EP3501839B1 - Particles for counterfeit prevention - Google Patents

Particles for counterfeit prevention Download PDF

Info

Publication number
EP3501839B1
EP3501839B1 EP18000778.3A EP18000778A EP3501839B1 EP 3501839 B1 EP3501839 B1 EP 3501839B1 EP 18000778 A EP18000778 A EP 18000778A EP 3501839 B1 EP3501839 B1 EP 3501839B1
Authority
EP
European Patent Office
Prior art keywords
printing
coating
particle
surface regions
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18000778.3A
Other languages
German (de)
French (fr)
Other versions
EP3501839A1 (en
Inventor
Peter Schiffmann
Martin Imhof
Karlheinz Mayer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Giesecke and Devrient Currency Technology GmbH
Original Assignee
Giesecke and Devrient Currency Technology GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Giesecke and Devrient Currency Technology GmbH filed Critical Giesecke and Devrient Currency Technology GmbH
Publication of EP3501839A1 publication Critical patent/EP3501839A1/en
Application granted granted Critical
Publication of EP3501839B1 publication Critical patent/EP3501839B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/36Identification or security features, e.g. for preventing forgery comprising special materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/36Identification or security features, e.g. for preventing forgery comprising special materials
    • B42D25/369Magnetised or magnetisable materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/36Identification or security features, e.g. for preventing forgery comprising special materials
    • B42D25/373Metallic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/36Identification or security features, e.g. for preventing forgery comprising special materials
    • B42D25/378Special inks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/36Identification or security features, e.g. for preventing forgery comprising special materials
    • B42D25/378Special inks
    • B42D25/382Special inks absorbing or reflecting infrared light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/36Identification or security features, e.g. for preventing forgery comprising special materials
    • B42D25/378Special inks
    • B42D25/387Special inks absorbing or reflecting ultraviolet light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/36Identification or security features, e.g. for preventing forgery comprising special materials
    • B42D25/378Special inks
    • B42D25/391Special inks absorbing or reflecting polarised light

Definitions

  • the invention relates to particles for use in a printing ink or a lacquer for protection against forgery.
  • the invention also relates to a production method for such particles, as well as a printing ink or a lacquer with such particles.
  • the particles can also be introduced into a plastic body or processed as the core of a capsule.
  • Data carriers such as banknotes, shares, bonds, certificates, vouchers, checks, high-quality admission tickets, but also other forgery-prone papers, such as passports or other identification documents, as well as product packaging and article security elements for product brand protection, are often provided with security prints for security purposes, which allow a check of the Allow authenticity of the document of value and at the same time serve as protection against unauthorized reproduction.
  • a printing ink is applied in which particles or pigments with preselected special properties, for example certain magnetic or luminescent properties, are dispersed.
  • the preselected properties of the particles or pigments are then queried during the authenticity check and serve to confirm the authenticity of the data carrier provided with the security print.
  • FR 3 012 367 A1 discloses the preamble of claim 1.
  • the invention is based on the object of specifying particles of the type mentioned at the outset which, on the one hand, ensure a high level of protection against counterfeiting and, on the other hand, can be produced simply and inexpensively, ideally on the industrial scale required in the security sector.
  • the invention provides an anisotropic printing / coating particle for use in a printing ink or a varnish for counterfeit protection, which has at least two separate surface areas with different physical properties, at least one of the surface areas mentioned being formed by a coating material and at least one component of the particle is formed by a printing substance, in particular a printing ink.
  • Janus particles Particulate solid bodies with multifunctional properties have been the subject of current research for some time under the name “Janus particles”. At present, such Janus particles are mostly produced by phase separation, self-orientation or masking.
  • two incompatible liquid components are mixed, for example by means of microfluidics.
  • the mixed liquid components then separate again into their original components and form a common Janus particle with two different surface areas.
  • masking is a relatively old and safe method of making Janus particles.
  • a particle with only one first property is first applied to a carrier medium, which represents the mask for the first property.
  • the second property of the particle is then produced from the opposite upper side by spraying on a liquid, condensing a gas or by vapor deposition or sputtering, for example with a metal.
  • a further difficulty of all three methods mentioned is the reliable selection of good material. If, for example, one of the properties allows magnetic separation, a particle is accepted as a good material even if it only has the magnetic property. On the other hand, a selection based on the specific weight is only possible if the two material properties differ significantly in terms of specific weight. The separation is also very complex, since two passes are required for the selection.
  • Janus particles are currently mainly produced in research, where the limitations of the described processes are often acceptable.
  • the processes are time-consuming and costly and, in particular, are prone to errors in their reproducibility, which means that the particles are often only produced on a milligram or gram scale.
  • there is the problem that a defined alignment of the Janus interface with respect to a permanent magnetic magnetization of the particle is hardly or only with difficulty.
  • the first applications for Janus particles are in the medical field, where usually only small amounts are required.
  • the combined use of printing and coating processes according to the invention now allows a reproducible and scalable production of anisotropic particles with at least two separate surface areas with different physical properties.
  • the anisotropic particles produced in a combination of at least one printing process and at least one coating process are referred to in this application as “printing / coating particles”.
  • the inventors have surprisingly found that, with the aid of a suitable combination of printing and coating processes, at least two different substances, namely at least one printing substance and at least one coating substance, are connected to one another directly or indirectly can to produce the at least two separate surface areas with different physical properties.
  • the at least one printing material is applied by continuous ink jet printing, ink jet printing, screen printing or 3D printing to an existing component of the particle, for example a carrier component of the particle or to an auxiliary carrier (from which the particles are detached after they have been built up) upset.
  • the at least one printing material can in particular, and this is not claimed, by means of dispenser printing systems (e.g. DMD100 from Kelenn technology) or aerosol printing systems (e.g. systems from Optomec, Neotech AMT, Fraunhofer IWS Dresden) on an already existing component of the particle , for example a carrier component of the particle or on an auxiliary carrier (from which the particles are detached after their build-up).
  • thermoplastic printing inks in particular thermoplastic, UV-crosslinking printing inks
  • thermoplastic printing inks are used with particular advantage.
  • the ink-jet printing ink is heated in the area of the print head, thereby reducing its viscosity.
  • the ink is applied to the target object (the partial build-up of particles or the auxiliary carrier), a sudden drop in temperature leads to an increase in viscosity, so that the ink does not run any further.
  • support layers are preferably printed which avoid the applied Janus print layers run uncontrollably or spread on the auxiliary carrier.
  • These support points represent a wall for the Janus particles and can be removed again afterwards.
  • the support points themselves can consist of a water-soluble binder such as PVOH or a UV-drying binder that is not fully hardenable (e.g. due to an underconcentration of photoinitiator), so that they can be detached for example with acetone or ethanol is possible.
  • the interpolation points are advantageously generated inline for each applied Janus layer in order to improve the register situation of the interpolation point with the Janus layer and to avoid imperfections in the print of the Janus layers.
  • the at least one coating material is applied by a contactless coating process, PVD (Physical Vapor Deposition) processes, CVD (Chemical Vapor Deposition) processes or spray coating processes being used according to the invention.
  • PVD Physical Vapor Deposition
  • CVD Chemical Vapor Deposition
  • the PVD methods include, in particular, thermal evaporation, electron beam evaporation, laser beam evaporation, electric arc evaporation, molecular beam epitaxy, sputtering, ion beam-assisted deposition and ion plating.
  • the material to be evaporated is heated in a pan by means of a laser, so that it changes into the gaseous phase and condenses on the substrate to be coated, among other things.
  • the vaporized material can be directed to the substrate to be coated either ballistically or by electrical fields, depending on the process.
  • the coating takes place in a vacuum at typical working pressures of 10 -4 Pa to about 10 Pa.
  • Oxides can also be deposited through the use of reactive process gases.
  • the layer thickness of the deposit depends, among other things, on the amount of evaporated material, the chamber design, the substrate width and the path speed of the substrate.
  • Common materials for vapor deposition are metals such as copper, aluminum, chromium and the like.
  • CVD processes there are individual methods that work in the low temperature range with reduced pressure ( ⁇ 200 mbar), so that coating on temperature-sensitive Materials are possible.
  • temperatures of around 150 ° C are currently necessary.
  • PECVD plasma-assisted chemical vapor deposition
  • aluminum can be deposited on materials by reducing aluminum trichloride and hydrogen.
  • CVD processes can also be used, for example, to form Fe 2 O 3 layers from gaseous iron chloride (FeCl 3 ) and water vapor, or blacken one side of a particle by means of carbon deposition.
  • FeCl 3 gaseous iron chloride
  • SiO 2 coatings for example, are also possible.
  • Spray coating is a high-pressure spraying process in which the coating material is atomized, so that the finest droplets are created, which are deposited as a thin film of material on the product to be coated.
  • the spray film is dried, for example, by oxidizing drying, thermally or photochemically induced.
  • the different printing and coating materials are advantageously arranged so that they fit one another, overlap one another, or are arranged butt to butt.
  • the different printing and coating materials are first applied to an auxiliary carrier and each connected there to form an anisotropic printing / coating particle and that the anisotropic printing / coating particles formed are then detached from the auxiliary carrier , preferably to be removed mechanically.
  • the mechanical detachment can take place with the aid of a mechanical stripping device, for example by means of a doctor blade, brush, air jet or water jet.
  • a stripping A sharp-edged deflection of the auxiliary carrier in the form of an endless belt with a cylinder with a small diameter or a fixed, rounded plate comes into consideration.
  • the fixed plate can for example consist of plastic, polished steel, chrome-plated polished steel, Teflon, PTFE or ceramic-coated steel.
  • a combination of the variants mentioned is also well suited to detaching generated particles from the auxiliary carrier.
  • the tools mentioned can also be supported by an application of ultrasound.
  • the auxiliary carrier is provided with a release layer in the form of a wax emulsion.
  • a release layer in the form of a wax emulsion.
  • the variant described above can, by means of the middle layer produced by printing, bring with it a further Janus property which is not visually apparent.
  • This can, for example, be a magnetic polarity (N / S pole perpendicular to the generated particle top.
  • the endless belt is deflected in a bath in which there is a separating liquid that detaches the particles from the belt.
  • the bath can also be coupled with an ultrasound transmitter or an ultrasound probe to support the process of separating the particles from the endless belt.
  • the auxiliary carrier is provided with a solvent-soluble layer.
  • This layer can be water-soluble, for example. PVOH, for example, is suitable.
  • Said endless belt can also be provided with a shaping die, for example in the form of half-shell troughs, in order to define the shape of the printing / coating particles.
  • a shaping die for example in the form of half-shell troughs, in order to define the shape of the printing / coating particles.
  • the particles are preferably applied to a web-shaped auxiliary carrier.
  • An endless belt can be used as an auxiliary carrier, which is fitted or printed again after the generated Janus particles have been detached and an optional additional cleaning process.
  • Roll material can also be used as an auxiliary carrier, which is wound up again after the generated Janus particles have been detached and fed to a new assembly.
  • the roll material can be cleaned (e.g. offline) and then reused or disposed of.
  • an auxiliary carrier sheet preferably flexible, or a board, preferably rigid, is used as the carrier material.
  • the process steps are separated as described below: For example, in a first process step, the panels are coated with a release layer, for example by printing, and then stacked again after thermal drying. In the second process step, the Janus particles are then generated. The detachment of the generated Janus particles then takes place in a third offline process step, as this requires more time, for example. The panels are then optimally cleaned in a fourth process step.
  • process steps of different speeds are combined with the help of switches in an online process or automated process in such a way that a faster process step is not slowed down by a slow process step.
  • At least one printing material is advantageously magnetic and the at least one magnetic printing material is magnetically pre-oriented after application and before or during its drying or curing.
  • the output can be scaled up as required by parallel production. The typical risks associated with the scalability of processes are eliminated.
  • At least one of the surface areas mentioned is advantageously formed by a printing substance, in particular a printing ink.
  • the separate surface areas of the particle have the same shape and / or size. In other variants, it can be advantageous to design the separate surface areas of the particle with a different shape and / or size, for example in order to allow one of the properties of the particle to predominate or even to dominate.
  • anisotropic printing / coating particle can in principle have any geometric shape, it is currently particularly preferred if the anisotropic printing / coating particle is lamellar or hemispherical. In addition, spherical, dumbbell-shaped, rod-shaped or cylindrical designs are also possible.
  • the component of the particle formed by said printing substance represents a carrier component which defines the spatial shape of the particle.
  • This carrier component does not necessarily have to form one of the surface areas mentioned, but can do this in advantageous configurations.
  • the carrier component can be filled with a high density filler that enables gravimetric orientation of the particle.
  • barium sulfate with a density of about 4.5 g / cm 3 and titanium dioxide (4.2 g / cm 3 ) can be used as fillers.
  • the carrier component is transparent and allows the perception of a material area arranged below or above the carrier component with desired physical, in particular visually perceptible or optically detectable properties.
  • the carrier component advantageously comprises a solvent or water-based binder, in particular a UV-crosslinking binder and particularly preferably a UV-drying binder.
  • the component of the particle formed by the named printing substance forms one of the named surface areas.
  • the volume fraction of the coating materials is advantageously less than 50%, preferably less than 30%, in particular less than 10% or even less than 5% of the volume fraction of the printing materials.
  • At least one coating material advantageously represents a two-dimensional coating of a component of the particle formed by at least one printing material, in particular of the carrier component.
  • the anisotropic printing / coating particle advantageously has a maximum dimension of 3-70 ⁇ m, preferably 3-50 ⁇ m and particularly preferably 3-30 ⁇ m.
  • the printing / coating particle has a volume below 3.5 ⁇ 10 -13 m 3 , preferably below 1.25 x 10 -13 m 3 and particularly preferably below 0.3 x 10 -13 m 3 .
  • hemispherical anisotropic printing / coating particles advantageously have a maximum dimension of 1.5-35 ⁇ m, preferably 1.5-25 ⁇ m and particularly preferably 1.5-15 ⁇ m, and accordingly advantageously have a volume between 7 ⁇ m 3 and 90,000 ⁇ m 3 , preferably between 7 ⁇ m 3 and 32,500 ⁇ m 3 and particularly preferably between 7 ⁇ m 3 and 7,000 ⁇ m 3 .
  • Platelet-shaped anisotropic printing / coating particles advantageously have a pigment thickness of 1-10 ⁇ m, preferably 1-7 ⁇ m.
  • the particles are assumed to have a circular surface area; the results for other surface shapes can then easily be derived.
  • a platelet-shaped particle with a circular disk diameter of 30 ⁇ m and a thickness of 1 ⁇ m has a volume of 707 ⁇ m 3
  • a thickness of 3 ⁇ m has a volume of 2,120 ⁇ m 3
  • a platelet-shaped particle with a circular disk diameter of 50 ⁇ m has a volume of 5,890 ⁇ m 3 with a thickness of 3 ⁇ m and a volume of 9,820 ⁇ m 3 with a thickness of 5 ⁇ m.
  • a platelet-shaped particle with a circular disk diameter of 70 ⁇ m has a volume of 11,545 ⁇ m 3 with a thickness of 3 ⁇ m and a volume of 19,240 ⁇ m 3 with a thickness of 5 ⁇ m.
  • the density of the particulate material is in the range from 0.8 g / cm 3 to 4 g / cm 3 .
  • the anisotropic printing / coating particle is easily movable and its spatial alignment can be controlled, so that in particular the alignment of the separate surface areas can be set as desired.
  • This setting can be made permanently, for example by fixing the spatially oriented particles in an ambient medium.
  • the setting can also be reversible, for example in that a printing / coating particle core is movably accommodated in a capsule shell.
  • the anisotropic printing / coating particle preferably has a magnetic core which can be aligned by an external magnet.
  • an alignment of the particle cores by means of electric fields is also possible, for which purpose the cores have, for example, an electric charge or an electric dipole moment or are sufficiently polarizable.
  • the alignability can be destroyed by fixing the printing / coating particles in a printing ink, or, as in the case of the encapsulated printing / coating particles described below, can also be permanently retained.
  • the printing / coating particle has a capsule shell and a carrier fluid enclosed in the capsule shell, in which at least one printing / coating particle core is dispersed, which has at least two separate surface areas with different physical properties and in which at least one of the surface areas mentioned is formed by a coating material and at least one component of the particle core is formed by a printing material, in particular a printing ink.
  • a plurality of identical or dissimilar printing / coating particle cores can also be contained in the carrier fluid.
  • the printing / coating particle initially generated is therefore used together with dispersed and encapsulated in a carrier fluid so that it forms at least one printing / coating particle core which is enclosed within a capsule shell.
  • a magnetic particle this can be reversibly aligned by an external stimulus using a magnetic field.
  • the invention also contains a printing ink or a varnish for counterfeit protection in which or in which anisotropic printing / coating particles of the type described are dispersed.
  • the invention further includes a counterfeit-proof article with an applied, in particular printed, layer with anisotropic printing / coating particles of the type described.
  • the layer can in particular be produced by using the above-mentioned printing ink or varnish.
  • the forgery-proof object can in particular be a value document such as a bank note, a passport, a certificate, an identity card or the like, or also a product packaging secured by the particle layer.
  • the object advantageously contains a substrate made of paper, plastic or a paper-plastic hybrid, onto which the printing / coating particle layer is applied, in particular printed.
  • the printing / coating particle layer can be combined on the object with further layers with security features, their properties interact advantageously with the physical properties of the printing / coating particles.
  • the printing / coating particles can have luminescent properties and be overprinted with a luminescent layer or a layer containing a UV absorber in some areas, so that a luminescence that is combined in some areas or modified in some areas results.
  • the invention also includes a method for producing anisotropic printing / coating particles of the type described, in which at least one printing material with a printing process and at least one coating material with a coating process are connected to one another directly or indirectly in order to provide the at least two separate surface areas to produce different physical properties.
  • the coating material is applied in a contactless coating process, namely by a PVD (Physical Vapor Deposition) process, a CVD (Chemical Vapor Deposition) process or a spray coating process, and the printing material is applied according to the invention using continuous ink jet printing, ink - Jet printing, screen printing or 3D printing applied.
  • Any drying or crosslinking of the constituents of the particle formed by printing processes can take place before or after the coating of the constituent.
  • the coating process is not a printing process.
  • the different printing and coating materials are advantageously arranged so that they fit one another, overlap one another, or butt to butt.
  • the different printing and coating materials are applied to an auxiliary carrier and each connected there to form an anisotropic printing / coating particle.
  • the anisotropic printing / coating particles formed are then detached from the auxiliary carrier, preferably detached mechanically.
  • the components of the particle formed by printing processes are advantageously dried or crosslinked after the particles have been detached from the auxiliary carrier.
  • At least one printing material is advantageously magnetic and the at least one magnetic printing material is magnetically pre-oriented after application and before or during its drying or curing.
  • the pre-orientation can also take place when a coating is applied.
  • the particle has a magnetic core or is itself magnetic
  • the magnetic core or the magnetic alignment advantageously has a fixed alignment with respect to the alignment of the different physical properties of all Janus particles produced.
  • the magnetic structures of the particles as known in principle from the GMR (Giant Magneto Resistance) effect, can be formed in multiple layers with a sequence of magnetic and non-magnetic thin layers. Such layer sequences have proven to be very resistant to magnetic reversals.
  • FIG. 1 shows schematically a printing ink 10 with a UV-drying binder 12 into which anisotropic printing / coating particles 14, 16 of two different types are introduced.
  • Each of the printing / coating particles of the first type 14 and of the second type 16 has two separate surface areas 14A, 14B and 16A, 16B, respectively, with different physical properties.
  • the different properties of the surface areas 14A, 14B and 16A, 16B are illustrated in the figures by different or missing hatching of the substances forming the surface areas.
  • the printing / coating particle of the first type 14 is in Fig. 2 shown in more detail, where Fig. 2 (a) a cross section, Fig. 2 (b) a top view from direction B and Fig. 2 (c) a top view from direction C of Fig. 2 (a) indicates.
  • the different properties include in particular one or more physical properties from the group which is formed from the surface tension of the surface areas, the specific gravity of the materials forming the surface areas, the Color of the surface areas, in particular the color spectrum of the surface areas in UV, VIS and / or IR, the magnetic properties of the surface areas or the materials forming the surface areas, the luminescence properties of the surface areas or the materials forming the surface areas, the electrical conductivity of the surface areas or the materials forming the surface areas and the gloss and reflectivity of the surface areas.
  • the surface areas 14A, 14B of the print-coating particles 14 in the exemplary embodiment differ in their color in the visible spectral range.
  • the surface areas 14A appear red and the surface areas 14B appear blue.
  • the printing / coating particles of the second type 16 are basically structured like the printing / coating particles of the first type 14 ( Fig. 2 ), but the surface areas 16A, 16B of the print / coating particles 16 differ in their luminescence properties, for example the surface areas 16A luminesce green after UV excitation and the surface areas 16B red.
  • the printing / coating particles of the first type 14 consist of two layers 18-1, 18-2 produced by printing technology, which are each formed by a red reflective printing ink.
  • the red reflective printing inks used during manufacture have different rheological and / or physical interface properties.
  • the layers 18-1, 18-2 produced by printing technology are provided with a coating 18-3 made of a blue reflective coating material, which is carried out with a coating process, in the exemplary embodiment by physical Gas phase deposition (PVD) is applied to the layers 18-1,18-2 produced by printing technology.
  • PVD physical Gas phase deposition
  • the particles 14 have a diameter (largest dimension) D of approximately 25 ⁇ m, and their height H is approximately 20 ⁇ m.
  • the layer thickness of the coating 18-3 is only about 1 ⁇ m, so that the volume fraction of the coating material is very small compared to the volume fraction of the printing ink that forms the layers 18-1 and 18-2.
  • the printing / coating particles 14, 16 not only have the visual properties mentioned, but are also magnetic, so that they can be aligned as desired by an external magnetic field during or after the printing of the printing ink 10 and before the binding agent is dried .
  • the magnetic alignability is determined by the magnetic properties of the materials forming the surface areas 14A, 14B, 16A, 16B, namely the above-mentioned printing ink of the layers 18-1, 18-2, the coating material of the coating 18-3 and the corresponding materials of the Particles 16 provided themselves, in such a way that the surface areas 14A and 16A each form a magnetic north pole and the surface areas 14B and 16B each form a magnetic south pole.
  • the magnetic alignability can also be provided by a further magnetic material arranged in the interior of the particle. This magnetic material is preferably provided by a printing material.
  • FIG. 11 schematically shows a security substrate 20, such as a bank note, with one through the printing ink 10 of FIG Fig. 1 formed imprint with a different appearance in some areas.
  • the printing ink 10 was printed onto the substrate 20 and the anisotropic printing / coating particles 14, 16 aligned by an external magnetic field in such a way that they are oriented opposite one another in first and second regions 22, 24.
  • the binder 12 of the printing ink 10 was dried by UV radiation while the magnetic field was still applied, and the set alignment of the printing / coating particles 14, 16 was thereby permanently fixed.
  • the surface areas 14A, 16A of the printing / coating particles 14, 16 point towards the viewer, so that the first area 22 shows a red color impression in the visible spectral range and a green luminescence after UV excitation.
  • the opposite surface areas 14B, 16B of the printing / coating particles 14, 16 point towards the viewer, so that this area shows a blue color impression in the visible spectral range and a red luminescence after UV excitation.
  • Fig. 4 (a) in cross section a platelet-shaped anisotropic printing / coating particle 30, which consists of a carrier component 32 produced by printing technology with a first physical property and a coating 34 with a second, different physical property.
  • the carrier component 32 defines the basic shape of the particle 30, which is practically not changed by the comparatively thin coating 34.
  • the carrier component 32 and the coating 34 form two surface areas of the particle 30 of different physical properties Properties.
  • the diameter D (largest dimension) of the particle 30 is between 3 ⁇ m and 70 ⁇ m, and the height H of the particle is typically in the range of a few micrometers.
  • Fig. 4 (b) Essentially hemispherical printing / coating particles 40 shown in cross-section are designed in a manner similar to the particles 14, 16 of FIGS a coating 44 is provided from a coating material.
  • the printing inks used during manufacture have different rheological and / or physical interface properties.
  • the first printed layer 42-1 forms a first surface area of the particle 40 with a first physical property
  • the coating 44 of the second printed layer 42-2 forms the second surface area with a second, different physical property.
  • the second layer 42-2 produced by printing technology is transparent in this embodiment and / or has a different physical property than the first layer 42-1.
  • the substantially hemispherical printing / coating particles 50 shown in cross section are similar to the particles 14, 16 of FIG Figures 1 to 3 and consists of two layers 52-1, 52-2 produced by printing technology, the layer 52-2 being provided with a coating 54 made of a coating material.
  • the printing inks used during manufacture have different rheological and / or physical interface properties.
  • the first layer 52-1 produced by printing technology is transparent, while the second Layer 52-2 produced by printing technology forms a first surface area of the particle 50 with a first physical property.
  • the coating 54 forms a second surface area with a second, different physical property.
  • the transparent layer 42-2 or 52-1 can have additional material properties which lie outside the visible spectral range, such as luminescence that can be excited in the UV or IR absorption.
  • the transparent layer can also have a polarizing property, which can be verified with an aid such as a polarization filter.
  • Figure 5 (a) shows first a platelet-shaped printing / coating particle 60 with a transparent, printing technology-generated carrier component 62, which defines the size and basic shape of the particle 60, and which is provided with two coatings 64-1, 64-2 with different optical properties.
  • the transparent carrier component 62 does not cover the optical properties of the first coating 64-1, while these are covered by the second coating 64-2. From the viewing direction 66, therefore, it is predominantly the optical properties of the first coating 64-1 that can be seen, while from the opposite viewing direction 68, it is predominantly the optical properties of the second coating 64-2 that appear.
  • the platelet-shaped printing / coating particle 70 of Fig. 5 (b) has a similar structure to particle 60 of FIG Fig. 5 (a) on, although an intermediate layer 72 is provided between the coatings 64-1, 64-2, which serves to improve the adhesion of the second coating 64-2 or the orientation of the second coating 64-2 on the first coating 64-1.
  • the platelet-shaped printing / coating particle 80 of FIG Fig. 5 (c) is similar in structure to particle 70 of FIG Fig. 5 (b) on.
  • the intermediate layer 82 represents a layer with a visually less attractive appearance which is covered by the second coating 64-2.
  • the intermediate layer 82 can be, for example, a magnetic or magnetizable layer, a layer with good thermal conductivity or an electrically conductive layer.
  • the intermediate layer 82 can also consist of several individual or alternating layers.
  • the coatings 64-1, 64-2 are applied to opposite sides of a carrier component 62, as in FIG Fig. 5 (d) shown.
  • the carrier component 62 can also be semitransparent or even opaque in order to avoid a mutual visual influence of the coatings 64-1, 64-2.
  • the coatings 64-1, 64-2 can in particular be optically variable coatings such as thin-film elements, interference layers or liquid crystal layers.
  • the coating 64-1 can be a color-shifting liquid crystal layer and the coating 64-2 can be a non-color-changeable coating.
  • liquid crystal layers can also have light-polarizing properties which, in addition to the different colors, can represent a second, different physical property of the coatings.
  • Figure 6 shows in (a) to (d) examples of the appearance of printing / coating particles 90 according to the invention in plan view.
  • the shape of the particles 90 is in particular a platelet shape, hemispherical shape, spherical shape, rod shape, the shape of a dumbbell, a mushroom, a tetrahedron.
  • the relative proportions of the at least two different printing / coating materials of the particles according to the invention can be the same, approximately the same (proportions by volume or mass within 10%) or different based on the volume or the mass of the particles.
  • a layer produced by printing technology can be pretreated, for example, by means of flame pretreatment, corona pretreatment or plasma pretreatment, also with a supply of process gas.
  • a layer produced by printing technology can also be provided with a primer layer or adhesive layer by means of spray coating.
  • Another possibility is to apply an adhesive layer, for example an oxidic coating, using a PVD process.
  • Figure 7 shows as a further embodiment an anisotropic pressure / coating particle capsule 100 in which a hemispherical particle core 102, for example in connection with Fig. 2 described manner, is encapsulated in a liquid-filled microcapsule shell 104.
  • an oil can be provided as the separating agent 106, which increases the mobility of the particle core 102 within the microcapsule shell 104 even after a die has been printed on and dried Printing / coating particle capsules 100 containing printing ink guaranteed.
  • Such printing / coating particle capsules 100 are used in particular when the visible or measurable physical properties of the particles are to be able to be changed permanently by external stimuli even after the particles have been applied.
  • a magnetic particle core 102 can be aligned differently during the authenticity check by an external magnet and thereby show the viewer one of the two different surface areas 102A, 102B depending on the orientation.
  • the particles to be encapsulated do not have a platelet structure but a pronounced 3D structure (symmetrical or asymmetrical) in order to avoid “glass plate effects” in a capsule.
  • 3D structure symmetrical or asymmetrical
  • the particles to be encapsulated do not have a platelet structure but a pronounced 3D structure (symmetrical or asymmetrical) in order to avoid “glass plate effects” in a capsule.
  • platelet structures there is a risk that several platelets will stick to one another and these will be encapsulated together.
  • what is usually desired is the encapsulation of individual particles in a capsule each. The more pronounced the 3D structure, the more likely there is only one particle per capsule.
  • the printing / coating particles produced are provided with an additional coating in a subsequent process.
  • an additional coating that does not change the shape of the particles and an additional coating that changes the shape.
  • the chemical resistance or the surface tension of the printing / coating particles is influenced.
  • the additional coating can take place, for example, in a gas phase or a spray coating.
  • an additional coating that changes its shape For example, it is about optimizing the mechanical and / or chemical resistance of the particles.
  • an additional coating that changes the shape can contribute to optimizing the rotatability of the particle cores in a capsule or reducing the accumulation of particle cores during encapsulation. Suitable methods for such an additional coating are, for example, the method from Brace GmbH or an eddy current coating method.
  • the particles can be made mechanically more stable or chemically more stable by the additional coating and / or the outer shape of the particles can be changed with a preferably transparent layer, for example in order to make a spherical particle out of a rod-shaped particle.
  • anisotropic printing / coating particles of the invention can be produced by various combinations of printing and coating processes, exemplary production processes now with reference to FIG Figures 8 to 12 are explained in more detail.
  • a printing layer 112 is generated on a carrier substrate 110 using a printing process, first in partial areas, the shape and size of which defines the flat and the three-dimensional basic shape of the printing / coating particle.
  • a printing process For example, ink-jet processes (DOD) (according to the invention), laser printing (not claimed), transfer printing processes (not claimed), in particular thermal transfer printing processes based on fusible raw materials, flexographic printing (not claimed), screen printing (according to the invention) or gravure printing (not claimed) can be used claimed) come into use.
  • the layer 112 produced by printing technology does not necessarily have to have one of the desired different physical properties of the finished particle, but can, for example, simply represent a transparent layer and / or form a carrier component of the finished particle.
  • the layer 112 produced by printing technology can be dried or hardened before the subsequent process (for example in the case of a UV-hardening binder) or it can be processed further without drying / hardening.
  • At least one further layer 114 is applied without registering and spanning a large number of the layer areas 112 produced by printing technology by means of a coating process such as spray coating, sputtering or another PVD process (all according to the invention). In doing so, at least one further desired physical property of the finished particle is generated. At the latest with the last coating, the entire particle is dried or hardened.
  • a coating process such as spray coating, sputtering or another PVD process (all according to the invention).
  • the layers 114 produced by means of the coating process break mechanically due to the brittleness of the material and the layer thickness, among other things are preferably the outer edges of the layers 112 produced by printing technology.
  • Figure 9 (a) shows a raw particle 120 detached from the carrier substrate 110, which comprises the layer 112 produced by printing technology, the regions 118 of the coating 114 located on the layer 112, and a coating overhang 122 still present on the left side of the raw particle 120.
  • This protrusion is removed in a further processing step so that the in Fig. 9 (b)
  • the finished Janus particles 124 shown are produced. It goes without saying that particles with more than one layer produced by printing technology and with more than one layer produced by a coating process can also be built up on the carrier substrate 110 in this way.
  • the raw particles 120 can be separated from the carrier substrate 110 in different ways, as already explained in more detail above.
  • a coating 114 is applied over a large area to a carrier substrate 110 initially using a coating process such as spray coating, sputtering or another PVD process (all according to the invention).
  • a printing layer 112 is then produced on the coating in each case in partial areas using a printing process.
  • Ink-jet processes (DOD) accordinging to the invention
  • laser printing not claimed
  • transfer printing processes not claimed
  • thermal transfer printing processes based on fusible raw materials flexographic printing (not claimed), screen printing (according to the invention) or Gravure printing (not claimed)
  • the layer sequence 114, 112 is detached from the carrier substrate, the outer edges of the layers produced by printing technology form 112 predetermined breaking points which lead to a precisely registered breaking off of the coating 114 at the edges of the printing layers 112.
  • Figure 11 shows schematically a particle 126 detached from the carrier substrate 110, which comprises a layer 112 produced by printing technology, as well as regions 118 of the coating 114 located on or under the layer 112. Due to the precisely registered breaking off of the coating 114, the shape and size of the printing layer 112 also defines the flat and three-dimensional basic shape of the printing / coating particle 126 in this manufacturing variant Layer and can be built up with more than one layer produced by a coating method on the carrier substrate 110.
  • layer regions 112 are first printed onto a continuous endless belt 110 in each case.
  • the layer areas 112 are printed on the endless belt 110 with a continuous ink jet, an ink jet or a 3D printer. Then a multiplicity of layer regions 112 together with the regions of the endless belt 110 lying therebetween are provided with a coating 114 without registering.
  • the endless belt 110 runs at a stripping station through a mechanical stripping device 130.
  • the stripping takes place in the exemplary embodiment by a sharp-edged deflection of the endless belt 110 on a fixed, rounded plate 132.
  • the loosened raw particles 120 are caught in a collecting device 134 and, if necessary, after sorting in good and bad particles, further processed to the finished printing / coating particles 124.
  • the protrusions 122 can be subsequently broken, for example in a pigment mixer, for example a drum mixer.
  • a pigment mixer for example a drum mixer.
  • an air jet mill can also be used, for example.
  • the free coating material ie not connected to a layer produced by printing technology
  • the coating layer that is not connected to a layer produced by printing technology can also be separated, for example with a sifter, in order to produce the required product quality.
  • the proportion of the printing / coating particles 14, 16 in the printing ink 10 is expediently at least 0.1%, advantageously more than 3%.
  • the maximum particle size (D90) is based on the printing and coating processes used. In offset printing, the maximum particle size is advantageously less than 5 ⁇ m, while in screen printing a maximum particle size below 50 ⁇ m is advantageous.
  • the printing / coating particles used in the printing ink 10 can be of the same type or, as in the exemplary embodiment of FIG Fig. 1 , also be dissimilar and contain two or more different types of printing / coating particles.
  • the printing / coating particles can also be added to a printing ink as a visually visible security feature.
  • physically orientable printing / coating particles are used and the ink is only cured after the orientation or after the orientation of some of the particles.
  • the alignment of the particles can take place by means of a magnetic field, an electric field, a location-dependent repulsion effect, caused for example by a location-dependent surface tension, by gravimetric forces, by capillary forces in the printed substrate or by a combination of the forces mentioned.
  • the particles can also be aligned only in a partial area of the applied color, for example by masked drying or magnetic alignment only in certain areas.
  • the detection of the printing / coating particles can be carried out with aids, such as a UV lamp, or in the case of visible colors, even without aids.
  • aids such as a UV lamp
  • the Janus particles or printing / coating particles can also be designed in the form of a capsule 100, as in FIG Fig. 7 shown.
  • the shape of the capsule 100 is arbitrary.
  • the capsule 100 contains a carrier medium 106 for the particle cores 102 which can be liquid or gaseous.
  • the carrier medium 106 can be solid, liquid or gaseous depending on the temperature or a light or pH-induced orientation state.
  • Fig. 7 shows only a single particle core 102 in the interior of a capsule 100
  • a plurality of similar or dissimilar particle cores can generally also be contained in a capsule 100.
  • the capsules 100 can be part of a printing ink, a coating, a lacquer or a plastic.
  • the printing / coating particles can also be subsequently oriented in the applied and cured printing ink, coating agent, lacquer or plastic if the carrier medium is in a liquid or gaseous state.
  • the alignment can be done by magnetic forces, electrical forces, gravimetric forces or also by strong shaking movements. Detection with aids such as a magnet is also possible inside a transparent capsule.
  • a coating with Janus particles or anisotropic printing / coating particles, coatings based on encapsulated Janus particles or anisotropic printing / coating particles or encapsulated Janus particles or anisotropic printing / coating particles incorporated into plastics can be used to secure documents of value such as Banknotes, vouchers, certificates, certificates, documents, ID documents, spare parts, license plates, brand protection, packaging and the like can be used. For example, they can also be used for switchable displays.

