EP3492426B1 - Matériau silicate phosphate de structure cristallographique olivine - Google Patents

Matériau silicate phosphate de structure cristallographique olivine Download PDF

Info

Publication number
EP3492426B1
EP3492426B1 EP18208654.6A EP18208654A EP3492426B1 EP 3492426 B1 EP3492426 B1 EP 3492426B1 EP 18208654 A EP18208654 A EP 18208654A EP 3492426 B1 EP3492426 B1 EP 3492426B1
Authority
EP
European Patent Office
Prior art keywords
formula
lithium
iii
oxidation
chosen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18208654.6A
Other languages
German (de)
English (en)
Other versions
EP3492426A1 (fr
Inventor
Jean-Baptiste Ducros
Guillaume Lefevre
Sébastien MARTINET
Nourhan MOHAMED
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA, Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP3492426A1 publication Critical patent/EP3492426A1/fr
Application granted granted Critical
Publication of EP3492426B1 publication Critical patent/EP3492426B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/32Alkali metal silicates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a silicate and phosphate material, and of olivine crystallographic structure, intended in particular for a battery, more particularly a lithium-ion battery or a potassium-ion battery or a sodium-ion battery, as well as a process for manufacturing such a material.
  • Polyanionic crystalline materials are materials of interest for the battery industry, in particular lithium-ion batteries. However, to date, to the knowledge of the inventors, only lithium iron phosphate LiFePO 4 is marketed. Unlike other positive battery electrode materials such as lamellar oxides and spinels, polyanionic materials have a structure stabilized by the covalence of the anionic group. They thus promote reliable operation of a battery which comprises them, limiting the risks of runaway battery by release of oxygen in the electrolyte. Such materials are for example described in US 6,085,015 , US 6,514,640 B1 and EP 1,134,826 A1 .
  • Phosphate, borate, sulfate, silicate as well as their declination pyro- and fluoro- are basic polyanions to constitute such polyanionic materials.
  • polyanionic materials comprising a silicate group, called silicate appear to be the most advantageous since operational safety and reliability of the battery must be ensured.
  • a silicate material of formula Li 2 MSiO 4 is known, for example, with M being a transition metal chosen from iron, manganese, cobalt and nickel. Such a silicate material is described for example in US 2012/0227252 A1 .
  • the crystallographic structure of these silicate materials consists of a stack of tetrahedra of LiO 4 , MO 4 and SiO 4 .
  • silicates have a high theoretical specific capacity between 325 mAh / g and 333 mAh / g, about twice the practical capacities of mixed oxides such as LiCoO 2 , LiNi 0.8 Co 0.15 Al 0.05 O 2 (NCA), LiNi 1 / 3 Co 1/3 Mn 1/3 O 2 (NMC), LiMnO 4 (LMO) and lithiated iron phosphate LiFePO 4 .
  • NCA LiNi 0.8 Co 0.15 Al 0.05 O 2
  • NMC LiNi 1 / 3 Co 1/3 Mn 1/3 O 2
  • LMO LiMnO 4
  • LiFePO 4 lithiated iron phosphate LiFePO 4
  • the silicate Li 2 MnSiO 4 is the most suitable since it has lithium insertion potential for the couples Mn 2+ / Mn 3+ and Mn 3+ / Mn 4 + (4.1 V and 4.5 V respectively) both lower that the potential from which degradation of organic electrolytes for lithium-ion batteries is observed (4.6 V).
  • the silicate Li 2 MnSiO 4 abruptly morphs from the first charge, which results in a progressive loss of performance during charge / discharge cycles of the battery. .
  • the olivine crystallographic structure of the material of formula (I) promotes the insertion and extraction of the element A.
  • the material of formula (I) is thus perfectly suited to form a battery cathode.
  • Element A is in fact extracted from the cathode during charging and inserted into the cathode during discharging of the battery.
  • the material of formula (I) has excellent electrochemical properties.
  • the polyanionic entity ensures that the olivine structure of the material of formula (I) is preserved during the charge and discharge cycles.
  • the ions of the element M are arranged in octahedral sites of the olivine structure, which ensures good stability of the olivine structure.
  • the grouping PO 4 3 - results in an increase in the mesh parameters a and b of the olivine structure relative to the material of formula (I ′), the mesh parameter c remaining constant. Without being bound by any theory, they attribute the excellent electrical properties of the material of formula (I) to a increase in the ionic conductivity resulting from an increased mobility of the ions of the element Z linked to a higher volume of the elementary mesh of the olivine structure.
  • an "olivine" crystallographic structure is an orthorhombic structure of the Pnma space group.
  • the figure 7 represents, in perspective, the elementary mesh of the material of structure olivine and of formula MgMnSiO 4 , the axes a, b and c of the elementary mesh, as well as the relative positions within the elementary mesh of the tetrahedral groups SiO 4 , of the groups octagonal MgO 6 and octahedral groups MnO 6 that make up the material.
  • the material of formula (I) is in particular characterized in that the stoichiometric coefficient x is not zero.
  • the stoichiometric coefficient x may be less than or equal to 0.5, or even less than or equal to 0.4, or even even less than or equal to 0.25 and / or greater than or equal to 0.05, or even greater than or equal to 0, 15; in particular, the stoichiometric coefficient x can be equal to 0.2.
  • the sum of the stoichiometric coefficients a + z + m is equal to 2 - x 2 .
  • Each octahedral site of the crystallographic structure of the material of formula (I) is then occupied by one of the elements A, Z and M.
  • the specific capacity of the material of formula (I) is then optimal.
  • the stoichiometric coefficient a can be greater than 0.1 ⁇ 1 - x 2 , or even greater than 0.5 ⁇ 1 - x 2 . Preferably, it is greater than 0.8 ⁇ 1 - x 2 and / or less than 0.999 ⁇ 1 - x 2 . Preferably, it is between 0.97 ⁇ 1 - x 2 and 0.99 ⁇ 1 - x 2 .
  • the stoichiometric coefficient a can be greater than 0.1, or even greater than 0.5, preferably greater than 0.8 and / or less than 0.999. Preferably is greater than 0.88 and less than 0.89.
  • the stoichiometric coefficient z is less than 1, preferably less than 0.5, preferably less than 0.1, preferably less than 0.05, better still less than 0.01.
  • the number of sites of the olivine structure accessible to element A is then increased, which favors obtaining a high specific capacity of the product.
  • the material of formula (I) is also characterized by the fact that the stoichiometric coefficient z is not zero.
  • the characteristic z> 0 is a signature of said first and second manufacturing process.
  • z is greater than 0.01, or even greater than 0.05, or even greater than 0.1.
  • stoichiometric coefficient m it is preferably between 0.9 and 1.1. Preferably, it is equal to 1.0.
  • Z is chosen from magnesium, calcium and their mixtures.
  • Z is magnesium.
  • A comprises, in molar percentage expressed on the total number of moles of alkali metal constituting A, more than 90.0% of lithium and / or sodium.
  • A consists more than 99.0% of lithium, in molar percentage expressed on the total number of moles of alkali metal constituting A.
  • A is lithium.
  • a lithium-based material has the optimum properties for forming a lithium ion battery.
  • a particularly preferred material of formula (I) has the formula Li a Mg z Mn m ( SiO 4 ) 1- x ( PO 4 ) x in which, preferably, x is between 0.1 and 0.3, 0, 85 ⁇ a + z ⁇ 0.95, z ⁇ 0.05 and m is between 0.98 and 1.02.
  • the invention also relates to a material with an olivine crystallographic structure and of formula (II) Z z ' M m ( SiO 4 ) 1 -x ( PO 4 ) x in which the chemical elements Z and M as well as the stoichiometric coefficients x and m are as presented in the description of the material of formula (I), the stoichiometric coefficients z 'and x being further such that 0 ⁇ z ′ ⁇ 1 - x 2 .
  • the material of formula (II) can constitute a starting material particularly well suited to the manufacture of the material of formula (I).
  • the stoichiometric coefficient z ′ can be greater than or equal to 0.1 ⁇ 1 - x 2 , even greater than or equal to 0.5 ⁇ 1 - x 2 , even greater than or equal to 0.8 x 1 - x 2 , or even greater than or equal to 0.9 ⁇ 1 - x 2 .
  • the stoichiometric coefficient z ' is equal to 1 - x 2 .
  • the material of formula (II) is Mg 1 - x 2 Mn SiO 4 1 - x PO 4 x .
  • the invention also relates to a product comprising for more than 50.0% of its mass, preferably for more than 80.0% of its mass, preferably for more than 95.0% of its mass, or even for 100.0 % of its mass, the material of formula (I) and / or the material of formula (II), preferably the material of formula (I) or the material of formula (II).
  • the product can be in various forms.
  • it may be in the form of a powder of primary particles comprising for more than 95.0%, preferably for more than 99.0% of their mass, or even constituted by, the material of formula (I) and / or the material of formula (II), preferably the material of formula (I) or the material of formula (II).
  • more than 90.0% by number of the primary particles may have a size less than 100 nm, for example less than 50 nm, for example less than 35 nm.
  • the "size" of a primary particle corresponds to the diameter of said particle and can be measured from images acquired by scanning electron microscopy. The macroscopic electronic conductivity of the product is then improved. In addition, the specific surface of the particle is thus increased, thereby increasing the ionic conductivity of the material and facilitating the exchange with the electrolytic medium when the product is placed in a battery.
  • the primary particles are covered, preferably entirely, with a layer of carbon, the thickness of which is notably less than 10 nm, for example less than 5 nm, for example between 2 nm and 3 nm, to improve again the electronic conductivity of the product.
  • the primary particles can be aggregated or agglomerated together, in particular forming secondary particles.
  • the product can also be in the form of an electrode, in particular a battery cathode.
  • the product may be in the form of particles consisting of the material of formula (I) and / or the material of formula (II) agglomerated together by carbon and / or a binder, of polymer type.
  • the product may comprise, by mass, the material of formula (I) and / or the material of formula (II), preferably the material of formula (I) or the material of formula (II), greater than 50.0%, or even greater than 80.0%, very preferably greater than 90.0%, the balance consisting of carbon and a polymeric binder.
  • the electrode may also include an aluminum current collector on one side of which the product is placed.
  • the product may comprise for more than 50.0% of its mass, preferably for more than 80.0% of its mass, preferably for more than 95.0% of its mass, or even for 100, 0% of its mass, the material of formula (I).
  • the product is for example intended to form a lithium-ion battery cathode or a sodium-ion battery cathode or a potassium-ion battery cathode.
  • the product may comprise for more than 50.0% of its mass, preferably for more than 80.0% of its mass, preferably for more than 95.0% of its mass, or even for 100, 0% of its mass, the material of formula (II).
  • the product is for example useful for a magnesium accumulator or a calcium accumulator.
  • the invention relates to a material of formula (I) obtained by the first manufacturing process as well as a material of formula (I) obtained by the second manufacturing process.
  • the invention also relates to a device chosen from a lithium-ion battery cathode, a sodium-ion battery cathode, a potassium-ion battery cathode, a lithium battery cathode, a sodium battery cathode, a potassium battery cathode , a calcium battery cathode and a magnesium battery cathode, said battery cathode comprising the product according to the invention or the material of formula (I) according to the invention and / or the material of formula (II).
  • the invention relates to a battery, preferably chosen from a lithium-ion battery, a sodium-ion battery, a potassium-ion battery, a lithium battery, a sodium battery, a potassium battery, a calcium battery and a magnesium battery.
  • the battery comprising a battery cathode according to the invention.
  • the battery may include an anode made of a material chosen from tin, germanium, antimony and their alloys, graphite, silicon, a silicon oxide SiO v , a tin oxide SnO w , a metal oxide of formula D r O s , commonly called “conversion material”, with D chosen from Fe, Mn, Co, Cu, Cr, Ni and their mixtures, and r / s varying according to the stoichiometry of said metal oxide, Li 4 Ti 5 O 12 , and their mixtures.
  • the material of formula (I) can be obtained by the first manufacturing process which is described below.
  • the alkaline material comprises at least one alkali metal A chosen from lithium, sodium, potassium and their mixtures.
  • the alkaline material can comprise a lithium salt, preferably chosen from the group formed by LiNO 3 , LiCl, LiBr, LiI, Li 2 CO 3 and their mixtures.
  • the alkaline material can be a mixture of LiNO 3 and LiCl.
  • the alkaline material may also comprise a sodium salt and / or a potassium salt, preferably chosen from the group formed by KCl, NaCl, NaBr, KBr, NaI, KI, NaNO 3 , KNO 3 , Na 2 CO 3 , K 2 CO 3 and their mixtures.
  • it can be a mixture of LiCl and KCl.
  • the alkaline material can be a sodium salt, preferably chosen from the group formed by NaCl, NaBr, NaI, NaNO 3 , Na 2 CO 3 and their mixtures.
  • the alkaline material can be a mixture of NaNO 3 and NaCl.
  • the alkaline material may also comprise a potassium salt, for example chosen from KCl, KBr, KI, KNO 3 , K 2 CO 3 and their mixtures.
  • the alkaline material may comprise a potassium salt, preferably chosen from the group formed by KBr, KCl, KI, KNO 3 , K 2 CO 3 and their mixtures.
  • the alkaline material can be a mixture of KNO 3 and KCl.
  • the alkaline material consists of a mixture of salts forming a eutectic composition.
  • the alkaline material then has a moderate melting temperature, thus facilitating the implementation of the first manufacturing process.
  • the alkaline material can be in the form of a powder consisting of particles. Obtaining a liquid mass comprising the molten alkaline material is thus facilitated.
  • the first manufacturing process uses the material of crystalline structure olivine and of formula (II) Z z , M m ( SiO 4 ) 1- x ( PO 4 ) x as described above.
  • the stoichiometric coefficient z ' is strictly positive and is greater than the stoichiometric coefficient z of the material of formula (I) obtained at the end of step b).
  • the stoichiometric coefficient z ′ can be equal to the sum of the coefficients z and a of the material of formula (I).
  • a liquid bath comprising, preferably consisting of, the molten alkaline material and the material of formula (II) in the solid state.
  • the liquid bath is obtained by partial melting of a starting charge consisting of particles formed of the alkaline material and of particles formed of the material of formula (II), and preferably intimately mixed.
  • a starting charge consisting of particles formed of the alkaline material and of particles formed of the material of formula (II)
  • the mixing of the alkaline material and the material of formula (II) can be carried out by means of a grinder.
  • the partial melting of the starting charge is carried out at a temperature higher than the melting temperature of the alkaline material and lower than the degradation temperature of the material of formula (II).
  • degradation temperature of a material is meant the temperature from which the material undergoes chemical and / or structural degradation, for example due to demixing, a phase change, or a amorphization.
  • the melting temperature of the alkaline material is lower than the degradation temperature of the material of formula (II), preferably by at least 100 ° C, or even by at least 200 ° C.
  • the alkaline material is constituted by a mixture of LiNO 3 and LiCl, or by a mixture of LiCl and KCl
  • the material of formula (II) is Mg 1 - x 2 Mn SiO 4 1 - x PO 4 x , in particular Mg 0.9 Mn ( SiO 4 ) 0.8 ( PO 4 ) 0.2
  • the partial melting is carried out at a temperature between 200 ° C and 500 ° C.
  • the step of mixing the alkaline material and the material of formula (II) forming the starting charge is carried out in conjunction with the step of heating the starting charge to form the liquid bath.
  • the alkaline material in order to form the liquid bath, can be heated in a crucible until a molten liquid mass is obtained.
  • the material of formula (II) can then be mixed with the liquid mass to form the liquid bath.
  • the material of formula (II) can be poured into the mold containing the liquid mass.
  • the liquid mass can be poured into a mold containing the material of formula (II).
  • step b) the liquid bath is maintained at a holding temperature and for a duration of temperature maintenance conducive to the formation of a material of crystallographic structure olivine and of formula (I) A a Z z M m ( SiO 4 ) 1- x ( PO 4 ) x .
  • the melting of the starting charge and / or the maintaining in temperature of the liquid bath can be carried out by means of any type of oven.
  • a muffle furnace or a tubular furnace comprising a quartz, porcelain, alumina, zirconia or platinum mold can be used.
  • the holding temperature is higher than the melting temperature of the alkaline material and lower than the degradation temperature of the material of formula (II). Preferably, it is at least 10 ° C above the melting temperature of the alkaline material and / or at least 10 ° C below the degradation temperature of the material of formula (II).
  • the duration of temperature maintenance is preferably between five minutes and five days.
  • the alkaline material is constituted by a mixture of LiNO 3 and LiCl, or by a mixture of LiCl and KCl
  • the second material is Mg 1 - x 2 Mn SiO 4 1 - x PO 4 x , in particular Mg 0.9 Mn ( SiO 4 ) 0.8 ( PO 4 ) 0.2
  • the holding temperature is between 200 ° C and 500 ° C
  • the temperature holding time is between 2 hours and 2 days.
  • step c) the liquid bath is cooled until a solidified bath is formed, preferably to a temperature below 40 ° C.
  • the solidified bath then comprises the material of formula (I) as well as residual compounds of the diffusion process of step b).
  • the solidified bath can be washed, in step d), so as to separate the material of formula (I) from the remaining compounds. Washing can in particular be carried out with water or ethanol. The material of formula (I) thus washed can then be dried, for example under vacuum, at a temperature above 60 ° C and / or for a period of at least 12 hours.
  • a second manufacturing process can be implemented to manufacture the material of formula (I).
  • step i) there is a material of crystalline structure olivine and of formula (III) Z z M m ( SiO 4 ) 1 -x ( PO 4 ) x obtained by oxidation of the material of crystallographic structure olivine of formula (II) Z z , M m ( SiO 4 ) 1 -x ( PO 4 ) x .
  • the stoichiometric coefficient z ′ of the material of formula (II) is greater than the stoichiometric coefficient z of the materials of formulas (I) and (III).
  • the material of formula (III) can be, prior to its reduction in step ii), generated by electrochemical oxidation of the element M constituting the material of formula (II).
  • electrochemical we consider an oxidation-reduction reaction involving an electronic transfer, and carried out by means of an electrochemical cell conventionally provided with a working electrode, a counter electrode, an electrolytic medium, and optionally a separator.
  • the electrochemical oxidation is carried out by means of an electrolytic medium comprising a source of element A.
  • the molar concentration of element A in the electrolytic medium can be approximately 1 mol.1 -1 .
  • the electrolytic medium used for the electrochemical reduction step can be identical to the electrolytic medium used for the electrochemical oxidation step.
  • element A is lithium and the electrolytic medium comprises a source of lithium, in particular in the form of a compound chosen from lithium hexafluorophosphate LiPF 6 , lithium perchlorate LiClO 4 , arsenate of lithium LiAsO 4 , lithium tetrafluoroboate LiBF 4 , lithium bis-trifluoromethanesulfonimide LiTFSI, lithium bis (oxalato) borate LiBOB, lithium bis (fluorosulfonyl) imide LiFSI, lithium hexafluoroarsenate LiAsF 6 , lithium triflate lithium LiSO 3 CF 3 , lithium trifluoroacetate LiCF 3 CO 2 , lithium hexafluoroantimonate LiSbF 6 , LiN (CF 3 SO 2 ) 3 , LiN (C 2 F 5 SO 2 ), and mixtures thereof.
  • a source of lithium in particular in the form of a compound chosen from lithium hexafluorophosphate Li
  • the electrolyte may comprise, for example as a solvent, a carbonate, chosen for example from ethyl carbonate, diethyl carbonate, ethyl methyl carbonate, dimethyl carbonate, carbonate of propylene and their mixtures.
  • a carbonate chosen for example from ethyl carbonate, diethyl carbonate, ethyl methyl carbonate, dimethyl carbonate, carbonate of propylene and their mixtures.
  • the source of element A for example lithium, is dissolved in the carbonate.
  • the material of formula (II) is oxidized as a working electrode facing a counter electrode.
  • the extraction of Z 2+ ions from the material of formula (II) is optimal.
  • the material of formula (III) Z z M m ( SiO 4 ) 1- x ( PO 4 ) x is of olivine crystallographic structure. However, it is characterized by the fact that the olivine crystallographic structure has unoccupied sites, in particular by element Z.
  • a characteristic of the second manufacturing process lies, during step ii) of electrochemical reduction, in the insertion in the unoccupied sites of the olivine structure of one or more alkali metals A, so as to obtain the material according to the invention of formula (I) A a Z z M m ( SiO 4 ) 1- x ( PO 4 ) x .
  • the electrode may be in the form of particles of the material of formula (II) consisting of primary particles, preferably of a size less than 100 nm, preferably of size less than 50 nm, preferably less than 35 nm, and preferably covered, preferably entirely by a layer of carbon, of a thickness preferably less than 10 nm, preferably less than 5 nm, for example between 2 and 3 nm.
  • the particles can in particular be bonded together by a carbon matrix, to improve the electrical conduction within the electrode and one by a polymeric binder to ensure cohesion and the mechanical strength of the electrode.
  • the counter electrode is made of a material comprising the element A.
  • the counter electrode is made of a Li material and / or Na and / or K respectively, in metallic form.
  • the transition metal M can oxidize from state +2 to state +4 and the ion Z 2+ is extracted from the structure, according to the half-equation following redox: Z z , M m (SiO 4 ) 1 -x ( PO 4 ) x ⁇ Z z M m ( SiO 4 ) 1 -x ( PO 4 ) x +2 ( z ' - z ) e - + ( z' - z ) Z 2+
  • Electrochemical oxidation can be carried out according to different modes, for example at constant current, at constant voltage, at imposed increasing current, at imposed increasing voltage.
  • the temperature of the electrolyte can be between 20 ° C and 60 ° C.
  • the electrochemical oxidation is carried out according to a C / y regime, with including between 5 and 100, for example equal to 20.
  • a C / y regime corresponds to a charge carried out in y hours.
  • a C / 20 regime corresponds to a charge in 20 hours.
  • the product of formula (III) obtained can be washed and then dried.
  • the material of formula (III) can be, prior to its reduction in step ii), generated by chemical oxidation of the material of formula (II).
  • chemical oxidation we consider here a reaction requiring no electronic activation unlike an electrochemical oxidation.
  • the chemical oxidation uses at least one oxidizing compound whose redox potential is greater than the redox potential of the M 2+ / M 3+ couple and / or the M 3+ / M 4+ couple of the element M constituting the material of formula (II).
  • the oxidizing compound can in particular be chosen from nitronium tetrafluoroborate NO 2 BF 4 , potassium persulfate K 2 S 2 O 8 , nitrosonium hexafluorophosphate NO 2 PF 6 , nitrosonium tetrafluoroborate NOBF 4 , hydrogen peroxide H 2 O 2 and their mixtures.
  • the chemical oxidation is carried out in a liquid oxidation bath containing at least said material of formula (II) and said oxidizing compound and under conditions suitable for the extraction of element Z from said material of formula (II) to form said expected material of formula (III).
