanical translation element is suitable for moving said at least one focusing element of said planar quasi-optical beam former relative to said at least one stationary power source;
  • the planar quasi-optical beam former comprises a waveguide with parallel plates, the array of radiating elements and the waveguide with parallel plates having a width strictly greater than the width of the focusing element, the element of mechanical translation being able to move the focusing element along the width of the parallel plate waveguide;
  • the maximum displacement of the focusing element, relative to its initial position centered along the width of the parallel plate waveguide, is less than half the width of the focusing element;
  • each radiating element of the array of radiating elements comprises a horn comprising a first transmission-reception part and a second transmission-reception part supplied by the quasi-optical beam former,
each of the first and second transmission-reception parts being suitable for transmitting and receiving an electromagnetic wave at a first frequency or at a second frequency, the ratio between the second frequency and the first frequency being greater than 1.2, preferably greater at 1.5, the first frequency and the second frequency belonging to the Ka band of the electromagnetic spectrum.

L'invention a également pour objet un système antennaire comprenant au moins un dispositif de pointage de faisceau tel que précédemment décrit.The subject of the invention is also an antenna system comprising at least one beam pointing device as described above.

En outre, l'invention se rapporte aussi à une plateforme comportant au moins un système antennaire telle que précédemment décrit.In addition, the invention also relates to a platform comprising at least one antenna system as described above.

La présente invention a également pour objet un procédé de télécommunications, notamment par satellite, entre deux stations, le procédé comprenant l'emploi d'au moins un dispositif de pointage de faisceau ou d'un système antennaire tel que décrit précédemment.The present invention also relates to a method of telecommunications, in particular by satellite, between two stations, the method comprising the use of at least one beam pointing device or of an antenna system as described above.

D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description détaillée qui suit, de modes de réalisation de l'invention, donnés à titre d'exemple uniquement et en références aux dessins qui sont :

  • figure 1, une vue schématique en perspective d'un dispositif de pointage de faisceau selon un premier mode de réalisation ;
  • figure 2, une vue schématique en perspective d'un dispositif de pointage de faisceau selon un deuxième mode de réalisation ;
  • figure 3, une vue schématique en perspective d'un exemple d'élément rayonnant d'antenne élémentaire selon la présente invention.
Other characteristics and advantages of the invention will become apparent on reading the following detailed description of embodiments of the invention, given by way of example only and with reference to the drawings which are:
  • figure 1 , a schematic perspective view of a beam aiming device according to a first embodiment;
  • figure 2 , a schematic perspective view of a beam aiming device according to a second embodiment;
  • figure 3 , a schematic perspective view of an example of an elementary antenna radiating element according to the present invention.

Dans la suite de la description, l'expression « sensiblement » exprimera une relation d'égalité à plus ou moins 10%.In the remainder of the description, the expression “substantially” will express a relationship of equality of plus or minus 10%.

Le dispositif de pointage DP de faisceau selon la présente invention comprend un formateur de faisceaux quasi-optique 10 planaire.The beam aiming device D P according to the present invention comprises a planar quasi-optical beamformator 10.

Plus précisément, le formateur de faisceaux quasi-optique 10 comprend au moins un guide d'onde 12 à plaques parallèles (PPW de l'anglais « Parallel Plate Waveguide ») dans lequel un élément focalisant 14 est disposé.Specifically, the beamformer quasi-optics 10 comprises at least one waveguide 12 parallel plate (PPW standing for "Parallel Plate Waveguide") wherein a focusing element 14 is disposed.

Plus précisément, le guide d'onde 12 à plaques parallèles (PPW de l'anglais « Parallel Plate Waveguide ») est un guide de transmission comprenant deux plaques métalliques empilées, espacées l'une de l'autre selon une épaisseur EG et s'étendant, selon deux directions longitudinale X et transversale Y.Specifically, the waveguide 12 parallel plate (PPW standing for "Parallel Plate Waveguide") is a transmission guide comprising two stacked metal plates, spaced from each other in a thickness E and G s 'extending, in two longitudinal X and transverse Y directions.

L'élément focalisant 14 repose sur la plaque inférieure du guide d'onde 12 et présente une épaisseur, non représentée, inférieure ou égale à celle du guide d'onde à plaques parallèle 12.The focusing element 14 rests on the lower plate of the waveguide 12 and has a thickness, not shown, less than or equal to that of the parallel plate waveguide 12.

Un tel élément focalisant 14 correspond par exemple :

  • à une lentille contrainte, comme décrit par exemple dans les documents US 3170158 et US 5936588 qui illustrent le cas d'une lentille de Rotman, ou
  • à un réflecteur comme décrit par exemple dans les documents FR 2944153 et FR 2986377 pour des formateurs de faisceaux Pillbox, ou
  • à la structure focalisante décrite dans les documents FR 3 038 457 , US 2002/101386 A1 , US 2003/016097 A1 , US 2 721 263 A Z ou
  • une structure focalisante plane à gradient d'indice,
  • etc.
Such a focusing element 14 corresponds for example:
  • to a constrained lens, as described for example in the documents US 3170158 and US 5936588 which illustrate the case of a Rotman lens, or
  • to a reflector as described for example in the documents FR 2944153 and FR 2986377 for Pillbox beamformers, or
  • to the focusing structure described in the documents FR 3,038,457 , US 2002/101386 A1 , US 2003/016097 A1 , US 2,721,263 A Z or
  • a plane focusing structure with an index gradient,
  • etc.

