EP3494622B1 - Reverse polarity protection circuit - Google Patents

Reverse polarity protection circuit Download PDF

Info

Publication number
EP3494622B1
EP3494622B1 EP17751302.5A EP17751302A EP3494622B1 EP 3494622 B1 EP3494622 B1 EP 3494622B1 EP 17751302 A EP17751302 A EP 17751302A EP 3494622 B1 EP3494622 B1 EP 3494622B1
Authority
EP
European Patent Office
Prior art keywords
mosfet
voltage
input
protection circuit
connection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17751302.5A
Other languages
German (de)
French (fr)
Other versions
EP3494622A1 (en
Inventor
Dominic Christ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Continental Automotive GmbH
Original Assignee
Continental Automotive GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive GmbH filed Critical Continental Automotive GmbH
Publication of EP3494622A1 publication Critical patent/EP3494622A1/en
Application granted granted Critical
Publication of EP3494622B1 publication Critical patent/EP3494622B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H11/00Emergency protective circuit arrangements for preventing the switching-on in case an undesired electric working condition might result
    • H02H11/002Emergency protective circuit arrangements for preventing the switching-on in case an undesired electric working condition might result in case of inverted polarity or connection; with switching for obtaining correct connection
    • H02H11/003Emergency protective circuit arrangements for preventing the switching-on in case an undesired electric working condition might result in case of inverted polarity or connection; with switching for obtaining correct connection using a field effect transistor as protecting element in one of the supply lines