Description

Die Erfindung betrifft Partikel für den Einsatz in einer Druckfarbe oder einem Lack für den Fälschungsschutz. Die Erfindung betrifft auch ein Herstellungsverfahren für solche Partikel, sowie eine Druckfarbe oder einen Lack mit derartigen Partikeln.The invention relates to particles for use in a printing ink or a lacquer for protection against forgery. The invention also relates to a production method for such particles, as well as a printing ink or a lacquer with such particles.

Die Partikel können auch in einen Kunststoffkörper eingebracht werden oder als Kern einer Kapsel verarbeitet werden.The particles can also be introduced into a plastic body or processed as the core of a capsule.

Datenträger, wie beispielsweise Banknoten, Aktien, Anleihen, Urkunden, Gutscheine, Schecks, hochwertige Eintrittskarten, aber auch andere fälschungsgefährdete Papiere, wie Pässe oder sonstige Ausweisdokumente, sowie Produktverpackungen und Warensicherungselemente für Produktmarkenschutz, werden zur Absicherung oft mit Sicherheitsdrucken versehen, die eine Überprüfung der Echtheit des Wertdokuments gestatten und die zugleich als Schutz vor unerlaubter Reproduktion dienen.Data carriers such as banknotes, shares, bonds, certificates, vouchers, checks, high-quality admission tickets, but also other forgery-prone papers, such as passports or other identification documents, as well as product packaging and article security elements for product brand protection, are often provided with security prints for security purposes, which allow a check of the Allow authenticity of the document of value and at the same time serve as protection against unauthorized reproduction.

Beim Sicherheitsdruck wird beispielsweise eine Druckfarbe aufgebracht, in der Partikel oder Pigmente mit vorgewählten speziellen Eigenschaften, beispielsweise bestimmten magnetischen oder lumineszierenden Eigenschaften dispergiert sind. Die vorgewählten Eigenschaften der Partikel oder Pigmente werden dann bei der Echtheitsprüfung abgefragt und dienen der Bestätigung der Echtheit des mit dem Sicherheitsdruck versehenen Datenträgers.In security printing, for example, a printing ink is applied in which particles or pigments with preselected special properties, for example certain magnetic or luminescent properties, are dispersed. The preselected properties of the particles or pigments are then queried during the authenticity check and serve to confirm the authenticity of the data carrier provided with the security print.

FR 3 012 367 A1 offenbart den Oberbegriff des Anspruchs 1. FR 3 012 367 A1 discloses the preamble of claim 1.