Dans le dispositif de pointage DP, l'entrée du formateur de faisceaux quasi-optique 10 est propre à être alimentée par au moins une source 16 d'alimentation propre à générer des ondes radiofréquences, et la sortie du formateur de faisceaux quasi-optique 10 est propre à alimenter un réseau d'éléments rayonnants 18. L'entrée et la sortie du formateur de faisceau quasi-optique 10 planaire correspondent aux ouvertures linéaires situées entre les deux plaques parallèles du guide d'onde 12. La source 16 est en dehors du guide d'onde à plaques parallèles 12. La source 16, le formateur de faisceau quasi-optique 10 planaire et le réseau d'éléments rayonnants 18 sont alignés et juxtaposés selon la direction D, d'alimentation du réseau d'éléments rayonnants 18 par la source 16, et reposent sensiblement sur le même plan, à savoir le plan de la plaque inférieure du guide d'onde 12.In the pointing device D P , the input of the quasi-optical beam former 10 is suitable for being supplied by at least one power source 16 suitable for generating radiofrequency waves, and the output of the quasi-optical beam former 10 is suitable for supplying an array of radiating elements 18. The input and the output of the planar quasi-optical beam former 10 correspond to the linear openings located between the two parallel plates of the waveguide 12. The source 16 is on. outside the waveguide with parallel plates 12. The source 16, the planar quasi-optical beam former 10 and the array of radiating elements 18 are aligned and juxtaposed in direction D, supplying the array of radiating elements 18 by the source 16, and rest substantially on the same plane, namely the plane of the lower plate of the waveguide 12.

La déviation de l'alimentation du réseau d'éléments rayonnants 18 par la source 16 en passant par le formateur de faisceau quasi-optique 10 planaire est donc limitée et strictement inférieure à 90°. Autrement dit, la déviation du faisceau dans un plan perpendiculaire au guide d'onde à plaques parallèles 12 (PPW) est sensiblement nulle car la focalisation est réalisée en transmission dans le plan du PPW.The deflection of the power supply to the array of radiating elements 18 by the source 16 passing through the planar quasi-optical beam former 10 is therefore limited and strictly less than 90 °. In other words, the deflection of the beam in a plane perpendicular to the parallel plate waveguide 12 (PPW) is substantially zero because the focusing is carried out in transmission in the plane of the PPW.

Par ailleurs, un tel alignement sur un même plan de la source 16, du formateur de faisceau quasi-optique 10 planaire et du réseau d'éléments rayonnants 18 permet une superposition (i.e. un empilement) selon l'axe Z d'une pluralité V de dispositif de pointage de faisceau DP comprenant chacun un réseau de W éléments rayonnants 18.Moreover, such an alignment on the same plane of the source 16, of the planar quasi-optical beam former 10 and of the array of radiating elements 18 allows a superposition (ie a stack) along the Z axis of a plurality V of beam aiming device D P each comprising an array of W radiating elements 18.

Selon un aspect non représenté la source 16 est munie d'un duplexeur propre à sélectionner au moins la génération d'une onde électromagnétique à une première fréquence f1, dédiée, par exemple, à l'émission des ondes électromagnétiques de la bande Ka, f1 étant alors comprise entre 27,5 GHz et 31 GHz, ou la génération d'une onde électromagnétique à une deuxième fréquence f2, dédiée, par exemple, à la réception des ondes électromagnétiques de la bande Ka, f2 étant alors comprise entre 17,3 GHz et 21,2 GHz.According to an aspect not shown, the source 16 is provided with a duplexer suitable for selecting at least the generation of an electromagnetic wave at a first frequency f 1 , dedicated, for example, to the emission of the electromagnetic waves of the Ka band, f 1 then being between 27.5 GHz and 31 GHz, or the generation of an electromagnetic wave at a second frequency f 2 , dedicated, for example, to the reception of the electromagnetic waves of the Ka band, f 2 then being included between 17.3 GHz and 21.2 GHz.

Selon la présente invention, le dispositif de pointage DP comprend en outre au moins un élément de translation mécanique ETM propre à déplacer, l'un par rapport à l'autre, ladite au moins une source d'alimentation 16 et au moins un élément focalisant 14 dudit formateur de faisceaux quasi-optique 10 selon un mouvement de translation T perpendiculaire à la direction D, d'alimentation du réseau d'éléments rayonnants 18 par la source 16, tel que représenté selon deux modes de réalisation illustrés par les figures 1 et 2.According to the present invention, the pointing device D P further comprises at least one mechanical translation element E TM suitable for moving, one relative to the other, said at least one power source 16 and at least one focusing element 14 of said quasi-optical beam former 10 according to a translational movement T perpendicular to the direction D, supplying the array of radiating elements 18 by the source 16, as shown according to two embodiments illustrated by the figures 1 and 2 .

Selon un aspect particulier, le dimensionnement du dispositif de pointage DP est directement dépendant de l'excursion angulaire maximale de pointage souhaité.According to a particular aspect, the dimensioning of the pointing device D P is directly dependent on the maximum angular excursion of the desired pointing.

Autrement dit, l'élément de translation mécanique ETM permet de contrôler l'illumination du faisceau produit par l'élément focalisant 14 sur la ligne d'éléments rayonnants 18 formant réseau, ce qui délivre un dépointage mécanique du faisceau dans le plan de la ligne d'éléments rayonnants 18.In other words, the mechanical translation element E TM makes it possible to control the illumination of the beam produced by the focusing element 14 on the line of radiating elements 18 forming an array, which delivers a mechanical depointing of the beam in the plane of the beam. line of radiating elements 18.