Definitions

  • the present invention relates to a reverse polarity protection circuit comprising a MOSFET.
  • a reverse polarity protection circuit comprising a MOSFET.
  • Such a circuit is used, for example, to protect electrical circuits in motor vehicles against incorrect connection of the battery voltage.
  • the DE 198 17 790 A1 shows a polarity reversal protection circuit with a MOSFET and a blocking circuit that blocks the MOSFET in the event of polarity reversal.
  • a disadvantage of this known polarity reversal protection circuit is that the MOSFET requires a charge pump. This leads to a continuously flowing quiescent current and the associated energy consumption.
  • the EP 1 978 617 A1 and the DE 10 2009 007 818 A1 show similar reverse polarity protection circuits. Alternative solutions that get by with a reduced quiescent current have the disadvantage that they cannot guarantee reliable polarity reversal protection in all situations.
  • the object of the invention is to propose a reverse polarity protection circuit which is improved in comparison. This problem is solved by the measures specified in the characterizing part of the independent claims.
  • the polarity reversal protection circuit according to the invention has a detector for detecting a voltage shortfall between the source terminal and drain terminal of the MOSFET. A voltage shortfall associated with an edge and occurring, for example, in the event of a polarity reversal, is thus detected quickly and reliably. If the voltage drops below the limit, a quick disconnect locks the MOSFET.
  • a comparator is provided in order to compare the voltages present at the drain connection and source connection of the MOSFET. The output of the comparator is connected to the gate connection of the MOSFET in order to switch it on again when the polarity is no longer reversed.
  • a step-up converter is provided for the voltage supply even in the event of a supply voltage drop, a step-down converter for supplying power to downstream consumers. If there is no polarity reversal, the comparator is switched off via a switch.
  • the solution according to the invention has the advantage that energy-consuming components are only switched on in the event that the voltage drops below the detected level, in order to block the MOSFET and switch it through again when the correct voltage is restored. In normal operation, no continuously flowing quiescent currents are generated as they occur in the prior art mentioned. If the voltage at the MOSFET is correct, there is no current flowing through the comparator and detector.
  • the step-up and step-down converters which are also active in this operating state, are available for supplying downstream consumers, i.e. further elements of the circuit protected by the polarity reversal protection circuit. Their operation is therefore desirable anyway and does not generate any additional energy consumption.
  • the MOSFET is preferably an N-channel MOSFET. This has the advantage that an N-channel MOSFET enables faster reactivation than a P-channel MOSFET, and this results in lower losses at the intrinsic diode of the MOSFET and avoids a high voltage drop occurring at the intrinsic diode. This avoids problems with downstream circuit blocks.
  • the switch is designed as a switch-off delay.
  • the resulting hysteresis when switching off has the advantage that the comparator is still active for a certain time after the correct polarity between the source and drain connection of the MOSFET has been restored, and supplies its gate connection. This avoids an undefined state of the MOSFET, which can occur if the correct voltage is reached too slowly. This case of too low a voltage can occur, for example, when the ignition is actuated in a motor vehicle, with a so-called cold start pulse.
  • the quick disconnect switch is designed as a resistor. This has the advantage that the MOSFET is self-locking in every operating situation.
  • a device according to the invention has a polarity reversal protection circuit according to the invention.
  • this has the advantage that they are reliably supplied even if the voltage at the MOSFET drops due to the cold start pulse, and that they are still reliably protected against polarity reversal .
  • FIG. 1 shows a reverse polarity protection circuit according to the invention in a block diagram.
  • the MOSFET 1 has a source connection 11, a drain connection 12 and a gate connection 13.
  • the intrinsic diode 14 of the MOSFET 1 is also shown.
  • a detector 2 is connected with its first connection 21 to the source connection 11. Its second connection 22 is connected to the drain connection 12.
  • the output 23 of the detector 2 is connected to the switching input 31 of a quick disconnect switch 3 and to the input 41 of a switch-off delay 4.
  • the quick disconnect switch 3 is connected with its connection 32 via the node VC via a resistor (not shown here) to the gate connection 13, and with its connection 33 via the node S to the source connection 11.
  • the output 42 of the Switch-off delay 4 is connected to the switching input 43 of a switch 44, the input 45 of which is supplied via the node VS and, in the switched state, its output 46 and thus the node V is supplied.
  • a comparator 5 is connected to the drain connection 12 of the MOSFET 1 by means of its inverting input 51. Its non-inverting input 52 is connected to the source connection 11 of the MOSFET 1. The output 53 of the comparator 5 is connected to the gate connection 13 of the MOSFET 1 via the node G. A supply connection 54 of the comparator 5 is connected to the node V, and another supply connection 55 is connected to the node S.
  • the step-up converter 6 is shown in the left part, which is often also referred to as a booster. Its input 61 is connected via the node D to the drain connection 12 of the MOSFET 1, its output 62 to the input 71 of a step-down converter 7 and the first input 81 of a bootstrap circuit 8. The second input 83 of the bootstrap circuit 8 is connected to a switching node 73 of the down converter 7. At the output 72 of the step-down converter 7, a load 74 is shown as a placeholder for downstream consumers or circuit blocks.
  • a charge pump circuit 90 is connected to the center tap 82 of the bootstrap circuit 8 via its connection 91.
  • An output 92 of the charge pump circuit 90 supplies the node VC, an output 93 the node VS.
  • the charge pump circuit 90 has diodes D91, D92, capacitors C91, C92 and resistors R91 in a known manner.
  • the bootstrap circuit 8 and the charge pump circuit 90 together form the charge pump 9.
  • the step-down converter 7 has diodes D71, D72, D73, an inductance I71 and a transistor M71.
  • the invention is based on the idea of replacing a diode of a polarity reversal protection circuit with a MOSFET 1, the intrinsic diode 14 of which takes over the diode function, and which switches through when there is voltage in the forward direction and thus reduces losses at the intrinsic diode 14.
  • the MOSFET 1 is designed as an N-channel MOSFET. This N-channel MOSFET is connected with its source connection 11 to the positive side of the voltage supply and with its drain connection 12 to the load 74. The MOSFET 1 is thus integrated "high side" into the overall circuit.
  • the voltages at the source connection 11 and at the drain connection 12 are fed to a comparator 5, which is designed here as a differential amplifier. This differential amplifier is switched off during normal operation.
  • the voltages at the drain connection 12 and at the source connection 11 are monitored by a detector 2, which detects a fast edge at the source connection 11. If an edge occurs, the gate connection 13 of the N-channel MOSFET is discharged and the supply voltage for the differential amplifier is switched on. When the voltage at the source connection 11 is again greater than the voltage at the drain connection 12, the MOSFET 1 is switched through again. The differential amplifier is then switched off again.
  • the differential amplifier, the comparator 5, and the detector 2 do not require a connection to ground and therefore cannot cause a permanent current flow from the supply to the ground.
  • the differential amplifier is used to switch the N-channel MOSFET back on as soon as the voltage at the source connection 11 is greater - or greater again - than the voltage at the drain connection 12. This is done as quickly as possible by using the comparator 5 .
  • This rapid restart represents an improved behavior compared to known solutions. If, for example, a P-channel MOSFET is used, the restart takes several hundred microseconds. During this time, only the intrinsic diode 14 of the MOSFET 1 is conductive.
  • the high voltage drop in this state often represents a problem for the downstream circuit blocks, represented here by the load 74 low input voltages, for example a 3.2V cold start pulse, the problem that there is no longer a sufficient gate-source voltage available to completely switch the MOSFET 1 through.
  • the components already present in the motor vehicle system are also used in such a way that an improvement is achieved without great additional effort.
  • One property of these motor vehicle systems is the presence of a so-called pre-boost, a step-up converter, of the step-up converter 6, which is only active when the battery voltage drops sharply. This is the case, for example, with a cold start.
  • a step-down converter, the step-down converter 6, is connected downstream of the up-converter 6, which continuously supplies the motor vehicle system with voltage during normal operation.
  • Both converters 6, 7, or components with a corresponding function, are necessary for the operation of the polarity reversal protection circuit according to the invention: the boost converter 6 ensures that there is always sufficient input voltage available for the downstream converter 7.
  • This supply voltage is also used to generate the operating voltage for the active diode, the MOSFET 1. In this way it is ensured that the MOSFET 1 is sufficiently switched through even when the input voltages are actually too low.
  • a voltage is generated according to the bootstrap method, which voltage is divided into at least two separate voltages. One of these voltages charges a relatively large capacitor C92, which is used as a supply for the comparator 5.
  • the negative supply voltage connection 55 of the comparator 5 is connected to the source potential of the N-channel MOSFET.
  • the second voltage is passed to the gate connection 13 of the N-channel MOSFET via a series resistor R11. In this way, the MOSFET 1 is permanently switched on during normal operation.
  • FIG. 2 shows an exemplary circuit diagram of a polarity reversal protection circuit according to the invention.
  • the comparator 5 is shown as a discretely constructed differential amplifier with a downstream impedance converter.
  • the differential amplifier has transistors T51 to T57 and resistors R51 to R57 in a known manner. Its inverting input 51 is connected to the node D, its non-inverting input 52 to the node S.
  • the supply connection 54 is connected to the node V, the supply connection 55 to the node S.
  • the impedance converter is made up of transistors T50, T58, T59 and in a known manner Resistors R56 to R58 built up. Its output 53 is connected to the gate connection 13 of the MOSFET 1 and is supplied via the connection 56 from the node VC.
  • the node G located between output 53 and gate connection 13 is not shown here.
  • the gate terminal 13 of the MOSFET 1 via a resistor R11 and a Diode D11 activated.
  • this can also be done via a resistor R12, but then with a low leakage current.
  • the intrinsic diode 14 is also shown.
  • the source terminal 11 of the MOSFET 1 is here connected to the voltage supply 10 via an inductance I10 and capacitors C11, C12, for example.
  • the detector 2 has a transistor T21, diodes D21 to D24 and resistors R21 to R23.
  • the switch-off delay 4 is shown here by means of a capacitor C41.
  • the capacitor C41 ensures that the transistor T21 remains conductive. It thus represents a central element.
  • the quick disconnect switch 3 and the switch 44 are shown in a common block, they have transistors T31, T32, resistors R31, R32 and diodes D31 to D33.
  • the buck converter 7 is here, as an alternative to Figure 1 , connected to the output of the boost converter 6 via a capacitor C61.
  • the transistor M71 is connected via a voltage supply 70, its drain connection is connected to the input 71, and its source connection is connected to ground via the diode D73.
  • the other components correspond to the Fig.1 shown.
  • the bootstrap circuit 8 assigns, alternatively Figure 1 , an additional resistor R81, the diode D81 and the capacitor C81 are unchanged.
  • the charge pump 9 has diodes D93 to D95, resistors R93, R94 and capacitors C93, C94.
  • the operation of the reverse polarity protection circuit according to the invention with a quiescent current-free active diode, the MOSFET 1, is as follows:
  • the capacitors C41 and C94 are discharged before being switched on for the first time.
  • the gate-source path of the MOSFET 1 is therefore also discharged. If, when the supply voltage V in is connected, the positive pole of the connected voltage is present at the source connection 11 of the MOSFET 1, the intrinsic diode 14 of the MOSFET 1 becomes conductive.
  • the voltage at the drain connection 12 of the MOSFET 1 increases therefore on V in -V fwd .
  • the forward voltage of the intrinsic diode 14 is referred to below as V fwd .
  • the overall system consists of the reverse polarity protection circuit according to the invention, a step-up converter 6, which goes into operation when the voltage at the drain connection 12 drops sufficiently to supply the downstream step-down converter 7 with a sufficient input voltage.
  • the down converter 7, which is already present in the overall system, begins to work.
  • the voltage at the cathode of diode D73 changes between (V in -V fwd ) and about -0.7V. If -0.7V is present at the switching node 73, the capacitor C81 charges to approximately the voltage V in -V fwd .
  • the voltage at the cathode of the diode D73 rises again to V in -V fwd , the voltage at the anode of the diode D94 rises to about twice that of V in -V fwd .
  • the capacitor C94 is charged via the resistor R94. Since the negative connection of capacitor C94 relates to node S, the resulting voltage at node VC across this capacitor C94 is approximately V in in the static state.
  • the gate-source path of the MOSFET 1 is charged to V in via the resistor R11. As a result, the MOSFET 1 is switched through, whereby the voltage drop across the MOSFET 1 is reduced to zero or almost zero.
  • the capacitor C41 After being switched off, the capacitor C41 is charged to the input voltage V in except for a diode voltage. As a result, the base-emitter voltage of transistor T21 is approximately + 0.7V. As a result, the PNP transistor T21 remains blocked. Since there is no current flowing into the base of the NPN transistor T31, this also remains blocked. This has the result that the base-emitter path of the PNP transistor T32 has the voltage value 0V, which is why the transistor T32 also blocks. As a result, the differential amplifier of the comparator 5 is not supplied with current. Since the base of the NPN transistor T50 is therefore also not supplied with current, the PNP transistor T59 remains blocked.
  • the circuit Since all transistors with the exception of MOSFET 1 are blocked, the circuit does not require any quiescent current in normal operation, with the exception of the gate-source leakage current of MOSFET 1, which is usually less than 100nA. As long as the boost converter 6 is able, a sufficiently high Providing input voltage for the down converter 7, a sufficient voltage supply of the charge pump 9 is also guaranteed. In this way, the circuit presented is able to provide a sufficiently high gate-source voltage for the MOSFET 1 in order to be able to switch it through safely.
  • transistor T21 in the area of the voltage supply of the differential amplifier and the impedance converter becomes conductive as soon as the voltage at node S is at least 0.6V lower is than the voltage at the node D.
  • the transistor T31 is conductive, which in turn turns on the transistor T32.
  • the comparator 5 is supplied with power.
  • the comparator 5 compares the voltage at the source connection 11 and drain connection 12 with one another. As long as the voltage at the drain connection 12 is greater than the voltage at the source connection 11, the comparator 5 applies a positive voltage to the base series resistor R56 of the transistor T50, which as a result begins to conduct.
  • the downstream impedance converter which has the transistors T58, T59, ensures that the gate-source path of the MOSFET 1 is discharged. In this way, the MOSFET 1 is blocked. At the same time, the capacitor C94 is also discharged.
  • the reverse polarity protection circuit is brought into an inherently safe state. As long as there is no voltage across the capacitor C94, the MOSFET 1 cannot be switched through. If the polarity is now reversed, the MOSFET 1 is blocked directly and the entire system is protected against polarity reversal.
  • the transistor T59 blocks again and the transistor T58 becomes conductive again.
  • the gate-source path of the MOSFET 1 is charged again via the resistor R11 and the transistor T58. In this way, the MOSFET 1 is switched through again sufficiently quickly as soon as this is indicated.
  • the reverse polarity protection circuit has an active diode that is used as a replacement for Si and Schottky diodes in order to reduce the forward voltage.
  • the active diode is designed as an N-channel MOSFET and not as a P-channel MOSFET.
  • N-channel MOSFETs require an increased gate-source voltage in order to be switched through. This voltage can be generated by means of a charge pump. This either leads to a continuously required quiescent current or to the fact that the MOSFET has to be switched off for a short time, although it should be switched on at this point in time in order to build up the required voltage between the gate connection and the source connection again.
  • the following problems can arise individually or in combination: a continuously flowing quiescent current, a brief, undesired shutdown of the MOSFET, an inadequately controllable restart of the MOSFET after polarity reversal from a temporal point of view, or, if the input voltages are too low, the MOSFET is insufficiently switched through.
  • the present reverse polarity protection circuit avoids a permanent quiescent current, ensures reliable switching of the MOSFET at low input voltages and a Sufficiently quick restart of the MOSFET after the polarity reversal has ended.
  • the required gate-source voltage is taken from the DC-DC converter already contained in the system, the combination of step-up converter 6 and step-down converter 7, by using a bootstrap circuit. If the MOSFET 1 is to be switched on permanently, the comparator 5 is disconnected from the power supply. A quiescent current therefore does not occur.
  • the control circuit is designed such that the gate-source path of the MOSFET 1 is automatically charged.
  • the voltage required to operate the polarity reversal protection circuit is tapped behind the boost converter 6 that is already present in the system. This ensures that a sufficiently high voltage is always available to switch the MOSFET 1 through. Reliable switching of the MOSFET 1, even with a low input voltage, is thus ensured.
  • the comparator 5 present in the polarity reversal protection circuit is activated in the event of polarity reversal and a rapid drop in the input voltage.
  • the comparator 5 compares the input voltage and output voltage of the active diode, the MOSFET 1, and causes it to be switched on again when the input voltage is greater than the output voltage.
  • An additional switching hysteresis is advantageously provided.
  • the comparator 5 remains switched on as long as the voltage provided by the capacitor C41 is at least 0.7V greater than the voltage at the source connection of the MOSFET M1.
  • the bootstrap capacitor C81 is not discharged because it is continuously being recharged by the step-down converter 7.
  • the bootstrap capacitor C81 is used to charge the gate-source path of the MOSFET M1 and to generate the operating voltage of the comparator 5. This enables an inherently safe state in which the MOSFET 1 is blocked when the supply to the overall system is switched off.
  • the polarity reversal protection circuit can alternatively also be modified in such a way that the gate-source path is passed through a resistor R12 is discharged.
  • a suitable design of the resistor R94 and the capacitor C94 of the charge pump 9 ensures that the MOSFET 1 is always blocked shortly after the down converter 7, which is already present in the system, is switched off. If this measure is implemented, the MOSFET 1 is always safely blocked even if the supply voltage drops very slowly in connection with a subsequent polarity reversal.
  • the polarity reversal protection circuit according to the invention does not require any additional quiescent current when the MOSFET 1 is on. Even with low input voltages, the MOSFET 1 is switched through completely.