Ausgehend davon liegt der Erfindung die Aufgabe zugrunde, Partikel der eingangs genannten Art anzugeben, die einerseits einen hohen Fälschungsschutz gewährleisten und andererseits einfach und kostengünstig, idealerweise in dem im Sicherheitsbereich geforderten großtechnischen Maßstab herstellbar sind.Proceeding from this, the invention is based on the object of specifying particles of the type mentioned at the outset which, on the one hand, ensure a high level of protection against counterfeiting and, on the other hand, can be produced simply and inexpensively, ideally on the industrial scale required in the security sector.

Diese Aufgabe wird durch die Merkmale der unabhängigen Ansprüche gelöst. Weiterbildungen der Erfindung sind Gegenstand der abhängigen Ansprüche.This object is achieved by the features of the independent claims. Developments of the invention are the subject of the dependent claims.

Die Erfindung stellt ein anisotropes Druck/Beschichtungs-Partikel für den Einsatz in einer Druckfarbe oder einem Lack für den Fälschungsschutz bereit, welches zumindest zwei getrennte Oberflächenbereiche mit unterschiedlichen physikalischen Eigenschaften aufweist, wobei zumindest einer der genannten Oberflächenbereiche durch einen Beschichtungsstoff gebildet ist und zumindest ein Bestandteil des Partikels durch einen Druckstoff, insbesondere eine Drucktinte gebildet ist.The invention provides an anisotropic printing / coating particle for use in a printing ink or a varnish for counterfeit protection, which has at least two separate surface areas with different physical properties, at least one of the surface areas mentioned being formed by a coating material and at least one component of the particle is formed by a printing substance, in particular a printing ink.

Partikulär aufgebaute Festkörper mit multifunktionellen Eigenschaften sind unter der Bezeichnung "Januspartikel" seit einiger Zeit Gegenstand aktueller Forschung. Die Herstellung solcher Januspartikel erfolgt gegenwärtig meist durch Phasentrennung, Selbstorientierung oder Maskierung.Particulate solid bodies with multifunctional properties have been the subject of current research for some time under the name "Janus particles". At present, such Janus particles are mostly produced by phase separation, self-orientation or masking.

Bei der Herstellung von Januspartikeln durch Phasentrennung werden zwei unverträgliche flüssige Komponenten gemischt, etwa mittels Mikrofluidik. Die gemischten flüssigen Komponenten separieren sich anschließend wieder in ihre Ausgangskomponenten und bilden ein gemeinsames Januspartikel mit zwei unterschiedlichen Oberflächenbereichen.During the production of Janus particles by phase separation, two incompatible liquid components are mixed, for example by means of microfluidics. The mixed liquid components then separate again into their original components and form a common Janus particle with two different surface areas.

Bei der Herstellung von Januspartikel durch Selbstorientierung kommen Verfahren zur Herstellung von Blockcopolymeren zum Einsatz. Durch Selbstorganisation der Polymere, beispielsweise an einer Phasengrenze der Beschichtungsmedien, können sich dabei abwechselnde Schichten unterschiedlicher Materialien und damit Januspartikel bilden.In the production of Janus particles through self-orientation, processes for the production of block copolymers are used. As a result of the self-organization of the polymers, for example at a phase boundary of the coating media, alternating layers of different materials and thus Janus particles can form.

Die Maskierung ist schließlich ein relativ altes und sicheres Verfahren zur Herstellung von Januspartikeln. Dabei wird zunächst ein Partikel mit nur einer ersten Eigenschaft auf ein Trägermedium appliziert, welches die Maske für die erste Eigenschaft darstellt. Von der gegenüberliegenden Oberseite wird dann durch Aufsprühen einer Flüssigkeit, Kondensation eines Gases oder durch Bedampfen oder Besputtern, beispielsweise mit einem Metall, die zweite Eigenschaft des Partikels erzeugt.After all, masking is a relatively old and safe method of making Janus particles. In this case, a particle with only one first property is first applied to a carrier medium, which represents the mask for the first property. The second property of the particle is then produced from the opposite upper side by spraying on a liquid, condensing a gas or by vapor deposition or sputtering, for example with a metal.

Alle der genannten Verfahren haben jedoch gewisse Nachteile. Beispielsweise ist es bei der Herstellung durch Phasentrennung schwierig sicherzustellen, dass die Phasentrennung im industriellen Maßstab zuverlässig funktioniert und dass, selbst wenn diese funktioniert, nicht anstelle eines Januspartikels zwei separate Partikel mit den beiden unterschiedlichen Eigenschaften erzeugt werden. Bei der Herstellung durch Selbstorientierung besteht das Problem, dass sich die Partikelgröße an den ausgewählten Stoffen orientiert. Bei der Maskierungsmethode liegt eine besondere Schwierigkeit darin, dass die Applikation auf einem Trägermedium in einer definierten Eindringtiefe funktioniert und das Beschichtungsmittel nicht mehrere Partikel miteinander verbindet, so dass bei einem Ablösen der beschichteten Partikel vom Trägermedium die Vereinzelung der Partikel misslingt oder die Beschichtung wieder abgelöst wird.However, all of the methods mentioned have certain disadvantages. For example, in the case of production by phase separation, it is difficult to ensure that the phase separation works reliably on an industrial scale and that, even if this works, two separate particles with the two different properties are not produced instead of one Janus particle. The problem with production through self-orientation is that the particle size is based on the selected substances. A particular difficulty with the masking method lies in the fact that the application on a carrier medium works at a defined penetration depth and the coating agent does not connect several particles with one another, so that if the coated particles are detached from the carrier medium, the separation of the particles fails or the coating is detached again .

Eine weitere Schwierigkeit aller drei genannten Verfahren ist die zuverlässige Selektierung von Gutmaterial. Falls etwa eine der Eigenschaften eine Magnetseparation erlaubt, so wird ein Partikel auch dann als Gutmaterial akzeptiert, wenn es nur die magnetische Eigenschaft besitzt. Eine Selektierung über das spezifische Gewicht ist andererseits nur dann möglich, wenn sich die beiden Materialeigenschaften im spezifischen Gewicht deutlich unterscheiden. Die Separation ist auch sehr aufwendig, da zwei Durchgänge für die Selektierung benötigt werden.A further difficulty of all three methods mentioned is the reliable selection of good material. If, for example, one of the properties allows magnetic separation, a particle is accepted as a good material even if it only has the magnetic property. On the other hand, a selection based on the specific weight is only possible if the two material properties differ significantly in terms of specific weight. The separation is also very complex, since two passes are required for the selection.

Januspartikel werden gegenwärtig überwiegend in der Forschung hergestellt, wo die bei den beschriebenen Verfahren bestehenden Einschränkungen oftmals hinnehmbar sind. Die Verfahren sind zeit- und kostenaufwendig und insbesondere in ihrer Reproduzierbarkeit fehlerbehaftet, was dazu führt, dass die Partikel vielfach nur im Milligramm- oder Gramm-Maßstab hergestellt werden. Teilweise besteht bei Anwendung der beschriebenen Verfahren das Problem, dass eine definierte Ausrichtung der Janus-Grenzfläche zu einer permanent-magnetischen Magnetisierung des Partikels kaum oder nur schwer möglich ist. Erste Anwendungen für Januspartikel gibt es im medizinischen Bereich, wo in der Regel nur kleine Mengen benötigt werden.Janus particles are currently mainly produced in research, where the limitations of the described processes are often acceptable. The processes are time-consuming and costly and, in particular, are prone to errors in their reproducibility, which means that the particles are often only produced on a milligram or gram scale. In some cases, when using the methods described, there is the problem that a defined alignment of the Janus interface with respect to a permanent magnetic magnetization of the particle is hardly or only with difficulty. The first applications for Janus particles are in the medical field, where usually only small amounts are required.

Im Gegensatz dazu erlaubt der erfindungsgemäße kombinierte Einsatz von Druck- und Beschichtungsverfahren nunmehr eine reproduzierbare und skalierbare Herstellung anisotroper Partikel mit zumindest zwei getrennten Oberflächenbereichen mit unterschiedlichen physikalischen Eigenschaften. Die in einer Kombination von zumindest einem Druckverfahren und zumindest einem Beschichtungsverfahren hergestellten anisotropen Partikel werden im Rahmen dieser Anmeldung als "Druck-/Beschichtungs-Partikel" bezeichnet.In contrast to this, the combined use of printing and coating processes according to the invention now allows a reproducible and scalable production of anisotropic particles with at least two separate surface areas with different physical properties. The anisotropic particles produced in a combination of at least one printing process and at least one coating process are referred to in this application as “printing / coating particles”.

Die Erfinder haben überraschend gefunden, dass mit Hilfe einer geeigneten Kombination von Druck- und Beschichtungsverfahren zumindest zwei unterschiedliche Stoffe, nämlich zumindest ein Druckstoff und zumindest ein Beschichtungsstoff, direkt oder indirekt miteinander verbunden werden können, um die zumindest zwei getrennten Oberflächenbereiche mit unterschiedlichen physikalischen Eigenschaften zu erzeugen.The inventors have surprisingly found that, with the aid of a suitable combination of printing and coating processes, at least two different substances, namely at least one printing substance and at least one coating substance, are connected to one another directly or indirectly can to produce the at least two separate surface areas with different physical properties.

Der zumindest eine Druckstoff wird erfindungsgemäß durch Continuous-Ink-Jetdruck, Ink-Jetdruck, Siebdruck oder 3D-Druck auf einen bereits vorhandenen Bestandteil des Partikels, beispielsweise einen Trägerbestandteil des Partikels oder auf einen Hilfsträger (von dem die Partikel nach ihrem Aufbau abgelöst werden) aufgebracht. Der zumindest eine Druckstoff kann insbesondere, und das ist nicht beansprucht, durch Dispenser-Drucksysteme (z.B. DMD100 von Kelenn technology) oder Aerosol-Printing-Systeme (z.B. Systeme von Optomec, Neotech AMT, Fraunhofer IWS Dresden) auf einen bereits vorhandenen Bestandteil des Partikels, beispielsweise einen Trägerbestandteil des Partikels oder auf einen Hilfsträger (von dem die Partikel nach ihrem Aufbau abgelöst werden) aufgebracht werden.According to the invention, the at least one printing material is applied by continuous ink jet printing, ink jet printing, screen printing or 3D printing to an existing component of the particle, for example a carrier component of the particle or to an auxiliary carrier (from which the particles are detached after they have been built up) upset. The at least one printing material can in particular, and this is not claimed, by means of dispenser printing systems (e.g. DMD100 from Kelenn technology) or aerosol printing systems (e.g. systems from Optomec, Neotech AMT, Fraunhofer IWS Dresden) on an already existing component of the particle , for example a carrier component of the particle or on an auxiliary carrier (from which the particles are detached after their build-up).

Um große Schichtdicken mittels Ink-Jet-Druck zu erzeugen, werden mit besonderem Vorteil thermoplastische Druckfarben, insbesondere thermoplastische, UV-vernetzende Druckfarben eingesetzt. Die Ink-Jet-Drucktinte wird dabei im Bereich des Druckkopfes erhitzt und damit ihre Viskosität erniedrigt. Bei der Applikation der Tinte auf dem Zielobjekt (dem partiellen Partikelaufbau oder dem Hilfsträger) kommt es durch eine schlagartige Temperaturabsenkung zu einer Erhöhung der Viskosität, so dass die Tinte nicht weiter verläuft.In order to produce large layer thicknesses by means of ink-jet printing, thermoplastic printing inks, in particular thermoplastic, UV-crosslinking printing inks, are used with particular advantage. The ink-jet printing ink is heated in the area of the print head, thereby reducing its viscosity. When the ink is applied to the target object (the partial build-up of particles or the auxiliary carrier), a sudden drop in temperature leads to an increase in viscosity, so that the ink does not run any further.

Bei hohen Druckschichten (z.B. Ink-Jet-Schichten) werden vorzugsweise Stützschichten gedruckt, welche vermeiden, dass die applizierten Janusdruckschichten unkontrolliert verlaufen oder auf dem Hilfsträger spreiten. Diese Stützstellen stellen dabei eine Wandung für die Januspartikel dar und sind nachträglich wieder entfernbar.Die Stützstellen können dabei selbst aus einem wasserlöslichen Bindemittel wie z.B. PVOH oder einem nicht vollständig aushärtbaren UV-trocknenden Bindemittel (z.B. durch Unterkonzentration an Photoinitiator) bestehen, so dass ein Ablösen beispielsweise mit Aceton oder Ethanol möglich ist.In the case of high print layers (for example ink-jet layers), support layers are preferably printed which avoid the applied Janus print layers run uncontrollably or spread on the auxiliary carrier. These support points represent a wall for the Janus particles and can be removed again afterwards. The support points themselves can consist of a water-soluble binder such as PVOH or a UV-drying binder that is not fully hardenable (e.g. due to an underconcentration of photoinitiator), so that they can be detached for example with acetone or ethanol is possible.

Die Stützstellen werden mit Vorteil bei jeder applizierten Janusschicht Inline erzeugt um die Passersituation der Stützstelle zu der Janusschicht zu verbessern und um Fehlstellen im Druck der Janusschichten zu vermeiden.The interpolation points are advantageously generated inline for each applied Janus layer in order to improve the register situation of the interpolation point with the Janus layer and to avoid imperfections in the print of the Janus layers.

Der zumindest eine Beschichtungsstoff wird erfindungsgemäß durch ein kontaktloses Beschichtungsverfahren aufgebracht, wobei erfindungsgemäß PVD (Physical Vapour Deposition)-Verfahren, CVD (Chemical Vapour Deposition)-Verfahren oder Sprühcoating-Verfahren zum Einsatz kommen.According to the invention, the at least one coating material is applied by a contactless coating process, PVD (Physical Vapor Deposition) processes, CVD (Chemical Vapor Deposition) processes or spray coating processes being used according to the invention.

Die einsetzbaren PVD-Verfahren umfassen insbesondere thermisches Verdampfen, Elektronenstrahlverdampfen, Laserstrahlverdampfen, Lichtbogenverdampfen, Molekularstrahlepitaxie, Sputtern, Ionenstrahlgestützte Deposition und Ionenplattieren. Beispielsweise wird beim besonders gut geeigneten Laser- oder Elektronenstrahlverdampfen das zu verdampfende Material in einer Pfanne mittels Laser erhitzt, so dass dieses in die gasförmige Phase übergeht und unter anderem auf dem zu beschichtenden Substrat kondensiert. Das verdampfte Material kann je nach Verfahren ballistisch oder durch elektrische Felder zu dem zu beschichtenden Substrat gelenkt werden. Die Beschichtung erfolgt dabei im Vakuum bei typischen Arbeitsdrücken von 10-4 Pa bis etwa 10 Pa. Durch den Einsatz reaktiver Prozessgase lassen sich auch Oxide abscheiden. Die Schichtdicke der Abscheidung ist unter anderem abhängig von der verdampften Materialmenge, dem Kammerdesign, der Substratbreite und der Bahngeschwindigkeit des Substrates. Gängige Materialien zur Bedampfung sind Metalle wie Kupfer, Aluminium, Chrom und dergleichen.The PVD methods that can be used include, in particular, thermal evaporation, electron beam evaporation, laser beam evaporation, electric arc evaporation, molecular beam epitaxy, sputtering, ion beam-assisted deposition and ion plating. For example, in the case of particularly suitable laser or electron beam evaporation, the material to be evaporated is heated in a pan by means of a laser, so that it changes into the gaseous phase and condenses on the substrate to be coated, among other things. The vaporized material can be directed to the substrate to be coated either ballistically or by electrical fields, depending on the process. The coating takes place in a vacuum at typical working pressures of 10 -4 Pa to about 10 Pa. Oxides can also be deposited through the use of reactive process gases. The layer thickness of the deposit depends, among other things, on the amount of evaporated material, the chamber design, the substrate width and the path speed of the substrate. Common materials for vapor deposition are metals such as copper, aluminum, chromium and the like.

Bei den im Rahmen der Erfindung einsetzbaren CVD-Verfahren gibt es einzelne Methoden, die im Niedertemperaturbereich mit reduziertem Druck (<200 mbar) arbeiten, so dass auch Beschichtung auf temperaturempfindlichen Materialien möglich sind. Bei CVD-Verfahren sind derzeit Temperaturen ab etwa 150 °C notwendig. Insbesondere die plasmaunterstützte chemische Gasphasenabscheidung (PECVD) eignet sich auch für die Beschichtung temperaturempfindlicherer Materialien. Beispielsweise lässt sich durch Reduktion aus Aluminiumtrichlorid und Wasserstoff Aluminium auf Materialien abscheiden. Durch CVD-Verfahren können auch beispielsweise auch aus gasförmigem Eisenchlorid (FeCl3) und Wasserdampf Fe2O3 Schichten gebildet werden oder durch Kohlenstoff-Abscheidung eine Schwärzung einer Seite eines Partikeln erzeugt werden. Bei höheren Temperaturen sind beispielsweise auch SiO2-Beschichtungen sind möglich.In the CVD processes that can be used within the scope of the invention, there are individual methods that work in the low temperature range with reduced pressure (<200 mbar), so that coating on temperature-sensitive Materials are possible. For CVD processes, temperatures of around 150 ° C are currently necessary. In particular, plasma-assisted chemical vapor deposition (PECVD) is also suitable for coating more temperature-sensitive materials. For example, aluminum can be deposited on materials by reducing aluminum trichloride and hydrogen. CVD processes can also be used, for example, to form Fe 2 O 3 layers from gaseous iron chloride (FeCl 3 ) and water vapor, or blacken one side of a particle by means of carbon deposition. At higher temperatures, SiO 2 coatings, for example, are also possible.

Sprühcoating ist ein Hochdrucksprühverfahren, in dem das Beschichtungsmaterial vernebelt wird, so dass feinste Tröpfchen entstehen, die sich auf dem zu beschichtenden Produkt als dünner Materialfilm niederschlagen. Die Trocknung des Sprühfilms erfolgt beispielsweise durch oxidierende Trocknung, thermisch oder photochemisch induziert.Spray coating is a high-pressure spraying process in which the coating material is atomized, so that the finest droplets are created, which are deposited as a thin film of material on the product to be coated. The spray film is dried, for example, by oxidizing drying, thermally or photochemically induced.

Die unterschiedlichen Druck- und Beschichtungsstoffe werden bei der Erfindung mit Vorteil zueinander gepassert übereinander, überlappend zueinander, oder Stoß an Stoß angeordnet.In the case of the invention, the different printing and coating materials are advantageously arranged so that they fit one another, overlap one another, or are arranged butt to butt.

In einer vorteilhaften Herstellungsvariante ist vorgesehen, dass die unterschiedlichen Druck- und Beschichtungsstoffe zunächst auf einen Hilfsträger aufgebracht und dort jeweils zu einem anisotropen Druck-/Beschichtungs-Partikel verbunden werden und dass die gebildeten anisotropen Druck-/Beschichtungs-Partikel dann von dem Hilfsträger abgelöst werden, und zwar vorzugsweise mechanisch abgelöst werden. Die mechanische Ablösung kann mit Hilfe einer mechanischen Abstreifeinrichtung erfolgen, beispielsweise mittels Rakel, Bürste, Luftstrahl oder Wasserstrahl. Auch ein Abstreifen durch eine scharfkantige Umlenkung des in Form eines Endlosbandes ausgebildeten Hilfsträgers mit einem Zylinder mit kleinem Durchmesser oder einer feststehenden gerundeten Platte kommt in Betracht. Die feststehende Platte kann beispielsweise aus Kunststoff, poliertem Stahl, verchromtem poliertem Stahl, Teflon, PTFE oder keramisch beschichtetem Stahl bestehen. Auch eine Kombination der genannten Varianten ist gut geeignet, um erzeugte Partikel von dem Hilfsträger abzulösen. Weiter können die genannten Werkzeuge auch durch eine Ultraschallbeaufschlagung unterstützt werden.In an advantageous manufacturing variant, it is provided that the different printing and coating materials are first applied to an auxiliary carrier and each connected there to form an anisotropic printing / coating particle and that the anisotropic printing / coating particles formed are then detached from the auxiliary carrier , preferably to be removed mechanically. The mechanical detachment can take place with the aid of a mechanical stripping device, for example by means of a doctor blade, brush, air jet or water jet. Also a stripping A sharp-edged deflection of the auxiliary carrier in the form of an endless belt with a cylinder with a small diameter or a fixed, rounded plate comes into consideration. The fixed plate can for example consist of plastic, polished steel, chrome-plated polished steel, Teflon, PTFE or ceramic-coated steel. A combination of the variants mentioned is also well suited to detaching generated particles from the auxiliary carrier. Furthermore, the tools mentioned can also be supported by an application of ultrasound.