A la différence des solutions connues d'optimisation des systèmes antennaires à balayage électronique immobile, un tel élément mécanique présente de par sa nature passive une faible consommation énergétique et un encombrement réduit proportionnel à la taille du réseau d'éléments rayonnants 18 mis en œuvre.Unlike the known solutions for optimizing stationary electronic scanning antenna systems, such a mechanical element exhibits, by its passive nature, low energy consumption and reduced bulk proportional to the size of the array of radiating elements 18 used.

Ainsi la ligne d'éléments rayonnants 18 a une capacité de pointage mécanique (appelée par la suite 1DM). Une telle capacité de pointage mécanique présente l'avantage d'être stable en fréquence.Thus the line of radiating elements 18 has a mechanical pointing capacity (hereinafter referred to as 1DM). Such a mechanical pointing capability has the advantage of being stable in frequency.

Deux modes de réalisation d'une telle translation mécanique entre l'élément focalisant 14 et la source 16 sont envisageables selon que la translation mécanique est appliquée à la source 16, tel qu'illustré par la figure 1, ou à l'élément focalisant 14, tel qu'illustré par la figure 2.Two embodiments of such a mechanical translation between the focusing element 14 and the source 16 can be envisaged depending on whether the mechanical translation is applied to the source 16, as illustrated by figure 1 , or to the focusing element 14, as illustrated by figure 2 .

Par exemple, sur la figure 1, l'élément focalisant 14 est immobile, et la source 16 est déplaçable selon la direction T en étant mobile sur un rail, le déplacement étant actionné par l'élément de translation mécanique ETM correspondant à un engrenage, un ressort, un bras de rappel, etc., actionné automatiquement au moyen d'une motorisation, non représentée, en fonction du dépointage souhaité.For example, on the figure 1 , the focusing element 14 is stationary, and the source 16 is movable in the direction T while being movable on a rail, the movement being actuated by the mechanical translation element E TM corresponding to a gear, a spring, an arm of return, etc., automatically actuated by means of a motor, not shown, as a function of the desired deflection.

Lorsque la source 16 est en position centrée CS par rapport à la largeur LEF de l'élément focalisant 14 selon la direction Y, l'élément focalisant 14 est propre à illuminer l'ensemble du réseau d'éléments rayonnants 18. Autrement dit, LEF est sensiblement égale à la largeur LR selon l'axe Y du réseau d'éléments rayonnants 18 qui correspond sensiblement à la largeur du guide d'onde 12.When the source 16 is in a centered position C S with respect to the width L EF of the focusing element 14 in the direction Y, the focusing element 14 is suitable for illuminating the entire array of radiating elements 18. In other words , L EF is substantially equal to the width L R along the Y axis of the array of radiating elements 18 which substantially corresponds to the width of the waveguide 12.

En revanche, lorsque la source 16 est déplacée selon la direction T à distance non nulle de cette position centrée CS, seule une partie des éléments rayonnants 18 est illuminé, ce qui provoque un dépointage du faisceau obtenu pour cette position décentrée de la source 16 par rapport à la position centrée précédemment décrite.On the other hand, when the source 16 is moved in the direction T at a non-zero distance from this centered position C S , only a part of the radiating elements 18 is illuminated, which causes a deflection of the beam obtained for this off-center position of the source 16 relative to the centered position previously described.

Selon le mode de réalisation de la figure 1, le déplacement maximal TSmax de la source est limité par sa propre largeur LS et par la largeur LR du formateur de faisceaux quasi-optique 10 planaire de sorte que LR= 2*TSmax+ LS.Depending on the embodiment of the figure 1 , the maximum displacement T Smax of the source is limited by its own width L S and by the width L R of the planar quasi-optical beamformator 10 so that L R = 2 * T Smax + L S.

En relation avec la figure 2, l'élément de translation mécanique ETM est cette fois propre à déplacer l'élément focalisant 14 selon la direction de translation T (colinéaire à l'axe Y sur l'exemple de la figure 2) tandis que la source 16 est immobile.In relation to the figure 2 , the mechanical translation element E TM is this time suitable for moving the focusing element 14 in the direction of translation T (collinear with the Y axis on the example of figure 2 ) while the source 16 is stationary.

Par exemple, l'élément de translation mécanique ETM correspond à une vis sans fin.For example, the mechanical translation element E TM corresponds to a worm.

Selon cette configuration, il est de ce fait nécessaire que le guide d'onde 12, où l'élément focalisant 14 repose à plat sur sa plaque métallique inférieure, présente une largeur (correspondant sensiblement à la largeur LR du réseau d'élément rayonnants 18) supérieure à la largeur LEF de l'élément focalisant 14 de sorte à permettre le déplacement de l'élément focalisant 14 selon la direction T correspondant à la largeur du guide d'onde 12 et, sur l'exemple de la figure 2, également à la direction Y de la ligne du réseau d'éléments rayonnants 18 accolés les uns au aux autres.According to this configuration, it is therefore necessary that the waveguide 12, where the focusing element 14 rests flat on its lower metal plate, has a width (substantially corresponding to the width L R of the array of radiating elements 18) greater than the width L EF of the focusing element 14 so as to allow the displacement of the focusing element 14 in the direction T corresponding to the width of the waveguide 12 and, on the example of figure 2 , also in the Y direction of the line of the array of radiating elements 18 contiguous to one another.

En d'autres termes, selon le mode de réalisation de la figure 2 où l'élément focalisant 14 du formateur de faisceaux quasi-optique 10 est déplacé selon un déplacement TEF par rapport à la source 16 immobile du dispositif de pointage DP, la largeur LR selon l'axe Y du réseau d'éléments rayonnants 18, sensiblement égale à celle du guide d'onde 12, est telle que LR≥ (LEF+2*TEF).In other words, depending on the embodiment of the figure 2 where the focusing element 14 of the quasi-optical beam former 10 is moved according to a displacement T EF with respect to the stationary source 16 of the pointing device D P , the width L R along the Y axis of the array of radiating elements 18, substantially equal to that of the waveguide 12, is such that L R ≥ (L EF + 2 * T EF ).