Landscapes

  • Dc-Dc Converters (AREA)
  • Emergency Protection Circuit Devices (AREA)

Description

Die vorliegende Erfindung betrifft eine einen MOSFET aufweisende Verpolschutzschaltung. Eine solche Schaltung wird beispielsweise zum Schutz von elektrischen Schaltungen in Kraftfahrzeugen gegen falsches Anklemmen der Batteriespannung eingesetzt.The present invention relates to a reverse polarity protection circuit comprising a MOSFET. Such a circuit is used, for example, to protect electrical circuits in motor vehicles against incorrect connection of the battery voltage.

Die DE 198 17 790 A1 zeigt eine Verpolschutzschaltung mit einem MOSFET und einer Sperrschaltung die den MOSFET im Fall einer Verpolung sperrt. Als nachteilig an dieser bekannten Verpolschutzschaltung ist anzusehen, dass der MOSFET eine Ladungspumpe benötigt. Dies führt zu einem andauernd fließenden Ruhestrom, und damit einhergehendem Energieverbrauch. Auch die EP 1 978 617 A1 und die DE 10 2009 007 818 A1 zeigen ähnliche Verpolschutzschaltungen. Alternative Lösungen, die mit reduziertem Ruhestrom auskommen, haben den Nachteil, nicht in allen Situationen einen zuverlässigen Verpolschutz zu gewährleisten.The DE 198 17 790 A1 shows a polarity reversal protection circuit with a MOSFET and a blocking circuit that blocks the MOSFET in the event of polarity reversal. A disadvantage of this known polarity reversal protection circuit is that the MOSFET requires a charge pump. This leads to a continuously flowing quiescent current and the associated energy consumption. Also the EP 1 978 617 A1 and the DE 10 2009 007 818 A1 show similar reverse polarity protection circuits. Alternative solutions that get by with a reduced quiescent current have the disadvantage that they cannot guarantee reliable polarity reversal protection in all situations.

Aufgabe der Erfindung ist es, eine demgegenüber verbesserte Verpolschutzschaltung vorzuschlagen. Gelöst wird diese Aufgabe durch die im kennzeichnenden Teil der unabhängigen Ansprüche angegebenen Maßnahmen.The object of the invention is to propose a reverse polarity protection circuit which is improved in comparison. This problem is solved by the measures specified in the characterizing part of the independent claims.

Die erfindungsgemäße Verpolschutzschaltung , nach Anspruch 1, weist einen Detektor zum Detektieren einer Spannungsunterschreitung zwischen Source-Anschluss und Drain-Anschluss des MOSFET auf. Eine Spannungsunterschreitung, die mit einer Flanke einhergeht, und beispielsweise bei einer Verpolung auftritt, wird somit schnell und zuverlässig detektiert. Im Fall einer Spannungsunterschreitung sperrt ein Schnellabschalter den MOSFET. Ein Komparator ist vorgesehen, um die an Drain-Anschluss und Source-Anschluss des MOSFET anliegenden Spannungen zu vergleichen. Der Ausgang des Komparators ist mit dem Gate-Anschluss des MOSFET verbunden, um diesen wiederzuzuschalten, wenn keine Verpolung mehr vorliegt. Ein Aufwärtswandler ist zur Spannungsversorgung auch bei Versorgungsspannungsabfall vorgesehen, ein Abwärtswandler zur Spannungsversorgung nachgeschalteter Verbraucher. Liegt keine Verpolung vor, ist der Komparator über einen Schalter ausgeschaltet. Die erfindungsgemäße Lösung hat den Vorteil, dass nur im Fall einer detektierten Spannungsunterschreitung energieverbrauchende Bauteile zugeschaltet werden, um den MOSFET zu sperren und bei Wiederherstellung der korrekten Spannung wieder durchzuschalten. Im Normalbetrieb werden keine andauernd fließenden Ruheströme erzeugt, wie sie im genannten Stand der Technik auftreten. Komparator und Detektor sind bei korrekter Spannung am MOSFET nicht stromdurchflossen. Die auch in diesem Betriebszustand aktiven Auf- und Abwärtswandler stehen zur Versorgung nachgeschalteter Verbraucher, also weiterer Elemente der durch die Verpolschutzschaltung geschützten Schaltung, zur Verfügung. Ihr Betrieb ist daher ohnehin erwünscht, und ruft keinen zusätzlichen Energieverbrauch hervor.The polarity reversal protection circuit according to the invention, according to claim 1, has a detector for detecting a voltage shortfall between the source terminal and drain terminal of the MOSFET. A voltage shortfall associated with an edge and occurring, for example, in the event of a polarity reversal, is thus detected quickly and reliably. If the voltage drops below the limit, a quick disconnect locks the MOSFET. A comparator is provided in order to compare the voltages present at the drain connection and source connection of the MOSFET. The output of the comparator is connected to the gate connection of the MOSFET in order to switch it on again when the polarity is no longer reversed. A step-up converter is provided for the voltage supply even in the event of a supply voltage drop, a step-down converter for supplying power to downstream consumers. If there is no polarity reversal, the comparator is switched off via a switch. The solution according to the invention has the advantage that energy-consuming components are only switched on in the event that the voltage drops below the detected level, in order to block the MOSFET and switch it through again when the correct voltage is restored. In normal operation, no continuously flowing quiescent currents are generated as they occur in the prior art mentioned. If the voltage at the MOSFET is correct, there is no current flowing through the comparator and detector. The step-up and step-down converters, which are also active in this operating state, are available for supplying downstream consumers, i.e. further elements of the circuit protected by the polarity reversal protection circuit. Their operation is therefore desirable anyway and does not generate any additional energy consumption.

Vorzugsweise ist der MOSFET ein N-Kanal-MOSFET. Dies hat den Vorteil, dass ein N-Kanal-MOSFET gegenüber einem P-Kanal-MOSFET ein schnelleres Wiedereinschalten ermöglicht, und dadurch geringere Verluste an der intrinsischen Diode des MOSFET hervorgerufen werden und ein an der intrinsischen Diode auftretender hohe Spannungsabfall vermieden wird. Dadurch werden Probleme an nachgeschalteten Schaltungsblöcken vermieden.The MOSFET is preferably an N-channel MOSFET. This has the advantage that an N-channel MOSFET enables faster reactivation than a P-channel MOSFET, and this results in lower losses at the intrinsic diode of the MOSFET and avoids a high voltage drop occurring at the intrinsic diode. This avoids problems with downstream circuit blocks.

Erfindungsgemäß ist der Schalter als Ausschaltverzögerer ausgelegt. Die dadurch hervorgerufene Hysterese beim Ausschalten hat den Vorteil, dass der Komparator auch noch für eine gewisse Zeit nach Wiederherstellung der korrekten Polarität zwischen Source- und Drain-Anschluss des MOSFET aktiv ist, und dessen Gate-Anschluss versorgt. Somit wird ein undefinierter Zustand des MOSFET vermieden, wie er bei zu langsamem Erreichen der korrekten Spannung auftreten kann. Dieser Fall zu geringer Spannung kann beispielsweise beim Betätigen der Zündung in einem Kraftfahrzeug vorkommen, beim sogenannten Kaltstartimpuls.According to the invention, the switch is designed as a switch-off delay. The resulting hysteresis when switching off has the advantage that the comparator is still active for a certain time after the correct polarity between the source and drain connection of the MOSFET has been restored, and supplies its gate connection. This avoids an undefined state of the MOSFET, which can occur if the correct voltage is reached too slowly. This case of too low a voltage can occur, for example, when the ignition is actuated in a motor vehicle, with a so-called cold start pulse.

Im einfachsten Fall ist der Schnellabschalter als Widerstand ausgebildet. Dies hat den Vorteil dass der MOSFET in jeder Betriebssituation selbstsperrend ist.In the simplest case, the quick disconnect switch is designed as a resistor. This has the advantage that the MOSFET is self-locking in every operating situation.

Ein erfindungsgemäßes Gerät weist eine erfindungsgemäße Verpolschutzschaltung auf. Insbesondere bei Kombinationsinstrumenten oder Steuergeräten, welche auch während eines Kaltstartimpulses eines Kraftfahrzeugs im Betrieb sein müssen, hat dies den Vorteil, dass sie auch dann zuverlässig versorgt werden, wenn die Spannung am MOSFET aufgrund des Kaltstartimpulses abfällt, und dass sie dennoch zuverlässig gegen Verpolung geschützt sind.A device according to the invention has a polarity reversal protection circuit according to the invention. In particular in the case of combination instruments or control units, which must also be in operation during a cold start pulse of a motor vehicle, this has the advantage that they are reliably supplied even if the voltage at the MOSFET drops due to the cold start pulse, and that they are still reliably protected against polarity reversal .