Bei einer weiteren vorteilhaften Variante wird der Hilfsträger mit einer Releaseschicht in Form einer Wachsemulsion versehen. Nach einer thermischen Trocknung erfolgt eine vollflächige erste oder mehre PVD-Beschichtung(en) für die erste Januseigenschaft, eine oder mehrere drucktechnisch gepasserte Druckschichten übereinander und abschließend eine oder mehrere weitere PVD-Schichten für die zweite Januseigenschaft. Da die PVD-Schichten im Vergleich zur Druckschicht sehr dünn (wenige Nanometer) und spröde sind, definiert die drucktechnisch erzeugte Mittelschicht des Januspartikel die Partikelform und Größe.In a further advantageous variant, the auxiliary carrier is provided with a release layer in the form of a wax emulsion. After thermal drying, there is a full-surface first or more PVD coating (s) for the first Janus property, one or more print layers matched by printing technology, and finally one or more further PVD layers for the second Janus property. Since the PVD layers are very thin (a few nanometers) and brittle compared to the printing layer, the middle layer of the Janus particle created by printing technology defines the shape and size of the particles.

Die zuvor beschriebene Variante kann mittels der drucktechnisch erzeugten Mittelschicht eine weitere Januseigenschaft mitbringen, welche optisch nicht in Erscheinung trifft. Dies kann beispielsweise eine magnetische Polarität sein (N/S-Pol senkrecht zur erzeugten Partikeloberseite.The variant described above can, by means of the middle layer produced by printing, bring with it a further Janus property which is not visually apparent. This can, for example, be a magnetic polarity (N / S pole perpendicular to the generated particle top.

In einer anderen vorteilhaften Variante wird das Endlosband nach dem Erzeugen der Druck-/Beschichtungs-Partikel in einem Bad umgelenkt, in welchem sich eine Trennflüssigkeit befindet, die die Partikel vom Band löst. Das Bad kann auch mit einem Ultraschallgeber bzw. einer Ultraschallsonde gekoppelt sein um den Trennvorgang der Partikel vom Endlosband zu unterstützen.In another advantageous variant, after the printing / coating particles have been produced, the endless belt is deflected in a bath in which there is a separating liquid that detaches the particles from the belt. The bath can also be coupled with an ultrasound transmitter or an ultrasound probe to support the process of separating the particles from the endless belt.

Bei einer weiteren vorteilhaften Variante wird der Hilfsträger mit einer Lösemittel löslichen Schicht versehen. Diese Schicht kann beispielsweise wasserlöslich sein. Geeignet ist etwa PVOH. Nach der Applikation der Partikel erfolgt die Pigmenttrennung beispielsweise in der oben beschriebenen Weise in einem Trennflüssigkeitsbad.In a further advantageous variant, the auxiliary carrier is provided with a solvent-soluble layer. This layer can be water-soluble, for example. PVOH, for example, is suitable. After the application of the particles, the pigment is separated, for example, in the manner described above in a separating liquid bath.

Das genannte Endlosband kann auch mit einer formgebenden Matrize, beispielsweise in Form von Halbschalenmulden versehen sein, um die Form der Druck-/Beschichtungs-Partikel festzulegen.Said endless belt can also be provided with a shaping die, for example in the form of half-shell troughs, in order to define the shape of the printing / coating particles.

Die Applikation der Partikel erfolgt vorzugsweise auf einen bahnförmigen Hilfsträger.The particles are preferably applied to a web-shaped auxiliary carrier.

Als Hilfsträger kann ein Endlosband eingesetzt werden, welches nach der Ablösung der erzeugten Janus-Partikel und eines optional zusätzlichen Reinigungsvorgangs wieder bestückt bzw. bedruckt wird.An endless belt can be used as an auxiliary carrier, which is fitted or printed again after the generated Janus particles have been detached and an optional additional cleaning process.

Als Hilfsträger kann auch Rollenmaterial eingesetzt werden, welches nach Ablösen der erzeugten Januspartikel wieder aufgewickelt wird und einer erneuten Bestückung zugeführt wird. Das Rollenmaterial kann gereinigt werden (z.B. offline) und dann wiederverwendet werden oder entsorgt werden.Roll material can also be used as an auxiliary carrier, which is wound up again after the generated Janus particles have been detached and fed to a new assembly. The roll material can be cleaned (e.g. offline) and then reused or disposed of.

In einer weiteren vorzugsweisen Ausgestaltung wird als Trägermaterial ein Hilfsträger-Bogen, vorzugsweise flexibel, oder eine Tafel, vorzugsweise steif, eingesetzt.In a further preferred embodiment, an auxiliary carrier sheet, preferably flexible, or a board, preferably rigid, is used as the carrier material.

Der Einsatz von Bögen oder Tafeln weist den Vorteil auf, dass schnelle mit langsamen Prozess-Schritten besser kombiniert werden können.The use of sheets or boards has the advantage that fast and slow process steps can be better combined.

Bei einer ersten möglichen Variante werden die Prozess-Schritte vereinzelt, wie im Folgenden beschrieben:
Beispielsweise werden die Tafeln in einem ersten Prozess-Schritt mit einer Ablöseschicht beschichten, z.B. drucktechnisch, und nach einer thermischen Trocknung wieder aufgestapelt. Im zweiten Prozess-Schritt erfolgt dann die Erzeugung der Januspartikel. Das Ablösen der erzeugten Januspartikel erfolgt dann in einem dritten Offline-Prozess-Schritt, da dieser beispielsweise mehr Zeit benötigt. Eine optimale Reinigung der Tafeln erfolgt dann in einem vierten Prozess-Schritt.
In a first possible variant, the process steps are separated as described below:
For example, in a first process step, the panels are coated with a release layer, for example by printing, and then stacked again after thermal drying. In the second process step, the Janus particles are then generated. The detachment of the generated Janus particles then takes place in a third offline process step, as this requires more time, for example. The panels are then optimally cleaned in a fourth process step.

Bei einer zweiten möglichenVariante werden unterschiedlich schnelle Prozess-Schritte mit Hilfe von Weichen in einem Online-Prozess bzw. automatisierten Prozess so kombiniert, dass ein schneller-Prozess-Schritt nicht durch einen langsamen Prozess-Schritt ausgebremst wird.In a second possible variant, process steps of different speeds are combined with the help of switches in an online process or automated process in such a way that a faster process step is not slowed down by a slow process step.

Dies soll an dem nachfolgenden Beispiel mit den aufgelisteten Prozess-Schritten verdeutlicht werden:

  1. 1. Anlage Tafeln (Hilfsträger) mit Transporteinrichtung über Saug- und Bändertisch (analog Bogen-Offsetdruckmaschine)
  2. 2. Applikation Ablöseschicht (z.B. PVOH) mit Hilfe von Ink-Jet-Druck und thermische Trocknung mit Heißluft oder/ und IR-Strahler
  3. 3. Applikation der Janus-Partikel incl. UV-Trocknung
  4. 4. Weiche zu zwei Partikel-Ablöse-Stationen welche wechselseitig geschaltet werden (da der Ablöseprozess in diesem Beispiel mehr Zeit benötigt)
  5. 5. Zuführung der Tafeln an eine Reinigungsstation Nach dem Ablösen kann eine Trennung der Partikel durch ein zentrifugales Verfahren in unterschiedliche Dichten erfolgen, wobei z.B. zu leichte Partikel - beispielsweise wegen fehlender zweiter magnetischer Beschichtung - als fehlerhafte Partikel aussortiert werden.
This should be illustrated by the following example with the listed process steps:
  1. 1. System panels (auxiliary carrier) with transport device via suction and belt table (analogous to sheet-fed offset printing machine)
  2. 2. Application of release layer (eg PVOH) with the help of ink-jet printing and thermal drying with hot air and / or IR radiator
  3. 3. Application of the Janus particles including UV drying
  4. 4. Switch to two particle detachment stations which are switched alternately (since the detachment process requires more time in this example)
  5. 5. Feeding the panels to a cleaning station After detachment, the particles can be separated into different densities by a centrifugal process, whereby, for example, excessively light particles - for example due to the lack of a second magnetic coating - are sorted out as defective particles.

Mit Vorteil ist zumindest ein Druckstoff magnetisch und der zumindest eine magnetische Druckstoff wird nach dem Aufbringen und vor oder während seiner Trocknung oder Aushärtung magnetisch vororientiert.At least one printing material is advantageously magnetic and the at least one magnetic printing material is magnetically pre-oriented after application and before or during its drying or curing.

Genügt bei dem Aufbringen eines Druckstoffs die Druckgeschwindigkeit eines einzelnen Druckers nicht um die gewünschte Menge an Druck-/Beschichtungs-Partikeln zu fertigen, so kann der Ausstoß durch eine Parallel-Produktion beliebig hochskaliert werden. Die typischen Risiken der Skalierbarkeit von Prozessen entfallen dabei.If the printing speed of a single printer is not sufficient when applying a printing material to produce the desired amount of printing / coating particles, the output can be scaled up as required by parallel production. The typical risks associated with the scalability of processes are eliminated.

Bei dem genannten anisotropen Druck-/Beschichtungs-Partikel ist vorteilhaft zumindest einer der genannten Oberflächenbereiche durch einen Druckstoff, insbesondere eine Drucktinte gebildet.In the case of the anisotropic printing / coating particles mentioned, at least one of the surface areas mentioned is advantageously formed by a printing substance, in particular a printing ink.

Die getrennten Oberflächenbereiche unterscheiden sich vorteilhaft hinsichtlich einer oder mehrerer der physikalischen Eigenschaften der Gruppe, die gebildet ist aus:

  • der Oberflächenspannung der Oberflächenbereiche,
  • dem spezifischen Gewicht der die Oberflächenbereiche ausbildenden Materialien,
  • der Farbigkeit der Oberflächenbereiche, insbesondere dem Farbspektrum der Oberflächenbereiche im UV, VIS und/oder IR, wobei der Begriff Farbigkeit sowohl nicht-farbvariable als auch farbvariable, beispielsweise farbkippende oder in anderer Weise optisch variable Gestaltungen einschließt,
  • den magnetischen Eigenschaften der Oberflächenbereiche bzw. der die Oberflächenbereiche ausbildenden Materialien,
  • den Lumineszenzeigenschaften der Oberflächenbereiche bzw. der die Oberflächenbereiche ausbildenden Materialien,
  • der elektrischen Leitfähigkeit der Oberflächenbereiche bzw. der die Oberflächenbereiche ausbildenden Materialien,
  • den Polarisationseigenschaften der Oberflächenbereiche bzw. der die Oberflächenbereiche ausbildenden Materialien, und
  • dem Glanz und der Reflektivität der Oberflächenbereiche.
The separate surface areas advantageously differ with regard to one or more of the physical properties of the group, which is formed from:
  • the surface tension of the surface areas,
  • the specific weight of the materials forming the surface areas,
  • the color of the surface areas, in particular the color spectrum of the surface areas in UV, VIS and / or IR, the term color being both non-color-variable and color-variable, for example includes color-changing or otherwise optically variable designs,
  • the magnetic properties of the surface areas or the materials forming the surface areas,
  • the luminescence properties of the surface areas or the materials forming the surface areas,
  • the electrical conductivity of the surface areas or the materials forming the surface areas,
  • the polarization properties of the surface areas or of the materials forming the surface areas, and
  • the gloss and the reflectivity of the surface areas.

In einer vorteilhaften Ausgestaltung weisen die getrennten Oberflächenbereiche des Partikels gleiche Form und/oder Größe auf. In anderen Varianten kann es von Vorteil sein, die getrennten Oberflächenbereiche des Partikels mit unterschiedlicher Form und/oder Größe auszubilden, beispielsweise um eine der Eigenschaften des Partikels überwiegen oder sogar dominieren zu lassen.In an advantageous embodiment, the separate surface areas of the particle have the same shape and / or size. In other variants, it can be advantageous to design the separate surface areas of the particle with a different shape and / or size, for example in order to allow one of the properties of the particle to predominate or even to dominate.

Während das anisotrope Druck-/Beschichtungs-Partikel grundsätzlich beliebige geometrische Form haben kann, ist es gegenwärtig besonders bevorzugt, wenn das anisotrope Druck-/Beschichtungs-Partikel plättchenförmig oder halbkugelförmig ausgebildet ist. Daneben kommen auch kugelförmige, hantelförmige, stabförmige oder zylinderförmige Gestaltungen in Betracht.While the anisotropic printing / coating particle can in principle have any geometric shape, it is currently particularly preferred if the anisotropic printing / coating particle is lamellar or hemispherical. In addition, spherical, dumbbell-shaped, rod-shaped or cylindrical designs are also possible.

In einer vorteilhaften Erfindungsvariante stellt der durch den genannten Druckstoff gebildeten Bestandteil des Partikels einen Trägerbestandteil dar, der die räumliche Form des Partikels definiert. Dieser Trägerbestandteil muss nicht notwendig auch einen der genannten Oberflächenbereiche bilden, kann dies aber in vorteilhaften Ausgestaltungen tun. Der Trägerbestandteil kann mit einem Füllstoff hoher Dichte gefüllt sein, der eine gravimetrische Ausrichtung des Partikels ermöglicht. Als Füllstoffe kommen beispielsweise Bariumsulfat mit einer Dichte von etwa 4,5 g/cm3 und Titandioxid (4,2 g/cm3) in Betracht.In an advantageous variant of the invention, the component of the particle formed by said printing substance represents a carrier component which defines the spatial shape of the particle. This carrier component does not necessarily have to form one of the surface areas mentioned, but can do this in advantageous configurations. The carrier component can be filled with a high density filler that enables gravimetric orientation of the particle. For example, barium sulfate with a density of about 4.5 g / cm 3 and titanium dioxide (4.2 g / cm 3 ) can be used as fillers.

In bevorzugten Ausgestaltungen ist der Trägerbestandteil transparent und erlaubt die Wahrnehmung eines unter bzw. über dem Trägerbestandteil angeordneten Materialbereichs mit gewünschten physikalischen, insbesondere visuell wahrnehmbaren oder optisch nachweisbaren Eigenschaften. Der Trägerbestandteil umfasst vorteilhaft ein Lösemittel oder wasserbasiertes Bindemittel, insbesondere ein UV-vernetzendes Bindemittel und besonders bevorzugt ein UV-trocknendes Bindemittel. In einer vorteilhaften Ausgestaltung bildet der durch den genannten Druckstoff gebildeten Bestandteil des Partikels einen der genannten Oberflächenbereiche.In preferred embodiments, the carrier component is transparent and allows the perception of a material area arranged below or above the carrier component with desired physical, in particular visually perceptible or optically detectable properties. The carrier component advantageously comprises a solvent or water-based binder, in particular a UV-crosslinking binder and particularly preferably a UV-drying binder. In an advantageous embodiment, the component of the particle formed by the named printing substance forms one of the named surface areas.

Der Volumenanteil der Beschichtungsstoffe beträgt mit Vorteil weniger als 50%, vorzugsweise weniger als 30%, insbesondere weniger als 10% oder sogar weniger als 5% des Volumenanteils der Druckstoffe.The volume fraction of the coating materials is advantageously less than 50%, preferably less than 30%, in particular less than 10% or even less than 5% of the volume fraction of the printing materials.

Weiter stellt zumindest ein Beschichtungsstoff mit Vorteil eine flächige Beschichtung eines durch zumindest einen Druckstoff gebildeten Bestandteils des Partikels, insbesondere des Trägerbestandteils dar.Furthermore, at least one coating material advantageously represents a two-dimensional coating of a component of the particle formed by at least one printing material, in particular of the carrier component.

Das anisotrope Druck-/Beschichtungs-Partikel weist mit Vorteil eine maximale Ausdehnung von 3 - 70 µm, bevorzugt von 3 - 50 µm und besonders bevorzugt von 3 - 30 µm auf. Alternativ oder zusätzlich weist das Druck-/ Beschichtungs-Partikel ein Volumen unterhalb von 3,5 x 10-13 m3, bevorzugt unterhalb von 1,25 x 10-13 m3 und besonders bevorzugt unterhalb von 0,3 x 10-13 m3 auf.The anisotropic printing / coating particle advantageously has a maximum dimension of 3-70 µm, preferably 3-50 µm and particularly preferably 3-30 µm. Alternatively or additionally, the printing / coating particle has a volume below 3.5 × 10 -13 m 3 , preferably below 1.25 x 10 -13 m 3 and particularly preferably below 0.3 x 10 -13 m 3 .

Der genaue Zusammenhang zwischen maximaler Ausdehnung und Volumen hängt von der Form der Partikel ab. Beispielsweise weisen halbkugelförmige anisotrope Druck-/Beschichtungs-Partikel vorteilhaft eine maximale Ausdehnung von 1,5 - 35 µm, bevorzugt von 1,5 - 25 µm und besonders bevorzugt von 1,5 -15 µm auf und haben entsprechend vorteilhaft ein Volumen zwischen 7 µm3 und 90.000 µm3, bevorzugt zwischen 7 µm3 und 32.500 µm3 und besonders bevorzugt zwischen 7 µm3 und 7.000 µm3.The exact relationship between maximum expansion and volume depends on the shape of the particles. For example, hemispherical anisotropic printing / coating particles advantageously have a maximum dimension of 1.5-35 μm, preferably 1.5-25 μm and particularly preferably 1.5-15 μm, and accordingly advantageously have a volume between 7 μm 3 and 90,000 μm 3 , preferably between 7 μm 3 and 32,500 μm 3 and particularly preferably between 7 μm 3 and 7,000 μm 3 .

Plättchenförmige anisotrope Druck-/Beschichtungs-Partikel weisen vorteilhaft eine Pigmentdicke von 1 - 10 µm, bevorzugt von 1 - 7 µm auf. Zur Illustration wird von einer kreisrunden Flächenausdehnung der Partikel ausgegangen, die Ergebnisse für andere Flächenformen können dann leicht abgeleitet werden. Beispielsweise hat ein plättchenförmiges Partikel mit einem Kreisscheiben-Durchmesser von 30 µm bei einer Dicke von 1 µm ein Volumen von 707 µm3, bei einer Dicke von 3 µm ein Volumen von 2.120 µm3. Ein plättchenförmiges Partikel mit einem Kreisscheiben-Durchmesser von 50 µm hat bei einer Dicke von 3 µm ein Volumen von 5.890 µm3, bei einer Dicke von 5 µm ein Volumen von 9.820 µm3. Ein plättchenförmiges Partikel mit einem Kreisscheiben-Durchmesser von 70 µm hat bei einer Dicke von 3 µm ein Volumen von 11.545 µm3, bei einer Dicke von 5 µm ein Volumen von 19.240 µm3.Platelet-shaped anisotropic printing / coating particles advantageously have a pigment thickness of 1-10 μm, preferably 1-7 μm. For illustration purposes, the particles are assumed to have a circular surface area; the results for other surface shapes can then easily be derived. For example, a platelet-shaped particle with a circular disk diameter of 30 μm and a thickness of 1 μm has a volume of 707 μm 3 , and a thickness of 3 μm has a volume of 2,120 μm 3 . A platelet-shaped particle with a circular disk diameter of 50 μm has a volume of 5,890 μm 3 with a thickness of 3 μm and a volume of 9,820 μm 3 with a thickness of 5 μm. A platelet-shaped particle with a circular disk diameter of 70 μm has a volume of 11,545 μm 3 with a thickness of 3 μm and a volume of 19,240 μm 3 with a thickness of 5 μm.