Selon la configuration de la figure 2, le réseau d'éléments rayonnants 18 accolés les uns aux autres compte donc plus d'éléments rayonnants 18 que d'éléments rayonnants illuminés propres à recevoir l'onde plane focalisée par l'élément focalisant 14.Depending on the configuration of the figure 2 , the array of radiating elements 18 contiguous to one another therefore has more radiating elements 18 than illuminated radiating elements suitable for receiving the plane wave focused by the focusing element 14.

Selon un aspect particulier, le guide d'onde 12 sera dimensionné de sorte que le déplacement maximal TEFmax par rapport à sa position initiale (i.e. par défaut centrée au point M centre des plans du guide d'onde à plaques parallèles 12) est inférieur à la moitié de la largeur LEF, soit TEFmax≤ LEF/2.According to a particular aspect, the waveguide 12 will be dimensioned so that the maximum displacement T EFmax with respect to its initial position (ie by default centered at the point M center of the planes of the parallel plate waveguide 12) is less at half the width L EF , i.e. T EFmax ≤ LEF / 2.

Par ailleurs, selon un aspect complémentaire, la source 16 est munie d'au moins un élément ECPA de contrôle électronique en phase et en amplitude de l'onde fournie par la source 16, ce qui permet en conséquence d'orienter le faisceau délivrer par le dispositif de pointage DP dans le plan de la mise en réseau de la ligne d'éléments rayonnants 18.Furthermore, according to a complementary aspect, the source 16 is provided with at least one E CPA element for electronic control of the phase and amplitude of the wave supplied by the source 16, which consequently makes it possible to orient the delivered beam. by the pointing device D P in the plane of the networking of the line of radiating elements 18.

Ainsi, selon cet aspect complémentaire du dispositif de pointage DP selon la présente invention, à la capacité de pointage mécanique dans une dimension 1DM de la ligne d'éléments rayonnants 18 s'ajoute une capacité de pointage électronique dans une autre dimension perpendiculaire à la précédente (appelée par la suite 1DE).Thus, according to this complementary aspect of the pointing device D P according to the present invention, to the mechanical pointing capacity in a 1DM dimension of the line of radiating elements 18 is added an electronic pointing capacity in another dimension perpendicular to the line. previous (hereinafter called 1DE).

La capacité de pointage mécanique 1DM est plus stable en fréquence que la capacité de pointage électronique 1DE, l'élément de contrôle électronique en phase et en amplitude étant par nature plus sensible à la fréquence de fonctionnement du dispositif de pointage DP que ne l'est un élément mécanique dont le fonctionnement n'est pas impacté par une fréquence de fonctionnement.The 1DM mechanical pointing capability is more frequency stable than the 1DE electronic pointing capability, the electronic control element in phase and amplitude being inherently more sensitive to the operating frequency of the D P pointing device than is the case. is a mechanical element whose operation is not impacted by an operating frequency.

Ainsi, tout en augmentant la précision de pointage de faisceau par un ajustement électronique en amplitude et en phase, une stabilité de pointage est garantie indépendamment de la fréquence de fonctionnement par le dispositif de pointage DP selon la présente invention.Thus, while increasing the beam aiming precision by electronic adjustment in amplitude and phase, aiming stability is guaranteed. independently of the operating frequency by the pointing device D P according to the present invention.

L'invention concerne également un système antennaire, non représenté comprenant au moins un dispositif de pointage de faisceau DP tel que précédemment décrit.The invention also relates to an antenna system, not shown, comprising at least one beam pointing device D P as described above.

Par exemple, un tel système antennaire correspond à la superposition (i.e. l'empilement) selon l'axe Z d'une pluralité V de dispositif de pointage de faisceau DP comprenant chacun un réseau de W éléments rayonnants 18.For example, such an antenna system corresponds to the superposition (ie the stack) along the Z axis of a plurality V of beam pointing device D P each comprising an array of W radiating elements 18.

Le système antennaire correspondant comprend donc une matrice de WxV éléments rayonnants 18, V sources 16 distinctes alimentant respectivement chacune des V lignes de W éléments rayonnants 18 (par exemple sur les figures 1 et 2 W=13), V éléments de translation mécanique ETM et en complément V éléments de contrôle électronique en phase et en amplitude ECPA étant mis en œuvre pour contrôler automatiquement localement sur la plateforme, voire à distance notamment dans le cas d'une plateforme spatiale, le dépointage (i.e. pointage de faisceau dans une direction donnée par rapport à une direction de pointage par défaut) mécanique et/ou électronique de V faisceaux dans le plan de chacune des V lignes d'éléments rayonnants 18.The corresponding antenna system therefore comprises a matrix of WxV radiating elements 18, V sources 16 distinct respectively supplying each of the V lines of W radiating elements 18 (for example on the figures 1 and 2 W = 13), V mechanical translation elements E TM and in addition V electronic phase and amplitude control elements E CPA being implemented to automatically control locally on the platform, or even remotely, in particular in the case of a platform spatial, mechanical and / or electronic deflection (ie beam aiming in a given direction with respect to a default aiming direction) of V beams in the plane of each of the V lines of radiating elements 18.