  • the oxidation bath can comprise acetonitrile and the chemical oxidation reaction can be carried out at a temperature of 60 ° C. under reflux for a period equal to 48 hours.
  • the material of formula (III) obtained can be washed and then dried.
  • the material of formula (III) can be reduced electrochemically in the presence of a source electrode of element A under conditions suitable for formation of a material of formula (I).
  • the material of formula (III) can form all or part of an electrode.
  • the electrode may be in the form of particles of the material of formula (III), preferably of a size less than 100 nm, preferably of size less than 50 nm, preferably of size less than 35 nm, and of preferably covered, preferably entirely by a layer of carbon, of a thickness preferably less than 10 nm, or even less than 5 nm, in particular between 2 nm and 3 nm.
  • the particles can in particular be bonded together by a carbon matrix, to improve the electrical conduction within the electrode and one by a polymeric binder to ensure cohesion and the mechanical strength of the electrode.
  • the electrochemical reduction also implements a counter-electrode made of a material comprising the element A.
  • the counter electrode is made of a material of Li and / or Na and / or K, respectively, in metallic form.
  • the electrochemical reduction is carried out by means of an electrolytic medium comprising a source of element A.
  • the molar concentration of element A in the electrolytic medium can be approximately 1 mol.l -1 .
  • the electrolytic medium used for the electrochemical reduction step in step ii) may be identical to the electrolytic medium used for the electrochemical oxidation step in step i).
  • step ii) of electrochemical reduction the ion of element A is available to be inserted into the accessible sites of the olivine structure of the material of formula (III) in order to form the material of formula (I).
  • element A is lithium and the electrolytic medium comprises a source of lithium, in particular in the form of a compound chosen from lithium hexafluorophosphate LiPF 6 , lithium perchlorate LiClO 4 , arsenate of lithium LiAsO 4 , lithium tetrafluoroboate LiBF 4 , lithium bis-trifluoromethanesulfonimide LiTFSI, lithium bis (oxalato) borate (LiBOB), lithium bis (fluorosulfonyl) imide (LiFSI), lithium hexafluoroarsenate (LiAsF 6 ), lithium triflate (LiSO 3 CF 3 ), lithium trifluoroacetate (LiCF 3 CO 2 ), lithium hexafluoroantimonate (LiSbF6), LiN (CF 3 SO 2 ) 3 , LiN (C 2 F 5 SO 2 ), and their mixtures.
  • LiPF 6 lithium perchlorate LiClO 4
  • the electrolyte can comprise a carbonate, chosen for example from ethyl carbonate, diethyl carbonate, ethyl methyl carbonate, dimethyl carbonate, propylene carbonate and their mixtures.
  • the source of element A for example lithium, is dissolved in the carbonate.
  • the electrode and the counter electrode at the end of the electrochemical oxidation reaction step can constitute the electrode and the counter electrode respectively at start of the electrochemical reduction stage.
  • the temperature of the electrolyte can be between 20 ° C and 60 ° C.
  • the electrochemical oxidation is carried out according to a C / y regime, with including between 5 and 100, for example equal to 20. Such a regime is particularly suitable for the insertion of the ions of element A in the olivine structure of the material of formula (III).
  • the electrochemical reduction step can be implemented at constant current, constant voltage, decreasing current imposed, decreasing voltage imposed. However, it is not limited to this mode of implementation.
  • a first solution is prepared by diluting, in a first solvent, a silicate component.
  • the first solvent can be a polar solvent, for example chosen from an alcohol, an aqueous solvent, in particular water, dimethylformamide, commonly known as DMF, dimethylsulfoxide, commonly known as DMSO, tetrahydrofuran, commonly known as THF, an ether and their mixtures.
  • the first solvent is an alcohol, preferably ethanol.
  • the ratio of the number of moles of first solvent to the number of moles of the silicate component is between 35 and 45, preferably between 30 and 42, in particular equal to 41.
  • the silicate component may be the tetraethyl-orthosilicate of formula C 8 H 20 SiO 4 .
  • the preparation of the first solution in step a) may comprise dilution in the first solvent of a carbon compound .
  • the content of carbon component is between 5% and 25%, for example equal to 10%, in percentages by mass expressed on the basis of the mass of the component comprising Z, of the component comprising M, of the phosphate component, of the component silicate and carbon component.
  • the carbon compound is chosen from glucose, sucrose, polyvinyl alcohol, commonly known as PVA, polyvinylpyrrolidone, commonly known as PVP, an anionic surfactant, a cationic surfactant, a zwitterionic surfactant or a neutral surfactant.
  • the carbon compound is chosen so as to have a non-zero carbon yield, so that after step d) of pyrolysis, a carbon layer is formed and covers the primary particles formed.
  • the carbon component is a poloxamer, preferably poly (ethylene glycol) - b -poly (propylene glycol) - b -poly (ethylene glycol) - b .
  • the preparation of the first solution and the second solution may be free of the carbonaceous compound.
  • the gelling of the soil in step C) is thus accelerated and the surfaces of the primary particles of the material of formula (II) obtained at the end of step D) are not covered with any carbon coating.
  • the concentration of silicate component in the first solvent is determined so that more than 99.0%, preferably 100% of the mass of the silicate component is completely dissolved in the first solution.
  • the preparation of the first solution and / or the preparation of the second solution comprises diluting in the first solvent, respectively in the second solvent, a phosphate component.
  • the concentration of phosphate component is determined so that more than 99.0%, preferably 100% of the mass of the phosphate component is completely dissolved in the first solution and / or the second solution.
  • the quantity of first solvent can be adapted to the quantity of phosphate component.
  • the amount of first solvent preferably increases with an increase in the amount of phosphate component.
  • the molar ratio of the quantity of first solvent to the quantity of phosphate component is greater than or equal to 150.
  • the phosphate component is and triethylphosphate and the silicate component is tetraethyl-orthosilicate
  • the molar ratio of the amount of first solvent to the sum of the amount of component phosphated and silicate constituent is greater than or equal to 40 and less than or equal to 90.
  • the phosphate component is diluted only in the first solvent.
  • the second solution is free of the phosphate component.
  • the product thus obtained is particularly pure, and may comprise, for more than 99.0%, or even more than 99.9% of its mass, the material of formula (I).
  • the product may contain, as a supplement, impurities, in particular ( Mg, Mn ) O and Mn 2 P.
  • the process may include a step of hydrolyzing the phosphate component, for example in water and for a period of 24 hours.
  • the phosphate component is triethyl phosphate of formula C 6 H 15 PO 4 .
  • a second solution is further prepared by dissolving, in a second solvent, a constituent comprising Z and a constituent comprising M.
  • the second solvent can be a polar solvent, for example chosen from an alcohol, an aqueous solvent, in particular water and their mixtures.
  • the second solvent is aqueous, preferably is water.
  • the constituent comprising Z is an inorganic salt chosen from an oxalate, a citrate, an acetate, a sulfate, a nitrate and their mixtures.
  • the constituent comprising Z can be chosen from Z (C 2 H 3 O 2 ) u ' .n'H 2 O, Z (C 2 O 4 ) u' .n'H 2 O, Z (NO 3 ) u ' . n'H 2 O, Z (SO 4 ) u ' .n'H 2 O, Z (C 6 H 4 O 7 ) u' .n'H 2 O with u 'between 1 and 2 and n' between 0 and 10, and their mixtures.
  • the constituent comprising M is an inorganic salt chosen from an oxalate, a citrate, an acetate, a sulfate, a nitrate and their mixtures.
  • the constituent comprising M can be chosen from M (C 2 H 3 O 2 ) u " .n'H 2 O, M (C 2 O 4 ) u" .n “H 2 O, M (NO 3 ) u” . n “H 2 O, M (SO 4 ) u” .n “H 2 O, M (C 6 H 4 O 7 ) u" .n “H 2 O with u” between 1 and 4 and n "between 0 and 10, and their mixtures.
  • the concentration of constituent comprising M and the concentration of constituent comprising Z in the second solvent are determined so that more than 99.0%, preferably 100% of the mass of the constituent comprising M and more than 99.0% , preferably 100% of the mass of the constituent comprising Z respectively, are dissolved completely within the second solution.
  • the preparation of the second solution in step A) may comprise dilution in the second solvent of the carbon compound described above.
  • the concentrations of carbon component in the first solvent and / or in the second solvent are determined so that more than 99.0%, preferably 100% of the mass of the carbon component respectively, are completely dissolved within the first solution, respectively of the second solution.
  • a catalyst is preferably dissolved in the first solvent or preferably in the second solvent.
  • the catalyst may comprise, or even consist of an acid, in particular chosen from HCl, HNO 3 , H 2 SO 4 , a carboxylic acid and their mixtures.
  • it may comprise, or even consist of a base, in particular chosen from NH 3 , NH 4 OH, NaOH and their mixtures.
  • the catalyst can be a nucleophilic agent, for example chosen from KF, NH 4 F and their mixtures.
  • the catalyst comprises, or even consists of acetic acid.
  • the first solution and / or the second solution are each agitated for a duration greater than 1 hour, in particular greater than 5 hours, for example 6 hours.
  • step B) the first solution is mixed with the second solution so as to form a sol.
  • the second solution is poured into a container containing the first solution so as to form the soil.
  • the mixing in step B) can be carried out by means of a stirrer, in particular magnetic, in order to obtain a homogeneous solution.
  • the gelation stage C) is continued for a duration of gelation ensuring the formation of a gel from the ground.
  • gel is meant a body having a minimum stress below which the body does not flow, unlike the ground, unless it has been subjected, prior to the application of the stress, to another mechanical stress.
  • no mechanical stress other than gravity is applied to the ground during gelling.
  • the gelling of the sol can be carried out at a temperature between the melting temperature and the boiling temperature of the solvent used.
  • the gelling of the soil is carried out at a temperature between 5 ° C and 95 ° C, preferably between 20 ° C and 40 ° C, preferably at room temperature, for a duration of the gelling step between 5 hours and 50 days, preferably between 12 hours and 30 days, preferably between 12 hours and 10 days.
  • the gelation time can vary in particular depending on the presence or absence of carbon component in the first solution.
  • the method may include an optional step C ') , successive, in particular consecutive, in step C) and prior to step D) of pyrolysis, step C') consisting in drying the gel.
  • the drying of the gel in step C ′) is carried out at a temperature between 60 and 120 ° C and / or for a drying time of 10 days at most, and preferably at least 1 hour, for example at 80 ° C for a period of 7 days.
  • the drying can be carried out in an oven, in air or under a flow of a neutral gas, for example argon.
  • step D The gel, optionally dried in step C '), is then pyrolyzed in step D) so that at the end of step D), the product according to the invention is obtained.
  • Step D) of pyrolysis can be carried out in an oven, in particular a tube oven.
  • the gel is pyrolyzed at a pyrolysis temperature of between 600 ° C and 1200 ° C and for a period of between 30 minutes and 2 days, and preferably under a neutral atmosphere , for example under argon.
  • the gel can be brought to the pyrolysis temperature at a heating rate of between 0.5 ° C / min and 20 ° C / min.
  • the gel can be pyrolyzed by means of a “flash” type heat treatment, according to which the heating rate is greater than 100 ° C./min, or even greater than 1000 ° C./min.
  • the method can also include a cooling step E), successive to the pyrolysis step D), during which the product obtained at the end of step D) is cooled, the cooling rate preferably being between 0 , 5 ° C / min and 20 ° C / min.
  • a first beaker 15 g of PEG-PPG-PEG are dissolved in 50 ml of ethanol, with magnetic stirring. The beaker is closed during agitation. Once the solution thus stirred and become homogeneous, 4.17 g of TEOS are added thereto so as to form a first solution. The first solution is then stirred using a magnetic stirrer for 30 minutes.
  • acetic acid is mixed in 13.5 g of water, then 4.27 g of magnesium acetate and 4.84 g of manganese acetate are added to the mixture so as to form a second solution.
  • the second solution is then stirred using a magnetic stirrer for 30 minutes.
  • the second solution contained in the second beaker is poured into the first beaker.
  • the soil thus obtained is stirred for 6 hours.
  • the gel is then transferred to an oven where it is dried at a temperature of 80 ° C for a period of 7 days, in air.
  • the gel obtained after drying is transferred to a tubular oven where it is brought to a pyrolysis temperature of 900 ° C at a rate of temperature increase of 5 ° C per minute. It is kept under argon at the pyrolysis temperature for 24 hours. After pyrolysis and cooling at a speed of 5 ° C per minute, a product 5 is obtained which is formed of primary particles 7 of MgMnSiO 4 , with a size between 20 nm and 30 nm, as can be seen in the figure the).
  • An ink is then prepared by mixing, in percentage by mass, 10% of super P-C65 carbon, 10% of polyvinylidene difluoride (PVDF) and 80% of the powder of particles.
  • the ink is coated on an aluminum strip and then dried under vacuum at 60 ° C for 24 hours.
  • An electrode is then cut from the aluminum strip covered with the dried ink. The electrode is then pressed, then dried under vacuum at 80 ° C for 48 hours.
  • a battery in the form of a button cell in CR2032 format is manufactured and comprises the electrode forming the cathode in the form of a pellet of 14 mm in diameter, and a counter-electrode of lithium (Li) metal forming the anode. , in the form of a 16 mm diameter pellet.
  • the electrode and the counter electrode are crimped together and housed in a metal case.
  • a separator consisting of a Viledon brand membrane reference FS 2207-2- DA WA and a Celgard 2400 membrane, is disposed between the electrode and the counter electrode.
  • the electrodes, counter-electrode and separator are immersed in a liquid electrolyte consisting of a solvent formed from three equal parts of ethyl carbonate, diethyl carbonate and ethyl methyl carbonate, in which lithium hexafluorophosphate is dissolved ( LiPF 6 ) at a concentration of 1 mol / l.
  • Example 2 differs from Example 1 in that in the first beaker, 7.5 g of PEG-PPG-PEG, 1.67 g of TEOS and 0.36 g of TEP previously hydrolyzed in 2.1 g of water for 24 hours, are dissolved in 40 ml of ethanol, with stirring for 30 minutes, so as to form a first solution.
  • acetic acid in a second beaker, 0.5 ml of acetic acid is mixed in 4.7 g of water, then 1.92 g of magnesium acetate and 2.42 g of manganese acetate are added to the mix so as to form a second solution.
  • the second solution is then stirred using a magnetic stirrer for 30 minutes.
  • a product 16 is obtained which is formed of primary particles 17 of Mg 0.9 Mn (SiO 4 ) 0.8 (PO 4 ) 0.2 , with a size between 20 nm and 30 nm, as observed on the figure 1b ).
  • the impurities in the product of Example 2 are not detectable by X-ray diffraction.
  • An electrode and a battery in the form of a button cell are then prepared using the particle powder of Example 2 according to the protocol described in Example 1, except that the ink coated on the strip of aluminum is dried at a temperature of 80 ° C.
  • a material of formula (III) according to the invention Mg z Mn (SiO 4 ) 0.8 (PO 4 ) 0.2 is formed, z decreasing as a function of the potential, with 0 ⁇ z ⁇ 0.9.
  • the measurement of the specific capacity of the product during the first charge confirms the oxidation of the material of formula (II) into the material of formula (III).
  • a material of formula (I) Li a Mg z Mn (SiO 4 ) 0.8 (PO 4 ) 0.2 is formed with a and z varying according to the potential, with 0 ⁇ a ⁇ 0.9, 0 ⁇ z ⁇ 0.9 and 0 ⁇ a + z ⁇ 0.9.
  • the measurement of the specific capacity of the product during the first discharge confirms the reduction of the material of formula (III) into the material of formula (I).
  • the art can easily determine the conditions for obtaining the material with specific a and z values.
  • it can choose a galvanostatic charge / discharge regime adapted to the kinetics of cation mobility.
  • the regime chosen is C / 10 at a cycling temperature of 25 ° C.
  • the speed can be increased or decreased, in particular in conjunction with a respective decrease or increase in the cycling temperature, which is for example between -20 ° C and 80 ° C.
  • Example 3 differs from Example 1 in that in the first beaker, 7.5 g of PEG-PPG-PEG, 1.35 g of TEOS and 0.64 g of TEP previously hydrolyzed in 2.1 g of water for 24 hours are dissolved in 40 ml of ethanol, with stirring for 30 minutes, so as to form a first solution.
  • acetic acid in a second beaker, 0.5 ml of acetic acid is mixed in 4.7 g of water, then 1.76 g of magnesium acetate and 2.42 g of manganese acetate are added to the mix so as to form a second solution.
  • the second solution is then stirred using a magnetic stirrer.
  • a product 22 is obtained which is formed of primary particles 24 of Mg 0.825 Mn (SiO 4 ) 0.65 (PO 4 ) 0.35 , with a size between 20 nm and 30 nm, as observed on the figure 1c ).
  • the impurities in the product of Example 3 are not detectable by X-ray diffraction.
  • Example 4 differs from Example 1 in that in the first beaker, 7.5 g of PEG-PPG-PEG, 1.04 g of TEOS and 0.91 g of TEP previously hydrolyzed in 2.1 g of water for 24 hours, are dissolved in 40 ml of ethanol, with stirring for 30 minutes, so as to form a first solution.
  • acetic acid in a second beaker, 0.5 ml of acetic acid is mixed in 4.7 g of water, then 1.60 g of magnesium acetate and 2.42 g of manganese acetate are added to the mix so as to form a second solution.
  • the second solution is then stirred using a magnetic stirrer.
  • a product comprising a material of formula Mg 0.75 Mn (SiO 4 ) 0.5 (PO 4 ) 0.5 which crystallizes in the orthorhombic system of space group Pnma, as confirmed by the diffractogram 28 of the figure 4 .
  • the product also contains impurities (Mg, Mn) O and Mn 2 P, as can be seen on the diffractogram 28.
  • Example 5 differs from Example 1 in that in the first beaker, 7.5 g of PEG-PPG-PEG, 1.04 g of TEOS and 0.91 g of TEP previously hydrolyzed in 2.1 g of water for 24 hours, are dissolved in 50 ml of ethanol, with stirring for 30 minutes, so as to form a first solution.
  • acetic acid in a second beaker, 0.5 ml of acetic acid is mixed in 4.7 g of water, then 1.60 g of magnesium acetate and 2.42 g of manganese acetate are added to the mix so as to form a second solution.
  • the second solution is then stirred using a magnetic stirrer.
  • a product 28 is obtained which is formed of primary particles 30 of Mg 0.75 Mn (SiO 4 ) 0.5 (PO 4 ) 0.5 , with a size between 20 nm and 30 nm, as observed on the figure 1d ).
  • the impurities in the product of Example 5 are not detectable by X-ray diffraction.
  • Example 6 differs from Example 1 in that in the first beaker, 7.5 g of PEG-PPG-PEG and 1.67 g of TEOS are dissolved in 40 ml of ethanol, with stirring for 30 minutes, and in the second beaker, 1.92 g of magnesium acetate, 2.42 g of manganese acetate, 0.5 ml of acetic acid and 0.36 g of TEP previously hydrolyzed in 2.1 g of water for 24 hours are dissolved, with stirring for 30 minutes in 4.7 g of water, so as to form a second solution.
  • the other steps of the process are identical to those of Example 2.
  • a product is obtained which is formed of primary particles of Mg 0.9 Mn (SiO 4 ) 0.8 (PO 4 ) 0.2 , with a size between 20 and 30 nm.
  • X-ray diffraction analysis of the powder confirms that Mg 0.9 Mn (SiO 4 ) 0.8 (PO 4 ) 0.2 crystallizes in the orthorhombic space group system Pnma, as confirmed by the diffractogram 34 of the figure 3 .
  • the product contains impurities (Mg, Mn) O and Mn 2 P.
  • Example 7 differs from Example 1 in that in the first beaker, 7.5 g of PEG-PPG-PEG and 1.35 g of TEOS are dissolved in 40 ml of ethanol, with stirring for 30 minutes, and in the second beaker, 1.76 g of magnesium acetate, 2.42 g of manganese acetate, 0.5 ml of acetic acid and 0.64 g of TEP, previously hydrolyzed in 2.1 g of water for 24 hours with magnetic stirring, are dissolved with stirring for 30 minutes in 4.7 g of water, so as to form a second solution.
  • the other steps of the process are identical to those of Example 2.
  • a product is obtained which is formed of primary particles of Mg 0.825 Mn (SiO 4 ) 0.65 (PO 4 ) 0.35 , with a size between 20 and 30 nm.
  • An X-ray diffraction analysis of the powder confirms that Mg 0.825 Mn (SiO 4 ) 0.65 (PO 4 ) 0.35 crystallizes in the orthorhombic space group system Pnma, as confirmed by diffractogram 36 of the figure 3 .
  • the product contains impurities (Mg, Mn) O and Mn 2 P.
  • An electrode and a battery are then prepared using the particle powder according to the protocol described in Example 1.
  • the battery is subjected to 14 cycles formed by a galvanostatic charge followed by a galvanostatic discharge, imposed at 25 ° C between a potential of 1.5 V and 4.5 V vs Li at a speed of C / 10.
  • a material of formula (III) according to the invention Mg z Mn (SiO 4 ) 0.65 (PO 4 ) 0.35 is formed, z decreasing as a function of the potential, with 0 ⁇ z ⁇ 0.825.
  • a material of formula (I) according to the invention Li a Mg z Mn (SiO 4 ) 0.65 (PO 4 ) 0.35 is formed, a and z varying according to the potential, with 0 ⁇ a ⁇ 0.825, 0 ⁇ z ⁇ 0.825 and 0 ⁇ a + z ⁇ 0.825.
  • Example 8 differs from Example 1 in that in the first beaker, 7.5 g of PEG-PPG-PEG and 1.04 g of TEOS are dissolved in 40 ml of ethanol, with stirring for 30 minutes, and in the second beaker, 1.60 g of magnesium acetate, 2.42 g of manganese acetate, 0.5 ml of acetic acid and 0.91 g of TEP, previously hydrolyzed in 2.1 g of water for 24 hours with magnetic stirring, are dissolved, with stirring for 30 minutes in 4.7 g of water, so as to form a second solution.
  • the other steps of the process are identical to those of Example 2.
  • a product which is formed of primary particles of Mg 0.75 Mn (SiO 4 ) 0.5 (PO 4 ) 0.5 , with a size between 20 and 30 nm.
  • X-ray diffraction analysis of the powder confirms that Mg 0.75 Mn (SiO 4 ) 0.5 (PO 4 ) 0.5 crystallizes in the orthorhombic space group system Pnma, as confirmed by the diffractogram 40 of the figure 3 .
  • the product contains impurities (Mg, Mn) O and Mn 2 P.
  • Examples 1 to 8 were prepared using a carbon compound in the form of PEG-PPG-PEG. Alternatively, they can be prepared without adding said carbonaceous compound.
  • Examples 2 and 6, 3 and 7, 4 and 8, and 4 and 5 respectively makes it possible to establish the following observations. Dissolving TEP in ethanol to form the first solution instead of dissolving TEP in water to form the second solution, and a high ratio of the number of moles of ethanol to the number of moles of TEP in the soil results in a product having a particularly low content of impurities. Examples 2, 3 and 5 are therefore preferred to Examples 4, 6, 7 and 8.
  • the battery comprising the product of Example 2 has a discharge capacity 20, for the same type of charge / discharge regime, always greater than that 12 of the battery comprising the manganese magnesium silicate MgMnSiO 4 .
  • the discharge capacity of the product of Example 2 is 80 mAh / g, ie more than 37% greater than that of MgMnSiO 4 , which is equal to 58 mAh / g.
  • the battery comprising the product of Example 2 has a specific capacity 42 up to 30% greater than the specific capacity 41 of the battery comprising the product of Example 1.
  • Example 2 The product of Example 2 is preferred.
  • the battery comprising it has a discharge capacity substantially identical to that based on magnesium manganese silicate, although the material of Example 2 has a higher impurity content than that manganese magnesium silicate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Description