Weitere Details der Erfindung und ihrer Vorteile können auch der nachfolgenden Beschreibung von Ausführungsbeispielen entnommen werden. Dabei zeigen:

Fig.1
Verpolschutzschaltung in Blockdarstellung
Fig.2
Schaltplan einer Verpolschutzschaltung
Further details of the invention and its advantages can also be found in the following description of exemplary embodiments. Show:
Fig.1
Reverse polarity protection circuit in block diagram
Fig. 2
Circuit diagram of a reverse polarity protection circuit

Figur 1 zeigt eine erfindungsgemäße Verpolschutzschaltung in Blockdarstellung. Der MOSFET 1 weist einen Source-Anschluss 11, einen Drain-Anschluss 12 und einen Gate-Anschluss 13 auf. Ebenfalls gezeigt ist die intrinsischen Diode 14 des MOSFET 1. Ein Detektor 2 ist mit seinem ersten Anschluss 21 mit dem Source-Anschluss 11 verbunden. Sein zweiter der Anschluss 22 ist mit dem Drainanschluss 12 verbunden. Der Ausgang 23 des Detektors 2 ist mit dem Schalteingang 31 eines Schnellabschalters 3 verbunden und mit dem Eingang 41 eines Ausschaltverzögerers 4. Der Schnellabschalter 3 ist mit seinem Anschluss 32 über den Knoten VC über einen hier nicht dargestellten Widerstand mit dem Gate-Anschluss 13 verbunden, und mit seinem Anschluss 33 über den Knoten S mit dem Source-Anschluss 11. Der Ausgang 42 des Ausschaltverzögerers 4 ist mit dem Schalteingang 43 eines Schalters 44 verbunden, dessen Eingang 45 über den Knoten VS versorgt wird und im geschalteten Zustand dessen Ausgang 46 und damit den Knoten V versorgt. Figure 1 shows a reverse polarity protection circuit according to the invention in a block diagram. The MOSFET 1 has a source connection 11, a drain connection 12 and a gate connection 13. The intrinsic diode 14 of the MOSFET 1 is also shown. A detector 2 is connected with its first connection 21 to the source connection 11. Its second connection 22 is connected to the drain connection 12. The output 23 of the detector 2 is connected to the switching input 31 of a quick disconnect switch 3 and to the input 41 of a switch-off delay 4. The quick disconnect switch 3 is connected with its connection 32 via the node VC via a resistor (not shown here) to the gate connection 13, and with its connection 33 via the node S to the source connection 11. The output 42 of the Switch-off delay 4 is connected to the switching input 43 of a switch 44, the input 45 of which is supplied via the node VS and, in the switched state, its output 46 and thus the node V is supplied.

Ein Komparator 5 ist mittels seines invertierenden Eingangs 51 mit dem Drain-Anschluss 12 des MOSFET 1 verbunden. Sein nichtinvertierender Eingang 52 ist mit dem Source-Anschluss 11 des MOSFET 1 verbunden. Der Ausgang 53 des Komparators 5 ist über den Knoten G mit dem Gate-Anschluss 13 des MOSFET 1 verbunden. Ein Versorgungsanschluss 54 des Komparators 5 ist mit dem Knoten V verbunden, ein anderer Versorgungsanschluss 55 mit dem Knoten S.A comparator 5 is connected to the drain connection 12 of the MOSFET 1 by means of its inverting input 51. Its non-inverting input 52 is connected to the source connection 11 of the MOSFET 1. The output 53 of the comparator 5 is connected to the gate connection 13 of the MOSFET 1 via the node G. A supply connection 54 of the comparator 5 is connected to the node V, and another supply connection 55 is connected to the node S.

Im unteren Teil der Figur 1 ist im linken Teil der Aufwärtswandler 6 gezeigt, der oft auch als Booster bezeichnet wird. Sein Eingang 61 ist über den Knoten D mit dem Drain-Anschluss 12 des MOSFET 1 verbunden, sein Ausgang 62 mit dem Eingang 71 eines Abwärtswandlers 7 und dem ersten Eingang 81 einer Bootstrap-Schaltung 8. Der zweite Eingang 83 der Bootstrap-Schaltung 8 ist mit einem Schaltknoten 73 des Abwärtswandlers 7 verbunden. Am Ausgang 72 des Abwärtswandlers 7 ist eine Last 74 als Platzhalter für nachgeschaltete Verbraucher beziehungsweise Schaltungsblöcke dargestellt. Am Mittenabgriff 82 der Bootstrap-Schaltung 8 ist eine Ladungspumpenschaltung 90 über ihren Anschluss 91 angeschlossen. Ein Ausgang 92 der Ladungspumpenschaltung 90 versorgt den Knoten VC, ein Ausgang 93 den Knoten VS. Die Ladungspumpenschaltung 90 weist in bekannter Weise Dioden D91, D92, Kondensatoren C91, C92 und Widerstände R91 auf. Die Bootstrap-Schaltung 8 und die Ladungspumpenschaltung 90 bilden zusammen die Ladungspumpe 9. Der Abwärtswandler 7 weist Dioden D71, D72, D73 eine Induktivität I71 und einen Transistor M71 auf.In the lower part of the Figure 1 the step-up converter 6 is shown in the left part, which is often also referred to as a booster. Its input 61 is connected via the node D to the drain connection 12 of the MOSFET 1, its output 62 to the input 71 of a step-down converter 7 and the first input 81 of a bootstrap circuit 8. The second input 83 of the bootstrap circuit 8 is connected to a switching node 73 of the down converter 7. At the output 72 of the step-down converter 7, a load 74 is shown as a placeholder for downstream consumers or circuit blocks. A charge pump circuit 90 is connected to the center tap 82 of the bootstrap circuit 8 via its connection 91. An output 92 of the charge pump circuit 90 supplies the node VC, an output 93 the node VS. The charge pump circuit 90 has diodes D91, D92, capacitors C91, C92 and resistors R91 in a known manner. The bootstrap circuit 8 and the charge pump circuit 90 together form the charge pump 9. The step-down converter 7 has diodes D71, D72, D73, an inductance I71 and a transistor M71.

Die Erfindung beruht mit anderen Worten auf der Idee, eine Diode einer Verpolschutzschaltung durch einen MOSFET 1 zu ersetzen, dessen intrinsische Diode 14 die Diodenfunktion übernimmt, und der bei Spannung in Durchlassrichtung durchschaltet und damit Verluste an der intrinsischen Diode 14 reduziert. Der MOSFET 1 ist als N-Kanal-MOSFET ausgelegt. Dieser N-Kanal-MOSFET ist mit seinem Source-Anschluss 11 an die positive Seite der Spannungsversorgung angebunden und mit seinem Drain-Anschluss 12 an die Last 74. Der MOSFET 1 ist also "High Side" in die Gesamtschaltung eingebunden.In other words, the invention is based on the idea of replacing a diode of a polarity reversal protection circuit with a MOSFET 1, the intrinsic diode 14 of which takes over the diode function, and which switches through when there is voltage in the forward direction and thus reduces losses at the intrinsic diode 14. The MOSFET 1 is designed as an N-channel MOSFET. This N-channel MOSFET is connected with its source connection 11 to the positive side of the voltage supply and with its drain connection 12 to the load 74. The MOSFET 1 is thus integrated "high side" into the overall circuit.

Die Spannungen am Source-Anschluss 11 und am Drain-Anschluss 12 werden einem Komparator 5 zugeführt, der hier als Differenzverstärker ausgelegt ist. Dieser Differenzverstärker ist im normalen Betrieb abgeschaltet. Zusätzlich werden die Spannungen am Drain-Anschluss 12 und am Source-Anschluss 11 von einem Detektor 2 überwacht, welcher eine schnelle Flanke am Source-Anschluss 11 detektiert. Tritt eine Flanke auf, so wird der Gate-Anschluss 13 des N-Kanal-MOSFET entladen und die Versorgungsspannung für den Differenzverstärker wird angeschaltet. Wenn die Spannung am Source-Anschluss 11 wieder größer ist als die Spannung am Drain-Anschluss 12, wird der MOSFET 1 wider durchgeschaltet. Danach wird der Differenzverstärker wieder abgeschaltet.The voltages at the source connection 11 and at the drain connection 12 are fed to a comparator 5, which is designed here as a differential amplifier. This differential amplifier is switched off during normal operation. In addition, the voltages at the drain connection 12 and at the source connection 11 are monitored by a detector 2, which detects a fast edge at the source connection 11. If an edge occurs, the gate connection 13 of the N-channel MOSFET is discharged and the supply voltage for the differential amplifier is switched on. When the voltage at the source connection 11 is again greater than the voltage at the drain connection 12, the MOSFET 1 is switched through again. The differential amplifier is then switched off again.

Der Differenzverstärker, der Komparator 5, und der Detektor 2 benötigen keinen Anschluss an Masse und können daher auch keinen dauerhaften Stromfluss von Versorgung nach Masse verursachen. Der Differenzverstärker wird dazu verwendet, den N-Kanal-MOSFET wieder einzuschalten, sobald die Spannung am Source-Anschluss 11 größer - oder wieder größer - ist, als die Spannung am Drain-Anschluss 12. Dies geschieht durch den Einsatz des Komparators 5 möglichst schnell. Dieses schnelle Wiedereinschalten stellt ein verbessertes Verhalten gegenüber bekannten Lösungen dar. Wird beispielsweise ein P-Kanal-MOSFET verwendet, so dauert das Wiedereinschalten mehrere hundert Mikrosekunden. In dieser Zeit ist nur die intrinsische Diode 14 des MOSFET 1 leitend. Der in diesem Zustand hohe Spannungsabfall stellt häufig ein Problem für die nachgeschalteten Schaltungsblöcke, hier durch die Last 74 repräsentiert, dar. Zusätzlich tritt bei sehr geringen Eingangsspannungen, beispielsweise einem 3,2V Kaltstartpuls, das Problem auf, dass keine ausreichende Gate-Source-Spannung mehr zur Verfügung steht, um den MOSFET 1 komplett durchzuschalten.The differential amplifier, the comparator 5, and the detector 2 do not require a connection to ground and therefore cannot cause a permanent current flow from the supply to the ground. The differential amplifier is used to switch the N-channel MOSFET back on as soon as the voltage at the source connection 11 is greater - or greater again - than the voltage at the drain connection 12. This is done as quickly as possible by using the comparator 5 . This rapid restart represents an improved behavior compared to known solutions. If, for example, a P-channel MOSFET is used, the restart takes several hundred microseconds. During this time, only the intrinsic diode 14 of the MOSFET 1 is conductive. The high voltage drop in this state often represents a problem for the downstream circuit blocks, represented here by the load 74 low input voltages, for example a 3.2V cold start pulse, the problem that there is no longer a sufficient gate-source voltage available to completely switch the MOSFET 1 through.