Les V éléments de translation mécanique ETM sont contrôlés par un même moteur ou par deux moteurs dédiés chacun au déplacement de part et d'autre de la ligne médiane passant par le centre M du formateur de faisceaux quasi-optique planaire 10 et la position centrée Cs de la source 16.The V mechanical translation elements E TM are controlled by the same motor or by two motors each dedicated to the displacement on either side of the median line passing through the center M of the planar quasi-optical beam former 10 and the centered position Cs from source 16.

On obtient ainsi un balayage électronique multi directionnel tout en évitant l'utilisation d'un axe mécanique en azimut ou en élévation, par exemple au moyen d'un plateau tournant, fixé à la plateforme.Multidirectional electronic scanning is thus obtained while avoiding the use of a mechanical axis in azimuth or in elevation, for example by means of a rotating plate, fixed to the platform.

Selon un aspect particulier, les éléments rayonnants 18 alimentés par le formateur de faisceaux quasi-optique planaire 10 selon l'invention, présente une forme parallélépipédique comme illustré sur les figures 1 et 2 décrites précédemment et comprennent deux parties, à savoir une première partie 20 polarisante et une deuxième partie ou sortie 22 dédiée à l'émission/réception en tant que telle.According to a particular aspect, the radiating elements 18 supplied by the planar quasi-optical beam former 10 according to the invention, have a parallelepipedal shape as illustrated in the figures. figures 1 and 2 described above and include two parts, namely a first polarizing part 20 and a second part or output 22 dedicated to transmission / reception as such.

Alternativement, la forme de ces éléments rayonnants 18 est cylindrique et conforme à l'objet de la demande FR 3 013 909 A1 tel qu'illustré par la figure 3.Alternatively, the shape of these radiating elements 18 is cylindrical and conforms to the subject of the application. FR 3 013 909 A1 as illustrated by figure 3 .

Plus précisément, tel qu'illustré par la figure 3, l'élément rayonnant 18 comporte un cornet 24, une partie polarisante 20 comprenant des éléments diélectriques 26 et deux accès 28, 30 pour les ondes émises ou reçues par l'élément rayonnant 18.More precisely, as illustrated by figure 3 , the radiating element 18 comprises a horn 24, a polarizing part 20 comprising dielectric elements 26 and two ports 28, 30 for the waves emitted or received by the radiating element 18.

Le cornet 24 comporte une première partie d'émission-réception 221 propre à émettre et recevoir une onde selon un état de polarisation et une deuxième partie selon un autre état de polarisation 222, distinct de la première partie d'émission-réception 221.The horn 24 comprises a first transmission-reception part 22 1 suitable for transmitting and receiving a wave according to a state of polarization and a second part according to another state of polarization 22 2 , distinct from the first transmission-reception part 22 1 .

Comme indiqué précédemment, chaque partie 221 et 222 est respectivement alimentée via les accès 28 et 30 par le formateur 10 de faisceaux quasi-optique planaire précédemment décrit.As indicated above, each part 22 1 and 22 2 is respectively supplied via the ports 28 and 30 by the previously described planar quasi-optical beam former 10.

Les parties 221 et 222 selon une variante de réalisation sont propres à être associées en un seul bloc.The parts 22 1 and 22 2 according to an alternative embodiment are suitable for being associated in a single block.

Chacune des première et deuxième parties d'émission-réception 221, 222 est propre à émettre et recevoir une onde électromagnétique à une première fréquence f1 ou à une deuxième fréquence f2, le rapport entre la deuxième fréquence f2 et la première fréquence f1 est supérieure à 1,2, et de préférence supérieur à 1,5.Each of the first and second transmission-reception parts 22 1 , 22 2 is suitable for transmitting and receiving an electromagnetic wave at a first frequency f 1 or at a second frequency f 2 , the ratio between the second frequency f 2 and the first frequency f 1 is greater than 1.2, and preferably greater than 1.5.

Selon une caractéristique particulière, le cornet 24 a une forme cylindrique conférant à l'émission de chaque élément rayonnant 18 un caractère large bande. La bande couverte par un cornet s'étend typiquement à 40% de part et d'autre de la fréquence de fonctionnement f1 et f2.According to one particular characteristic, the horn 24 has a cylindrical shape giving the emission of each radiating element 18 a broadband character. The band covered by a horn typically extends 40% on either side of the operating frequency f 1 and f 2 .

Ainsi, dans cette variante, la première partie d'émission-réception 221 et la deuxième partie d'émission-réception 222 ont chacune la forme d'un demi-disque, l'association des deux parties d'émission-réception formant le cornet 24.Thus, in this variant, the first transmission-reception part 22 1 and the second transmission-reception part 22 2 each have the shape of a half-disc, the association of the two transmission-reception parts forming the cornet 24.

De façon classique, un cornet dimensionné pour fonctionner sur une large bande de fréquence présente des dimensions extérieures qui sont contraintes par la longueur d'onde de fonctionnement correspondant à la plus faible des fréquences à émettre ou recevoir. De plus, l'intérieur de celui-ci est vide.Conventionally, a horn dimensioned to operate over a wide frequency band has external dimensions which are constrained by the operating wavelength corresponding to the lowest of the frequencies to be transmitted or received. In addition, the interior of it is empty.

Dans l'exemple présenté, identiquement aux éléments diélectriques 26, l'intérieur du cornet 24 est rempli d'un matériau diélectrique afin de réduire les dimensions physiques du cornet 24. En effet, la longueur d'onde dans un matériau diélectrique est plus petite que dans la longueur d'onde correspondante dans l'air. Ainsi, pour une structure de cornet donné, un élargissement vers la bande de fréquence de fonctionnement est réalisé. Ce matériau diélectrique est un substrat présentant une permittivité comprise entre deux et cinq en fonction des contraintes de réalisation.In the example presented, identically to the dielectric elements 26, the interior of the horn 24 is filled with a dielectric material in order to reduce the physical dimensions of the horn 24. Indeed, the wavelength in a dielectric material is smaller. than in the corresponding wavelength in air. Thus, for a given horn structure, a widening towards the operating frequency band is achieved. This dielectric material is a substrate having a permittivity of between two and five depending on the production constraints.