  • La présente invention concerne un matériau silicaté et phosphaté, et de structure cristallographique olivine, destiné notamment à une batterie, plus particulièrement à une batterie lithium-ion ou à une batterie potassium-ion ou à une batterie sodium-ion, ainsi qu'à un procédé de fabrication d'un tel matériau.
  • Les matériaux polyanioniques cristallins sont des matériaux d'intérêt pour l'industrie des batteries, en particulier des batteries lithium-ion. Toutefois, à ce jour, à la connaissance des inventeurs, seul le phosphate de fer lithié LiFePO4 est commercialisé. A la différence d'autres matériaux pour électrode positive de batterie tels que les oxydes lamellaires et les spinelles, les matériaux polyanioniques présentent une structure stabilisée par la covalence du groupement anionique. Ils favorisent ainsi un fonctionnement fiable d'une batterie qui les comporte, limitant les risques d'emballement de la batterie par dégagement d'oxygène dans l'électrolyte. De tels matériaux sont par exemple décrits dans US 6,085,015 , US 6,514,640 B1 et EP 1 134 826 A1 .
  • Les phosphate, borate, sulfate, silicate ainsi que leur déclinaison pyro- et fluoro- sont des polyanions de base pour constituer de tels matériaux polyanioniques. Notamment, les matériaux polyanioniques comportant un groupement silicate, dits silicatés, apparaissent comme les plus intéressants dès lors que la sécurité de fonctionnement et la fiabilité de la batterie doivent être assurées.
  • Il est par exemple connu un matériau silicaté de formule Li2MSiO4, avec M étant un métal de transition choisi parmi le fer, le manganèse, le cobalt et le nickel. Un tel matériau silicaté est décrit par exemple dans US 2012/0227252 A1 . La structure cristallographique de ces matériaux silicatés consiste en un empilement de tétraèdres de LiO4, MO4 et SiO4. Ces silicates présentent une forte capacité spécifique théorique comprise entre 325 mAh/g et 333 mAh/g, environ deux fois supérieure aux capacités pratiques des oxydes mixtes tels que LiCoO2, LiNi0.8Co0.15Al0.05O2 (NCA), LiNi1/3Co1/3Mn1/3O2 (NMC), LiMnO4 (LMO) et le phosphate de fer lithié LiFePO4.
  • Pour une utilisation à titre de cathode de batterie lithium-ion, le silicate Li2MnSiO4 est le plus adapté car il présente des potentiel d'insertion du lithium pour les couples Mn2+/Mn3+ et Mn3+/Mn4+ (respectivement de 4,1 V et 4,5V) tous deux plus faibles que le potentiel à partir duquel une dégradation des électrolytes organiques pour batterie lithium-ion est observé (4,6 V).
  • Cependant, lorsqu'il forme une cathode de batterie lithium-ion, le silicate Li2MnSiO4 s'amorphise brusquement dès la première charge, ce qui se traduit par une perte progressive des performances au cours de cycles de charge/décharge de la batterie.
  • Par ailleurs, bien que les propriétés du matériau de structure olivine et de formule LiFeSiO4 aient déjà été prédites théoriquement, selon les inventeurs, sa fabrication n'a, jusqu'à présent, jamais été rapportée dans la littérature scientifique et technique. Par exemple, l'article « Is it possible to prepare olivine-type LiFeSiO4 ? A joint computational an experimental investigation », M.E. Arroyo y de Dompablo et al., Solid State Ionics, 179 (2008), 1758-1762, décrit des tentatives pour obtenir un silicate LiFeSiO4 de structure olivine ayant échouées.
  • Le matériau de structure olivine et de formule LiMnSiO4 n'a quant à lui été reporté qu'au travers de modélisation de sa structure, mais sa fabrication n'a jamais été décrite dans la littérature scientifique et technique.
  • Enfin, on connaît par exemple de l'article « Synthesis of MgMnSiO4 and its applications as cathode material for magnesium battery », Jianzhi Sun et Zhen Jiang, J. New Mat. Electrochem. Systems, 17, 9-11 (2014), un matériau de formule MgMnSiO4 et de structure cristallographique olivine de groupe d'espace Pbnm préparé par voie sol-gel suivie d'une pyrolyse. Le matériau décrit dans cet article scientifique est destiné à former une cathode d'une batterie magnésium-ion. Aucune utilisation de ce matériau à des fins de fabrication d'un matériau lithié n'est décrite.
  • Il existe donc un besoin pour un matériau cristallin présentant des performances électrochimiques adaptées à une application en tant qu'électrode d'une batterie lithium-ion ou d'une batterie potassium-ion ou d'une batterie sodium-ion, présentant de bonnes performances électrochimiques et qui conserve sa structure cristallographique au cours de cycles charge/décharge de la batterie.
  • Ce besoin est satisfait, selon un premier aspect de l'invention, au moyen d'un matériau de structure cristallographique olivine et de formule (I)