Erfindungsgemäß werden die im Kraftfahrzeugsystem bereits vorhandenen Komponenten so mitgenutzt, dass ohne großen zusätzlichen Aufwand eine Verbesserung erzielt wird. Eine Eigenschaft dieser Kraftfahrzeugsysteme ist das Vorhandensein eines sogenannten Preboost, eines Step-Up-Wandlers, des Aufwärtswandlers 6, welcher nur aktiv wird, wenn die Batteriespannung stark abfällt. Dies ist beispielsweise beim Kaltstart der Fall. Dem Aufwärtswandler 6 ist ein Step-Down-Wandler, der Abwärtswandler 6, nachgeschaltet, welcher das Kraftfahrzeugsystem im normalen Betrieb dauerhaft mit Spannung versorgt. Beide Wandler 6, 7, oder Bauteile entsprechender Funktion, sind für den Betrieb der erfindungsgemäßen Verpolschutzschaltung notwendig: Der Aufwärtswandler 6 sorgt dafür, dass stets genügend Eingangsspannung für den nachgeschalteten Abwärtswandler 7 zur Verfügung steht. Diese Versorgungsspannung wird auch für die Erzeugung der Betriebsspannung für die Aktive Diode, den MOSFET 1, verwendet. Auf diese Weise wird sichergestellt, dass auch bei eigentlich zu geringen Eingangsspannungen der MOSFET 1 hinreichend durchgeschaltet wird.According to the invention, the components already present in the motor vehicle system are also used in such a way that an improvement is achieved without great additional effort. One property of these motor vehicle systems is the presence of a so-called pre-boost, a step-up converter, of the step-up converter 6, which is only active when the battery voltage drops sharply. This is the case, for example, with a cold start. A step-down converter, the step-down converter 6, is connected downstream of the up-converter 6, which continuously supplies the motor vehicle system with voltage during normal operation. Both converters 6, 7, or components with a corresponding function, are necessary for the operation of the polarity reversal protection circuit according to the invention: the boost converter 6 ensures that there is always sufficient input voltage available for the downstream converter 7. This supply voltage is also used to generate the operating voltage for the active diode, the MOSFET 1. In this way it is ensured that the MOSFET 1 is sufficiently switched through even when the input voltages are actually too low.

Im Abwärtswandler 7 wird nach dem Bootstrap-Verfahren eine Spannung generiert, welche auf mindestens zwei separate Spannungen aufgeteilt wird. Eine diese Spannungen lädt einen relativ großen Kondensator C92, welcher als Versorgung für den Komparator 5 verwendet wird. Der negative Versorgungsspannungsanschluss 55 des Komparators 5 ist mit dem Source-Potential des N-Kanal MOSFET verbunden. Die zweite Spannung wird über einen Vorwiderstand R11 auf den Gate-Anschluss 13 des N-Kanal-MOSFET geleitet. Auf diese Weise wird im normalen Betrieb der MOSFET 1 permanent durchgeschaltet.In the step-down converter 7, a voltage is generated according to the bootstrap method, which voltage is divided into at least two separate voltages. One of these voltages charges a relatively large capacitor C92, which is used as a supply for the comparator 5. The negative supply voltage connection 55 of the comparator 5 is connected to the source potential of the N-channel MOSFET. The second voltage is passed to the gate connection 13 of the N-channel MOSFET via a series resistor R11. In this way, the MOSFET 1 is permanently switched on during normal operation.

Da der Differenzverstärker, und damit der Komparator 5, im normalen Betrieb abgeschaltet ist und sein Bezugspotential mit dem Source-Anschluss 11 verbunden ist, tritt im normalen Betrieb kein relevanter Ruhestrom auf, insbesondere nicht nach Masse.Since the differential amplifier, and thus the comparator 5, is switched off in normal operation and its reference potential is connected to the source connection 11, no relevant quiescent current occurs in normal operation, in particular not to ground.

Bei bekannten Lösungen kann ein kurzzeitiges unerwünschtes Abschalten des Transistors auftreten. Dies ist zum einen der Fall, wenn ein P-Kanal-MOSFET bei sehr kleinen Eingangsspannungen nicht mehr vollständig durchgeschaltet wird. Zum anderen gibt es Integrierte Schaltkreise, die zwar ebenfalls ohne Verbindung zu Masse und damit ruhestromfrei arbeiten, jedoch darauf angewiesen sind, einen MOSFET kurzzeitig abzuschalten, um ihre Kondensatoren nachzuladen. Beides ist bei der erfindungsgemäßen Lösung nicht der Fall.In known solutions, a brief, undesired shutdown of the transistor can occur. On the one hand, this is the case when a P-channel MOSFET is no longer fully switched through at very low input voltages. On the other hand, there are integrated circuits that also work without a connection to ground and thus without quiescent current, but are dependent on briefly switching off a MOSFET in order to recharge their capacitors. Neither is the case with the solution according to the invention.

Figur 2 zeigt einen beispielhaften Schaltplan einer erfindungsgemäßen Verpolschutzschaltung. Man erkennt den MOSFET 1, den Detektor 2, den Komparator 5, den Aufwärtswandler 6, den Abwärtswandlers 7 und die Ladungspumpe 9, die aus Bootstrap-Schaltung 8 und Ladungspumpenschaltung 90 besteht. Schnellabschalter 3 und Schalter 44 sind in einem Block dargestellt. Figure 2 shows an exemplary circuit diagram of a polarity reversal protection circuit according to the invention. The MOSFET 1, the detector 2, the comparator 5, the step-up converter 6, the step-down converter 7 and the charge pump 9, which consists of a bootstrap circuit 8 and a charge pump circuit 90, can be seen. Rapid cut-off switch 3 and switch 44 are shown in one block.

Der Komparator 5 ist als diskret aufgebauter Differenzverstärker mit nachgeschaltetem Impedanzwandler dargestellt. Der Differenzverstärker weist in bekannter Weise Transistoren T51 bis T57 und Widerstände R51 bis R57 auf. Sein invertierender Eingang 51 ist mit dem Knoten D verbunden, sein nichtinvertierender Eingang 52 mit dem Knoten S. Der Versorgungsanschluss 54 ist mit Knoten V verbunden, der Versorgungsanschluss 55 mit Knoten S. Der Impedanzwandler ist in bekannter Weise aus Transistoren T50, T58, T59 und Widerständen R56 bis R58 aufgebaut. Sein Ausgang 53 ist mit dem Gate-Anschluss 13 des MOSFET 1 verbunden, versorgt wird er über den Anschluss 56 vom Knoten VC. Der zwischen Ausgang 53 und Gate-Anschluss 13 befindliche Knoten G ist hier nicht dargestellt. Wenn der Komparator 5 abgeschaltet ist, wird der Gate-Anschluss 13 des MOSFET 1 über einen Widerstand R11 und eine Diode D11 angesteuert. Alternativ kann dies auch über einen Widerstand R12 erfolgen, dann aber mit einem geringen Verluststrom. Weiterhin ist die intrinsische Diode 14 dargestellt.The comparator 5 is shown as a discretely constructed differential amplifier with a downstream impedance converter. The differential amplifier has transistors T51 to T57 and resistors R51 to R57 in a known manner. Its inverting input 51 is connected to the node D, its non-inverting input 52 to the node S. The supply connection 54 is connected to the node V, the supply connection 55 to the node S. The impedance converter is made up of transistors T50, T58, T59 and in a known manner Resistors R56 to R58 built up. Its output 53 is connected to the gate connection 13 of the MOSFET 1 and is supplied via the connection 56 from the node VC. The node G located between output 53 and gate connection 13 is not shown here. When the comparator 5 is switched off, the gate terminal 13 of the MOSFET 1 via a resistor R11 and a Diode D11 activated. Alternatively, this can also be done via a resistor R12, but then with a low leakage current. The intrinsic diode 14 is also shown.

Der Source-Anschluss 11 des MOSFET 1 ist hier beispielhaft über eine Induktivität I10 und Kondensatoren C11, C12 mit der Spannungsversorgung 10 verbunden.The source terminal 11 of the MOSFET 1 is here connected to the voltage supply 10 via an inductance I10 and capacitors C11, C12, for example.

Der Detektor 2 weist einen Transistor T21, Dioden D21 bis D24 und Widerstände R21 bis R23 auf. Der Ausschaltverzögerer 4 ist hier mittels eines Kondensators C41 dargestellt. Der Kondensator C41 sorgt dafür, dass der Transistor T21 leitend bleibt. Er stellt somit ein zentrales Element dar. Der Schnellabschalter 3 und der Schalter 44 sind in einem gemeinsamen Block dargestellt, sie weisen Transistoren T31, T32, Widerstände R31, R32 und Dioden D31 bis D33 auf.The detector 2 has a transistor T21, diodes D21 to D24 and resistors R21 to R23. The switch-off delay 4 is shown here by means of a capacitor C41. The capacitor C41 ensures that the transistor T21 remains conductive. It thus represents a central element. The quick disconnect switch 3 and the switch 44 are shown in a common block, they have transistors T31, T32, resistors R31, R32 and diodes D31 to D33.