De plus, par exemple pour une application en bande Ka du spectre électromagnétique, la partie polarisante 20 de l'élément rayonnant 18 comprend un polariseur 32 agencé de manière à polariser les ondes que la première partie d'émissionréception 221 et la deuxième partie d'émission-réception 222 sont propres à émettre.In addition, for example for a Ka-band application of the electromagnetic spectrum, the polarizing part 20 of the radiating element 18 comprises a polarizer 32 arranged so as to polarize the waves that the first emission-reception part 22 1 and the second part d 'transmission-reception 22 2 are suitable for transmitting.

Le polariseur 32 comporte deux parties agencées, non représentées, de manière à polariser circulairement dans un premier sens les ondes que la première partie d'émission-réception 221 est propre à émettre et à polariser circulairement les ondes que la deuxième partie d'émission-réception 222 est propre à émettre dans un sens opposé au premier sens.The polarizer 32 comprises two parts arranged, not shown, so as to circularly polarize in a first direction the waves that the first part transmission-reception 22 1 is suitable for transmitting and circularly polarizing the waves that the second transmission-reception part 22 2 is suitable for transmitting in a direction opposite to the first direction.

Pour la suite de la description, le premier sens est la polarisation droite.For the remainder of the description, the first meaning is right-hand polarization.

Ainsi, un tel élément rayonnant 18 conforme à l'objet de la demande FR 3 013 909 A1 est par exemple propre à émettre et/ou recevoir des ondes présentant une polarisation circulaire droite à la première fréquence f1. Un tel élément rayonnant 18 est également propre à émettre et/ou recevoir des ondes présentant une polarisation circulaire gauche à la deuxième fréquence f2.Thus, such a radiating element 18 in accordance with the subject of the application FR 3 013 909 A1 is for example suitable for emitting and / or receiving waves having a right circular polarization at the first frequency f 1 . Such a radiating element 18 is also suitable for emitting and / or receiving waves having a left circular polarization at the second frequency f 2 .

Selon une variante, le polariseur 32 fait également partie du cornet 24 (i.e. se prolonge également dans le cornet 24).According to one variant, the polarizer 32 is also part of the horn 24 (i.e. also extends into the horn 24).

Dans l'élément rayonnant 18, les éléments diélectriques 26 sont insérés afin de réduire la dimension électrique par rapport à la longueur d'onde et ainsi d'obtenir une antenne élémentaire A avec des dimensions permettant de rapprocher les éléments rayonnants 18 suffisamment lors de la mise en réseau afin de faciliter le balayage angulaire sur une plage suffisamment grande tout en gardant des performances de rayonnement compatibles de l'application de type liaison satellitaire envisagée. Les éléments diélectriques 26 sont préférentiellement uniquement localisés au niveau des accès 28, 30 ainsi que dans le polariseur 32. En variante, les éléments diélectriques 26 sont prolongés dans les parties 221 et 222.In the radiating element 18, the dielectric elements 26 are inserted in order to reduce the electrical dimension with respect to the wavelength and thus to obtain an elementary antenna A with dimensions allowing the radiating elements 18 to be brought together sufficiently during the networking in order to facilitate angular scanning over a sufficiently large range while keeping radiation performance compatible with the satellite link type application envisaged. The dielectric elements 26 are preferably only located at the level of the accesses 28, 30 as well as in the polarizer 32. As a variant, the dielectric elements 26 are extended in the parts 22 1 and 22 2 .

Chaque accès 28, 30 est en regard d'une partie d'émission-réception du cornet 24. Par exemple, un accès 28 pour une onde polarisée circulaire gauche est donc prévu en regard de la première partie d'émission-réception 221 du cornet 24 tandis qu'un accès 30 pour une onde polarisée circulaire droite est prévu en regard de la deuxième partie d'émission-réception 222.Each access 28, 30 is opposite a transmission-reception part of the horn 24. For example, an access 28 for a left circular polarized wave is therefore provided opposite the first transmission-reception part 22 1 of the. horn 24 while an access 30 for a right circular polarized wave is provided opposite the second transmission-reception part 22 2 .

En fonctionnement, la première partie d'émission-réception 221 reçoit des ondes électromagnétiques selon un état de polarisation dès que le cornet 24 est excité électriquement. Cette onde est polarisée circulaire gauche par le polariseur 32. Cette onde passe ensuite par l'accès 28 prévu pour une onde polarisée circulaire gauche.In operation, the first transmission-reception part 22 1 receives electromagnetic waves according to a state of polarization as soon as the horn 24 is electrically excited. This wave is left circular polarized by the polarizer 32. This wave then passes through the port 28 provided for a left circular polarized wave.

Une onde polarisée circulaire droite passe par l'accès 30 prévu pour une onde polarisée circulaire droite. Cette onde passe ensuite à travers le polariseur 32 avant d'être émise par la deuxième partie d'émission-réception 222. Ce fonctionnement émissionréception peut être inversé entre les accès 28 et 30.A right circular polarized wave passes through the port 30 provided for a right circular polarized wave. This wave then passes through the polarizer 32 before being emitted by the second transmission-reception part 22 2 . This transmission-reception operation can be reversed between accesses 28 and 30.