            AaZzMm (SiO 4)1-x (PO 4) x

    dans laquelle :
    • A est choisi parmi le lithium, le sodium, le potassium et leurs mélanges,
    • Z est choisi parmi le béryllium, le magnésium, le calcium, le strontium, le baryum et leurs mélanges,
    • M est choisi parmi le fer, le nickel, le cobalt, le manganèse, le chrome et leurs mélanges, le degré d'oxydation de l'élément M étant supérieur ou égal à 2 et inférieur à 4,
    • a, z, m et x sont les coefficients stœchiométriques des éléments chimiques A, Z, M et du groupement PO 4 3
      Figure imgb0001
      respectivement, et remplissent les conditions suivantes :
      • 0 < a < 1 x 2 ,
        Figure imgb0002
      • ∘ 0 < x < 0,8,
      • ∘ 0 < m,
      • 0 < z < 1 x 2 ,
        Figure imgb0003
        et
      • a + z 1 x 2 .
        Figure imgb0004
  • La structure cristallographique olivine du matériau de formule (I) favorise l'insertion et l'extraction de l'élément A. Le matériau de formule (I) est ainsi parfaitement adapté à former une cathode de batterie. L'élément A est en effet extrait de la cathode au cours de la charge et inséré dans la cathode au cours de la décharge de la batterie.
  • Le matériau de formule (I) présente d'excellentes propriétés électrochimiques. Notamment, la capacité spécifique d'une batterie dotée d'une cathode comportant le matériau de formule (I) est jusqu'à 35% supérieure à celle d'une batterie formée d'un matériau olivine de formule (I') qui diffère du matériau de formule (I) uniquement par le fait que x = 0, i.e. qui contient le groupement SiO 4 4
    Figure imgb0005
    mais pas le groupement PO 4 3 .
    Figure imgb0006
  • En outre, la capacité spécifique du matériau de formule (I) reste stable au cours d'une succession de cycles charge/décharge.
  • Enfin, au sein d'une batterie, l'entité polyanionique
    Figure imgb0007
    assure que la structure olivine du matériau de formule (I) est conservée au cours des cycles de charge et de décharge. En particulier, les ions de l'élément M sont disposés dans des sites octaédriques de la structure olivine, ce qui assure une bonne stabilité de la structure olivine. En outre, les inventeurs ont constaté que le groupement PO 4 3
    Figure imgb0008
    résulte en une augmentation des paramètres de maille a et b de la structure olivine par rapport au matériau de formule (I'), le paramètre de maille c restant constant. Sans être liés par une quelconque théorie, ils attribuent les excellentes propriétés électriques du matériau de formule (I) à une augmentation de la conductivité ionique résultant d'une mobilité accrue des ions de l'élément Z liée à un volume plus élevé de la maille élémentaire de la structure olivine.
  • Une structure cristallographique « olivine » est une structure orthorhombique de groupe d'espace Pnma. A titre illustratif, la figure 7 représente, en perspective, la maille élémentaire du matériau de structure olivine et de formule MgMnSiO4, les axes a, b et c de la maille élémentaire, ainsi que les positions relatives au sein de la maille élémentaires des groupements tétraédriques SiO4, des groupements octaédriques MgO6 et des groupements octaédriques MnO6 qui composent le matériau.
  • Le matériau de formule (I) est notamment caractérisé en ce que le coefficient stœchiométrique x est non nul. Le coefficient stœchiométrique x peut être inférieur ou égal à 0,5, voire inférieur ou égal à 0,4, voire même inférieur ou égal à 0,25 et/ou supérieur ou égal à 0,05, voire supérieur ou égal à 0,15 ; en particulier, le coefficient stœchiométrique x peut être égal à 0,2.
  • De préférence, la somme des coefficients stœchiométriques a + z + m est égale à 2 x 2 .
    Figure imgb0009
    Chaque site octaédrique de la structure cristallographique du matériau de formule (I) est alors occupé par l'un des éléments A, Z et M.
  • En particulier, les coefficients stœchiométriques a, z et m peuvent être tels que z = 1 a x 2
    Figure imgb0010
    et/ou m = 1. De préférence, z = 1 a x 2
    Figure imgb0011
    et m = 1. La capacité spécifique du matériau de formule (I) est alors optimale.
  • Le coefficient stœchiométrique a peut être supérieur à 0,1 × 1 x 2 ,
    Figure imgb0012
    voire supérieur à 0,5 × 1 x 2 .
    Figure imgb0013
    De préférence, il est supérieur à 0,8 × 1 x 2
    Figure imgb0014
    et/ou inférieur à 0,999 × 1 x 2 .
    Figure imgb0015
    De préférence, il est compris entre 0,97 × 1 x 2
    Figure imgb0016
    et 0,99 × 1 x 2 .
    Figure imgb0017
    Par exemple, le coefficient stœchiométrique a peut être supérieur à 0,1, voire supérieur à 0,5, de préférence supérieur à 0,8 et/ou inférieur à 0,999. De préférence, est supérieur à 0,88 et inférieur à 0,89.
  • De préférence, le coefficient stœchiométrique z est inférieur à 1, de préférence inférieur à 0,5, de préférence inférieur à 0,1, de préférence inférieur à 0,05, mieux inférieur à 0,01. Le nombre de sites de la structure olivine accessible à l'élément A est alors augmenté, ce qui favorise l'obtention d'une capacité spécifique du produit élevée.
  • Le matériau de formule (I) est aussi caractérisé par le fait que le coefficient stœchiométrique z est non nul. Lorsque le matériau de formule (I) est obtenu par l'un des premier ou deuxième procédés de fabrication qui seront décrits par la suite, la caractéristique z > 0 est une signature desdits premier et deuxième procédés de fabrication. Par exemple, dans un mode de réalisation, z est supérieur à 0,01, voire supérieur à 0,05, voire même supérieur à 0,1. La présence de l'élément Z, même à l'état de traces, dans le matériau peut aisément être constatée par une analyse ICP (pour « Inductively Coupled Plasma » en anglais).
  • Pour ce qui concerne le coefficient stœchiométrique m, il est de préférence compris entre 0,9 et 1,1. De préférence, il est égal à 1,0.
  • De préférence, est le manganèse.
  • De préférence, Z est choisi parmi le magnésium, le calcium et leurs mélanges. De préférence, Z est le magnésium.
  • De préférence, A comporte, en pourcentage molaire exprimé sur le nombre total de moles de métal alcalin constituant A, plus de 90,0 % de lithium et/ou de sodium.
  • De préférence, A est constitué à plus de 99,0 % de lithium, en pourcentage molaire exprimé sur le nombre total de moles de métal alcalin constituant A. De préférence, A est le lithium. Un matériau à base de lithium présente les propriétés optimales pour former une batterie lithium ion.
  • Un matériau de formule (I) particulièrement préféré a pour formule LiaMgzMnm (SiO 4)1-x (PO 4) x dans laquelle, de préférence, x est compris entre 0,1 et 0,3, 0,85 ≤ a + z ≤ 0,95, z < 0,05 et m est compris entre 0,98 et 1,02. De préférence, il a pour formule LiaMgzMn(SiO 4)0,8(PO 4)0,2 avec a + z = 0,90 et z < 0,05, de préférence z < 0,01.
  • L'invention concerne encore un matériau de structure cristallographique olivine et de formule (II)

            Zz'Mm (SiO 4)1-x (PO 4) x

    dans laquelle les éléments chimiques Z et M ainsi que les coefficients stœchiométriques x et m sont tels que présentés dans la description du matériau de formule (I), les coefficients stœchiométriques z' et x étant en outre tels que 0 < z 1 x 2 .
    Figure imgb0018
  • Comme cela apparaîtra clairement par la suite, le matériau de formule (II) peut constituer un matériau de départ particulièrement bien adapté à la fabrication du matériau de formule (I).
  • De préférence, le coefficient stœchiométrique z' peut être supérieur ou égal à 0,1 × 1 x 2 ,
    Figure imgb0019
    voire supérieur ou égal à 0,5 × 1 x 2 ,
    Figure imgb0020
    voire supérieur ou égal à 0,8 x 1 x 2 ,
    Figure imgb0021
    voire même supérieur ou égal à 0,9 × 1 x 2 .
    Figure imgb0022
    De préférence, le coefficient stœchiométrique z' est égal à 1 x 2 .
    Figure imgb0023
  • De préférence, le matériau de formule (II) est Mg 1 x 2 Mn SiO 4 1 x PO 4 x .
    Figure imgb0024
  • L'invention concerne encore un produit comportant pour plus de 50,0 % de sa masse, de préférence pour plus de 80,0% de sa masse, de préférence pour plus de 95,0 % de sa masse, voire pour 100,0% de sa masse, le matériau de formule (I) et/ou le matériau de formule (II), de préférence le matériau de formule (I) ou le matériau de formule (II).
  • Le produit peut se présenter sous des formes diverses. Par exemple, il peut se présenter sous la forme d'une poudre de particules primaires comportant pour plus de 95,0 %, de préférence pour plus de 99,0 % de leur masse, voire constituées par, le matériau de formule (I) et/ou le matériau de formule (II), de préférence le matériau de formule (I) ou le matériau de formule (II).
  • Notamment, plus de 90,0 % en nombre des particules primaires peuvent présenter une taille inférieure à 100 nm, par exemple inférieure à 50 nm, par exemple inférieure à 35 nm. La « taille » d'une particule primaire correspond au diamètre de ladite particule et peut être mesurée des images acquises en microscopie électronique à balayage. La conductivité électronique macroscopique du produit est alors améliorée. En outre, la surface spécifique de la particule est ainsi augmentée, augmentant ainsi la conductivité ionique du matériau et facilitant l'échange avec le milieu électrolytique lorsque le produit est disposé dans une batterie. De préférence encore, les particules primaires sont recouvertes, de préférence intégralement, par une couche de carbone, dont l'épaisseur est notamment inférieure à 10 nm, par exemple inférieure à 5 nm, par exemple comprise entre 2 nm et 3 nm, pour améliorer encore la conductivité électronique du produit.
  • Par ailleurs, les particules primaires peuvent être agrégées ou agglomérées entre elles, formant notamment des particules secondaires.
  • Le produit peut aussi se présenter sous la forme d'une électrode, en particulier une cathode de batterie. Notamment à cette fin, le produit peut se présenter sous la forme de particules constituées du matériau de formule (I) et/ou du matériau de formule (II) agglomérées entre elles par du carbone et/ou un liant, de type polymère. Par exemple, le produit peut comporter, une proportion massique du matériau de formule (I) et/ou du matériau de formule (II), de préférence du matériau de formule (I) ou du matériau de formule (II), supérieure à 50,0 %, voire supérieure à 80,0 %, très préférablement supérieure à 90,0 %, le complément étant constitué par du carbone et un liant polymère. L'électrode peut en outre comporter un collecteur de courant en aluminium sur une des faces duquel le produit est disposé.
  • Selon une première variante, le produit peut comporter pour plus de 50,0 % de sa masse, de préférence pour plus de 80,0% de sa masse, de préférence pour plus de 95,0% de sa masse, voire pour 100,0% de sa masse, le matériau de formule (I). Selon la première variante, le produit est par exemple destiné à former une cathode de batterie lithium-ion ou une cathode de batterie sodium-ion ou une cathode de batterie potassium-ion.
  • Selon une deuxième variante, le produit peut comporter pour plus de 50,0 % de sa masse, de préférence pour plus de 80,0% de sa masse, de préférence pour plus de 95,0% de sa masse, voire pour 100,0% de sa masse, le matériau de formule (II). Selon la deuxième variante, le produit est par exemple utile pour un accumulateur au magnésium ou à un accumulateur au calcium.
  • Par ailleurs, l'invention concerne un procédé de fabrication du matériau de formule (I), dénommé par la suite « premier procédé de fabrication », ledit procédé comprenant au moins les étapes successives consistant à :
    1. a) disposer :
      • du matériau de structure cristallographique olivine et de formule (II) dans laquelle les éléments chimiques Z, M ainsi que les coefficients stœchiométriques x et m sont tels que décrits dans la définition du matériau de formule (I), le coefficient stœchiométrique z' étant tel que z' > z, et
      • d'un matériau alcalin comportant au moins un métal alcalin A choisi parmi le lithium, le sodium, le potassium et leurs mélanges,
    2. b) maintenir un bain liquide comportant, de préférence constitué par, le matériau alcalin en fusion et le matériau de formule (II) à l'état solide, à une température de maintien et pendant une durée de maintien en température propices à l'insertion du métal alcalin A fourni par le matériau alcalin dans des sites libres de la structure cristallographique olivine du matériau de formule (II) de sorte à former le matériau de formule (I),
    3. c) optionnellement, refroidissement du bain liquide, et
    4. d) optionnellement, lavage puis séchage.
  • L'invention concerne encore un autre procédé de fabrication du matériau de formule (I), dénommé par la suite « deuxième procédé de fabrication », ledit autre procédé comprenant au moins les étapes consistant à :
    1. i. disposer d'un matériau de structure cristallographique olivine et de formule (III) :