Der Abwärtswandler 7 ist hier, alternativ zu Figur 1, über einen Kondensator C61 mit dem Ausgang des Aufwärtswandlers 6 verbunden. Der Transistor M71 ist über eine Spannungsversorgung 70 geschaltet, sein Drain-Anschluss ist mit dem Eingang 71 verbunden, sein Source-Anschluss über die Diode D73 mit Masse. Die anderen Bauteile entsprechen den zu Fig.1 dargestellten. Die Bootstrap-Schaltung 8 weist, alternativ zu Figur 1, einen zusätzlichen Widerstand R81 auf, die Diode D81 und der Kondensator C81 sind unverändert. Die Ladungspumpe 9 weist Dioden D93 bis D95, Wiederständen R93, R94 und Kondensatoren C93, C94 auf.The buck converter 7 is here, as an alternative to Figure 1 , connected to the output of the boost converter 6 via a capacitor C61. The transistor M71 is connected via a voltage supply 70, its drain connection is connected to the input 71, and its source connection is connected to ground via the diode D73. The other components correspond to the Fig.1 shown. The bootstrap circuit 8 assigns, alternatively Figure 1 , an additional resistor R81, the diode D81 and the capacitor C81 are unchanged. The charge pump 9 has diodes D93 to D95, resistors R93, R94 and capacitors C93, C94.

Die Arbeitsweise der erfindungsgemäßen Verpolschutzschaltung mit ruhestromfreier aktive Diode, dem MOSFET 1, ist wie folgt: Vor dem ersten Anschalten sind die Kondensatoren C41 und C94 entladen. Daher ist auch die Gate-Source-Strecke des MOSFET 1 entladen. Liegt beim Anschließen der Versorgungsspannung Vin der Pluspol der angeschlossenen Spannung am Source-Anschluss 11 des MOSFET 1 an, so wird die intrinsische Diode 14 des MOSFET 1 leitend. Die Spannung am Drain-Anschluss 12 des MOSFET 1 steigt daher auf Vin-Vfwd . Mit Vfwd wird im folgenden die Flussspannung der intrinsischen Diode 14 bezeichnet. Das Gesamtsystem besteht aus der erfindungsgemäßen Verpolschutzschaltung, einem Aufwärtswandler 6, welcher bei einem ausreichend großen Absinken der Spannung am Drain-Anschluss 12 in Betrieb geht, um dem nachfolgenden Abwärtswandler 7 mit einer ausreichenden Eingangsspannung zu versorgen. Der im Gesamtsystem ohnehin vorhandene Abwärtswandler 7 beginnt zu arbeiten. Dabei wechselt die Spannung an der Katode der Diode D73 zwischen (Vin-Vfwd) und etwa -0,7V. Liegen an dem Schaltknoten 73 die -0,7V an, so lädt sich der Kondensator C81 auf etwa die Spannung Vin-Vfwd auf. Steigt die Spannung an der Katode der Diode D73 wieder auf Vin-Vfwd, so steigt die Spannung an der Anode der Diode D94 auf etwa das Doppelte von Vin-Vfwd. Über den Widerstand R94 wird der Kondensator C94 aufgeladen. Da der negative Anschluss des Kondensators C94 sich auf den Knoten S bezieht, beträgt die resultierende Spannung am Knoten VC über diesen Kondensator C94 im statischen Zustand etwa Vin. Über den Widerstand R11 wird die Gate-Source-Strecke des MOSFET 1 auf Vin aufgeladen. Infolgedessen wird der MOSFET 1 durchgeschaltet, wodurch der Spannungsabfall über dem MOSFET 1 auf Null oder nahezu Null zurückgeht. Der Kondensator C41 wird nach dem Ausschalten bis auf eine Diodenspannung auf die Eingangsspannung Vin aufgeladen. Dadurch besitzt die Basis-Emitter-Spannung des Transistor T21 ungefähr den Wert +0,7V. Infolgedessen bleibt der PNP-Transistor T21 gesperrt. Da daher kein Strom in die Basis des NPN-Transistors T31 fließt, bleibt auch dieser gesperrt. Dies führt dazu, dass die Basis-Emitter-Strecke des PNP-Transistor T32 den Spannungswert 0V aufweist, weshalb auch der Transistor T32 sperrt. Dies führt dazu, dass der Differenzverstärker des Komparators 5 nicht mit Strom versorgt wird. Da daher auch die Basis des NPN-Transistors T50 nicht mit Strom versorgt wird, bleibt der PNP-Transistor T59 gesperrt. Da sämtliche Transistoren mit Ausnahme des MOSFET 1 gesperrt sind, benötigt die Schaltung im Normalbetrieb mit Ausnahme des Gate-Source-Leckstroms des MOSFET 1, welcher üblicherweise kleiner als 100nA ist, keinen Ruhestrom. Solange der Aufwärtswandler 6 in der Lage ist, eine ausreichend hohe Eingangsspannung für den Abwärtswandler 7 bereitzustellen, ist auch eine ausreichende Spannungsversorgung der Ladungspumpe 9 gewährleistet. Auf diese Weise ist die vorgestellte Schaltung in der Lage, eine ausreichend hohe Gate-Source-Spannung für den MOSFET 1 bereitzustellen, um diesen sicher durchschalten zu können.The operation of the reverse polarity protection circuit according to the invention with a quiescent current-free active diode, the MOSFET 1, is as follows: The capacitors C41 and C94 are discharged before being switched on for the first time. The gate-source path of the MOSFET 1 is therefore also discharged. If, when the supply voltage V in is connected, the positive pole of the connected voltage is present at the source connection 11 of the MOSFET 1, the intrinsic diode 14 of the MOSFET 1 becomes conductive. The voltage at the drain connection 12 of the MOSFET 1 increases therefore on V in -V fwd . The forward voltage of the intrinsic diode 14 is referred to below as V fwd . The overall system consists of the reverse polarity protection circuit according to the invention, a step-up converter 6, which goes into operation when the voltage at the drain connection 12 drops sufficiently to supply the downstream step-down converter 7 with a sufficient input voltage. The down converter 7, which is already present in the overall system, begins to work. The voltage at the cathode of diode D73 changes between (V in -V fwd ) and about -0.7V. If -0.7V is present at the switching node 73, the capacitor C81 charges to approximately the voltage V in -V fwd . If the voltage at the cathode of the diode D73 rises again to V in -V fwd , the voltage at the anode of the diode D94 rises to about twice that of V in -V fwd . The capacitor C94 is charged via the resistor R94. Since the negative connection of capacitor C94 relates to node S, the resulting voltage at node VC across this capacitor C94 is approximately V in in the static state. The gate-source path of the MOSFET 1 is charged to V in via the resistor R11. As a result, the MOSFET 1 is switched through, whereby the voltage drop across the MOSFET 1 is reduced to zero or almost zero. After being switched off, the capacitor C41 is charged to the input voltage V in except for a diode voltage. As a result, the base-emitter voltage of transistor T21 is approximately + 0.7V. As a result, the PNP transistor T21 remains blocked. Since there is no current flowing into the base of the NPN transistor T31, this also remains blocked. This has the result that the base-emitter path of the PNP transistor T32 has the voltage value 0V, which is why the transistor T32 also blocks. As a result, the differential amplifier of the comparator 5 is not supplied with current. Since the base of the NPN transistor T50 is therefore also not supplied with current, the PNP transistor T59 remains blocked. Since all transistors with the exception of MOSFET 1 are blocked, the circuit does not require any quiescent current in normal operation, with the exception of the gate-source leakage current of MOSFET 1, which is usually less than 100nA. As long as the boost converter 6 is able, a sufficiently high Providing input voltage for the down converter 7, a sufficient voltage supply of the charge pump 9 is also guaranteed. In this way, the circuit presented is able to provide a sufficiently high gate-source voltage for the MOSFET 1 in order to be able to switch it through safely.