Il apparaît ainsi qu'un seul élément rayonnant 18 permet d'assurer à la fois les fonctions émission et réception, pour deux fréquences f1 et f2 dont le rapport est supérieur à 1,2. C'est un cornet 24 bi-bande compact à polarisation circulaire qui rend chaque élément rayonnant 18 bi-bande.It thus appears that a single radiating element 18 makes it possible to ensure both the transmission and reception functions, for two frequencies f 1 and f 2 whose ratio is greater than to 1.2. It is a compact dual-band horn 24 with circular polarization which makes each radiating element 18 dual-band.

En outre, chaque élément rayonnant 18 est propre à émettre et/ou recevoir des ondes dans deux états de polarisation différents, par exemple, des polarisations circulaires gauche et droite. Dans le cas où une onde à polarisation linéaire est souhaitée, soit les deux accès 28, 30 sont utilisés simultanément en leur appliquant, via le formateur 10 de faisceaux quasi-optique, la sources 16 et l'élément de contrôle électronique en phase et en amplitude ECPA, un certain déphasage en fonction de l'orientation de la polarisation souhaitée, ou un seul accès 28 ou 30 est excité sélectivement par la source 16.In addition, each radiating element 18 is suitable for emitting and / or receiving waves in two different states of polarization, for example, left and right circular polarizations. In the case where a linearly polarized wave is desired, either the two ports 28, 30 are used simultaneously by applying to them, via the quasi-optical beam former 10, the sources 16 and the electronic control element in phase and in phase. amplitude E CPA , a certain phase shift depending on the orientation of the desired polarization, or a single port 28 or 30 is selectively excited by the source 16.

Ainsi, le dispositif de pointage DP spécifique selon la présente invention, basé sur un dépointage mécanique dans le plan d'une ligne d'un réseau d'éléments rayonnants 18, combiné ou non à un dépointage électronique, permet en association avec un ou plusieurs éléments rayonnants 18 tels que ceux de la demande FR 3 013 909 A1 , ou des éléments rayonnants 18 de forme parallélépipédiques présentant un fonctionnement similaire, d'obtenir un système antennaire immobile très efficace car principalement focalisant et propre à fournir un balayage multi directionnel aisément reconfigurable tout en présentant une consommation énergétique et une dissipation thermique réduites par rapport aux solutions connues.Thus, the specific pointing device D P according to the present invention, based on a mechanical depointing in the plane of a line of an array of radiating elements 18, combined or not with an electronic depointing, allows in association with one or more several radiating elements 18 such as those of the request FR 3 013 909 A1 , or radiating elements 18 of parallelepiped shape having a similar operation, to obtain a very efficient stationary antenna system because it is mainly focusing and able to provide an easily reconfigurable multi-directional scan while having reduced energy consumption and heat dissipation compared to known solutions.

Claims (10)

  1. A beam steering device (DP) for a telecommunications antenna system, the device comprising:
    - at least one power source (16) adapted to generate radiofrequency waves,
    - a planar quasi-optical beamformer (10), the inlet of which is adapted to be powered by said at least one source and the outlet of which is adapted to supply an array of radiating elements (18), the planar quasi-optical beamformer (10) comprising a parallel plate waveguide (12), the inlet and outlet of the planar quasi-optical beamformer (10) corresponding to the linear openings between the two parallel plates of the waveguide (12),
    - said array of radiating elements (18),
    wherein the device (DP) further comprises at least one mechanical translation element adapted to move, relative to one another, said at least one power supply source (16) and at least one focusing element (14) of said quasi-optical planar beamformer (10) in a translational movement (T) perpendicular to the supply direction (D) of the array of radiating elements (18) by the source (16).
  2. The beam steering device (DP) according to claim 1, wherein the source (16) is supplied with at least one electronic phase and amplitude control element (ECPA) of the beam delivered at the output of the array of radiating elements (18).
  3. The beam steering device (DP) according to claim 1 or 2, wherein the mechanical translation element (ETM) is adapted to move said at least one power supply source (16) relative to said focusing element (14) of said immobile quasi-optical planar beamformer (10).
  4. The beam steering device (DP) according to claim 1 or 2, wherein the mechanical translation element (ETM) is adapted to move said at least one focusing element (14) of said quasi-optical planar beamformer (10) relative to said at least one immobile power supply source (16).
  5. The beam steering device (DP) according to claim 4, wherein the array of radiating elements (18) and the parallel plate waveguide (12) having a width (LR) strictly greater than the width (LEF) of the focusing element (14), the mechanical translation element (ETM) being adapted to move the focusing element (14) along the width (LR) of the parallel plate waveguide.
  6. The beam steering device (DP) according to claim 5, wherein the maximum movement (Tmax) of the focusing element (14), relative to its initial position centered along the width (LR) of the parallel plate waveguide (12), is less than half the width (LEF) of the focusing element (14).
  7. The beam steering device (DP) according to claim 5, wherein each radiating element of the array of radiating elements (18) comprises a feed horn (24) comprising a first transceiver part (221) and a second transceiver part (222) that are supplied by the quasi-optical beamformer (10),
    each of the first and second transceiver parts (221, 222) being adapted to send and receive an electromagnetic wave at a first frequency (f1) or a second frequency (f2), the ratio between the second frequency and the first frequency being greater than 1.2, preferably greater than 1.5, the first frequency (f1) and the second frequency (f2) belonging to the Ka band of the electromagnetic spectrum.
  8. An antenna system comprising at least one beam steering device according to any one of claims 1 to 7.
  9. A platform including an antenna system according to claim 8.
  10. A telecommunications method between two telecommunications stations, the method comprising the use of at least one beam steering device according to any one of claims 1 to 7 or an antenna system according to claim 8.
EP18215894.9A 2017-12-26 2018-12-26 Beam pointing device for antenna system, associated antenna system and platform Active EP3506426B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1701365A FR3076089B1 (en) 2017-12-26 2017-12-26 BEAM POINTING DEVICE FOR ANTENNA SYSTEM, ANTENNA SYSTEM AND ASSOCIATED PLATFORM