              ZzMm (SiO 4)1-x (PO 4) x,

      obtenu par oxydation du matériau de structure cristallographique olivine et de formule (II), les éléments chimiques Z et M ainsi que le coefficient stœchiométrique z du matériau de formule (III) et les coefficients stœchiométriques x et m des matériau de formule (II) et matériau de formule (III) étant tel que définis pour le matériau de formule (I), le coefficient stœchiométrique z' étant en outre tel que z' > z, et
    2. ii. réduire électrochimiquement le matériau de formule (III) en présence d'une électrode source en élément chimique A dans des conditions propices à la formation du matériau de formule (I).
  • L'invention concerne un matériau de formule (I) obtenu par le premier procédé de fabrication ainsi qu'un matériau de formule (I) obtenu par le deuxième procédé de fabrication.
  • Par ailleurs, l'invention concerne un procédé de synthèse du matériau de formule (II), comportant les étapes de :
    1. A) préparation d'une première solution par dilution, dans un premier solvant, d'un constituant silicaté et d'une deuxième solution par dilution, dans un deuxième solvant, d'un constituant comportant Z et d'un constituant comportant M,
      la préparation de la première solution et/ou la préparation de la deuxième solution comportant la dilution dans le premier solvant, respectivement dans le deuxième solvant d'un constituant phosphaté,
    2. B) mélange de la première solution avec la deuxième solution de manière à former un sol,
    3. C) gélification du sol de sorte à former un gel,
    4. D) pyrolyse du gel de manière à former le matériau de formule (II).
  • L'invention concerne encore un dispositif choisi parmi une cathode de batterie lithium-ion, une cathode de batterie sodium-ion, une cathode de batterie potassium-ion, une cathode de batterie lithium, une cathode de batterie sodium, une cathode de batterie potassium, une cathode de batterie calcium et une cathode de batterie magnésium, ladite cathode de batterie comportant le produit selon l'invention ou le matériau de formule (I) selon l'invention et/ou le matériau de formule (II).
  • Enfin, l'invention concerne une batterie, de préférence choisie parmi une batterie lithium-ion, une batterie sodium-ion, une batterie potassium-ion, une batterie lithium, une batterie sodium, une batterie potassium, une batterie calcium et une batterie magnésium, la batterie comportant une cathode de batterie selon l'invention. La batterie peut comporter une anode en un matériau choisi parmi l'étain, le germanium, l'antimoine et leurs alliages, le graphite, le silicium, un oxyde de silicium SiOv, un oxyde d'étain SnOw, un oxyde métallique de formule DrOs, communément appelé «matériau de conversion », avec D choisi parmi Fe, Mn, Co, Cu, Cr, Ni et leurs mélanges, et r/s variant selon la stœchiométrie dudit oxyde métallique, Li4Ti5O12, et leurs mélanges.
  • D'autres avantages de l'invention apparaitront à la lecture de la description détaillée qui va suivre, et grâce au dessin annexé dans lequel :
    • la figure 1 présente des photographies acquises en microscopie électronique à balayage d'exemples de matériau de formule (II) selon l'invention et hors invention,
    • les figures 2 et 3 sont des diffractogrammes obtenus par diffraction des rayons X d'exemples de matériau de formule (II) selon l'invention et d'exemples de matériau hors invention dans lesquels l'intensité de diffraction, en unité arbitraire, est exprimée en fonction de l'angle 2θ de diffraction,
    • la figure 4 est un graphique représentant l'évolution de la capacité spécifique, en mAh/g de batteries comportant des cathodes formées à partir d'exemples de matériau de formule (II) et de matériau hors invention, en fonction du nombre de cycles de charge/décharge,
    • la figure 5 est un graphique représentant l'évolution du potentiel, en V vs Li+/Li, en fonction de la capacité spécifique nette, en mAh/g, lors de la première décharge d'une batterie comportant un matériau de formule (II) selon l'invention préalablement oxydé, au cours d'une première charge au sein de la batterie, pour former un matériau de formule (III) selon l'étape i) du deuxième procédé selon l'invention, et lors de la décharge d'une batterie comportant un matériau hors invention,
    • la figure 6 représente les diffractogrammes obtenus par diffraction des rayons X des exemples 4 et 5 du matériau de formule (II) selon l'invention dans lesquels l'intensité de diffraction, en unité arbitraire, est exprimée en fonction de l'angle 2θ de diffraction, et
    • la figure 7 représente une vue schématique tridimensionnelle d'une structure cristallographique olivine de groupe d'espace Pnma.
    PREMIER PROCEDE DE FABRICATION DU MATERIAU DE FORMULE (I)
  • Le matériau de formule (I) peut être obtenu par le premier procédé de fabrication qui est décrit ci-après.
  • A l'étape a) du premier procédé de fabrication, le matériau alcalin comporte au moins un métal alcalin A choisi parmi le lithium, le sodium, le potassium et leurs mélanges.
  • Pour fabriquer un matériau de formule (I) comportant du lithium, le matériau alcalin peut comporter un sel de lithium, de préférence choisi dans le groupe formé par LiNO3, LiCl, LiBr, LiI, Li2CO3 et leurs mélanges. Par exemple, le matériau alcalin peut être un mélange de LiNO3 et LiCl. En variante, le matériau alcalin peut en outre comporter un sel de sodium et/ou un sel de potassium, de préférence choisi dans le groupe formé par KCl, NaCl, NaBr, KBr, NaI, KI, NaNO3, KNO3, Na2CO3, K2CO3 et leurs mélanges. Par exemple, il peut être un mélange de LiCl et KCl.
  • Pour fabriquer un matériau de formule (I) incluant du sodium, le matériau alcalin peut être un sel de sodium, de préférence choisi dans le groupe formé par NaCl, NaBr, NaI, NaNO3, Na2CO3 et leurs mélanges. Par exemple, le matériau alcalin peut être un mélange de NaNO3 et NaCl. En variante, le matériau alcalin peut en outre comporter un sel de potassium, par exemple choisi parmi KCl, KBr, KI, KNO3, K2CO3 et leurs mélanges.
  • Pour fabriquer un matériau de formule (I) incluant du potassium, le matériau alcalin peut comporter un sel de potassium, de préférence choisi dans le groupe formé par KBr, KCl, KI, KNO3, K2CO3 et leurs mélanges. Par exemple, le matériau alcalin peut être un mélange de KNO3 et KCl.
  • Bien évidemment, pour fabriquer un matériau de formule (I) comportant plusieurs éléments chimiques choisis parmi le lithium, le sodium et le potassium, un mélange de sels de lithium et/ou de sodium et/ou de potassium tels que listés ci-dessus peut être préparé.
  • De préférence, le matériau alcalin est constitué par un mélange de sels formant une composition eutectique. Le matériau alcalin présente alors une température de fusion modérée, facilitant ainsi la mise en œuvre du premier procédé de fabrication.
  • Le matériau alcalin peut se présenter sous la forme d'une poudre constituée de particules. L'obtention d'une masse liquide comportant le matériau alcalin en fusion est ainsi facilitée.
  • Par ailleurs, le premier procédé de fabrication met en œuvre le matériau de structure cristallographique olivine et de formule (II) Zz,Mm (SiO 4)1-x (PO 4) x tel que décrit précédemment.
  • Le coefficient stœchiométrique z' est strictement positif et est supérieur au coefficient stœchiométrique z du matériau de formule (I) obtenu en fin d'étape b).
  • En particulier, le coefficient stœchiométrique z' peut être égal à la somme des coefficients z et a du matériau de formule (I).
  • Un bain liquide est formé, comportant, de préférence constitué par, le matériau alcalin en fusion et le matériau de formule (II) à l'état solide.
  • L'homme du métier sait aisément déterminer, sur la base de ses connaissances générales, les conditions permettant de former le bain liquide. A cette fin, il peut consulter l'ouvrage George J. Janz, 1967, « Molten Salts Handbook », Academic Press.
  • De préférence, le bain liquide est obtenu par fusion partielle d'une charge de départ constituée de particules formées du matériau alcalin et de particules formées du matériau de formule (II), et de préférence intimement mélangées. En particulier, le mélange du matériau alcalin et du matériau de formule (II) peut être réalisé au moyen d'un broyeur.
  • De préférence, la fusion partielle de la charge de départ est opérée à une température supérieure à la température de fusion du matériau alcalin et inférieure à la température de dégradation du matériau de formule (II).
  • Par « température de dégradation » d'un matériau, on entend la température à partir de laquelle le matériau subit une dégradation chimique et/ou structurelle, par exemple du fait d'une démixtion, d'un changement de phase, ou d'une amorphisation.
  • De préférence, la température de fusion du matériau alcalin est inférieure à la température de dégradation du matériau de formule (II), de préférence d'au moins 100°C, voire d'au moins 200°C.
  • Par exemple, lorsque le matériau alcalin est constitué par un mélange de LiNO3 et LiCl, ou par un mélange de LiCl et KCl, et le matériau de formule (II) est Mg 1 x 2 Mn SiO 4 1 x PO 4 x ,
    Figure imgb0025
    notamment Mg 0,9 Mn(SiO 4)0,8(PO 4)0,2 , la fusion partielle est opérée à une température comprise entre 200°C et 500°C.
  • De préférence, l'étape de mélange du matériau alcalin et du matériau de formule (II) formant la charge de départ est réalisée conjointement à l'étape de chauffage de la charge de départ pour former le bain liquide.
  • Dans une variante, afin de former le bain liquide, on peut chauffer le matériau alcalin dans un creuset jusqu'à l'obtention d'une masse liquide en fusion. Le matériau de formule (II) peut alors être mélangé avec la masse liquide pour former le bain liquide. Par exemple, le matériau de formule (II) peut être versé dans le moule contenant la masse liquide. Alternativement, la masse liquide peut être versée dans un moule contenant le matériau de formule (II).
  • A l'étape b), le bain liquide est maintenu à une température de maintien et pendant une durée de maintien en température propices à la formation d'un matériau de structure cristallographique olivine et de formule (I) AaZzMm (SiO 4)1-x (PO 4) x.
  • L'homme du métier sait aisément déterminer, sur la base de ses connaissances générales, les durée et temps de maintien nécessaires. A cette fin, il peut consulter l'ouvrage de C.N.R. Rao et Kanishka Biswas, « Essentials of Inorganic Materials Synthesis », John Wiley & Sons, 20 avr. 2015.
  • La fusion de la charge de départ et/ou le maintien en température du bain liquide peut être réalisée au moyen de tout type de four. Par exemple, un four à moufle ou un four tubulaire comportant un moule en quartz, porcelaine, alumine, zircone ou platine peut être utilisé.
  • De préférence, la température de maintien est supérieure à la température de fusion du matériau alcalin et inférieure à la température de dégradation du matériau de formule (II). De préférence, elle est supérieure d'au moins 10°C à la température de fusion du matériau alcalin et/ou inférieure d'au moins 10°C à la température de dégradation du matériau de formule (II).
  • La durée de maintien en température est de préférence comprise entre cinq minutes et cinq jours.
  • Par exemple, lorsque le matériau alcalin est constitué par un mélange de LiNO3 et LiCl, ou par un mélange de LiCl et KCl, et le deuxième matériau est Mg 1 x 2 Mn SiO 4 1 x PO 4 x ,
    Figure imgb0026
    notamment Mg 0,9 Mn(SiO 4)0,8(PO 4)0,2, la température de maintien est comprise entre 200°C et 500°C, et la durée de maintien en température est comprise entre 2 heures et 2 jours.
  • A l'étape c), le bain liquide est refroidi jusqu'à ce qu'un bain solidifié soit formé, de préférence jusqu'à une température inférieure à 40°C. Le bain solidifié comporte alors le matériau de formule (I) ainsi que des composés reliquats du processus de diffusion de l'étape b).
  • Le bain solidifié peut être lavé, à l'étape d), de sorte à séparer le matériau de formule (I) des composés reliquats. Le lavage peut notamment être effectué avec de l'eau ou de l'éthanol. Le matériau de formule (I) ainsi lavé peut ensuite être séché, par exemple sous vide, à une température supérieure à 60°C et/ou pendant une durée d'au moins 12 heures.
  • DEUXIEME PROCEDE DE FABRICATION DU MATERIAU DE FORMULE (I)
  • Alternativement au premier procédé de fabrication décrit précédemment, un deuxième procédé de fabrication peut être mis en œuvre pour fabriquer le matériau de formule (I).
  • A l'étape i), on dispose d'un matériau de structure cristallographique olivine et de formule (III) ZzMm (SiO 4)1-x (PO 4)xobtenu par oxydation du matériau de structure cristallographique olivine de formule (II) Zz,Mm (SiO 4)1-x (PO 4) x. Bien évidemment, le coefficient stœchiométrique z' du matériau de formule (II) est supérieur au coefficient stœchiométrique z des matériaux de formules (I) et (III).
  • Selon un premier mode de mise en œuvre, le matériau de formule (III) peut être, préalablement à sa réduction en étape ii), généré par oxydation électrochimique de l'élément M constitutif du matériau de formule (II). Par réaction, et notamment oxydation et réduction, « électrochimique », on considère une réaction d'oxydo-réduction mettant en jeu un transfert électronique, et réalisée au moyen d'une cellule électrochimique dotée classiquement d'une électrode de travail, d'une contre-électrode, d'un milieu électrolytique, et optionnellement d'un séparateur.
  • L'homme du métier sait classiquement et aisément déterminer, sur la base de ses connaissances générales, les conditions d'oxydoréduction nécessaires à l'obtention du matériau de formule (III) à partir du matériau de formule (II). A cette fin, il peut consulter l'ouvrage David Linden, Thomas B. Reddy, « Handbook of batteries», 3rd edition, 2002, McGraw-Hill.
  • De préférence, l'oxydation électrochimique est réalisée au moyen d'un milieu électrolytique comprenant une source en élément A. Par exemple, la concentration molaire de l'élément A dans le milieu électrolytique peut être d'environ 1 mol.1-1.
  • En particulier, le milieu électrolytique mis en œuvre pour l'étape de réduction électrochimique peut être identique au milieu électrolytique mis en œuvre pour l'étape d'oxydation électrochimique.
  • Par exemple, l'élément A est le lithium et le milieu électrolytique comprend une source du lithium, en particulier sous la forme d'un composé choisi parmi l'hexafluorophosphate de lithium LiPF6, le perchlorate de lithium LiClO4, l'arsenate de lithium LiAsO4, le tétrafluoroboate de lithium LiBF4, le bis-trifluoromethanesulfonimide de lithium LiTFSI, le bis(oxalato)borate de lithium LiBOB, le bis(fluorosulfonyl)imide de lithium LiFSI, l'hexafluoroarsenate de lithium LiAsF6, le triflate de lithium LiSO3CF3, le trifluoroacetate de lithium LiCF3CO2, l'hexafluoroantimonate de lithium LiSbF6, LiN(CF3SO2)3, LiN(C2F5SO2), et leurs mélanges.
  • Par ailleurs, l'électrolyte peut comporter, par exemple à titre de solvant, un carbonate, choisi par exemple parmi l'éthyl- carbonate, le diéthyl- carbonate, l'éthyl-méthyl- carbonate, le diméthyl- carbonate, le carbonate de propylène et leurs mélanges. De préférence, la source en élément A, par exemple en lithium, est dissoute dans le carbonate.
  • De préférence, le matériau de formule (II) est oxydé en tant qu'électrode de travail face à une contre-électrode. Ainsi, l'extraction des ions Z2+ du matériau de formule (II) est optimale.
  • Le matériau de formule (III) ZzMm (SiO 4)1-x (PO 4) x est de structure cristallographique olivine. Toutefois, il est caractérisé par le fait que la structure cristallographique olivine présente des sites inoccupés, notamment par l'élément Z. Une caractéristique du deuxième procédé de fabrication réside, au cours de l'étape ii) de réduction électrochimique, en l'insertion dans les sites inoccupés de la structure olivine d'un ou plusieurs métaux alcalins A, de sorte à obtenir le matériau selon l'invention de formule (I) AaZzMm (SiO 4)1-x (PO 4) x.
  • L'électrode peut se présenter sous la forme de particules du matériau de formule (II) constitué de particules primaires, de préférence d'une taille inférieure à 100 nm, de préférence de taille inférieure à 50 nm, de préférence inférieure à 35 nm, et de préférence recouvertes, de préférence intégralement par une couche de carbone, d'une épaisseur de préférence inférieure à 10 nm, de préférence inférieure à 5 nm, par exemple comprise entre 2 et 3 nm. Les particules peuvent notamment être liées entre elles par une matrice carbonée, pour améliorer la conduction électrique au sein de l'électrode et un par un liant polymère pour assurer la cohésion et la tenue mécanique de l'électrode.
  • Par exemple, la contre électrode est en un matériau comportant l'élément A. De préférence, pour fabriquer un matériau de formule (I) avec A étant Li et/ou Na et/ou K, la contre électrode est en un matériau en Li et/ou Na et/ou K respectivement, sous forme métallique.
  • En particulier, au cours de l'oxydation électrochimique, le métal de transition M peut s'oxyder de l'état +2 à l'état +4 et l'ion Z2+ est extrait de la structure, selon la demi-équation d'oxydoréduction suivante :

            Zz,Mm(SiO 4)1-x (PO 4) x ZzMm (SiO 4)1-x (PO 4) x +2(z'-z)e -+(z'-z)Z 2+

  • L'oxydation électrochimique peut être effectuée selon différents modes, par exemple à courant constant, à tension constante, à courant croissant imposé, à tension croissante imposée. La température de l'électrolyte peut être comprise entre 20°C et 60°C. L'oxydation électrochimique est effectuée selon un régime C/y, avec y compris entre 5 et 100, par exemple égal à 20. Un régime C/y correspond à une charge effectuée en y heures. Par exemple un régime C/20 correspond à une charge en 20 heures.
  • Après réalisation de la réaction d'oxydation électrochimique, le produit de formule (III) obtenu peut être lavé puis séché.
  • Selon un deuxième mode de réalisation alternatif, le matériau de formule (III) peut être, préalablement à sa réduction en étape ii), généré par oxydation chimique du matériau de formule (II). Par oxydation chimique, on considère ici une réaction ne nécessitant aucune activation électronique contrairement à une oxydation électrochimique.
  • De préférence, l'oxydation chimique met en œuvre au moins un composé oxydant dont le potentiel d'oxydoréduction est supérieur au potentiel d'oxydoréduction du couple M2+/M3+ et/ou du couple M3+/M4+ de l'élément M constitutif du matériau de formule (II).
  • Le composé oxydant peut notamment être choisi parmi le tétrafluoroborate de nitronium NO2BF4, le persulfate de potassium K2S2O8, l'hexafluorophosphate de nitrosonium NO2PF6, le tétrafluoroborate de nitrosonium NOBF4, le péroxyde d'hydrogène H2O2 et leurs mélanges.
  • De préférence l'oxydation chimique est réalisée au sein d'un bain d'oxydation liquide contenant au moins ledit matériau de formule (II) et ledit composé oxydant et dans des conditions propices à l'extraction de l'élément Z dudit matériau de formule (II) pour former ledit matériau de formule (III) attendu.
  • L'homme du métier sait aisément déterminer, sur la base de ses connaissances générales, de telles conditions, notamment la température. A cette fin, il peut consulter l'article de A. R. Wizansky, P. E. Rauch, F. J. Disalvo, J. Solid State Chem. 81, 1989, 203-207.
  • Par exemple, le bain d'oxydation peut comporter de l'acétonitrile et la réaction d'oxydation chimique peut être effectuée à une température de 60°C sous reflux pendant une durée égale à 48 heures.
  • A titre illustratif, l'oxydation chimique du matériau de formule (II) avec le tétrafluoroborate de nitronium NO2BF4, qui présente un potentiel de 5,1V contre le couple Li+/Li s'effectue selon la réaction suivante :

            Zz,Mm (SiO 4)1-x (PO 4) x + 2(z'-z)NO 2 BF 4ZzMm (SiO 4)1-x (PO 4) x + 2(z' - z)NO 2(g) + (z'- z)Z(BF 4)2