Sinkt die Spannung am Knoten S schneller als die RC-Zeitkonstante der Kapazitäten am Knoten D und der dort angeschlossenen Last, so wird der Transistor T21 im Bereich der Spannungsversorgung des Differenzverstärkers und des Impedanzwandlers leitend, sobald die Spannung am Knoten S mindestens 0,6V kleiner ist als die Spannung am Knoten D. Infolgedessen wird der Transistor T31 leitend, welcher wiederum den Transistor T32 durchschaltet. Auf diese Weise wird der Komparator 5 mit Strom versorgt. Der Komparator 5 vergleicht die Spannung an Source-Anschluss 11 und Drain-Anschluss 12 miteinander. Solange die Spannung am Drain-Anschluss 12 größer ist als die Spannung am Source-Anschluss 11, gibt der Komparator 5 eine positive Spannung auf den Basisvorwiderstand R56 des Transistors T50, welcher infolgedessen zu leiten beginnt. Der nachgeschaltete Impedanzwandler, der die Transistoren T58, T59 aufweist, sorgt dafür, dass die Gate-Source-Strecke des MOSFET 1 entladen wird. Auf diese Weise wird der MOSFET 1 gesperrt. Gleichzeitig wird auch der Kondensator C94 entladen. Für den Fall, dass das Absinken von Vin durch beispielsweise das Abschalten des Gesamtsystems durch einen übergeordneten Schalter entsteht, wird die Verpolschutzschaltung in einen inhärent sicheren Zustand gebracht. Solange keine Spannung über den Kondensator C94 präsent ist, kann der MOSFET 1 nicht durchgeschaltet werden. Im Falle einer nun erfolgenden Verpolung ist der MOSFET 1 direkt gesperrt und das Gesamtsystem ist vor Verpolung geschützt. Bedingung für dieses Verhalten ist, dass die Eingangsspannung schnell gegenüber der Zeitkonstante, definiert durch die Last und der im Gesamtsystem vorhandenen Kapazitäten, absinkt. Soll auch ein langsames Absinken mit anschließender Verpolung abgedeckt werden, so wird ein zusätzlicher Pull-Down-Widerstand R12 in die Gate-Source-Strecke eingefügt. Dann tritt jedoch ein geringer Ruhestrom auf. Alternativ sind schaltungstechnische Maßnahmen möglich, beispielsweise einen schaltbaren Widerstand aus zusätzlichen MOSFETs zu bauen, welche erst bei einem Absinken der Versorgungsspannung aktiviert wird. Solange die am Source-Anschluss 11 anliegende Versorgungsspannung noch positiv ist, gilt folgendes: Steigt die Spannung am Source-Anschluss 11 gerade wieder über die Spannung, welche am Drain-Anschluss 12 anliegt, so sorgt der Komparator 5 dafür, dass der Transistor T50 wieder gesperrt wird. Daraufhin sperrt der Transistor T59 wieder und der Transistor T58 wird wieder leitend. Die Gate-Source-Strecke des MOSFET 1 wird über den Widerstand R11 und den Transistor T58 wieder geladen. Auf diese Weise wird der MOSFET 1 hinreichend schnell wieder durchgeschaltet, sobald dies angezeigt ist.If the voltage at node S falls faster than the RC time constant of the capacitances at node D and the load connected there, transistor T21 in the area of the voltage supply of the differential amplifier and the impedance converter becomes conductive as soon as the voltage at node S is at least 0.6V lower is than the voltage at the node D. As a result, the transistor T31 is conductive, which in turn turns on the transistor T32. In this way, the comparator 5 is supplied with power. The comparator 5 compares the voltage at the source connection 11 and drain connection 12 with one another. As long as the voltage at the drain connection 12 is greater than the voltage at the source connection 11, the comparator 5 applies a positive voltage to the base series resistor R56 of the transistor T50, which as a result begins to conduct. The downstream impedance converter, which has the transistors T58, T59, ensures that the gate-source path of the MOSFET 1 is discharged. In this way, the MOSFET 1 is blocked. At the same time, the capacitor C94 is also discharged. In the event that the drop in V in occurs, for example, when the entire system is switched off by a higher-level switch, the reverse polarity protection circuit is brought into an inherently safe state. As long as there is no voltage across the capacitor C94, the MOSFET 1 cannot be switched through. If the polarity is now reversed, the MOSFET 1 is blocked directly and the entire system is protected against polarity reversal. The condition for this behavior is that the input voltage drops rapidly compared to the time constant, defined by the load and the capacities available in the overall system. If a slow drop with subsequent polarity reversal is also to be covered, an additional pull-down resistor R12 is placed in the gate-source path inserted. However, a small quiescent current then occurs. Alternatively, circuitry measures are possible, for example, to build a switchable resistor from additional MOSFETs, which is only activated when the supply voltage drops. As long as the supply voltage applied to the source connection 11 is still positive, the following applies: If the voltage at the source connection 11 just rises again above the voltage applied to the drain connection 12, the comparator 5 ensures that the transistor T50 again is blocked. Thereupon the transistor T59 blocks again and the transistor T58 becomes conductive again. The gate-source path of the MOSFET 1 is charged again via the resistor R11 and the transistor T58. In this way, the MOSFET 1 is switched through again sufficiently quickly as soon as this is indicated.

Mit anderen Worten weist die erfindungsgemäße Verpolschutzschaltung eine aktive Diode auf, die als Ersatz für Si- und Schottky-Dioden eingesetzt wird, um die Flussspannung zu verringern. Die aktive Diode ist dabei als N-Kanal-MOSFET und nicht als P-Kanal-MOSFET ausgeführt. N-Kanal-MOSFET benötigen eine erhöhte Gate-Source-Spannung, um durchgeschaltet zu werden. Diese Spannung kann mittels einer Ladungspumpe erzeugt werden. Dies führt entweder zu einem andauernd benötigten Ruhestrom, oder dazu, dass der MOSFET kurzzeitig abgeschaltet werden muss, obwohl er zu diesem Zeitpunkt eingeschaltet sein sollte, um die benötigte Spannung zwischen Gate-Anschluss und Source-Anschluss wieder aufzubauen. Folgende Probleme können dabei einzeln oder in Kombination auftreten: ein andauernd fließenden Ruhestrom, ein kurzzeitiges unerwünschtes Abschalten des MOSFET, ein nicht hinreichend kontrollierbares Wiedereinschalten des MOSFET nach Verpolung aus zeitlicher Sicht, oder, bei zu geringen Eingangsspannungen, ein nicht hinreichendes Durchschalten des MOSFET. Mit der vorliegenden Verpolschutzschaltung wird ein andauernder Ruhestrom vermieden, ein sicheres Durchschalten des MOSFET bei niedrigen Eingangsspannungen sichergestellt sowie ein hinreichend schnelles Wiedereinschalten des MOSFET nach Ende der Verpolung.In other words, the reverse polarity protection circuit according to the invention has an active diode that is used as a replacement for Si and Schottky diodes in order to reduce the forward voltage. The active diode is designed as an N-channel MOSFET and not as a P-channel MOSFET. N-channel MOSFETs require an increased gate-source voltage in order to be switched through. This voltage can be generated by means of a charge pump. This either leads to a continuously required quiescent current or to the fact that the MOSFET has to be switched off for a short time, although it should be switched on at this point in time in order to build up the required voltage between the gate connection and the source connection again. The following problems can arise individually or in combination: a continuously flowing quiescent current, a brief, undesired shutdown of the MOSFET, an inadequately controllable restart of the MOSFET after polarity reversal from a temporal point of view, or, if the input voltages are too low, the MOSFET is insufficiently switched through. The present reverse polarity protection circuit avoids a permanent quiescent current, ensures reliable switching of the MOSFET at low input voltages and a Sufficiently quick restart of the MOSFET after the polarity reversal has ended.

Die benötigte Gate-Source-Spannung wird durch die Verwendung einer Bootstrap-Schaltung aus dem ohnehin im System enthaltenen DC-DC-Wandler, der Kombination aus Aufwärtswandler 6 und Abwärtswandler 7, entnommen. Soll der MOSFET 1 dauerhaft eingeschaltet werden, so wird der Komparator 5 von der Stromversorgung getrennt. Ein Ruhestrom tritt somit nicht auf. Die Ansteuerschaltung ist so ausgelegt, dass die Gate-Source-Strecke des MOSFET 1 automatisch geladen wird.The required gate-source voltage is taken from the DC-DC converter already contained in the system, the combination of step-up converter 6 and step-down converter 7, by using a bootstrap circuit. If the MOSFET 1 is to be switched on permanently, the comparator 5 is disconnected from the power supply. A quiescent current therefore does not occur. The control circuit is designed such that the gate-source path of the MOSFET 1 is automatically charged.

Die zum Betrieb der Verpolschutzschaltung notwendige Spannung wird hinter dem im System ohnehin vorhandenen Aufwärtswandler 6 abgegriffen. So wird sichergestellt, dass stets eine genügend hohe Spannung zum Durchschalten des MOSFET 1 zur Verfügung steht. Ein sicheres Durchschalten des MOSFET 1, auch bei geringer Eingangsspannung, ist somit sichergestellt.The voltage required to operate the polarity reversal protection circuit is tapped behind the boost converter 6 that is already present in the system. This ensures that a sufficiently high voltage is always available to switch the MOSFET 1 through. Reliable switching of the MOSFET 1, even with a low input voltage, is thus ensured.

Der in der Verpolschutzschaltung vorhandene Komparator 5 wird bei Verpolung und schnellem Abfallen der Eingangsspannung aktiviert. Der Komparator 5 vergleicht Eingangsspannung und Ausgangsspannung der aktiven Diode, des MOSFET 1, und veranlasst das Wiedereinschalten wenn die Eingangsspannung größer wird als die Ausgangsspannung. Eine zusätzliche Schalthysterese ist vorteilhafterweise vorgesehen. Der Komparator 5 bleibt so lange eingeschaltet, wie die vom Kondensator C41 bereitgestellte Spannung um mindestens 0,7V größer ist als die Spannung am Source-Anschluss des MOSFET M1. Der Bootstrap-Kondensator C81 wird nicht entladen, da er permanent von dem Abwärtswandler 7 nachgeladen wird. Der Bootstrap-Kondensator C81 wird zum Laden der Gate-Source-Strecke des MOSFET M1 und zum Erzeugen der Betriebsspannung des Komparators 5 verwendet. Dies ermöglicht einen inhärent sicheren Zustand, in dem der MOSFET 1 gesperrt ist, wenn die Versorgung des Gesamtsystems abgeschaltet wird. Die Verpolschutzschaltung kann alternativ auch so modifiziert werden, dass die Gate-Source-Strecke durch einen Widerstand R12 entladen wird. Durch eine geeignete Auslegung des Widerstands R94 und des Kondensators C94 der Ladungspumpe 9 wird sichergestellt, dass der MOSFET 1 stets gesperrt wird, kurz nachdem der ohnehin im System vorhandene Abwärtswandler 7 abgeschaltet wird. Wird diese Maßnahme implementiert, so wird der MOSFET 1 auch bei einem sehr langsamen Absinken der Versorgungsspannung in Verbindung mit einer anschließenden Verpolung stets sicher gesperrt. Die erfindungsgemäße Verpolschutzschaltung benötigt im leitenden Zustand des MOSFET 1 keinen zusätzlichen Ruhestrom. Auch bei geringen Eingangsspannungen wird der MOSFET 1 vollständig durchgeschaltet.The comparator 5 present in the polarity reversal protection circuit is activated in the event of polarity reversal and a rapid drop in the input voltage. The comparator 5 compares the input voltage and output voltage of the active diode, the MOSFET 1, and causes it to be switched on again when the input voltage is greater than the output voltage. An additional switching hysteresis is advantageously provided. The comparator 5 remains switched on as long as the voltage provided by the capacitor C41 is at least 0.7V greater than the voltage at the source connection of the MOSFET M1. The bootstrap capacitor C81 is not discharged because it is continuously being recharged by the step-down converter 7. The bootstrap capacitor C81 is used to charge the gate-source path of the MOSFET M1 and to generate the operating voltage of the comparator 5. This enables an inherently safe state in which the MOSFET 1 is blocked when the supply to the overall system is switched off. The polarity reversal protection circuit can alternatively also be modified in such a way that the gate-source path is passed through a resistor R12 is discharged. A suitable design of the resistor R94 and the capacitor C94 of the charge pump 9 ensures that the MOSFET 1 is always blocked shortly after the down converter 7, which is already present in the system, is switched off. If this measure is implemented, the MOSFET 1 is always safely blocked even if the supply voltage drops very slowly in connection with a subsequent polarity reversal. The polarity reversal protection circuit according to the invention does not require any additional quiescent current when the MOSFET 1 is on. Even with low input voltages, the MOSFET 1 is switched through completely.