In einer besonders bevorzugten Variante liegt die Dichte des Partikelmaterials (Druck- und Beschichtungsstoffe) im Bereich von 0,8 g/cm3 bis 4 g/cm3.In a particularly preferred variant, the density of the particulate material (printing and coating materials) is in the range from 0.8 g / cm 3 to 4 g / cm 3 .

Gemäß einer vorteilhaften Weiterbildung ist das anisotrope Druck-/Beschichtungs-Partikel leicht beweglich und in seiner räumlichen Ausrichtung steuerbar, so dass insbesondere die Ausrichtung der getrennten Oberflächenbereiche nach Wunsch eingestellt werden kann. Diese Einstellung kann dauerhaft vorgenommen werden, beispielsweise durch eine Fixierung der räumlich ausgerichteten Partikel in einem Umgebungsmedium. Die Einstellung kann aber auch reversibel sein, etwa indem ein Druck-/Beschichtungs-Partikelkern beweglich in einer Kapselhülle aufgenommen ist. Zu diesem Zweck weist das anisotrope Druck-/Beschichtungs-Partikel vorzugsweise einen durch einen externen Magneten ausrichtbaren magnetischen Kern auf. Alternativ kommt auch eine Ausrichtung der Partikelkerne durch elektrische Felder in Frage, wozu die Kerne beispielsweise eine elektrische Ladung oder ein elektrisches Dipolmoment aufweisen oder ausreichend stark polarisierbar sind. Die Ausrichtbarkeit kann durch eine Fixierung der Druck-/Beschichtungs-Partikel in einer Druckfarbe zerstört werden, oder kann, wie etwa bei den nachfolgend beschriebenen verkapselten Druck-/Beschichtungs-Partikeln, auch dauerhaft erhalten bleiben.According to an advantageous development, the anisotropic printing / coating particle is easily movable and its spatial alignment can be controlled, so that in particular the alignment of the separate surface areas can be set as desired. This setting can be made permanently, for example by fixing the spatially oriented particles in an ambient medium. However, the setting can also be reversible, for example in that a printing / coating particle core is movably accommodated in a capsule shell. For this purpose, the anisotropic printing / coating particle preferably has a magnetic core which can be aligned by an external magnet. Alternatively, an alignment of the particle cores by means of electric fields is also possible, for which purpose the cores have, for example, an electric charge or an electric dipole moment or are sufficiently polarizable. The alignability can be destroyed by fixing the printing / coating particles in a printing ink, or, as in the case of the encapsulated printing / coating particles described below, can also be permanently retained.

In einer zweckmäßigen Weiterbildung der Erfindung weist das Druck-/ Beschichtungs-Partikel eine Kapselhülle und ein in der Kapselhülle eingeschlossenes Trägerfluid auf, in dem zumindest ein Druck-/Beschichtungs-Partikel-Kern dispergiert ist, der zumindest zwei getrennte Oberflächenbereiche mit unterschiedlichen physikalischen Eigenschaften aufweist und bei dem zumindest einer der genannten Oberflächenbereiche durch einen Beschichtungsstoff gebildet ist und zumindest ein Bestandteil des Partikelkerns durch einen Druckstoff, insbesondere eine Drucktinte gebildet ist. In dem Trägerfluid können auch mehrere gleichartige oder ungleichartige Druck-/Beschichtungs-Partikel-Kerne enthalten sein. In dieser Weiterbildung wird also das zunächst erzeugte Druck-/Beschichtungs-Partikel gemeinsam mit einem Trägerfluid dispergiert und verkapselt, so dass es zumindest einen Druck-/Beschichtungs-Partikelkern bildet, der innerhalb einer Kapselhülle eingeschlossen ist. Dieser ist im Falle eines magnetischen Partikels durch einen äußeren Stimulus mittels Magnetfeld reversibel ausrichtbar.In an expedient development of the invention, the printing / coating particle has a capsule shell and a carrier fluid enclosed in the capsule shell, in which at least one printing / coating particle core is dispersed, which has at least two separate surface areas with different physical properties and in which at least one of the surface areas mentioned is formed by a coating material and at least one component of the particle core is formed by a printing material, in particular a printing ink. A plurality of identical or dissimilar printing / coating particle cores can also be contained in the carrier fluid. In this further development, the printing / coating particle initially generated is therefore used together with dispersed and encapsulated in a carrier fluid so that it forms at least one printing / coating particle core which is enclosed within a capsule shell. In the case of a magnetic particle, this can be reversibly aligned by an external stimulus using a magnetic field.

Um zu vermeiden, dass eine geänderte Lage der Partikelkerne dauerhaft erhalten bleibt, kann vorgesehen sein, dass nach einer Umorientierung der Partikelkerne eine Rückorientierung durch Ausnutzung gravimetrischer Kräfte und/oder durch elastische Rückstellkräfte des Trägerfluids der Kapsel erfolgt.In order to avoid that a changed position of the particle cores is permanently maintained, it can be provided that after a reorientation of the particle cores a reorientation takes place by utilizing gravimetric forces and / or by elastic restoring forces of the carrier fluid of the capsule.

Die Erfindung enthält auch eine Druckfarbe oder einen Lack für den Fälschungsschutz in der bzw. in dem anisotrope Druck-/Beschichtungs-Partikel der beschriebenen Art dispergiert sind.The invention also contains a printing ink or a varnish for counterfeit protection in which or in which anisotropic printing / coating particles of the type described are dispersed.

Die Erfindung enthält weiter einen fälschungsgeschützten Gegenstand mit einer aufgebrachten, insbesondere aufgedruckten Schicht mit anisotropen Druck-/ Beschichtungs-Partikeln der beschriebenen Art. Die Schicht kann insbesondere durch Verwendung der oben genannten Druckfarbe bzw. des Lacks erzeugt werden. Bei dem fälschungsgeschützten Gegenstand kann es sich insbesondere um ein Wertdokument, wie eine Banknote, einen Pass, eine Urkunde, eine Ausweiskarte oder dergleichen handeln, oder auch um eine durch die Partikel-Schicht abgesicherte Produktverpackung. Der Gegenstand enthält vorteilhaft ein Substrat aus Papier, Kunststoff oder einem Papier-Kunststoff-Hybrid, auf das die Druck-/Beschichtungs-Partikel-Schicht aufgebracht, insbesondere aufgedruckt ist.The invention further includes a counterfeit-proof article with an applied, in particular printed, layer with anisotropic printing / coating particles of the type described. The layer can in particular be produced by using the above-mentioned printing ink or varnish. The forgery-proof object can in particular be a value document such as a bank note, a passport, a certificate, an identity card or the like, or also a product packaging secured by the particle layer. The object advantageously contains a substrate made of paper, plastic or a paper-plastic hybrid, onto which the printing / coating particle layer is applied, in particular printed.

Die Druck-/Beschichtungs-Partikel-Schicht kann auf dem Gegenstand mit weiteren Schichten mit Sicherheitsmerkmalen kombiniert sein, deren Eigenschaften vorteilhaft mit den physikalischen Eigenschaften der Druck-/Beschichtungs-Partikel wechselwirken. Beispielsweise können die Druck-/Beschichtungs-Partikel lumineszierende Eigenschaften aufweisen und mit einer Lumineszenzschicht oder einer bereichsweise einen UV-Absorber enthaltenden Schicht überdruckt sein, so dass sich eine bereichsweise kombinierte oder bereichsweise modifizierte Lumineszenz ergibt.The printing / coating particle layer can be combined on the object with further layers with security features, their properties interact advantageously with the physical properties of the printing / coating particles. For example, the printing / coating particles can have luminescent properties and be overprinted with a luminescent layer or a layer containing a UV absorber in some areas, so that a luminescence that is combined in some areas or modified in some areas results.

Die Erfindung enthält schließlich auch ein Verfahren zum Erzeugen von anisotropen Druck-/Beschichtungs-Partikeln der beschriebenen Art, bei dem zumindest ein Druckstoff mit einem Druckverfahren und zumindest ein Beschichtungsstoff mit einem Beschichtungsverfahren direkt oder indirekt miteinander verbunden werden, um die zumindest zwei getrennten Oberflächenbereiche mit unterschiedlichen physikalischen Eigenschaften zu erzeugen. Der Beschichtungsstoff wird erfindungsgemäß in einem kontaktlosen Beschichtungsverfahren, nämlich durch ein PVD (Physical Vapour Deposition)-Verfahren, ein CVD (Chemical Vapour Deposition)-Verfahren oder ein Sprühcoating-Verfahren aufgebracht, und der Druckstoff wird erfindungsgemäß im Continuous-Ink-Jetdruck, Ink-Jetdruck, Siebdruck oder 3D-Druck aufgebracht.Finally, the invention also includes a method for producing anisotropic printing / coating particles of the type described, in which at least one printing material with a printing process and at least one coating material with a coating process are connected to one another directly or indirectly in order to provide the at least two separate surface areas to produce different physical properties. According to the invention, the coating material is applied in a contactless coating process, namely by a PVD (Physical Vapor Deposition) process, a CVD (Chemical Vapor Deposition) process or a spray coating process, and the printing material is applied according to the invention using continuous ink jet printing, ink - Jet printing, screen printing or 3D printing applied.

Eine eventuelle Trocknung oder Vernetzung der durch Druckverfahren gebildeten Bestandteile des Partikels kann vor oder nach der Beschichtung des Bestandteils erfolgen.Any drying or crosslinking of the constituents of the particle formed by printing processes can take place before or after the coating of the constituent.

Vorteilhaft einsetzbare Druck- und Beschichtungsverfahren sind an anderer Stelle bereits genannt und genauer beschrieben. Bei dem Beschichtungsverfahren handelt es sich in jedem Fall nicht um ein Druckverfahren. Die unterschiedlichen Druck- und Beschichtungsstoffe werden mit Vorteil zueinander gepassert übereinander, überlappend zueinander, oder Stoß an Stoß angeordnet.Printing and coating processes that can advantageously be used have already been mentioned and described in more detail elsewhere. In any case, the coating process is not a printing process. The different printing and coating materials are advantageously arranged so that they fit one another, overlap one another, or butt to butt.

In einer vorteilhaften Ausgestaltung werden die unterschiedlichen Druck- und Beschichtungsstoffe auf einen Hilfsträger aufgebracht und dort jeweils zu einem anisotropen Druck-/Beschichtungs-Partikel verbunden. Die gebildeten anisotropen Druck-/Beschichtungs-Partikel werden dann von dem Hilfsträger abgelöst, vorzugsweise mechanisch abgelöst. Eine eventuelle Trocknung oder Vernetzung der durch Druckverfahren gebildeten Bestandteile des Partikels erfolgt vorteilhaft nach der Ablösung der Partikel von dem Hilfsträger.In an advantageous embodiment, the different printing and coating materials are applied to an auxiliary carrier and each connected there to form an anisotropic printing / coating particle. The anisotropic printing / coating particles formed are then detached from the auxiliary carrier, preferably detached mechanically. A possible The components of the particle formed by printing processes are advantageously dried or crosslinked after the particles have been detached from the auxiliary carrier.

Mit Vorteil ist zumindest ein Druckstoff magnetisch und der zumindest eine magnetische Druckstoff wird nach dem Aufbringen und vor oder während seiner Trocknung oder Aushärtung magnetisch vororientiert. Die Vororientierung kann auch beim Aufbringen einer Beschichtung erfolgen. Weist das Partikel einen magnetischen Kern auf oder ist selbst magnetisch, so weist der magnetische Kern oder die magnetische Ausrichtung vorteilhaft eine feste Orientierung zu der Ausrichtung der unterschiedlichen physikalischen Eigenschaften aller erzeugten Janus-Partikel auf. Um zu verhindern, dass die Partikel von einem starken äußeren Magnetfeld umorientiert werden, können die magnetischen Aufbauten der Partikel, wie grundsätzlich vom GMR (Giant Magneto Resistance) Effekt bekannt, mehrschichtig mit einer Abfolge von magnetischen und nichtmagnetischen dünnen Schichten ausgebildet werden. Derartige Schichtabfolgen haben sich als sehr widerstandsfähig gegenüber Ummagnetisierungen erwiesen.At least one printing material is advantageously magnetic and the at least one magnetic printing material is magnetically pre-oriented after application and before or during its drying or curing. The pre-orientation can also take place when a coating is applied. If the particle has a magnetic core or is itself magnetic, the magnetic core or the magnetic alignment advantageously has a fixed alignment with respect to the alignment of the different physical properties of all Janus particles produced. In order to prevent the particles from being reoriented by a strong external magnetic field, the magnetic structures of the particles, as known in principle from the GMR (Giant Magneto Resistance) effect, can be formed in multiple layers with a sequence of magnetic and non-magnetic thin layers. Such layer sequences have proven to be very resistant to magnetic reversals.

Weitere Ausführungsbeispiele sowie Vorteile der Erfindung werden nachfolgend anhand der Figuren erläutert, bei deren Darstellung auf eine maßstabs- und proportionsgetreue Wiedergabe verzichtet wurde, um die Anschaulichkeit zu erhöhen.Further exemplary embodiments as well as advantages of the invention are explained below with reference to the figures, in the representation of which a reproduction true to scale and proportion was dispensed with in order to increase the clarity.

Es zeigen:

Fig. 1
schematisch eine Druckfarbe mit einem UV-trocknenden Bindemittel, in welches anisotrope Druck-/ Beschichtungs-Partikel zweier verschiedener Arten eingebracht sind,
Fig. 2
eine genauere Darstellung eines der Druck-/ Beschichtungs-Partikel der Fig. 1, wobei (a) einen Querschnitt, (b) eine Aufsicht aus Richtung B und (c) eine Aufsicht aus Richtung C zeigt,
Fig. 3
ein Sicherheitssubstrat mit einem durch die Druckfarbe der Fig. 1 gebildeten Aufdruck mit bereichsweise unterschiedlichem Erscheinungsbild,
Fig. 4
in (a) bis (c) drei verschiedene anisotrope Druck-/Beschichtungs-Partikel im Querschnitt,
Fig. 5
in (a) bis (d) weitere vorteilhafte Ausgestaltungen anisotroper Druck-/Beschichtungs-Partikel mit einem drucktechnisch erzeugten Trägerbestandteil im Querschnitt,
Fig. 6
in (a) bis (d) Beispiele für das Erscheinungsbild erfindungsgemäßer Druck-/Beschichtungs-Partikel in Aufsicht,
Fig. 7
eine anisotrope Druck-/Beschichtungs-Partikel-Kapsel mit einem halbkugelförmigen Partikelkern,
Fig. 8
eine schematische Illustration der Herstellung erfindungsgemäßer Druck-/Beschichtungs-Partikel auf einem Trägersubstrat,
Fig. 9
in (a) ein von dem Trägersubstrat der Fig. 8 abgelöstes Rohpartikel mit einem noch vorhandenen Überstand und in (b) das fertige Janus-Partikel,
Fig. 10
eine schematische Illustration der Herstellung erfindungsgemäßer Druck-/ Beschichtungs-Partikel auf einem Trägersubstrat nach einem weiteren Ausführungsbeispiel,
Fig. 11
ein von dem Trägersubstrat der Fig. 10 abgelöstes Partikel, und
Fig. 12
schematisch die Herstellung anisotroper Druck-/ Beschichtungs-Partikel durch Druck und nachfolgende Beschichtung auf einem umlaufenden Endlosband.
Show it:
Fig. 1
schematically a printing ink with a UV-drying binder, in which anisotropic printing / coating particles of two different types are introduced,
Fig. 2
a more accurate representation of one of the print / coating particles of the Fig. 1 , where (a) shows a cross section, (b) shows a plan view from direction B and (c) shows a plan view from direction C,
Fig. 3
a security substrate with a through the printing ink of the Fig. 1 formed imprint with a different appearance in some areas,
Fig. 4
in (a) to (c) three different anisotropic printing / coating particles in cross section,
Fig. 5
in (a) to (d) further advantageous configurations of anisotropic printing / coating particles with a carrier component produced by printing technology in cross section,
Fig. 6
in (a) to (d) examples of the appearance of printing / coating particles according to the invention in plan view,
Fig. 7
an anisotropic pressure / coating particle capsule with a hemispherical particle core,
Fig. 8
a schematic illustration of the production of printing / coating particles according to the invention on a carrier substrate,
Fig. 9
in (a) one of the carrier substrate Fig. 8 detached raw particle with a supernatant still present and in (b) the finished Janus particle,
Fig. 10
a schematic illustration of the production of printing / coating particles according to the invention on a carrier substrate according to a further exemplary embodiment,
Fig. 11
one of the carrier substrate Fig. 10 detached particle, and
Fig. 12
schematically the production of anisotropic printing / coating particles by printing and subsequent coating on a circulating endless belt.

Die Erfindung wird nun am Beispiel einer Druckfarbe für den Sicherheitsdruck näher erläutert. Figur 1 zeigt dazu schematisch eine Druckfarbe 10 mit einem UV-trocknenden Bindemittel 12, in das anisotrope Druck-/Beschichtungs-Partikel 14, 16 zweier verschiedener Arten eingebracht sind. Jedes der Druck-/Beschichtungs-Partikel der ersten Art 14 und der zweiten Art 16 weist zwei getrennte Oberflächenbereiche 14A, 14B bzw. 16A, 16B mit unterschiedlichen physikalischen Eigenschaften auf.The invention will now be explained in more detail using the example of a printing ink for security printing. Figure 1 shows schematically a printing ink 10 with a UV-drying binder 12 into which anisotropic printing / coating particles 14, 16 of two different types are introduced. Each of the printing / coating particles of the first type 14 and of the second type 16 has two separate surface areas 14A, 14B and 16A, 16B, respectively, with different physical properties.

Die unterschiedlichen Eigenschaften der Oberflächenbereiche 14A, 14B bzw. 16A, 16B sind in den Figuren durch unterschiedliche bzw. fehlende Schraffuren der die Oberflächenbereiche bildenden Stoffe veranschaulicht. Das Druck-/Beschichtungs-Partikel der ersten Art 14 ist in Fig. 2 genauer dargestellt, wobei Fig. 2(a) einen Querschnitt, Fig. 2(b) eine Aufsicht aus Richtung B und Fig. 2(c) eine Aufsicht aus Richtung C von Fig. 2(a) zeigt.The different properties of the surface areas 14A, 14B and 16A, 16B are illustrated in the figures by different or missing hatching of the substances forming the surface areas. The printing / coating particle of the first type 14 is in Fig. 2 shown in more detail, where Fig. 2 (a) a cross section, Fig. 2 (b) a top view from direction B and Fig. 2 (c) a top view from direction C of Fig. 2 (a) indicates.

In der Praxis umfassen die unterschiedlichen Eigenschaften insbesondere eine oder mehrere physikalischen Eigenschaften aus der Gruppe, die gebildet ist aus der Oberflächenspannung der Oberflächenbereiche, dem spezifischen Gewicht der die Oberflächenbereiche ausbildenden Materialien, der Farbigkeit der Oberflächenbereiche, insbesondere dem Farbspektrum der Oberflächenbereiche im UV, VIS und/oder IR, den magnetischen Eigenschaften der Oberflächenbereiche bzw. der die Oberflächenbereiche ausbildenden Materialien, den Lumineszenzeigenschaften der Oberflächenbereiche bzw. der die Oberflächenbereiche ausbildenden Materialien, der elektrischen Leitfähigkeit der Oberflächenbereiche bzw. der die Oberflächenbereiche ausbildenden Materialien und dem Glanz und der Reflektivität der Oberflächenbereiche.In practice, the different properties include in particular one or more physical properties from the group which is formed from the surface tension of the surface areas, the specific gravity of the materials forming the surface areas, the Color of the surface areas, in particular the color spectrum of the surface areas in UV, VIS and / or IR, the magnetic properties of the surface areas or the materials forming the surface areas, the luminescence properties of the surface areas or the materials forming the surface areas, the electrical conductivity of the surface areas or the materials forming the surface areas and the gloss and reflectivity of the surface areas.