  • Après réalisation de l'oxydation chimique, le matériau de formule (III) obtenu peut être lavé puis séché.
  • En variante, selon le deuxième procédé de fabrication, qu'il soit obtenu par échange chimique ou par échange électrochimique, le matériau de formule (III) peut être réduit électrochimiquement en présence d'une électrode source en élément A dans des conditions propices à la formation d'un matériau de formule (I).
  • L'homme du métier sait classiquement et aisément déterminer, sur la base de ses connaissances générales, les conditions d'oxydoréduction nécessaires à l'obtention du matériau de formule (I) à partir du matériau de formule (III). A cette fin, il peut consulter l'ouvrage David Linden, Thomas B. Reddy, Handbook of batteries, 3rd edition, 2002, McGraw-Hill.
  • En particulier pour réaliser la réduction électrochimique en étape ii), le matériau de formule (III) peut former tout ou partie d'une électrode.
  • L'électrode peut se présenter sous la forme de particules du matériau de formule (III), de préférence d'une taille inférieure à 100 nm, de préférence de taille inférieure à 50 nm, de préférence de taille inférieure à 35 nm, et de préférence recouvertes, de préférence intégralement par une couche de carbone, d'une épaisseur de préférence inférieure à 10 nm, voire inférieure à 5 nm, notamment comprise entre 2 nm et 3 nm. Les particules peuvent notamment être liées entre elles par une matrice carbonée, pour améliorer la conduction électrique au sein de l'électrode et un par un liant polymère pour assurer la cohésion et la tenue mécanique de l'électrode.
  • De préférence, la réduction électrochimique met aussi en œuvre une contre-électrode en un matériau comportant l'élément A. De préférence, pour fabriquer un matériau de formule (I) avec A étant Li et/ou Na et/ou K, la contre électrode est en un matériau en Li et/ou Na et/ou K, respectivement, sous forme métallique.
  • De préférence, la réduction électrochimique est réalisée au moyen d'un milieu électrolytique comprenant une source en élément A. Par exemple, la concentration molaire de l'élément A dans le milieu électrolytique peut être d'environ 1 mol.l-1.
  • En particulier, le milieu électrolytique mis en œuvre pour l'étape de réduction électrochimique en étape ii) peut être identique au milieu électrolytique mis en œuvre pour l'étape d'oxydation électrochimique en étape i).
  • L'homme du métier sait choisir de manière routinière une source en élément A telle qu'au cours de l'étape ii) de réduction électrochimique, l'ion de l'élément A soit disponible pour être inséré dans les sites accessibles de la structure olivine du matériau de formule (III) afin de former le matériau de formule (I).
  • Par exemple, l'élément A est le lithium et le milieu électrolytique comprend une source du lithium, en particulier sous la forme d'un composé choisi parmi l'hexafluorophosphate de lithium LiPF6, le perchlorate de lithium LiClO4, l'arsenate de lithium LiAsO4, le tétrafluoroboate de lithium LiBF4, le bis-trifluoromethanesulfonimide de lithium LiTFSI, le bis(oxalato)borate de lithium (LiBOB), le bis(fluorosulfonyl)imide de lithium (LiFSI), l'hexafluoroarsenate de lithium (LiAsF6), le triflate de lithium (LiSO3CF3), le trifluoroacetate de lithium (LiCF3CO2), l'hexafluoroantimonate de lithium (LiSbF6), LiN(CF3SO2)3, LiN(C2F5SO2), et leurs mélanges.
  • Par ailleurs, l'électrolyte peut comporter un carbonate, choisi par exemple parmi l'éthyl- carbonate, le diéthyl- carbonate, l'éthyl- méthyl- carbonate, le diméthyl-carbonate, le carbonate de propylène et leurs mélanges. De préférence, la source en élément A, par exemple en lithium, est dissoute dans le carbonate.
  • De préférence, lorsque le matériau de formule (III) est préparé par oxydation électrochimique, l'électrode et la contre-électrode à la fin de l'étape de réaction d'oxydation électrochimique peuvent constituer l'électrode et la contre-électrode respectivement au début de l'étape de réduction électrochimique. La température de l'électrolyte peut être comprise entre 20°C et 60°C. L'oxydation électrochimique est effectuée selon un régime C/y, avec y compris entre 5 et 100, par exemple égal à 20. Un tel régime est particulièrement adapté à l'insertion des ions de l'élément A dans la structure olivine du matériau de formule (III).
  • L'étape de réduction électrochimique peut être mise en œuvre à courant constant, tension constante, courant décroissant imposé, tension décroissante imposée. Elle n'est toutefois pas limitée à ce mode de mise en œuvre.
  • PROCEDE DE SYNTHESE DU MATERIAU DE FORMULE (II)
  • Le matériau de formule (II) peut être obtenu par le procédé de synthèse qui est détaillé ci-après.
  • A l'étape A), on prépare une première solution par dilution, dans un premier solvant, d'un constituant silicaté.
  • Le premier solvant peut être un solvant polaire, par exemple choisi parmi un alcool, un solvant aqueux, notamment de l'eau, le diméthylformamide, communément dénommé DMF, le diméthylsulfoxyde, communément dénommé DMSO, le tétrahydrofurane, communément dénommé THF, un éther et leurs mélanges. De préférence, le premier solvant est un alcool, de préférence de l'éthanol.
  • De préférence, le rapport du nombre de moles de premier solvant sur le nombre de moles du constituant silicaté, est compris entre 35 et 45, de préférence compris entre 30 et 42, notamment égal à 41.
  • Le constituant silicaté est de préférence un alcoxyde de silicium, de formule générale Si(OR)n, R étant un groupement organique et 0 < n ≤ 4, de préférence n > 2 et de préférence n = 4. En particulier, le constituant silicaté peut être le tétraéthyl-orthosilicate de formule C 8 H 20 SiO 4.
  • Par ailleurs, en vue d'obtenir des particules primaires recouvertes d'une couche de carbone telle que décrites ci-dessus, la préparation de la première solution à l'étape a) peut comporter la dilution dans le premier solvant d'un composé carboné.
  • De préférence, la teneur en composant carboné est comprise entre 5 % et 25 %, par exemple égale à 10 %, en pourcentages massiques exprimés sur la base de la masse du constituant comportant Z, du constituant comportant M, du constituant phosphaté, du constituant silicaté et du composant carboné.
  • De préférence, le composé carboné est choisi parmi le glucose, le sucrose, l'alcool polyvinylique, communément dénommé PVA, le polyvinylpyrrolidone, communément dénommé PVP, un tensioactif anionique, un tensioactif cationique, un tensioactif zwitterionique ou un tensioactif neutre. De préférence, le composé carboné est choisi de sorte à présenter un rendement carbone non nul, de sorte qu'après l'étape d) de pyrolyse, une couche carbonée soit formée et recouvre les particules primaires formées. De préférence, le composant carboné est un poloxamère, de préférence le poly(éthylène glycol)-b-poly(propylène glycol)-b-poly(éthylène glycol)-b.
  • Selon une variante, la préparation de la première solution et de la deuxième solution peut être exempte du composé carboné. La gélification du sol à l'étape C) est ainsi accélérée et les surfaces des particules primaires du matériau de formule (II) obtenues en fin d'étape D) ne sont recouvertes d'aucun revêtement carboné.
  • De préférence, la concentration en constituant silicaté dans le premier solvant est déterminée de sorte que plus de 99,0 %, de préférence 100 % de la masse du constituant silicaté est dissoute totalement au sein de la première solution.
  • Par ailleurs, à l'étape A), la préparation de la première solution et/ou la préparation de la deuxième solution comporte la dilution dans le premier solvant, respectivement dans le deuxième solvant d'un constituant phosphaté.
  • De préférence, la concentration en constituant phosphaté est déterminée de sorte que plus de 99,0 %, de préférence 100 % de la masse du constituant phosphaté est dissoute totalement au sein de la première solution et/ou de la deuxième solution. A cette fin, lorsque le constituant phosphaté est au moins partiellement dissous dans le premier solvant, la quantité de premier solvant peut être adaptée à la quantité de constituant phosphaté. Notamment, la quantité de premier solvant croit de préférence avec une augmentation de la quantité de constituant phosphaté. De préférence, dans une variante où le premier solvant est de l'éthanol et le constituant phosphaté est et le triéthylphosphate, le rapport molaire de la quantité de premier solvant sur la quantité de constituant phosphaté est supérieur ou égal à 150. Par exemple, pour fabriquer le matériau de formule (II) avec x=0,2 Mg 0,9 Mn(SiO 4)0,8(PO 4)0,2 avec de l'éthanol et du triéthylphosphate, le rapport molaire de la quantité de premier solvant sur la quantité de constituant phosphaté peut être égal à 150, et pour fabriquer le matériau de formule (II) avec x=0,5 Mg 0,75 Mn(SiO 4)0,5(PO 4)0,5 , le rapport molaire de la quantité de premier solvant sur la quantité de constituant phosphaté peut être égal à 174.
  • De préférence, dans la variante où le premier solvant est de l'éthanol, le constituant phosphaté est et le triéthylphosphate et le constituant silicaté est le tétraéthyl-orthosilicate, le rapport molaire de la quantité de premier solvant sur la somme de la quantité de constituant phosphaté et de constituant silicaté est supérieur ou égal à 40 et inférieur ou égal à 90.
  • Dans un mode de mise en œuvre préféré, le constituant phosphaté est dilué uniquement dans le premier solvant. Autrement dit, selon ledit mode de mise en œuvre, la deuxième solution est exempte du constituant phosphaté. Le produit ainsi obtenu est particulièrement pur, et peut comporter pour plus de 99,0 %, voire plus de 99,9 % de sa masse le matériau de formule (I). Le produit peut comporter, à titre de complément, des impuretés, notamment (Mg, Mn)O et Mn2P.
  • Préalablement à l'introduction du constituant phosphaté dans le premier solvant et/ou dans le deuxième solvant, le procédé peut comporter une étape d'hydrolyse du constituant phosphaté, par exemple dans l'eau et pendant une durée de 24 heures.
  • Le constituant phosphaté est de préférence choisi dans le groupe formé par P4O10, P2O5, H3PO4, un alkyl phosphate tel que OP(OR)u(OH)3-u, avec u = 1, 2 ou 3 et R un groupement organique, et leurs mélanges. De préférence, le constituant phosphaté est le triéthyl-phosphate de formule C 6 H 15 PO 4 .
  • A l'étape A), on prépare en outre une deuxième solution par dissolution, dans un deuxième solvant, d'un constituant comportant Z et d'un constituant comportant M.
  • Le deuxième solvant peut être un solvant polaire, par exemple choisi parmi un alcool, un solvant aqueux, notamment de l'eau et leurs mélanges. De préférence, le deuxième solvant est aqueux, de préférence est de l'eau.
  • De préférence, le constituant comportant Z est un sel inorganique choisi parmi un oxalate, un citrate, un acétate, un sulfate, un nitrate et leurs mélanges. Le constituant comportant Z peut être choisi parmi Z(C2H3O2)u'.n'H2O, Z(C2O4)u'.n'H2O, Z(NO3)u'.n'H2O, Z(SO4)u'.n'H2O, Z(C6H4O7)u'.n'H2O avec u' compris entre 1 et 2 et n' compris entre 0 et 10, et leurs mélanges.
  • De préférence, le constituant comportant M est un sel inorganique choisi parmi un oxalate, un citrate, un acétate, un sulfate, un nitrate et leurs mélanges. Le constituant comportant M peut être choisi parmi M(C2H3O2)u".n'H2O, M(C2O4)u".n"H2O, M(NO3)u".n"H2O, M(SO4)u".n"H2O, M(C6H4O7)u".n"H2O avec u" compris entre 1 et 4 et n" compris entre 0 et 10, et leurs mélanges.
  • Dans un mode de mise en œuvre préféré du procédé de synthèse:
    • Z est le magnésium Mg et le constituant comportant Mg est l'acétate de magnésium hydraté de formule Mg(CH 3 COO)2 .4H 2 O, et
    • M est le manganèse Mn et le constituant comportant Mn est l'acétate de manganèse hydraté de formule Mn(CH3COO)2.4H 2 O
  • De préférence, la concentration en constituant comportant M et la concentration en constituant comportant Z dans le deuxième solvant sont déterminées de sorte que plus de 99,0 %, de préférence 100 % de la masse du constituant comportant M et plus de 99,0 %, de préférence 100 % de la masse du constituant comportant Z respectivement, sont dissoutes totalement au sein de la deuxième solution.
  • En vue d'obtenir des particules primaires faites du matériau de formule (II) recouvertes d'une couche de carbone telle que décrites ci-dessus, la préparation de la deuxième solution à l'étape A) peut comporter la dilution dans le deuxième solvant du composé carboné décrit ci-dessus.
  • De préférence, les concentrations en composant carboné dans le premier solvant et/ou dans le deuxième solvant sont déterminées de sorte que plus de 99,0 %, de préférence 100 % de la masse du composant carboné respectivement, sont dissoutes totalement au sein de la première solution, respectivement de la deuxième solution.
  • Par ailleurs, à l'étape A), pour accélérer la cinétique de gélification du sol à l'étape C), on dissout de préférence un catalyseur dans le premier solvant ou de préférence dans le deuxième solvant. Le catalyseur peut comporter, voire consister en un acide, notamment choisi parmi HCl, HNO3, H2SO4, un acide carboxylique et leurs mélanges. En variante, il peut comporter, voire consister en une base, notamment choisie parmi NH3, NH4OH, NaOH et leurs mélanges. Selon une autre variante, le catalyseur peut être un agent nucléophile, par exemple choisi parmi KF, NH4F et leurs mélanges. De préférence le catalyseur comporte, voire est constitué d'acide acétique.
  • De préférence, la première solution et/ou la deuxième solution sont agitées chacune pendant une durée supérieure à 1 heure, notamment supérieure à 5 heures, par exemple de 6 heures.
  • A l'étape B), on mélange la première solution avec la deuxième solution de manière à former un sol. De préférence, on verse la deuxième solution dans un récipient contenant la première solution de sorte à former le sol. Le mélange à l'étape B) peut être opéré au moyen d'un agitateur, notamment magnétique, afin d'obtenir une solution homogène.
  • L'étape C) de gélification est poursuivie durant une durée de gélification assurant la formation d'un gel à partir du sol. Par gel, on entend un corps présentant une contrainte minimale en dessous de laquelle le corps ne s'écoule pas, contrairement au sol, sauf à avoir été soumis, préalablement à l'application de la contrainte, à une autre sollicitation mécanique.
  • De préférence, aucune sollicitation mécanique autre que la gravité n'est appliquée sur le sol au cours de la gélification.
  • La gélification du sol peut être opérée à une température comprise entre la température de fusion et la température d'ébullition du solvant utilisé. De préférence, la gélification du sol est opérée à une température comprise entre 5°C et 95°C, de préférence entre 20°C et 40°C, de préférence à température ambiante, pendant une durée de l'étape de gélification comprise entre 5 heures et 50 jours, de préférence entre 12 heures et 30 jours, de préférence entre 12 heures et 10 jours. La durée de gélification peut varier notamment en fonction de la présence ou de l'absence de composant carboné dans la première solution.
  • Par ailleurs, le procédé peut comporter une étape C') optionnelle, successive, notamment consécutive, à l'étape C) et préalable à l'étape D) de pyrolyse, l'étape C') consistant à sécher le gel. De préférence, le séchage du gel à l'étape C') est effectué à une température comprise entre 60 et 120 °C et/ou pendant une durée de séchage de 10 jours au plus, et de préférence d'au moins 1 heure, par exemple à 80°C pendant une durée de 7 jours. Le séchage peut être effectué dans un four, sous air ou sous un flux d'un gaz neutre, par exemple de l'argon.
  • Le gel, éventuellement séché à l'étape C'), est ensuite pyrolysé à l'étape D) de sorte qu'en fin d'étape D), on obtient le produit selon l'invention.
  • L'étape D) de pyrolyse peut être conduite dans un four, notamment un four à tube.
  • De préférence, le gel, éventuellement séché à l'étape C'), est pyrolysé à une température de pyrolyse comprise entre 600 °C et 1200 °C et pendant une durée comprise entre 30 minutes et 2 jours, et de préférence sous atmosphère neutre, par exemple sous argon. En particulier, le gel peut être porté à la température de pyrolyse à une vitesse de chauffe comprise entre 0,5 °C/min et 20 °C/min. En variante, le gel peut être pyrolysé au moyen d'un traitement thermique de type « flash », selon lequel la vitesse de chauffe est supérieure à 100 °C/min, voire supérieure à 1000 °C/min.
  • Le procédé peut en outre comporter une étape de refroidissement E), successive à l'étape D) de pyrolyse, au cours de laquelle on refroidit le produit obtenu en fin d'étape D), la vitesse de refroidissement étant de préférence comprise entre 0,5 °C/min et 20 °C/min.
  • EXEMPLES
  • Les exemples non limitatifs suivants sont donnés dans le but d'illustrer l'invention.
  • Dans les exemples, on a employé les matières premières suivantes :
    • de l'acétate de magnésium commercialisé par la société Sigma Aldrich,
    • de l'acétate de manganèse commercialisé par la société Sigma Aldrich,
    • du tétraéthyl-orthosilicate (TEOS) commercialisé par la société Sigma Aldrich,
    • du triéthyl-phosphate (TEP) commercialisé par la société Sigma Aldrich,
    • du Poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) ou PEG-PPG-PEG commercialisé par la société Sigma Aldrich.
  • Par ailleurs, les analyses de diffraction par rayon X ont été réalisées au moyen d'un diffractomètre D8 Advance de marque Bruker, et les tailles des particules primaires des poudres des exemples ont été mesurées au moyen d'images obtenues avec un microscope électronique à balayage LEO 1530 de marque Zeiss.
  • Exemple 1 hors invention
  • Dans un premier bécher, 15 g de PEG-PPG-PEG sont dissous dans 50 ml d'éthanol, sous agitation magnétique. Le bécher est clos lors de l'agitation. Une fois la solution ainsi agitée et devenue homogène, on y ajoute 4,17g de TEOS de sorte à former une première solution. On agite ensuite la première solution au moyen d'un agitateur magnétique pendant 30 minutes.
  • Dans un deuxième bécher, 1 ml d'acide acétique est mélangé dans 13,5 g d'eau, puis 4,27 g d'acétate de magnésium et 4,84 g d'acétate de manganèse sont ajoutés au mélange de sorte à former une deuxième solution. On agite ensuite la deuxième solution au moyen d'un agitateur magnétique pendant 30 minutes.