Geringfügige Abwandlungen oder alternative Ausführungen der oben beschriebenen Schaltung liegen im Können des Fachmanns.Slight modifications or alternative designs of the circuit described above are within the ability of those skilled in the art.

Claims (5)

  1. Polarity reversal protection circuit comprising a MOSFET (1) and a turn-off circuit, characterized in that the turn-off circuit comprises
    - a detector (2), the first input (21) of which is connected to the source terminal (11) and the second input (22) of which is connected to the drain terminal (12) of the MOSFET (1), and the output (23) of which is connected to the switching input (31) of a quick-break switch (3) arranged between source terminal (11) and gate terminal (13) of the MOSFET (1),
    - a comparator (5), the first input (52) of which is connected to the source terminal (11) and the second input (51) of which is connected to the drain terminal (12) of the MOSFET (1), and the output (53) of which is connected to the gate terminal (13) of the MOSFET (1),
    - a boost converter (6), the input (61) of which is connected to the drain terminal (12) of the MOSFET (1),
    - a buck converter (7), the input (71) of which is connected to the output (62) of the boost converter (6), and the output (72) of which is available for supplying a load (74), and which has a switching node (73),
    - a charge pump (9), the first input (81) of which is connected to the output of the boost converter (6) and the second input (83) of which is connected to the switching node (73), and which has a first output (92) connected to the gate terminal (13) of the MOSFET (1), and
    - a switch (44) arranged between a supply terminal (54) of the comparator (5) and a second output (92) of the charge pump (9) and connected to the output (23) of the detector (2).
  2. Polarity reversal protection circuit according to Claim 1, characterized in that the MOSFET (1) is an N-channel MOSFET.
  3. Polarity reversal protection circuit according to either of the preceding claims, characterized in that the switch (44) is connected to a switch-off delay unit (4).
  4. Polarity reversal protection circuit according to any of the preceding claims, characterized in that the quick-break switch (3) is configured as a resistor (R12).
  5. Device comprising a polarity reversal protection circuit according to any of Claims 1-4.
EP17751302.5A 2016-08-02 2017-07-25 Reverse polarity protection circuit Active EP3494622B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016214285.2A DE102016214285A1 (en) 2016-08-02 2016-08-02 polarity reversal protection circuit
PCT/EP2017/068770 WO2018024544A1 (en) 2016-08-02 2017-07-25 Reverse polarity protection circuit

Publications (2)

Publication Number Publication Date
EP3494622A1 EP3494622A1 (en) 2019-06-12
EP3494622B1 true EP3494622B1 (en) 2020-12-16

Family

ID=59581867

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17751302.5A Active EP3494622B1 (en) 2016-08-02 2017-07-25 Reverse polarity protection circuit

Country Status (5)

Country Link
US (1) US11411397B2 (en)
EP (1) EP3494622B1 (en)
CN (1) CN109478780B (en)
DE (1) DE102016214285A1 (en)
WO (1) WO2018024544A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108809086A (en) 2018-06-29 2018-11-13 深圳市华星光电半导体显示技术有限公司 Voltage generation circuit
DE102020215035A1 (en) 2020-11-30 2022-06-02 Robert Bosch Gesellschaft mit beschränkter Haftung Exchangeable battery pack with a monitoring unit and with at least one switching element for interrupting or enabling a charging or discharging current
CN113594739B (en) * 2021-07-20 2024-08-06 国网河北省电力有限公司检修分公司 Open-circuit-preventing CT (computed tomography) wiring terminal with variable polarity under uninterrupted power supply state

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19817790A1 (en) 1998-04-21 1999-12-09 Siemens Ag Reverse polarity protection circuit
US6611410B1 (en) * 1999-12-17 2003-08-26 Siemens Vdo Automotive Inc. Positive supply lead reverse polarity protection circuit
DE10048592B4 (en) * 2000-09-30 2017-03-30 Infineon Technologies Ag polarity reversal protection circuit
US7199636B2 (en) 2004-03-31 2007-04-03 Matsushita Electric Industrial Co., Ltd. Active diode
EP1724899B1 (en) * 2005-05-17 2016-08-03 Continental Automotive GmbH Apparatus for short circuit protection
DE102006006878A1 (en) * 2006-01-20 2007-07-26 Continental Teves Ag & Co. Ohg Switching arrangement for sensor system of motor vehicle, has metal oxide semiconductor field effect transistors attached such that inverse diodes of transistors are arranged opposite to each other concerning junctions of transistors
EP1978617B1 (en) * 2007-04-02 2016-10-26 Delphi Technologies, Inc. Protection device
DE102009007818A1 (en) * 2009-02-07 2010-08-12 Leopold Kostal Gmbh & Co. Kg Switching arrangement, has switch element for closing N-channel metal oxide semiconductor series transistor during occurrence of reverse polarity, and bootstrap capacitor increasing gate potential of high-side switch
US9142951B2 (en) * 2009-07-28 2015-09-22 Stmicroelectronics (Rousset) Sas Electronic device for protecting against a polarity reversal of a DC power supply voltage, and its application to motor vehicles
DE102011057002A1 (en) * 2011-12-23 2013-06-27 Valeo Systèmes d'Essuyage Device for operational state monitoring of reverse battery protection device, is associated to metal oxide semiconductor field effect transistor-switching unit of reverse battery protection device through channel for detecting voltage drop
CN202872363U (en) * 2012-10-30 2013-04-10 广东易事特电源股份有限公司 Reverse-connection preventive circuit for photovoltaic convergence box photovoltaic battery string
JP6248028B2 (en) * 2014-12-10 2017-12-13 本田技研工業株式会社 Turn signal control device
CN204424894U (en) * 2015-01-15 2015-06-24 张家港麦智电子科技有限公司 A kind of DC power supply input protection circuit

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2018024544A1 (en) 2018-02-08
CN109478780B (en) 2020-08-04
EP3494622A1 (en) 2019-06-12
US11411397B2 (en) 2022-08-09
DE102016214285A1 (en) 2018-02-08
CN109478780A (en) 2019-03-15
US20210391715A1 (en) 2021-12-16

Similar Documents

Publication Publication Date Title
DE102013218670B4 (en) Reverse polarity protection for high-side switches in n-type substrate
EP1884008B1 (en) Circuit breaker for a solar module
DE102014217374B4 (en) SEMICONDUCTOR DEVICE
EP3494622B1 (en) Reverse polarity protection circuit
DE102012200981A1 (en) gate
DE102012103904A1 (en) Power supply module as a two-port, using a separator in such a power supply module and method for operating such a power supply module
DE112019002637T5 (en) POWER SOURCE INPUT CIRCUIT AND ELECTRIC COMPRESSOR WITH INTEGRATED INVERTER FOR VEHICLES WITH THIS CIRCUIT
DE112019003896B4 (en) Two-input LDO voltage regulator circuit, circuit arrangement and method using such an LDO voltage regulator circuit
EP3221943A1 (en) Protective circuit for overvoltage and/or overcurrent protection
DE102019104691A1 (en) Diode circuit
DE112017002585T5 (en) Power supply control device
EP3900188A1 (en) Apparatus and method for the direction-dependent operation of an electrochemical energy store
DE112010003843T5 (en) LASTANSTEUERVORRICHTUNG
DE102007053874B3 (en) Monolithic integrated circuit and use of a semiconductor switch
DE102009007818A1 (en) Switching arrangement, has switch element for closing N-channel metal oxide semiconductor series transistor during occurrence of reverse polarity, and bootstrap capacitor increasing gate potential of high-side switch
DE19805491C1 (en) Diode circuit with ideal diode characteristic
DE102017208187A1 (en) An electronic module and motor vehicle and method for limiting an input current during a power-on of the module
EP3276767B1 (en) Disconnector assembly, in particular for an on-board power system of a vehicle
DE102011014512B4 (en) Electrical circuit
DE102014222901A1 (en) Filter device with active control
DE10253980B4 (en) Device for limiting the inrush current
EP3741020B1 (en) Electrical circuit for supplying a consumer from different power sources
DE102011076732A1 (en) Power supply circuit and polarity reversal protection circuit
DE102009053653A1 (en) Switching arrangement for protecting hydraulic control device in vehicle from electrical overvoltages at on-board voltage network, has switch interrupting current path through element when amount of voltage falls below pre-determined value
DE102009041872B4 (en) Circuit arrangement for electrical system stabilization with a DC chopper

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190304

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200810

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017008707

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1346476

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210316

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20201216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210316

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210416

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017008707

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210416

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

26N No opposition filed

Effective date: 20210917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210725

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210416

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210725

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502017008707

Country of ref document: DE

Owner name: CONTINENTAL AUTOMOTIVE TECHNOLOGIES GMBH, DE

Free format text: FORMER OWNER: CONTINENTAL AUTOMOTIVE GMBH, 30165 HANNOVER, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170725

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1346476

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240731

Year of fee payment: 8