Konkret unterscheiden sich die Oberflächenbereiche 14A, 14B der Druck-Beschichtungs-Partikel 14 im Ausführungsbeispiel in ihrer Farbigkeit im sichtbaren Spektralbereich. Beispielsweise erscheinen die Oberflächenbereiche 14A Rot und die Oberflächenbereiche 14B Blau. Die Druck-/Beschichtungs-Partikel der zweiten Art 16 sind grundsätzlich wie die Druck-/Beschichtungs-Partikel der ersten Art 14 aufgebaut (Fig. 2), allerdings unterscheiden sich die Oberflächenbereiche 16A, 16B der Druck- Beschichtungs-Partikel 16 in ihren Lumineszenzeigenschaften, beispielsweise lumineszieren die Oberflächenbereiche 16A nach UV-Anregung Grün und die Oberflächenbereiche 16B Rot.Specifically, the surface areas 14A, 14B of the print-coating particles 14 in the exemplary embodiment differ in their color in the visible spectral range. For example, the surface areas 14A appear red and the surface areas 14B appear blue. The printing / coating particles of the second type 16 are basically structured like the printing / coating particles of the first type 14 ( Fig. 2 ), but the surface areas 16A, 16B of the print / coating particles 16 differ in their luminescence properties, for example the surface areas 16A luminesce green after UV excitation and the surface areas 16B red.

Mit Bezug auf Fig. 2 bestehen die Druck-/Beschichtungs-Partikel der ersten Art 14 aus zwei drucktechnisch erzeugten Schichten 18-1, 18-2, die jeweils durch eine rot reflektierende Drucktinte gebildet sind. Um die erste Schicht 18-1 flach und die zweite Schicht 18-2 halbkugelförmig auszubilden, weisen die bei der Herstellung eingesetzten, rot reflektierenden Drucktinten unterschiedliche rheologische und/oder grenzflächenphysikalische Eigenschaften auf. Die drucktechnisch erzeugten Schichten 18-1, 18-2 sind mit einer Beschichtung 18-3 aus einem blau reflektierenden Beschichtungsstoff versehen, der mit einem Beschichtungsverfahren, im Ausführungsbeispiel durch physikalische Gasphasenabscheidung (PVD), auf die drucktechnisch erzeugten Schichten 18-1,18-2 aufgebracht ist.Regarding Fig. 2 the printing / coating particles of the first type 14 consist of two layers 18-1, 18-2 produced by printing technology, which are each formed by a red reflective printing ink. In order to make the first layer 18-1 flat and the second layer 18-2 hemispherical, the red reflective printing inks used during manufacture have different rheological and / or physical interface properties. The layers 18-1, 18-2 produced by printing technology are provided with a coating 18-3 made of a blue reflective coating material, which is carried out with a coating process, in the exemplary embodiment by physical Gas phase deposition (PVD) is applied to the layers 18-1,18-2 produced by printing technology.

Die Partikel 14 weisen einen Durchmesser (größte Abmessung) D von etwa 25 µm auf, ihre Höhe H beträgt dabei etwa 20 µm. Die Schichtdicke der Beschichtung 18-3 beträgt lediglich etwa 1 µm, so dass der Volumenanteil des Beschichtungsstoffs verglichen mit dem Volumenanteil der Drucktinte, die die Schichten 18-1 und 18-2 bildet, sehr gering ist.The particles 14 have a diameter (largest dimension) D of approximately 25 μm, and their height H is approximately 20 μm. The layer thickness of the coating 18-3 is only about 1 μm, so that the volume fraction of the coating material is very small compared to the volume fraction of the printing ink that forms the layers 18-1 and 18-2.

Die Druck-/Beschichtungs-Partikel 14, 16 weisen nicht nur die genannten visuellen Eigenschaften auf, sondern sind zudem magnetisch, so dass sie bei oder nach dem Aufdrucken der Druckfarbe 10 und vor der Trocknung des Bindemittels durch ein externes Magnetfeld nach Wunsch ausgerichtet werden können. Im Ausführungsbeispiel wird die magnetische Ausrichtbarkeit durch die magnetischen Eigenschaften der die Oberflächenbereiche 14A, 14B, 16A, 16B ausbildenden Materialien, nämlich die oben genannte Drucktinte der Schichten 18-1, 18-2, den Beschichtungsstoff der Beschichtung 18-3 und die entsprechenden Materialien der Partikel 16 selbst bereitgestellt, und zwar so, dass die Oberflächenbereiche 14A bzw. 16A jeweils einen magnetischen Nordpol und die Oberflächenbereiche 14B bzw. 16B jeweils einen magnetischen Südpol bilden. In anderen Gestaltungen kann die magnetische Ausrichtbarkeit auch durch ein weiteres, im Inneren des Partikels angeordnetes magnetisches Material bereitgestellt werden. Dieses magnetische Material wird vorzugsweise durch einen Druckstoff bereitgestellt.The printing / coating particles 14, 16 not only have the visual properties mentioned, but are also magnetic, so that they can be aligned as desired by an external magnetic field during or after the printing of the printing ink 10 and before the binding agent is dried . In the exemplary embodiment, the magnetic alignability is determined by the magnetic properties of the materials forming the surface areas 14A, 14B, 16A, 16B, namely the above-mentioned printing ink of the layers 18-1, 18-2, the coating material of the coating 18-3 and the corresponding materials of the Particles 16 provided themselves, in such a way that the surface areas 14A and 16A each form a magnetic north pole and the surface areas 14B and 16B each form a magnetic south pole. In other configurations, the magnetic alignability can also be provided by a further magnetic material arranged in the interior of the particle. This magnetic material is preferably provided by a printing material.

Figur 3 zeigt schematisch ein Sicherheitssubstrat 20, wie etwa eine Banknote, mit einem durch die Druckfarbe 10 der Fig. 1 gebildeten Aufdruck mit bereichsweise unterschiedlichem Erscheinungsbild. Dazu wurde die Druckfarbe 10 auf das Substrat 20 aufgedruckt und die anisotropen Druck-/Beschichtungs-Partikel 14, 16 durch ein externes Magnetfeld so ausgerichtet, dass sie in ersten und zweiten Bereichen 22, 24 entgegengesetzt zueinander orientiert sind. Das Bindemittel 12 der Druckfarbe 10 wurde bei noch angelegtem Magnetfeld durch UV-Bestrahlung getrocknet und die eingestellte Ausrichtung der Druck-/Beschichtungs-Partikel 14, 16 dadurch dauerhaft fixiert. Figure 3 FIG. 11 schematically shows a security substrate 20, such as a bank note, with one through the printing ink 10 of FIG Fig. 1 formed imprint with a different appearance in some areas. For this purpose, the printing ink 10 was printed onto the substrate 20 and the anisotropic printing / coating particles 14, 16 aligned by an external magnetic field in such a way that they are oriented opposite one another in first and second regions 22, 24. The binder 12 of the printing ink 10 was dried by UV radiation while the magnetic field was still applied, and the set alignment of the printing / coating particles 14, 16 was thereby permanently fixed.

Im ersten Bereich 22 zeigen die Oberflächenbereiche 14A, 16A der Druck-/ Beschichtungs-Partikel 14, 16 zum Betrachter hin, so dass der erste Bereich 22 im sichtbaren Spektralbereich einen roten Farbeindruck und nach UV-Anregung eine grüne Lumineszenz zeigt. Im zweiten Bereich 24 zeigen dagegen jeweils die gegenüberliegenden Oberflächenbereiche 14B, 16B der Druck-/Beschichtungs-Partikel 14, 16 zum Betrachter, so dass dieser Bereich im sichtbaren Spektralbereich einen blauen Farbeindruck und nach UV-Anregung eine rote Lumineszenz zeigt.In the first area 22, the surface areas 14A, 16A of the printing / coating particles 14, 16 point towards the viewer, so that the first area 22 shows a red color impression in the visible spectral range and a green luminescence after UV excitation. In the second area 24, on the other hand, the opposite surface areas 14B, 16B of the printing / coating particles 14, 16 point towards the viewer, so that this area shows a blue color impression in the visible spectral range and a red luminescence after UV excitation.

Vorteilhafte Gestaltungen erfindungsgemäßer anisotroper Druck-/Beschichtungs-Partikel werden nun mit Bezug auf die Figuren 4 bis 6 näher beschrieben. Die Druck-/Beschichtungs-Partikel können beispielsweise in der weiter unten genauer geschilderten Art hergestellt werden.Advantageous designs of anisotropic printing / coating particles according to the invention will now be described with reference to FIG Figures 4 to 6 described in more detail. The printing / coating particles can, for example, be produced in the manner described in more detail below.

Zunächst zeigt Fig. 4(a) im Querschnitt ein plättchenförmiges anisotropes Druck-/Beschichtungs-Partikel 30, das aus einem drucktechnisch erzeugten Trägerbestandteil 32 mit einer ersten physikalischen Eigenschaft und einer Beschichtung 34 mit einer zweiten, unterschiedlichen physikalischen Eigenschaft beseht. Der Trägerbestandteil 32 definiert die Grundform des Partikels 30, die durch die vergleichsweise dünne Beschichtung 34 praktisch nicht verändert wird. Der Trägerbestandteil 32 und die Beschichtung 34 bilden zwei Oberflächenbereiche des Partikels 30 unterschiedlichen physikalischen Eigenschaften aus. Der Durchmesser D (größte Abmessung) des Partikels 30 liegt zwischen 3 µm und 70 µm, die Höhe H des Partikels typischerweise im Bereiche einiger Mikrometer.First shows Fig. 4 (a) in cross section a platelet-shaped anisotropic printing / coating particle 30, which consists of a carrier component 32 produced by printing technology with a first physical property and a coating 34 with a second, different physical property. The carrier component 32 defines the basic shape of the particle 30, which is practically not changed by the comparatively thin coating 34. The carrier component 32 and the coating 34 form two surface areas of the particle 30 of different physical properties Properties. The diameter D (largest dimension) of the particle 30 is between 3 μm and 70 μm, and the height H of the particle is typically in the range of a few micrometers.

Das in Fig. 4(b) im Querschnitt gezeigte, im Wesentlichen halbkugelförmige Druck-/Beschichtungs-Partikel 40 ist ähnlich wie die Partikel 14, 16 der Figuren 1 bis 3 ausgebildet und besteht aus zwei drucktechnisch erzeugten Schichten 42-1, 42-2, wobei die Schicht 42-2 mit einer Beschichtung 44 aus einem Beschichtungsstoff versehen ist. Um die erste Schicht 42-1 flach und die zweite Schicht 42-2 halbkugelförmig auszubilden, weisen die bei der Herstellung eingesetzten Drucktinten unterschiedliche rheologische und/oder grenzflächenphysikalische Eigenschaften auf. Die erste drucktechnisch erzeugte Schicht 42-1 bildet einen ersten Oberflächenbereich des Partikels 40 mit einer ersten physikalischen Eigenschaft, und die Beschichtung 44 der zweiten drucktechnisch erzeugten Schicht 42-2 bildet den zweiten Oberflächenbereich mit einer zweiten, unterschiedlichen physikalischen Eigenschaft. Die zweite drucktechnisch erzeugte Schicht 42-2 ist bei dieser Ausgestaltung transparent und/oder weist eine zur ersten Schicht 42-1 unterschiedliche physikalischen Eigenschaft auf.This in Fig. 4 (b) Essentially hemispherical printing / coating particles 40 shown in cross-section are designed in a manner similar to the particles 14, 16 of FIGS a coating 44 is provided from a coating material. In order to make the first layer 42-1 flat and the second layer 42-2 hemispherical, the printing inks used during manufacture have different rheological and / or physical interface properties. The first printed layer 42-1 forms a first surface area of the particle 40 with a first physical property, and the coating 44 of the second printed layer 42-2 forms the second surface area with a second, different physical property. The second layer 42-2 produced by printing technology is transparent in this embodiment and / or has a different physical property than the first layer 42-1.

Auch das in Fig. 4(c) im Querschnitt gezeigte, im Wesentlichen halbkugelförmige Druck-/Beschichtungs-Partikel 50 ist ähnlich wie die Partikel 14, 16 der Figuren 1 bis 3 ausgebildet und besteht aus zwei drucktechnisch erzeugten Schichten 52-1, 52-2, wobei die Schicht 52-2 mit einer Beschichtung 54 aus einem Beschichtungsstoff versehen ist. Um die erste Schicht 52-1 flach und die zweite Schicht 52-2 halbkugelförmig auszubilden, weisen die bei der Herstellung eingesetzten Drucktinten unterschiedliche rheologische und/oder grenzflächenphysikalische Eigenschaften auf. Die erste drucktechnisch erzeugte Schicht 52-1 ist dabei transparent, während die zweite drucktechnisch erzeugte Schicht 52-2 einen ersten Oberflächenbereich des Partikels 50 mit einer ersten physikalischen Eigenschaft ausbildet. Die Beschichtung 54 bildet einen zweiten Oberflächenbereich mit einer zweiten, unterschiedlichen physikalischen Eigenschaft.Also in Fig. 4 (c) The substantially hemispherical printing / coating particles 50 shown in cross section are similar to the particles 14, 16 of FIG Figures 1 to 3 and consists of two layers 52-1, 52-2 produced by printing technology, the layer 52-2 being provided with a coating 54 made of a coating material. In order to make the first layer 52-1 flat and the second layer 52-2 hemispherical, the printing inks used during manufacture have different rheological and / or physical interface properties. The first layer 52-1 produced by printing technology is transparent, while the second Layer 52-2 produced by printing technology forms a first surface area of the particle 50 with a first physical property. The coating 54 forms a second surface area with a second, different physical property.

In den Gestaltungen der Fig. 4(b) bzw. 4(c) kann die transparente Schicht 42-2 bzw. 52-1 zusätzliche Materialeigenschaften besitzen, welche außerhalb des sichtbaren Spektralbereichs liegen, wie etwa eine im UV anregbare Lumineszenz oder IR-Absorption. Die transparente Schicht kann auch eine polarisierende Eigenschaft aufweisen, welche mit einem Hilfsmittel, wie etwa einem Polarisationsfilter verifiziert werden kann.In the designs of the Fig. 4 (b) and 4 (c), the transparent layer 42-2 or 52-1 can have additional material properties which lie outside the visible spectral range, such as luminescence that can be excited in the UV or IR absorption. The transparent layer can also have a polarizing property, which can be verified with an aid such as a polarization filter.

Weitere vorteilhafte Ausgestaltungen anisotroper Druck-/Beschichtungs-Partikel mit einem drucktechnisch erzeugten Trägerbestandteil sind in den Querschnitten der Fig. 5(a) bis 5(c) gezeigt.Further advantageous configurations of anisotropic printing / coating particles with a carrier component produced by printing technology are shown in the cross-sections of FIG Figs. 5 (a) to 5 (c) shown.

Figur 5(a) zeigt zunächst ein plättchenförmiges Druck-/Beschichtungs-Partikel 60 mit einem transparenten, drucktechnisch erzeugten Trägerbestandteil 62, der Größe und Grundform des Partikels 60 definiert, und der mit zwei Beschichtungen 64-1, 64-2 mit unterschiedlichen optischen Eigenschaft versehen ist. Der transparente Trägerbestandteil 62 verdeckt dabei nicht die optischen Eigenschaften der ersten Beschichtung 64-1, während diese jedoch von der zweiten Beschichtung 64-2 überdeckt werden. Aus Betrachtungsrichtung 66 sind daher überwiegend die optischen Eigenschaften der ersten Beschichtung 64-1 erkennbar, während aus der entgegengesetzten Betrachtungsrichtung 68 überwiegend die optischen Eigenschaften der zweiten Beschichtung 64-2 in Erscheinung treten. Figure 5 (a) shows first a platelet-shaped printing / coating particle 60 with a transparent, printing technology-generated carrier component 62, which defines the size and basic shape of the particle 60, and which is provided with two coatings 64-1, 64-2 with different optical properties. The transparent carrier component 62 does not cover the optical properties of the first coating 64-1, while these are covered by the second coating 64-2. From the viewing direction 66, therefore, it is predominantly the optical properties of the first coating 64-1 that can be seen, while from the opposite viewing direction 68, it is predominantly the optical properties of the second coating 64-2 that appear.

Das plättchenförmige Druck-/Beschichtungs-Partikel 70 der Fig. 5(b) weist einen ähnlichen Aufbau wie das Partikel 60 der Fig. 5(a) auf, wobei allerdings zwischen den Beschichtungen 64-1, 64-2 eine Zwischenschicht 72 vorgesehen ist, die einer Verbesserung der Haftung der zweiten Beschichtung 64-2 oder der Orientierung der zweiten Beschichtung 64-2 auf der ersten Beschichtung 64-1 dient.The platelet-shaped printing / coating particle 70 of Fig. 5 (b) has a similar structure to particle 60 of FIG Fig. 5 (a) on, although an intermediate layer 72 is provided between the coatings 64-1, 64-2, which serves to improve the adhesion of the second coating 64-2 or the orientation of the second coating 64-2 on the first coating 64-1.

Schließlich weist das plättchenförmige Druck-/Beschichtungs-Partikel 80 der Fig. 5(c) einen ähnlichen Aufbau wie das Partikel 70 der Fig. 5(b) auf. Die Zwischenschicht 82 stellt in diesem Fall eine Schicht mit einem optisch weniger attraktiven Erscheinungsbild dar, welches von der zweiten Beschichtung 64-2 verdeckt wird. Die Zwischenschicht 82 kann beispielsweise eine magnetische oder magnetisierbare Schicht, eine gut wärmeleitende Schicht oder eine elektrisch leitfähige Schicht sein. Die Zwischenschicht 82 kann auch aus mehreren Einzel- oder Wechselschichten bestehen.Finally, the platelet-shaped printing / coating particle 80 of FIG Fig. 5 (c) is similar in structure to particle 70 of FIG Fig. 5 (b) on. In this case, the intermediate layer 82 represents a layer with a visually less attractive appearance which is covered by the second coating 64-2. The intermediate layer 82 can be, for example, a magnetic or magnetizable layer, a layer with good thermal conductivity or an electrically conductive layer. The intermediate layer 82 can also consist of several individual or alternating layers.

Weiter ist auch ein Aufbau möglich, bei dem die Beschichtungen 64-1, 64-2 auf gegenüberliegenden Seiten eines Trägerbestandteils 62 aufgebracht sind, wie in Fig. 5(d) gezeigt. Der Trägerbestandteil 62 kann in diesem Fall auch semitransparent oder sogar opak sein, um eine gegenseitige visuelle Beeinflussung der Beschichtungen 64-1, 64-2 zu vermeiden.Furthermore, a structure is also possible in which the coatings 64-1, 64-2 are applied to opposite sides of a carrier component 62, as in FIG Fig. 5 (d) shown. In this case, the carrier component 62 can also be semitransparent or even opaque in order to avoid a mutual visual influence of the coatings 64-1, 64-2.

Bei den Beschichtungen 64-1, 64-2 kann es sich insbesondere um optisch variable Beschichtungen, wie etwa Dünnschichtelemente, Interferenzschichten oder Flüssigkristallschichten handeln. Beispielsweise kann die Beschichtung 64-1 eine farbkippende Flüssigkristallschicht und die Beschichtung 64-2 eine nicht-farbveränderliche Beschichtung sein. Flüssigkristallschichten können neben ihrer farbkippenden Wirkung auch lichtpolarisierende Eigenschaften aufweisen, die neben der unterschiedlichen Farbigkeit eine zweite, unterschiedliche physikalische Eigenschaft der Beschichtungen darstellen kann.The coatings 64-1, 64-2 can in particular be optically variable coatings such as thin-film elements, interference layers or liquid crystal layers. For example, the coating 64-1 can be a color-shifting liquid crystal layer and the coating 64-2 can be a non-color-changeable coating. In addition to their color-changing effect, liquid crystal layers can also have light-polarizing properties which, in addition to the different colors, can represent a second, different physical property of the coatings.