Publications (2)

Publication Number Publication Date
EP3506426A1 EP3506426A1 (en) 2019-07-03
EP3506426B1 true EP3506426B1 (en) 2021-06-30

Family

ID=62222712

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18215894.9A Active EP3506426B1 (en) 2017-12-26 2018-12-26 Beam pointing device for antenna system, associated antenna system and platform

Country Status (3)

Country Link
EP (1) EP3506426B1 (en)
ES (1) ES2895756T3 (en)
FR (1) FR3076089B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2721263A (en) * 1945-11-13 1955-10-18 Roy C Spencer Curved throat scan horn for the transmission of electromagnetic energy

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8711271D0 (en) * 1987-05-13 1987-06-17 British Broadcasting Corp Microwave lens & array antenna
JPH0793532B2 (en) * 1988-12-27 1995-10-09 原田工業株式会社 Flat patch antenna
JP4373616B2 (en) * 2001-01-29 2009-11-25 京セラ株式会社 Primary radiator and phase shifter and beam scanning antenna
US6831602B2 (en) * 2001-05-23 2004-12-14 Etenna Corporation Low cost trombone line beamformer
TWI222239B (en) * 2002-02-14 2004-10-11 Hrl Lab Llc Beam steering apparatus for a traveling wave antenna and associated method
GB2398172A (en) * 2003-02-04 2004-08-11 Thales Plc A multi-phase shifter for use with an antenna array
FR3013909B1 (en) * 2013-11-28 2016-01-01 Thales Sa CORNET, ELEMENTARY ANTENNA, ANTENNA STRUCTURE AND TELECOMMUNICATION METHOD THEREOF

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2721263A (en) * 1945-11-13 1955-10-18 Roy C Spencer Curved throat scan horn for the transmission of electromagnetic energy

Also Published As

Publication number Publication date
FR3076089A1 (en) 2019-06-28
ES2895756T3 (en) 2022-02-22
EP3506426A1 (en) 2019-07-03
FR3076089B1 (en) 2021-03-05

Similar Documents

Publication Publication Date Title
EP3547450B1 (en) Radiating element with circular polarisation implementing a resonance in a fabry-perot cavity
EP2532046B1 (en) Flat-plate scanning antenna for land mobile application, vehicle comprising such an antenna, and satellite telecommunication system comprising such a vehicle
EP2807702B1 (en) Two dimensional multibeam former, antenna using such and satellite telecommunication system.
FR2810163A1 (en) IMPROVEMENT TO ELECTROMAGNETIC WAVE EMISSION / RECEPTION SOURCE ANTENNAS
WO2002031920A1 (en) Improvements to transmission/reception sources of electromagnetic waves for multireflector antenna
EP3011639B1 (en) Source for parabolic antenna
FR2823017A1 (en) MULTIBAND TELECOMMUNICATIONS ANTENNA
EP3506426B1 (en) Beam pointing device for antenna system, associated antenna system and platform
EP3506429B1 (en) Quasi-optical beam former, basic antenna, antenna system, associated telecommunications platform and method
EP3844844A1 (en) Antenna for transmitting and/or receiving an electromagnetic wave, and system comprising this antenna
CA2808511C (en) Flat antenna for a terminal operating in dual circular polarisation, airborne terminal and satellite telecommunication system featuring at least one antenna
EP3365943B1 (en) Acquisition aid antenna device and associated antenna system for monitoring a moving target
EP4046241A1 (en) Array antenna
EP3155689B1 (en) Flat antenna for satellite communication
EP0638821B1 (en) Microwave imaging radar system with double coverage area, to be installed on board a satellite
FR3013909A1 (en) CORNET, ELEMENTARY ANTENNA, ANTENNA STRUCTURE AND TELECOMMUNICATION METHOD THEREOF
WO2023218008A1 (en) Low-profile antenna with two-dimensional electronic scanning
EP2889955B1 (en) Compact antenna structure for satellite telecommunication
EP0429338A1 (en) Circularly polarised antenna particularly for antenna arrays
FR2919121A1 (en) ANTENNA SYSTEM WHOSE RADIATION DIAGRAMS IS RECONFIGURABLE AMONG SECTORAL AND DIRECTIVE RADIATION DIAGRAMS, AND CORRESPONDING TRANSMITTER AND / OR RECEIVER DEVICE.
EP4165727A1 (en) Multi-mode, multi-port and multi-standard antenna for adaptable communication system
FR3108797A1 (en) WIDE BAND DIRECTIVE ANTENNA WITH LONGITUDINAL EMISSION
BE465563A (en)
FR3011394A1 (en) RADAR INTEGRATED WITH SHIP MATURE AND FOCUSING DEVICE USED IN SUCH RADAR

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20191203

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210217

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602018019302

Country of ref document: DE

Ref country code: AT

Ref legal event code: REF

Ref document number: 1407209

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210930

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210630

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1407209

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211001

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210930

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211102

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2895756

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20220222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602018019302

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

26N No opposition filed

Effective date: 20220331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20211231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211226

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20230105

Year of fee payment: 5

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20181226

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231221

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231211

Year of fee payment: 6

Ref country code: FR

Payment date: 20231220

Year of fee payment: 6

Ref country code: DE

Payment date: 20231208

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240108

Year of fee payment: 6