  • La deuxième solution contenue dans le deuxième bécher est versée dans le premier bécher. Le sol ainsi obtenu est agité pendant 6 heures.
  • Après cessation de l'agitation, un gel est formé dans le premier bécher par gélification du sol après une durée de 4 jours à température ambiante de 25 °C.
  • Le gel est ensuite transféré dans un four où il est séché à une température de 80°C pendant une durée de 7 jours, sous air.
  • Le gel obtenu après séchage est transféré dans un four tubulaire où il est porté à une température de pyrolyse de 900°C à une vitesse de montée en température de 5°C par minute. Il est maintenu sous argon à la température de pyrolyse pendant 24 heures. Après pyrolyse et refroidissement à une vitesse de 5 °C par minute, un produit 5 est obtenu qui est formé de particules primaires 7 de MgMnSiO4, d'une taille comprise entre 20 nm et 30 nm, comme cela peut être observé sur la figure la). Une analyse par diffraction de rayons X de la poudre confirme que le matériau MgMnSiO4 cristallise dans le système orthorhombique de groupe d'espace Pnma, comme cela est confirmé par le diffractogramme 10 de la figure 2. Il présente les paramètres de maille suivants : a=10,4556 Å, b=6,1296 Å et c=4,8102 Å.
  • Une encre est ensuite préparée en mélangeant, en pourcentage en masse, 10 % de carbone super P-C65, 10 % de difluorure de polyvinylidène (PVDF) et 80 % de la poudre de particules. L'encre est enduite sur un feuillard d'aluminium puis est séchée sous vide à 60°C pendant 24 heures. Une électrode est ensuite découpée dans le feuillard d'aluminium recouvert de l'encre ayant séchée. L'électrode est ensuite pressée, puis est séchée sous vide à 80°C pendant 48 heures. Une batterie se présentant sous la forme d'une pile bouton au format CR2032 est fabriquée et comporte l'électrode formant cathode sous la forme d'une pastille de 14 mm de diamètre, et une contre-électrode de lithium (Li) métallique formant anode, sous la forme d'une pastille de 16 mm de diamètre. L'électrode et la contre-électrode sont serties ensemble et logées dans un boîtier métallique. Un séparateur, constitué d'une membrane de marque Viledon de référence FS 2207-2- DA WA et d'une membrane Celgard 2400, est disposé entre l'électrode et la contre-électrode. Les électrodes, contre-électrode et séparateur sont immergés dans un électrolyte liquide constitué d'un solvant formé de trois parts égales de éthyl-carbonate, diéthyl- carbonate et éthyl- méthyl- carbonate, dans lequel est dissous de l'hexafluorophosphate de lithium (LiPF6) à une concentration de 1 mol/l.
  • La batterie est soumise à 41 cycles formés d'une charge galvanostatique suivie d'une décharge galvanostatique, imposés à 25°C entre un potentiel de 1,5 V et 4,5 V vs Li à :
    • un régime de C/10 pendant les 23 premiers cycles, puis à
    • un régime de C/5 pendant les 3 premiers cycles suivants, puis à
    • un régime de 2C/5 pendant les 3 premiers cycles suivants, puis à
    • un régime de 2C pendant les 3 premiers cycles suivants, puis à
    • un régime de 4C pendant les 3 premiers cycles suivants, puis à
    • un régime de 10C pendant les 3 premiers cycles suivants, puis à
    • un régime de C/10 pendant les 3 derniers cycles.
  • L'évolution 12 de la capacité spécifique de décharge du produit de l'exemple 1, exprimée en mAh/g en fonction du nombre de cycles N, est illustrée sur la figure 4.
  • Exemple 2 selon l'invention
  • L'exemple 2 diffère de l'exemple 1 en ce que dans le premier bécher, 7,5 g de PEG-PPG-PEG, 1,67 g de TEOS et 0,36 g de TEP préalablement hydrolysé dans 2,1 g d'eau pendant 24 heures, sont dissous dans 40 ml d'éthanol, sous agitation pendant 30 minutes, de manière à former une première solution.
  • En outre, dans un deuxième bécher, 0,5 ml d'acide acétique est mélangé dans 4,7 g d'eau, puis 1,92 g d'acétate de magnésium et 2,42 g d'acétate de manganèse sont ajoutés au mélange de sorte à former une deuxième solution. On agite ensuite la deuxième solution au moyen d'un agitateur magnétique pendant 30 minutes.
  • Les autres étapes du procédé sont identiques à celles de l'exemple 1.
  • Après pyrolyse, un produit 16 est obtenu qui est formé de particules primaires 17 de Mg0,9Mn(SiO4)0,8(PO4)0,2, d'une taille comprise entre 20 nm et 30 nm, comme observé sur la figure 1b). Une analyse par diffraction de rayons X de la poudre confirme que Mg0,9Mn(SiO4)0,8(PO4)0,2 cristallise dans le système orthorhombique de groupe d'espace Pnma, comme cela est confirmé par le diffractogramme 18 de la figure 2. Il présente les paramètres de maille suivants : a=10,4703 Å, b=6,1406 Å et c=4,7953 Å. Enfin, les impuretés dans le produit de l'exemple 2 ne sont pas détectables par diffraction de rayons X.
  • Une électrode et une batterie sous forme d'une pile bouton sont ensuite préparées au moyen de la poudre de particules de l'exemple 2 selon le protocole décrit à l'exemple 1, à ceci près que l'encre enduite sur le feuillard d'aluminium est séchée à une température de 80 °C.
  • La batterie est soumise à 45 cycles formés d'une charge galvanostatique suivie d'une décharge galvanostatique, imposés à 25°C entre un potentiel de 1,5 V et 4,5 V vs Li à :
    • un régime de C/10 pendant les 23 premiers cycles, puis à
    • un régime de C/5 pendant les 3 premiers cycles suivants, puis à
    • un régime de 2C/5 pendant les 3 premiers cycles suivants, puis à
    • un régime de 2C pendant les 3 premiers cycles suivants, puis à
    • un régime de 4C pendant les 3 premiers cycles suivants, puis à
    • un régime de 10C pendant les 3 premiers cycles suivants, puis à
    • un régime de C/10 pendant les 7 derniers cycles.
  • L'évolution 20 de la capacité spécifique de décharge du produit de l'exemple 2 est illustrée sur la figure 4.
  • Au cours de la première charge galvanostatique, i.e. correspondant à une étape d'oxydation du produit, un matériau de formule (III) selon l'invention MgzMn(SiO4)0,8(PO4)0,2 est formé, z diminuant en fonction du potentiel, avec 0 < z < 0,9. La mesure de la capacité spécifique du produit au cours de la première charge confirme l'oxydation du matériau de formule (II) en matériau de formule (III).
  • Après avoir effectué le premier cycle galvanostatique, i.e. correspondant à une étape d'oxydation suivie d'une étape de réduction, puis au cours des cycles suivants, un matériau de formule (I) selon l'invention LiaMgzMn(SiO4)0,8(PO4)0,2 est formé avec a et z variant en fonction du potentiel, avec 0<a<0,9, 0<z<0,9 et 0<a+z≤0,9. La mesure de la capacité spécifique du produit au cours de la première décharge confirme la réduction du matériau de formule (III) en matériau de formule (I).
  • L'homme du métier sait aisément déterminer les conditions pour obtenir le matériau avec des valeurs de a et z spécifiques. En particulier, il peut choisir un régime galvanostatique de charge/décharge adapté à la cinétique de mobilité des cations. Dans l'exemple 2, au cours du premier cycle galvanostatique, le régime choisi est C/10 à une température de cyclage de 25°C. Le régime peut être augmenté ou diminué, notamment conjointement avec une diminution ou une augmentation respective de la température de cyclage, qui est par exemple comprise entre -20°C et 80°C.
  • Exemple 3 selon l'invention
  • L'exemple 3 diffère de l'exemple 1 en ce que dans le premier bécher, 7,5 g de PEG-PPG-PEG, 1,35 g de TEOS et 0,64 g de TEP préalablement hydrolysé dans 2,1 g d'eau pendant 24 heures sont dissous dans 40 ml d'éthanol, sous agitation pendant 30 minutes, de manière à former une première solution.
  • En outre, dans un deuxième bécher, 0,5 ml d'acide acétique est mélangé dans 4,7 g d'eau, puis 1,76 g d'acétate de magnésium et 2,42 g d'acétate de manganèse sont ajoutés au mélange de sorte à former une deuxième solution. On agite ensuite la deuxième solution au moyen d'un agitateur magnétique.
  • Les autres étapes du procédé sont identiques à celles de l'exemple 2.
  • Après pyrolyse, un produit 22 est obtenu qui est formé de particules primaires 24 de Mg0,825Mn(SiO4)0,65(PO4)0,35, d'une taille comprise entre 20 nm et 30 nm, comme observé sur la figure 1c). Une analyse par diffraction de rayons X de la poudre confirme que Mg0,825Mn(SiO4)0,65(PO4)0,35 cristallise dans le système orthorhombique de groupe d'espace Pnma, comme cela est confirmé par le diffractogramme 26 de la figure 2. Il présente les paramètres de maille suivants : a=10,4908 Å, b=6,1581 Å et c=4,8109 Å. Enfin, les impuretés dans le produit de l'exemple 3 ne sont pas détectables par diffraction de rayons X.
  • Exemple 4 selon l'invention
  • L'exemple 4 diffère de l'exemple 1 en ce que dans le premier bécher, 7,5 g de PEG-PPG-PEG, 1,04 g de TEOS et 0,91 g de TEP préalablement hydrolysé dans 2,1 g d'eau pendant 24 heures, sont dissous dans 40 ml d'éthanol, sous agitation pendant 30 minutes, de manière à former une première solution.
  • En outre, dans un deuxième bécher, 0,5 ml d'acide acétique est mélangé dans 4,7 g d'eau, puis 1,60 g d'acétate de magnésium et 2,42 g d'acétate de manganèse sont ajoutés au mélange de sorte à former une deuxième solution. On agite ensuite la deuxième solution au moyen d'un agitateur magnétique.
  • Les autres étapes du procédé sont identiques à celles de l'exemple 2.
  • Après pyrolyse, un produit est obtenu comportant un matériau de formule Mg0,75Mn(SiO4)0,5(PO4)0,5 qui cristallise dans le système orthorhombique de groupe d'espace Pnma, comme cela est confirmé par le diffractogramme 28 de la figure 4. Le produit comporte en outre des impuretés (Mg,Mn)O et Mn2P, comme cela est visible sur le diffractogramme 28.
  • Exemple 5 selon l'invention
  • L'exemple 5 diffère de l'exemple 1 en ce que dans le premier bécher, 7,5 g de PEG-PPG-PEG, 1,04 g de TEOS et 0,91 g de TEP préalablement hydrolysé dans 2,1 g d'eau pendant 24 heures, sont dissous dans 50 ml d'éthanol, sous agitation pendant 30 minutes, de manière à former une première solution.
  • En outre, dans un deuxième bécher, 0,5 ml d'acide acétique est mélangé dans 4,7 g d'eau, puis 1,60 g d'acétate de magnésium et 2,42 g d'acétate de manganèse sont ajoutés au mélange de sorte à former une deuxième solution. On agite ensuite la deuxième solution au moyen d'un agitateur magnétique.
  • Les autres étapes du procédé sont identiques à celles de l'exemple 2.
  • Après pyrolyse, un produit 28 est obtenu qui est formé de particules primaires 30 de Mg0,75Mn(SiO4)0,5(PO4)0,5, d'une taille comprise entre 20 nm et 30 nm, comme observé sur la figure 1d). Une analyse par diffraction de rayons X de la poudre confirme que Mg0,75Mn(SiO4)0,5(PO4)0,5 cristallise dans le système orthorhombique de groupe d'espace Pnma, comme cela est confirmé par le diffractogramme 32 représenté sur les figures 2 et 6. Il présente les paramètres de maille suivants : a=10,5306 Å, b=6,1691 Å et c=4,8008 Å. Enfin, les impuretés dans le produit de l'exemple 5 ne sont pas détectables par diffraction de rayons X.
  • Exemple 6 selon l'invention
  • L'exemple 6 diffère de l'exemple 1 en ce que dans le premier bécher, 7,5 g de PEG-PPG-PEG et 1,67 g de TEOS sont dissous dans 40 ml d'éthanol, sous agitation pendant 30 minutes, et dans le deuxième bécher, 1,92 g d'acétate de magnésium, 2,42 g d'acétate de manganèse, 0,5 ml d'acide acétique et 0,36 g de TEP préalablement hydrolysé dans 2,1 g d'eau pendant 24h sont dissous, sous agitation pendant 30 minutes dans 4,7 g d'eau, de sorte à former une deuxième solution. Les autres étapes du procédé sont identiques à celles de l'exemple 2.
  • Après pyrolyse, un produit est obtenu qui est formé de particules primaires de Mg0,9Mn(SiO4)0,8(PO4)0,2, d'une taille comprise entre 20 et 30 nm. Une analyse par diffraction de rayons X de la poudre confirme que Mg0,9Mn(SiO4)0,8(PO4)0,2 cristallise dans le système orthorhombique de groupe d'espace Pnma, comme cela est confirmé par le diffractogramme 34 de la figure 3. Le produit comporte des impuretés (Mg,Mn)O et Mn2P.
  • Exemple 7 selon l'invention
  • L'exemple 7 diffère de l'exemple 1 en ce que dans le premier bécher, 7,5 g de PEG-PPG-PEG et 1,35 g de TEOS sont dissous dans 40 ml d'éthanol, sous agitation pendant 30 minutes, et dans le deuxième bécher, 1,76 g d'acétate de magnésium, 2,42 g d'acétate de manganèse, 0,5 ml d'acide acétique et 0,64 g de TEP, préalablement hydrolysé dans 2,1 g d'eau pendant 24h sous agitation magnétique, sont dissous sous agitation pendant 30 minutes dans 4,7 g d'eau, de sorte à former une deuxième solution. Les autres étapes du procédé sont identiques à celles de l'exemple 2.
  • Après pyrolyse, un produit est obtenu qui est formé de particules primaires de Mg0,825Mn(SiO4)0,65(PO4)0,35, d'une taille comprise entre 20 et 30 nm. Une analyse par diffraction de rayons X de la poudre confirme que Mg0,825Mn(SiO4)0,65(PO4)0,35 cristallise dans le système orthorhombique de groupe d'espace Pnma, comme cela est confirmé par le diffractogramme 36 de la figure 3. Le produit comporte des impuretés (Mg,Mn)O et Mn2P.
  • Une électrode et une batterie sont ensuite préparées au moyen de la poudre de particules selon le protocole décrit à l'exemple 1.
  • La batterie est soumise à 14 cycles formés d'une charge galvanostatique suivie d'une décharge galvanostatique, imposés à 25°C entre un potentiel de 1,5 V et 4,5 V vs Li à un régime de C/10.
  • Au cours de la première charge galvanostatique, i.e. correspondant à une étape d'oxydation du produit, un matériau de formule (III) selon l'invention MgzMn(SiO4)0,65(PO4)0,35 est formé, z diminuant en fonction du potentiel, avec 0<z <0,825.
  • Après avoir effectué le premier cycle galvanostatique, i.e. correspondant à une étape d'oxydation suivie d'une étape de réduction, puis au cours des cycles suivants, un matériau de formule (I) selon l'invention LiaMgzMn(SiO4)0,65(PO4)0,35 est formé, a et z variant en fonction du potentiel, avec 0<a<0,825, 0<z<0,825 et 0<a+z≤0,825.
  • L'évolution 38 de la capacité spécifique de décharge du produit de l'exemple 7 est illustrée sur la figure 4.
  • Exemple 8 selon l'invention
  • L'exemple 8 diffère de l'exemple 1 en ce que dans le premier bécher, 7,5 g de PEG-PPG-PEG et 1,04 g de TEOS sont dissous dans 40 ml d'éthanol, sous agitation pendant 30 minutes, et dans le deuxième bécher, 1,60 g d'acétate de magnésium, 2,42 g d'acétate de manganèse, 0,5 ml d'acide acétique et 0,91 g de TEP, préalablement hydrolysé dans 2,1g d'eau pendant 24h sous agitation magnétique, sont dissous, sous agitation pendant 30 minutes dans 4,7 g d'eau, de sorte à former une deuxième solution. Les autres étapes du procédé sont identiques à celles de l'exemple 2.
  • Après pyrolyse, un produit est obtenu qui est formé de particules primaires de Mg0,75Mn(SiO4)0,5(PO4)0,5, d'une taille comprise entre 20 et 30 nm. Une analyse par diffraction de rayons X de la poudre confirme que Mg0,75Mn(SiO4)0,5(PO4)0,5 cristallise dans le système orthorhombique de groupe d'espace Pnma, comme cela est confirmé par le diffractogramme 40 de la figure 3. Le produit comporte des impuretés (Mg,Mn)O et Mn2P.
  • Les exemples 1 à 8 sont notamment caractérisés par le fait que le sol, formé par mélange des première et deuxième solutions, présentent:
    • un rapport du nombre de moles d'eau sur la somme du nombre de moles de TEOS et du nombre de moles de TEP égal à 38,
    • un rapport du nombre de moles d'acide acétique sur la somme du nombre de moles de TEOS et du nombre de moles de TEP égal à 0,874,
    • un rapport du nombre de moles d'éthanol sur la somme du nombre de moles de moles de TEOS et du nombre de moles de TEP compris entre 43 et 87, respectivement égal 43 pour l'exemple 1, égal à 69 pour les exemples 2 à 4 et 6 à 8 et égal à 87 pour l'exemple 5, et
    • un rapport du nombre de moles d'éthanol sur le nombre de moles de TEP compris entre 139 et 347, respectivement égal à 347 pour les exemples 2 et 6, égal à 198 pour les exemples 3 et 7, égal à 139 pour les exemples 4 et 8 et égal à 174 pour l'exemple 5.
  • Les exemples 1 à 8 ont été préparés au moyen d'un composé carboné sous la forme de PEG-PPG-PEG. En variante, ils peuvent être préparés sans apport dudit composé carboné.
  • La comparaison des exemples 2 et 6, 3 et 7, 4 et 8, et 4 et 5 respectivement permet d'établir les constats suivants. La dissolution du TEP dans l'éthanol pour former la première solution au lieu d'une dissolution du TEP dans l'eau pour former la deuxième solution, et un rapport élevé du nombre de moles d'éthanol sur le nombre de moles de TEP dans le sol résulte en un produit présentant une teneur en impuretés particulièrement faible. Les exemples 2, 3 et 5 sont donc préférés aux exemples 4, 6, 7 et 8.
  • Par ailleurs, en ce qui concerne les propriétés électrochimiques du produit selon l'invention, la batterie comportant le produit de l'exemple 2 présente une capacité à la décharge 20, pour un même type de régime de charge/décharge, toujours supérieure à celle 12 de la batterie comportant le silicate de magnésium manganèse MgMnSiO4. Par exemple, après les 23 premiers cycles, la capacité à la décharge du produit de l'exemple 2 est de 80 mAh/g, soit plus de 37 % supérieure à celle de MgMnSiO4, qui est égale à 58 mAh/g.
  • Lors de la première décharge, comme illustré sur la figure 5, la batterie comportant le produit de l'exemple 2 présente une capacité spécifique 42 jusqu'à 30 % supérieure à la capacité spécifique 41 de la batterie comportant le produit de l'exemple 1.
  • En outre, hormis une décroissance initiale au cours des quatre premiers cycles, la capacité à la décharge du produit de l'exemple 2 augmente avec le nombre de cycles pour un même régime de charge/décharge.
  • Le produit de l'exemple 2 est préféré.
  • En ce qui concerne le produit de l'exemple 7, la batterie le comportant présente une capacité de décharge sensiblement identique à celle à base du silicate de magnésium manganèse, bien que le matériau de l'exemple 2 présente une teneur en impuretés supérieure à celle du silicate de magnésium manganèse.
  • Bien entendu, l'invention n'est pas limitée aux modes de réalisation du produit et aux modes de mise en œuvre du procédé présentés dans la présente description.
  • Par ailleurs, sauf indication contraire, une inégalité du type « A supérieur à B », respectivement « A inférieur à B » est considérée strictement. Autrement dit, l'égalité entre A et B est exclue.