Figur 6 zeigt in (a) bis (d) Beispiele für das Erscheinungsbild erfindungsgemäßer Druck-/Beschichtungs-Partikel 90 in Aufsicht. Als Form der Partikel 90 kommt insbesondere eine Plättchenform, Halbkugelform, Kugelform, Stäbchenform, die Form einer Hantel, eines Pilzes, eines Tetraeders in Frage. Figure 6 shows in (a) to (d) examples of the appearance of printing / coating particles 90 according to the invention in plan view. The shape of the particles 90 is in particular a platelet shape, hemispherical shape, spherical shape, rod shape, the shape of a dumbbell, a mushroom, a tetrahedron.

Die relativen Anteile der mindestens zwei verschiedenen Druck/Beschichtungsstoffe der erfindungsgemäßen Partikel können bezogen auf das Volumen oder die Masse der Partikel gleich, annähernd gleich (Volumen- bzw. Massenanteile innerhalb von 10%) oder ungleich sein.The relative proportions of the at least two different printing / coating materials of the particles according to the invention can be the same, approximately the same (proportions by volume or mass within 10%) or different based on the volume or the mass of the particles.

Um die Haftung einer Beschichtung zu verbessern kann eine drucktechnisch erzeugte Schicht beispielsweise mittels Flammvorbehandlung, einer Coronavorbehandlung oder einer Plasmavorbehandlung, auch mit Prozessgaszuführung, vorbehandelt werden. Eine drucktechnisch erzeugte Schicht kann auch mit einer Primerschicht oder Haftschicht mittels Sprühbeschichtung ausgestattet werden. Eine weitere Möglichkeit besteht darin, eine Haftschicht, beispielsweise eine oxidische Beschichtung, mittels PVD-Verfahren zu applizieren.In order to improve the adhesion of a coating, a layer produced by printing technology can be pretreated, for example, by means of flame pretreatment, corona pretreatment or plasma pretreatment, also with a supply of process gas. A layer produced by printing technology can also be provided with a primer layer or adhesive layer by means of spray coating. Another possibility is to apply an adhesive layer, for example an oxidic coating, using a PVD process.

Figur 7 zeigt als weiteres Ausführungsbeispiel eine anisotrope Druck-/Beschichtungs-Partikel-Kapsel 100, bei der ein halbkugelförmiger PartikelKern 102, der beispielsweise in der im Zusammenhang mit Fig. 2 beschriebenen Weise ausgebildet ist, in einer flüssigkeitsgefüllten Mikrokapselhülle 104 verkapselt ist. Als Trennmittel 106 kann dabei beispielsweise ein Öl vorgesehen sein, das die Beweglichkeit des Partikelkerns 102 innerhalb der Mikrokapselhülle 104 auch nach dem Aufdrucken und Trocknen einer die Druck-/Beschichtungs-Partikel-Kapseln 100 enthaltenden Druckfarbe gewährleistet. Derartige Druck-/ Beschichtungs-Partikel-Kapseln 100 kommen insbesondere dann zum Einsatz, wenn die sichtbaren oder messbaren physikalischen Eigenschaften der Partikel auch nach dem Aufbringen der Partikel noch dauerhaft durch externe Stimuli veränderbar sein sollen. Beispielsweise kann ein magnetischer Partikel-Kern 102 bei der Echtheitsprüfung durch einen externen Magneten unterschiedlich ausgerichtet werden und dadurch dem Betrachter je nach Orientierung einen der beiden verschiedenen Oberflächenbereiche 102A, 102B zeigen. Figure 7 shows as a further embodiment an anisotropic pressure / coating particle capsule 100 in which a hemispherical particle core 102, for example in connection with Fig. 2 described manner, is encapsulated in a liquid-filled microcapsule shell 104. For example, an oil can be provided as the separating agent 106, which increases the mobility of the particle core 102 within the microcapsule shell 104 even after a die has been printed on and dried Printing / coating particle capsules 100 containing printing ink guaranteed. Such printing / coating particle capsules 100 are used in particular when the visible or measurable physical properties of the particles are to be able to be changed permanently by external stimuli even after the particles have been applied. For example, a magnetic particle core 102 can be aligned differently during the authenticity check by an external magnet and thereby show the viewer one of the two different surface areas 102A, 102B depending on the orientation.

Bei einer Verkapselung ist es von Vorteil, wenn die zu verkapselnden Partikel keine Plättchen-Struktur, sondern eine ausgeprägte 3D-Struktur (symmetrisch oder asymmetrisch) aufweisen, um "Glasplatteneffekte" in einer Kapsel zu vermeiden. Bei Plättchen-Strukturen besteht die Gefahr, dass mehrere Plättchen aneinander lagern und diese zusammen verkapselt werden. Gewünscht ist jedoch üblicherweise die Verkapselung von einzelnen Partikeln in jeweils einer Kapsel. Je ausgeprägter die 3D-Struktur ist, umso wahrscheinlicher liegt auch nur ein Partikel pro Kapsel vor.In the case of encapsulation, it is advantageous if the particles to be encapsulated do not have a platelet structure but a pronounced 3D structure (symmetrical or asymmetrical) in order to avoid “glass plate effects” in a capsule. In the case of platelet structures, there is a risk that several platelets will stick to one another and these will be encapsulated together. However, what is usually desired is the encapsulation of individual particles in a capsule each. The more pronounced the 3D structure, the more likely there is only one particle per capsule.

Bei einer weiteren sehr vorteilhaften Variante werden die erzeugten Druck-/Beschichtungs-Partikel mit einer zusätzlichen Beschichtung in einem anschließenden Prozess versehen. Bei der zusätzlichen Beschichtung wird zwischen einer die Form der Partikel nicht verändernden zusätzlichen Beschichtung und einer die Form verändernden zusätzlichen Beschichtung unterschieden. Bei einer die Form nicht verändernden zusätzlichen Beschichtung wird beispielsweise die chemische Beständigkeit oder die Oberflächenspannung der Druck-/Beschichtungs-Partikel beeinflusst. Die zusätzliche Beschichtung kann beispielsweise in einer Gasphase oder einer Sprühbeschichtung erfolgen. Bei einer die Form verändernden zusätzlichen Beschichtung geht es beispielsweise darum die mechanische und/oder chemische Beständigkeit der Partikel zu optimieren. Weiterhin kann eine die Form verändernde zusätzliche Beschichtung dazu beitragen, dass die Drehbarkeit der Partikel-Kerne in einer Kapsel optimiert wird oder bei der Verkapselung eine Anreicherung von Partikel-Kernen reduziert wird. Geeignete Verfahren für eine solche zusätzliche Beschichtung sind beispielsweise das Verfahren der Firma Brace GmbH oder ein Wirbelstrombeschichtungsverfahren.In a further very advantageous variant, the printing / coating particles produced are provided with an additional coating in a subsequent process. In the case of the additional coating, a distinction is made between an additional coating that does not change the shape of the particles and an additional coating that changes the shape. In the case of an additional coating that does not change the shape, for example, the chemical resistance or the surface tension of the printing / coating particles is influenced. The additional coating can take place, for example, in a gas phase or a spray coating. With an additional coating that changes its shape For example, it is about optimizing the mechanical and / or chemical resistance of the particles. Furthermore, an additional coating that changes the shape can contribute to optimizing the rotatability of the particle cores in a capsule or reducing the accumulation of particle cores during encapsulation. Suitable methods for such an additional coating are, for example, the method from Brace GmbH or an eddy current coating method.

Die Partikel können durch die zusätzliche Beschichtung mechanisch stabiler oder chemisch stabiler gemacht werden oder/und es kann die äußere Form der Partikel mit einer vorzugsweise transparenten Schicht verändert werden, beispielsweise um aus einem stäbchenförmigen Partikel ein kugelförmiges Partikel zu machen.The particles can be made mechanically more stable or chemically more stable by the additional coating and / or the outer shape of the particles can be changed with a preferably transparent layer, for example in order to make a spherical particle out of a rod-shaped particle.

Der Einfachheit halber sind in den oben beschriebenen Figuren 4 bis 7 zur Illustration jeweils Druck-/Beschichtungs-Partikel bzw. Partikelkerne mit nur zwei unterschiedlichen Oberflächenbereichen dargestellt, es versteht sich jedoch, dass die Erfindung auch Gestaltungen mit drei oder mehr unterschiedlichen Oberflächenbereichen umfasst.For the sake of simplicity, those described above are included Figures 4 to 7 for illustration, printing / coating particles or particle cores are shown with only two different surface areas, but it goes without saying that the invention also includes designs with three or more different surface areas.

Die erfindungsgemäßen anisotropen Druck-/Beschichtungs-Partikel können durch verschiedene Kombinationen von Druck- und Beschichtungsverfahren hergestellt werden, wobei beispielhafte Herstellungsverfahren nunmehr mit Bezug auf Figuren 8 bis 12 näher erläutert werden.The anisotropic printing / coating particles of the invention can be produced by various combinations of printing and coating processes, exemplary production processes now with reference to FIG Figures 8 to 12 are explained in more detail.

Bei dem Ausführungsbeispiel der Fig. 8 wird auf ein Trägersubstrat 110 mit einem Druckverfahren zunächst in Teilbereichen jeweils eine Druckschicht 112 erzeugt, deren Form und Größe die flächige und die dreidimensionale Grundform des Druck-/Beschichtungs-Partikels definiert. Als Druckverfahren können dabei beispielsweise Ink-Jet-Verfahren (DOD) (erfindungsgemäß), Laserdruck (nicht beansprucht), Transferdruckverfahren (nicht beansprucht), insbesondere thermische Transferdruckverfahren auf Basis von schmelzbaren Grundstoffen, Flexodruck (nicht beansprucht), Siebdruck (erfindungsgemäß) oder Tiefdruck (nicht beansprucht)
zum Einsatz kommen. Die drucktechnisch erzeugte Schicht 112 muss nicht zwingend eine der gewünschten unterschiedlichen physikalischen Eigenschaften des fertigen Partikels aufweisen, sondern kann beispielsweise einfach eine transparente Schicht darstellen und/oder einen Trägerbestandteil des fertigen Partikels bilden.
In the embodiment of Fig. 8 a printing layer 112 is generated on a carrier substrate 110 using a printing process, first in partial areas, the shape and size of which defines the flat and the three-dimensional basic shape of the printing / coating particle. As a printing process For example, ink-jet processes (DOD) (according to the invention), laser printing (not claimed), transfer printing processes (not claimed), in particular thermal transfer printing processes based on fusible raw materials, flexographic printing (not claimed), screen printing (according to the invention) or gravure printing (not claimed) can be used claimed)
come into use. The layer 112 produced by printing technology does not necessarily have to have one of the desired different physical properties of the finished particle, but can, for example, simply represent a transparent layer and / or form a carrier component of the finished particle.

Die drucktechnisch erzeugte Schicht 112 kann vor dem nachfolgenden Prozess getrocknet oder gehärtet werden (beispielsweise im Fall eines UVhärtende Bindemittels) oder sie kann ohne Trocknung/Härtung weiterverarbeitet werden.The layer 112 produced by printing technology can be dried or hardened before the subsequent process (for example in the case of a UV-hardening binder) or it can be processed further without drying / hardening.

In einem weiteren Arbeitsschritt wird mittels eines Beschichtungsverfahrens, wie etwa Sprühcoating, Sputtern oder einem anderen PVD-Verfahren (alle erfindungsgemäß), mindestens eine weitere Schicht 114 ungepassert und eine Vielzahl der drucktechnisch erzeugten Schichtbereiche 112 überspannend appliziert. Dabei wird mindestens eine weitere gewünschte physikalische Eigenschaft des fertigen Partikels erzeugt. Spätestens mit der letzten Beschichtung wird das gesamte Partikel getrocknet oder gehärtet.In a further work step, at least one further layer 114 is applied without registering and spanning a large number of the layer areas 112 produced by printing technology by means of a coating process such as spray coating, sputtering or another PVD process (all according to the invention). In doing so, at least one further desired physical property of the finished particle is generated. At the latest with the last coating, the entire particle is dried or hardened.

Da die mittels Beschichtungsverfahren erzeugten Schichten 114 unter anderem aufgrund der Sprödigkeit des Materials und der Schichtdicke mechabruchstellen sind dabei bevorzugt die äußeren Kanten der drucktechnisch erzeugten Schichten 112.Since the layers 114 produced by means of the coating process break mechanically due to the brittleness of the material and the layer thickness, among other things are preferably the outer edges of the layers 112 produced by printing technology.

Figur 9(a) zeigt zur Illustration ein von dem Trägersubstrat 110 abgelöstes Rohpartikel 120, welches die drucktechnisch erzeugte Schicht 112, die auf der Schicht 112 befindlichen Bereiche 118 der Beschichtung 114, sowie einen auf der linken Seite des Rohpartikels 120 noch vorhandenen Beschichtungsüberstand 122 umfasst. Diese Überstand wird in einem weiteren Bearbeitungsschritt entfernt, so dass das in Fig. 9(b) gezeigte fertige Janus-Partikel 124 entsteht. Es versteht sich, dass auf diese Weise auch Partikel mit mehr als einer drucktechnisch erzeugten Schicht und mit mehr als einer durch ein Beschichtungsverfahren erzeugten Schicht auf dem Trägersubstrat 110 aufgebaut werden können. Figure 9 (a) shows a raw particle 120 detached from the carrier substrate 110, which comprises the layer 112 produced by printing technology, the regions 118 of the coating 114 located on the layer 112, and a coating overhang 122 still present on the left side of the raw particle 120. This protrusion is removed in a further processing step so that the in Fig. 9 (b) The finished Janus particles 124 shown are produced. It goes without saying that particles with more than one layer produced by printing technology and with more than one layer produced by a coating process can also be built up on the carrier substrate 110 in this way.

Die Trennung der Rohpartikel 120 vom Trägersubstrat 110 kann auf unterschiedliche Weise erfolgen, wie weiter oben bereits näher erläutert.The raw particles 120 can be separated from the carrier substrate 110 in different ways, as already explained in more detail above.

Die Druck- und Beschichtungsverfahren können auch in umgekehrter Reihenfolge miteinander kombiniert werden, wie anhand der Figuren 10 und 11 erläutert. Bei dem Ausführungsbeispiel der Fig.10 wird auf ein Trägersubstrat 110 zunächst mit einem Beschichtungsverfahren, wie etwa Sprühcoating, Sputtern oder einem anderen PVD-Verfahren (alle erfindungsgemäß), großflächig eine Beschichtung 114 aufgebracht. Dann wird mit einem Druckverfahren in Teilbereichen jeweils eine Druckschicht 112 auf der Beschichtung erzeugt. Als Druckverfahren können auch hier beispielsweise Ink-Jet-Verfahren (DOD) (erfindungsgemäß), Laserdruck (nicht beansprucht), Transferdruckverfahren (nicht beansprucht), insbesondere thermische Transferdruckverfahren auf Basis von schmelzbaren Grundstoffen, Flexodruck (nicht beansprucht), Siebdruck (erfindungsgemäß) oder Tiefdruck (nicht beansprucht) zum Einsatz kommen. Bei der Ablösung der Schichtenfolge 114, 112 vom Trägersubstrat bilden die äußeren Kanten der drucktechnisch erzeugten Schichtten 112 Sollbruchstellen, die zu einem passergenauen Abbrechen der Beschichtung 114 an den Kanten der Druckschichten 112 führen.The printing and coating processes can also be combined with one another in the reverse order to that shown in FIG Figures 10 and 11 explained. In the embodiment of Fig. 10 a coating 114 is applied over a large area to a carrier substrate 110 initially using a coating process such as spray coating, sputtering or another PVD process (all according to the invention). A printing layer 112 is then produced on the coating in each case in partial areas using a printing process. Ink-jet processes (DOD) (according to the invention), laser printing (not claimed), transfer printing processes (not claimed), in particular thermal transfer printing processes based on fusible raw materials, flexographic printing (not claimed), screen printing (according to the invention) or Gravure printing (not claimed) can be used. When the layer sequence 114, 112 is detached from the carrier substrate, the outer edges of the layers produced by printing technology form 112 predetermined breaking points which lead to a precisely registered breaking off of the coating 114 at the edges of the printing layers 112.

Figur 11 zeigt schematisch ein von dem Trägersubstrat 110 abgelöstes Partikel 126, das eine drucktechnisch erzeugte Schicht 112, sowie auf bzw. unter der Schicht 112 befindliche Bereiche 118 der Beschichtung 114 umfasst. Durch das passergenaue Abbrechen der Beschichtung 114 definiert auch bei dieser Herstellungsvariante die Form und Größe der Druckschicht 112 die flächige und die dreidimensionale Grundform des Druck-/Beschichtungs-Partikels 126. Es versteht sich, dass auch bei dieser Variante Partikel mit mehr als einer drucktechnisch erzeugten Schicht und mit mehr als einer durch ein Beschichtungsverfahren erzeugten Schicht auf dem Trägersubstrat 110 aufgebaut werden können. Figure 11 shows schematically a particle 126 detached from the carrier substrate 110, which comprises a layer 112 produced by printing technology, as well as regions 118 of the coating 114 located on or under the layer 112. Due to the precisely registered breaking off of the coating 114, the shape and size of the printing layer 112 also defines the flat and three-dimensional basic shape of the printing / coating particle 126 in this manufacturing variant Layer and can be built up with more than one layer produced by a coating method on the carrier substrate 110.

Bei dem in Fig. 12 genauer dargestellten Ausführungsbeispiel werden zur Herstellung der anisotropen Druck-/Beschichtungs-Partikel 124 zunächst jeweils Schichtbereiche 112 auf ein umlaufendes Endlosband 110 aufgedruckt. Die Schichtbereiche 112 werden mit einem Continuous-Ink-Jet, einem Ink-Jet oder einem 3D-Drucker auf das Endlosband 110 gedruckt. Dann wird eine Vielzahl von Schichtbereichen 112 zusammen mit den dazwischenliegenden Bereichen des Endlosbands 110 ungepassert mit einer Beschichtung 114 versehen.The in Fig. 12 In order to produce the anisotropic printing / coating particles 124, layer regions 112 are first printed onto a continuous endless belt 110 in each case. The layer areas 112 are printed on the endless belt 110 with a continuous ink jet, an ink jet or a 3D printer. Then a multiplicity of layer regions 112 together with the regions of the endless belt 110 lying therebetween are provided with a coating 114 without registering.

Das Endlosband 110 läuft an einer Abstreifstation durch eine mechanische Abstreifeinrichtung 130. Das Abstreifen erfolgt im Ausführungsbeispiel durch eine scharfkantige Umlenkung des Endlosbandes 110 an einer feststehenden gerundeten Platte 132. Die abgelösten Rohpartikel 120 werden in einer Auffangeinrichtung 134 aufgefangen und, gegebenenfalls nach Sortierung in Gut- und Schlecht-Partikel, zu den fertigen Druck-/Beschlchtungs-Partikeln 124 weiterverarbeitet.The endless belt 110 runs at a stripping station through a mechanical stripping device 130. The stripping takes place in the exemplary embodiment by a sharp-edged deflection of the endless belt 110 on a fixed, rounded plate 132. The loosened raw particles 120 are caught in a collecting device 134 and, if necessary, after sorting in good and bad particles, further processed to the finished printing / coating particles 124.

Sollte der Beschichtungsüberstand 122 der Partikel 120 beim Ablösevorgang vom Trägersubstrat 110 noch nicht ausreichend entfernt worden sein, so können die Überstände 122 beispielsweise in einem Pigmentmischer, etwa einem Trommelmischer, nachträglich gebrochen werden. Alternativ kann beispielsweise auch mit einer Luftstrahlmühle gearbeitet werden.If the coating protrusion 122 of the particles 120 has not yet been sufficiently removed from the carrier substrate 110 during the detachment process, the protrusions 122 can be subsequently broken, for example in a pigment mixer, for example a drum mixer. Alternatively, an air jet mill can also be used, for example.

Das freie, also nicht mit einer drucktechnisch erzeugten Schicht verbundene Beschichtungsmaterial kann beispielsweise mittels eines Wasserbades entfernt werden, bei dem die Flitter des Beschichtungsmaterials aufschwimmen und abgeschöpft werden können. Gegebenenfalls kann dabei mit einem Wassersprudler nachgeholfen werden. In diesem Fall helfen die erzeugten Luftblasen den Auftrieb der Flitter zu beschleunigen. Alternativ kann beispielsweise auch mit einem Sichter eine Trennung der nicht mit einer drucktechnisch erzeugten Schicht verbundenen Beschichtungsschicht vorgenommen werden, um so die erforderliche Gutqualität zu erzeugen.The free coating material, ie not connected to a layer produced by printing technology, can be removed, for example, by means of a water bath in which the flakes of the coating material float up and can be skimmed off. If necessary, you can use a soda maker to help. In this case, the air bubbles generated help to accelerate the buoyancy of the tinsel. As an alternative, the coating layer that is not connected to a layer produced by printing technology can also be separated, for example with a sifter, in order to produce the required product quality.

Der Anteil der Druck-/ Beschichtungs-Partikel 14, 16 in der Druckfarbe 10 liegt zweckmäßig bei mindestens 0,1 %, vorteilhaft bei mehr als 3 %. Die maximale Partikel-Größe (D90) orientiert sich an den eingesetzten Druck- und Beschichtungsverfahren. Im Offsetdruck ist die maximale Partikelgröße vorteilhaft kleiner als 5 µm, während im Siebdruck eine maximale Partikelgröße unterhalb von 50 µm vorteilhaft ist. Die in der Druckfarbe 10 eingesetzten Druck-/Beschichtungs-Partikel können gleichartig sein oder, wie im Ausführungsbeispiel der Fig. 1, auch ungleichartig sein und zwei oder mehr verschiedene Druck-/ Beschichtungs-Partikel-Arten enthalten.The proportion of the printing / coating particles 14, 16 in the printing ink 10 is expediently at least 0.1%, advantageously more than 3%. The maximum particle size (D90) is based on the printing and coating processes used. In offset printing, the maximum particle size is advantageously less than 5 µm, while in screen printing a maximum particle size below 50 µm is advantageous. The printing / coating particles used in the printing ink 10 can be of the same type or, as in the exemplary embodiment of FIG Fig. 1 , also be dissimilar and contain two or more different types of printing / coating particles.

Die Druck-/Beschichtungs-Partikel (Janus-Partikel) können in einem weiteren Anwendungsbeispiel auch als visuell sichtbares Sicherheitsmerkmal einer Druckfarbe beigemischt sein. In dem Fall werden physikalisch orientierbare Druck-/Beschichtungs-Partikel verwendet und die Farbe erst nach der Orientierung oder nach der Orientierung eines Teils der Partikel ausgehärtet. Die Ausrichtung der Partikel kann dabei mittels eines magnetischen Feldes, eines elektrischen Feldes, eines ortsabhängigen Abstoßungseffekts, bedingt beispielsweise durch eine ortsabhängige Oberflächenspannung, durch gravimetrische Kräfte, durch Kapillarkräfte im bedruckten Substrat oder durch eine Kombination der genannten Kräfte erfolgen.In a further application example, the printing / coating particles (Janus particles) can also be added to a printing ink as a visually visible security feature. In this case, physically orientable printing / coating particles are used and the ink is only cured after the orientation or after the orientation of some of the particles. The alignment of the particles can take place by means of a magnetic field, an electric field, a location-dependent repulsion effect, caused for example by a location-dependent surface tension, by gravimetric forces, by capillary forces in the printed substrate or by a combination of the forces mentioned.

Weiter können die Partikel auch nur in einem Teilbereich der aufgetragenen Farbe ausgerichtet werden, beispielsweise durch eine maskierte Trocknung oder eine nur bereichsweise magnetischen Orientierung.Furthermore, the particles can also be aligned only in a partial area of the applied color, for example by masked drying or magnetic alignment only in certain areas.

Der Nachweis der Druck-/Beschichtungs-Partikel kann mit Hilfsmitteln, wie etwa einer UV-Lampe, oder bei sichtbaren Farben auch ohne Hilfsmittel erfolgen. Die oben gemachten Angaben zum vorteilhaften Partikelanteil in der Druckfarbe (> 0,1%, insbesondere > 3%) und zur Partikelgröße (< 5 µm bei Offsetdruck , <50 µm im Siebdruck) gelten auch in für dieses Anwendungsbeispiel.The detection of the printing / coating particles can be carried out with aids, such as a UV lamp, or in the case of visible colors, even without aids. The information given above on the advantageous proportion of particles in the printing ink (> 0.1%, in particular> 3%) and on the particle size (<5 µm in offset printing, <50 µm in screen printing) also apply to this application example.

In einem weiteren Anwendungsbeispiel können die Janus-Partikel bzw. Druck-/Beschichtungs-Partikel auch in Form einer Kapsel 100 ausgebildet sein, wie in Fig. 7 gezeigt. Die Form der Kapsel 100 ist dabei beliebig. Die Kapsel 100 enthält ein Trägermedium 106 für die Partikelkerne 102 welches flüssig oder gasförmig sein kann. Das Trägermedium 106 kann in Abhängigkeit von der Temperatur oder einem licht- oder pH-Wert induzierten Orientierungszustand fest, flüssig oder gasförmig sein.In a further application example, the Janus particles or printing / coating particles can also be designed in the form of a capsule 100, as in FIG Fig. 7 shown. The shape of the capsule 100 is arbitrary. The capsule 100 contains a carrier medium 106 for the particle cores 102 which can be liquid or gaseous. The carrier medium 106 can be solid, liquid or gaseous depending on the temperature or a light or pH-induced orientation state.

Während Fig. 7 nur einen einzigen Partikelkern 102 im Inneren einer Kapsel 100 zeigt, können im allgemeinen Fall auch mehrere gleichartige oder ungleichartige Partikelkerne in einer Kapsel 100 enthalten sein. Die Kapseln 100 können Bestandteil einer Druckfarbe, einer Beschichtung, eines Lacks oder eines Kunststoff sein. Durch die Verkapselung können die Druck-/Beschichtungs-Partikel auch nachträglich in der aufgebrachten und ausgehärteten Druckfarbe, Beschichtungsmittel, Lack oder Kunststoff orientiert werden, wenn das Trägermedium einen flüssigen oder gasförmigen Zustand aufweist. Die Ausrichtung kann durch magnetische Kräfte, elektrische Kräfte, gravimetrische Kräfte oder auch durch starke Schüttelbewegungen erfolgen. Ein Nachweis mit Hilfsmitteln, wie etwa einem Magneten, ist auch innerhalb einer transparenten Kapsel möglich.While Fig. 7 shows only a single particle core 102 in the interior of a capsule 100, a plurality of similar or dissimilar particle cores can generally also be contained in a capsule 100. The capsules 100 can be part of a printing ink, a coating, a lacquer or a plastic. As a result of the encapsulation, the printing / coating particles can also be subsequently oriented in the applied and cured printing ink, coating agent, lacquer or plastic if the carrier medium is in a liquid or gaseous state. The alignment can be done by magnetic forces, electrical forces, gravimetric forces or also by strong shaking movements. Detection with aids such as a magnet is also possible inside a transparent capsule.

Eine Beschichtung mit Januspartikeln bzw. anisotropen Druck-/Beschichtungs-Partikeln, Beschichtungen auf Basis verkapselter Januspartikel bzw. anisotroper Druck-/Beschichtungs-Partikel oder in Kunststoffe eingearbeitete, verkapselte Januspartikel bzw. anisotrope Druck-/ Beschichtungs-Partikel können zur Absicherung von Wertdokumente wie Banknoten, Gutscheine, Zertifikate, Zeugnisse, Urkunden, ID-Dokumente, Ersatzteile, Nummernschilder, Markenschutz, Verpackungen und dergleichen eingesetzt werden. Sie können beispielsweise auch für schaltbare Displays genutzt werden.A coating with Janus particles or anisotropic printing / coating particles, coatings based on encapsulated Janus particles or anisotropic printing / coating particles or encapsulated Janus particles or anisotropic printing / coating particles incorporated into plastics can be used to secure documents of value such as Banknotes, vouchers, certificates, certificates, documents, ID documents, spare parts, license plates, brand protection, packaging and the like can be used. For example, they can also be used for switchable displays.

BezugszeichenlisteList of reference symbols

1010
DruckfarbePrinting ink
1212th
Bindemittelbinder
1414th
anisotropes Druck-/Beschichtungs-Partikelanisotropic printing / coating particle
14A, 14B14A, 14B
OberflächenbereicheSurface areas
1616
anisotropes Druck-/Beschichtungs-Partikelanisotropic printing / coating particle
16A, 16B16A, 16B
OberflächenbereicheSurface areas
18-1, 18-218-1, 18-2
drucktechnisch erzeugte Schichtenlayers produced by printing technology
18-318-3
BeschichtungCoating
2020th
SicherheitssubstratSecurity substrate
22,2422.24
BereicheAreas
3030th
plättchenförmiges Druck-/Beschichtungs-Partikelplatelet-shaped printing / coating particles
3232
TrägerbestandteilCarrier component
3434
BeschichtungCoating
4040
halbkugelförmiges Druck-/Beschichtungs-Partikelhemispherical printing / coating particle
42-1, 42-242-1, 42-2
drucktechnisch erzeugte Schichtenlayers produced by printing technology
4444
BeschichtungCoating
5050
halbkugelförmiges Druck-/ Beschichtungs-Partikelhemispherical printing / coating particle
52-1,52-252-1.52-2
drucktechnisch erzeugte Schichtenlayers produced by printing technology
5454
BeschichtungCoating
6060
plättchenförmiges Druck-/Beschichtungs-Partikelplatelet-shaped printing / coating particles
6262
TrägerbestandteilCarrier component
64-1, 64-264-1, 64-2
BeschichtungenCoatings
66,6866.68
BetrachtungsrichtungenViewing directions
7070
plättchenförmiges Druck-/ Beschichtungs-Partikelplatelet-shaped printing / coating particles
7272
ZwischenschichtIntermediate layer
8080
plättchenförmiges Druck-/Beschichtungs-Partikelplatelet-shaped printing / coating particles
8282
ZwischenschichtIntermediate layer
9090
Druck-/Beschichtungs-Partikel in AufsichtPrinting / coating particles in plan
100100
anisotrope Druck-/ Beschichtungs-Partikel-Kapselanisotropic printing / coating particle capsule
102102
PartikelkernParticle core
102A, 102B102A, 102B
OberflächenbereicheSurface areas
104104
MikrokapselhülleMicrocapsule shell
106106
TrennmittelRelease agent
110110
TrägersubstratCarrier substrate
112112
DruckschichtPrint layer
114114
BeschichtungCoating
116116
außerhalb der Schichten 112 liegende BereicheAreas lying outside the layers 112
118118
auf der Schicht 112 befindlichen Bereicheareas located on layer 112
120120
RohpartikelRaw particles
122122
BeschichtungsüberstandCoating overhang
124124
fertiges Janus-Partikelfinished Janus particle
126126
abgelöstes Partikeldetached particle
130130
AbstreifeinrichtungStripping device
132132
gerundete Platterounded plate
134134
AuffangeinrichtungFall arrest facility

Claims (18)

  1. An anisotropic printing/coating particle (14, 16, 30, 40, 50, 60, 70, 80, 90, 100), for use in a printing ink or a lacquer for counterfeit protection, which comprises at least two separate surface regions (14A, 14B, 16A, 16B) having different physical properties, characterized in that
    - at least one of said surface regions is formed by a coating substance (18-3, 34, 44, 54, 64-1, 64-2, 114) applied in a non-contact coating method, namely is formed by a coating substance applied in the PVD (physical vapor deposition) method, CVD (chemical vapor deposition) method or spray coating method, and
    - at least one component of the particle is formed by a printing substance (18-1, 18-2, 32, 42-1, 42-2, 52-1, 52-2, 112), namely by a printing substance applied in continuous inkjet printing, inkjet printing, screen printing or 3D printing.
  2. The particle according to claim 1, characterized in that at least one of said surface regions is formed by a printing substance, especially a printing ink.
  3. The particle according to claim 1 or 2, characterized in that the different printing and coating substances are arranged one on top of another in register with one another, overlapping with one another or edge to edge.
  4. The particle according to at least one of claims 1 to 3, characterized in that the separate surface regions differ with a view to one or more of the physical properties of the group that is formed by:
    - the surface tension of the surface regions,
    - the specific weight of the materials that form the surface regions,
    - the coloring of the surface regions, especially the color spectrum of the surface regions in the UV, VIS and/or IR, the term coloring including both non-color-variable and color-variable, for example color-shifting or otherwise optically variable, designs,
    - the magnetic properties of the surface regions or of the materials that form the surface regions,
    - the luminescent properties of the surface regions or of the materials that form the surface regions,
    - the electrical conductivity of the surface regions or of the materials that form the surface regions,
    - the polarization properties of the surface regions or of the materials that form the surface regions and
    - the gloss and the reflectivity of the surface regions.
  5. The particle according to at least one of claims 1 to 4, characterized in that the separate surface regions of the particle have the same shape and/or size.
  6. The particle according to at least one of claims 1 to 5, characterized in that the particle is formed to be lamellar, spherical, hemispherical, dumbbell shaped, rod shaped or cylindrical.
  7. The particle according to at least one of claims 1 to 6, characterized in that the particle component formed by said printing substance constitutes a carrier component that defines the spatial shape of the particle.
  8. The particle according to claim 7, characterized in that the carrier component is filled with a high-density filler that facilitates a gravimetric orientation of the particle.
  9. The particle according to claim 7 or 8, characterized in that the carrier component is transparent.
  10. The particle according to at least one of claims 1 to 8, characterized in that the particle component formed by said printing substance forms one of said surface regions.
  11. The particle according to at least one of claims 1 to 10, characterized in that the volume fraction of the coating substances is less than 50%, preferably less than 30%, especially less than 10% of the volume fraction of the printing substances.
  12. The particle according to at least one of claims 1 to 11, characterized in that at least one coating substance constitutes an areal coating of a particle component formed by at least one printing substance, especially of the carrier component.
  13. The particle according to at least one of claims 1 to 12, characterized in that the particle has a maximum dimension of 3 - 70 µm, preferably 3 - 50 µm and particularly preferably 3 - 30 µm, and/or in that the printing/ coating particle has a volume below 3.5 x 10-13 m3, preferably below 1.25 x 10-13 m3 and particularly preferably below 0.3 x 10-13 m3.
  14. The particle according to at least one of claims 1 to 13, characterized in that the particle has a magnetic core.
  15. The particle according to at least one of claims 1 to 14, characterized in that the particle (100) comprises a capsule shell (104) and, enclosed in the capsule shell, a carrier fluid (106) in which is dispersed at least one anisotropic printing/coating particle core that comprises at least two separate surface regions having different physical properties and in which at least one of said surface regions is formed by a coating substance and at least one component of the particle core is formed by a printing substance, especially a printing ink.
  16. A printing ink or lacquer for counterfeit protection in which anisotropic printing/ coating particles according to one of claims 1 to 15 are dispersed.
  17. A counterfeit-protected object having an applied, especially imprinted, layer having anisotropic printing/coating particles according to one of claims 1 to 15.
  18. A method for producing anisotropic printing/coating particles according to one of claims 1 to 15, in which, with a printing method, at least one printing substance, and with a coating method, at least one coating substance are amalgamated directly or indirectly to produce the at least two separate surface regions having different physical properties,
    the coating substance being applied in a non-contact coating method, namely by a PVD (physical vapor deposition) method, a CVD (chemical vapor deposition) method or a spray coating method, and the printing substance being applied in continuous inkjet printing, inkjet printing, screen printing or 3D printing.
EP18000778.3A 2017-12-19 2018-09-28 Particles for counterfeit prevention Active EP3501839B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102017011770.5A DE102017011770A1 (en) 2017-12-19 2017-12-19 Particles for counterfeit protection

Publications (2)

Publication Number Publication Date
EP3501839A1 EP3501839A1 (en) 2019-06-26
EP3501839B1 true EP3501839B1 (en) 2021-08-11

Family

ID=63720444

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18000778.3A Active EP3501839B1 (en) 2017-12-19 2018-09-28 Particles for counterfeit prevention

Country Status (2)

Country Link
EP (1) EP3501839B1 (en)
DE (1) DE102017011770A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019008642A1 (en) * 2019-12-13 2021-06-17 Giesecke+Devrient Currency Technology Gmbh Process for the production of flake-form effect pigments
CN114690296B (en) * 2020-12-29 2024-04-05 恩希爱(杭州)薄膜有限公司 Retroreflective sheet and preparation method thereof
DE102021000892A1 (en) 2021-02-19 2022-08-25 Giesecke+Devrient Currency Technology Gmbh Security element with transparent inks under IR illumination and a machine-readable feature

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3012367A1 (en) * 2013-10-31 2015-05-01 Arjowiggins Security SECURE DOCUMENT AND PIGMENT.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3501839A1 (en) 2019-06-26
DE102017011770A1 (en) 2019-06-19

Similar Documents

Publication Publication Date Title
EP3501839B1 (en) Particles for counterfeit prevention
EP3260302B1 (en) Optically variable security element
EP2542421B1 (en) Security element having aligned magnetic pigments
DE102013015277B4 (en) Orientation of magnetically orientable particles in one color with several superimposed magnetic fields
EP3188916B1 (en) Optical variable security element
WO2006087138A1 (en) Security element and method for the production thereof
DE102007030219A1 (en) Security element for a value document
DE102007052477B4 (en) Process for producing a safety medium and safety medium
EP3738785B1 (en) Security element with machine readable features
AT502319B1 (en) SUBSTRATES WITH PREFERABLY TRANSFERABLE LAYERS AND / OR SURFACE STRUCTURES, METHOD FOR THEIR PRODUCTION AND THEIR USE
DE102019008289A1 (en) Effect pigment, manufacturing process, document of value and printing ink
WO2006111358A2 (en) Security element having a spatially resolved magnetic coding, method and device for producing the same and the use thereof
EP4000942A1 (en) Security element having machine readable security features
DE102008046462A1 (en) Method for producing a multilayer film
DE102018007719A1 (en) Particles for counterfeit protection
EP1580297B1 (en) Sheet material, especially for security elements
EP1610958B1 (en) Safety marking
EP4065382A1 (en) Effect pigment, manufacturing method, valuable document and printing ink
EP3302996B1 (en) Security element having a color-shifting effect
EP1365925B1 (en) Security features
EP2353883B1 (en) Safety element with integrated authentication check
EP4342683A1 (en) Security element with a machineable code and method for producing a security element
WO2023011757A1 (en) Effect pigment, manufacturing method, valuable document and printing ink
DE102013012340A1 (en) Safety arrangement for valuables
DE102010050823A1 (en) Security paper, method of making the same and security element

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200102

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200617

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20201204

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

INTC Intention to grant announced (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210316

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018006479

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

Ref country code: AT

Ref legal event code: REF

Ref document number: 1419010

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210915

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211213

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211111

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018006479

Country of ref document: DE

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210928

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210928

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211011

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230520

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20180928

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230921

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230930

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20231001

Year of fee payment: 6