Claims (17)

  1. Matériau de structure cristallographique olivine et de formule (I)

            AaZzMm (SiO 4)1-x (PO 4) x

    dans laquelle :
    - A est choisi parmi le lithium, le sodium, le potassium et leurs mélanges,
    - Z est choisi parmi le béryllium, le magnésium, le calcium, le strontium, le baryum et leurs mélanges,
    - M est choisi parmi le fer, le nickel, le cobalt, le manganèse, le chrome et leurs mélanges, le degré d'oxydation de l'élément M étant supérieur ou égal à 2 et inférieur à 4,
    - a, z, m et x sont les coefficients stœchiométriques des éléments chimiques A, Z, M et du groupement PO 4 3
    Figure imgb0027
    respectivement, et remplissent les conditions suivantes :
    0 < a < 1 x 2 ,
    Figure imgb0028
    ∘ 0 < x < 0,8,
    ∘ 0 < m,
    0 < z < 1 x 2 ,
    Figure imgb0029
    et
    a + z 1 x 2 .
    Figure imgb0030
  2. Matériau selon la revendication 1, dans lequel la somme des coefficients stœchiométriques a + z + m est égale à 2 x 2 .
    Figure imgb0031
  3. Matériau selon l'une quelconque des revendications 1 et 2, dans lequel les coefficients stœchiométriques a, z et m sont tels que z = 1 a x 2
    Figure imgb0032
    et/ou m = 1.
  4. Matériau selon l'une quelconque des revendications précédentes, dans lequel le coefficient stœchiométrique a est supérieur à 0,1 × 1 x 2 ,
    Figure imgb0033
    de préférence supérieur à 0,8 × 1 x 2 .
    Figure imgb0034
  5. Matériau selon l'une quelconque des revendications précédentes, dans lequel A est constitué à plus de 99 % de lithium, en pourcentage molaire exprimé sur le nombre total de moles de métal alcalin constituant A, de préférence A est le lithium, et/ou Z est choisi parmi le magnésium, le calcium et leurs mélanges, de préférence est le magnésium, et/ou M est le manganèse.
  6. Matériau selon l'une quelconque des revendications précédentes, dans lequel z < 1, de préférence z < 0,5, de préférence z < 0,1, voire de préférence z < 0,05, mieux z < 0,01, et/ou
    x est inférieur ou égal à 0,5, voire inférieur ou égal à 0,4, voire même inférieur ou égal à 0,25 et/ou supérieur à 0,05, voire supérieur à 0,15, notamment égal à 0,2, et/ou m est compris entre 0,9 et 1,1, de préférence est égal à 1,0.
  7. Produit comportant, pour plus de 50,0 % de sa masse, le matériau selon l'une quelconque des revendications précédentes, le produit se présentant de préférence sous la forme d'une poudre de particules primaires comportant pour plus de 95,0 % de leur masse le matériau selon l'une quelconque des revendications précédentes, plus de 90,0 % en nombre des particules primaires présentant une taille inférieure à 100 nm, par exemple inférieure à 50 nm, par exemple inférieure à 35 nm,
    les particules primaires étant de préférence agrégées ou agglomérées entre elles, formant notamment des particules secondaires,
    et/ou les particules primaires étant notamment recouvertes, de préférence intégralement, par une couche de carbone, dont l'épaisseur est notamment inférieure à 10 nm, par exemple inférieure à 5 nm, par exemple comprise entre 2 nm et 3 nm.
  8. Dispositif choisi parmi une cathode de batterie lithium-ion, une cathode de batterie sodium-ion, une cathode de batterie potassium-ion, une cathode de batterie lithium, une cathode de batterie sodium et une cathode de batterie potassium, le dispositif comportant un produit selon la revendication 7 ou un matériau selon l'une quelconque des revendications 1 à 6.
  9. Procédé de fabrication du matériau de formule (I) selon l'une quelconque des revendications 1 à 6, ledit procédé comprenant au moins les étapes consistant à :
    i. disposer d'un matériau de structure cristallographique olivine et de formule (III) :

            ZzMm (SiO 4)1-x (PO 4 )x,

    obtenu par oxydation d'un matériau de structure cristallographique olivine et de formule (II) :

            Zz'Mm (SiO 4)1-x (PO 4) x

    les éléments chimiques Z et M ainsi que le coefficient stœchiométrique z du matériau de formule (III) et les coefficients stœchiométriques x et m des matériau de formule (II) et matériau de formule (III) étant tels que définis dans l'une quelconque des revendications 1 à 6, les coefficients stœchiométriques z' et x étant tels que 0 < z 1 x 2 ,
    Figure imgb0035
    le coefficient stœchiométrique z' étant en outre tel que z' > z, et
    ii. réduire électrochimiquement ledit matériau de formule (III) en présence d'une électrode source en élément A dans des conditions propices à la formation du matériau de formule (I).
  10. Procédé selon la revendication précédente, dans lequel le matériau de formule (II) forme tout ou partie d'une électrode.
  11. Procédé selon l'une quelconque des revendications 9 et 10, dans lequel la réduction électrochimique est réalisée au moyen d'un milieu électrolytique comprenant une source en élément A, de préférence A étant le lithium, et ledit milieu électrolytique comprenant une source du lithium, en particulier sous la forme d'un composé choisi parmi l'hexafluorophosphate de lithium LiPF6, le perchlorate de lithium LiClO4, l'arsenate de lithium LiAsO4, le tétrafluoroborate de lithium LiBF4, le bis-trifluoromethanesulfonimide de lithium LiTFSI, le bis(oxalato)borate de lithium LiBOB, le bis(fluorosulfonyl)imide de lithium LiFSI, l'hexafluoroarsenate de lithium LiAsF6, le triflate de lithium LiSO3CF3, le trifluoroacetate de lithium LiCF3CO2, l'hexafluoroantimonate de lithium LiSbF6, LiN(CF3SO2)3, LiN(C2F5SO2), et leurs mélanges.
  12. Procédé selon l'une quelconque des revendications 9 à 11, dans lequel le matériau de formule (III) est, préalablement à sa réduction, généré par oxydation électrochimique de l'élément M constitutif dudit matériau de formule (II), ledit matériau de formule (II) étant de préférence oxydé en tant qu'électrode de travail face à une contre-électrode,
    l'oxydation du matériau de formule (II) en matériau de formule (III) et la réduction du matériau de formule (III) en matériau de formule (I) étant de préférence réalisées dans une même cellule électrochimique, et/ou
    l'oxydation du matériau de formule (II) en matériau de formule (III) et la réduction du matériau de formule (III) en matériau de formule (I) étant de préférence réalisées au niveau d'une unique électrode dont lesdits matériaux de formule (II) et (III) en sont consécutivement un composant.
  13. Procédé selon l'une quelconque des revendications 9 à 11, dans lequel ledit matériau de formule (III) est au préalable généré par oxydation chimique du matériau de formule (II).
  14. Procédé selon la revendication 13, dans lequel ladite oxydation chimique met en œuvre au moins un composé oxydant dont le potentiel d'oxydoréduction est supérieur au potentiel d'oxydoréduction du couple M2+/M3+ et/ou du couple M3+/M4+ de l'élément M constitutif dudit matériau de formule (II), le composé oxydant étant de préférence choisi parmi le tétrafluoroborate de nitronium NO2BF4, le persulfate de potassium K2S2O8, l'hexafluorophosphate de nitrosonium NO2PF6, le tétrafluoroborate de nitrosonium NOBF4, le péroxyde d'hydrogène H2O2 et leurs mélanges, et/ou ladite oxydation chimique est réalisée au sein d'un bain liquide contenant au moins ledit matériau de formule (II) et ledit composé oxydant et dans des conditions propices à l'extraction de l'élément Z dudit matériau de formule (II) pour former ledit matériau de formule (III) attendu.
  15. Procédé de fabrication de fabrication du matériau de formule (I) selon l'une quelconque des revendications 1 à 6, ledit procédé comprenant au moins les étapes successives consistant à :
    a) disposer :
    - d'un matériau de structure cristallographique olivine et de formule (II)

            Zz'Mm (SiO 4)1-x (PO 4) x

    dans laquelle les éléments chimiques Z, M ainsi que les coefficients stœchiométriques x et m sont tels que définis dans l'une quelconque des revendications 1 à 6, les coefficients stœchiométriques z' et x étant tels que 0 < z 1 x 2 ,
    Figure imgb0036
    et le coefficient stoechiométrique z' étant tel que z'>z, et
    - d'un matériau alcalin comportant au moins un métal alcalin A choisi parmi le lithium, le sodium, le potassium et leurs mélanges,
    b) maintenir un bain liquide comportant, de préférence constitué par, le matériau alcalin en fusion et le matériau de formule (II) à l'état solide, à une température de maintien et pendant une durée de maintien en température propices à l'insertion du métal alcalin A fourni par le matériau alcalin dans des sites libres de la structure cristallographique olivine du matériau de formule (II) de sorte à former ledit matériau de formule (I),
    c) optionnellement, refroidissement du bain liquide, et
    d) optionnellement, lavage puis séchage.
  16. Procédé selon la revendication précédente, dans lequel le bain liquide est obtenu par fusion partielle d'une charge de départ constituée de particules formées du matériau alcalin et de particules formées du matériau de formule (II), et de préférence intimement mélangées, la fusion partielle étant de préférence opérée à une température supérieure à la température de fusion du matériau alcalin et inférieure à la température de dégradation du matériau de formule (II).
  17. Procédé selon l'une quelconque des revendications 15 et 16, dans lequel le matériau alcalin est un mélange de LiNO3 et LiCl ou un mélange de LiCl et KCl.
EP18208654.6A 2017-11-30 2018-11-27 Matériau silicate phosphate de structure cristallographique olivine Active EP3492426B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1761473A FR3074159B1 (fr) 2017-11-30 2017-11-30 Materiau silicate phosphate de structure cristallographique olivine

Publications (2)

Publication Number Publication Date
EP3492426A1 EP3492426A1 (fr) 2019-06-05
EP3492426B1 true EP3492426B1 (fr) 2020-07-08

Family

ID=61873404

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18208654.6A Active EP3492426B1 (fr) 2017-11-30 2018-11-27 Matériau silicate phosphate de structure cristallographique olivine

Country Status (2)

Country Link
EP (1) EP3492426B1 (fr)
FR (1) FR3074159B1 (fr)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6085015A (en) * 1997-03-25 2000-07-04 Hydro-Quebec Lithium insertion electrode materials based on orthosilicate derivatives
US6815122B2 (en) * 2002-03-06 2004-11-09 Valence Technology, Inc. Alkali transition metal phosphates and related electrode active materials
US20120138867A1 (en) * 2010-11-11 2012-06-07 Phostech Lithium Inc. Carbon-deposited alkali metal oxyanion electrode material and process for preparing same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
FR3074159B1 (fr) 2019-11-22
FR3074159A1 (fr) 2019-05-31
EP3492426A1 (fr) 2019-06-05

Similar Documents

Publication Publication Date Title
KR101093699B1 (ko) 리튬 이차 전지용 바인더, 양극 활물질 조성물 및 이를 포함하는 리튬 이차 전지
KR100778450B1 (ko) 리튬 이차 전지용 음극 활물질, 이의 제조 방법 및 이를포함하는 리튬 이차 전지
KR101241810B1 (ko) 리튬실리케이트계 화합물의 제조 방법, 이 제조 방법에 의해 얻어진 리튬실리케이트계 화합물로 이루어진 리튬 이온 이차 전지용 정극 활물질, 상기 화합물을 포함하는 리튬 이차 전지용 정극 및 리튬 이차 전지
EP2953901B1 (fr) Oxyde mixte de titane et de niobium comprenant un element trivalent
EP2442387B1 (fr) Procédé de synthèse de matériau à base de LIxM1-yM&#39;y(XO4)n
EP1572585B1 (fr) Procede de preparation de composes d&#39;insertion d&#39;un metal alcalin, materiaux actifs les contenant, et dispositifs comprenant ces materiaux actifs
EP1794828B1 (fr) Materiau composite d&#39;electrode negative, procede de fabrication, electrode negative et accumulateur lithium-ion
EP3293147B1 (fr) Matériau silicaté de structure olivine
EP1567452B1 (fr) COMPOSES D&amp;rsquo;INSERTION DU LITHIUM SUBSTITUES AU BORE, MATERIAUX ACTIFS D&amp;rsquo;ELECTRODES, ACCUMULATEURS ET DISPOSITIFS ELECTROCHROMES
EP2757068B1 (fr) Procédé de synthèse d&#39;un composé LiM1-x-y-zNyQzFexPO4 et son utilisation comme matériau d&#39;électrode pour accumulateur au lithium
EP3293148B1 (fr) Procédé de fabrication d&#39;un matériau silicaté de structure olivine
EP3492427B1 (fr) Materiau silicate phosphate de structure cristallographique olivine
EP3492426B1 (fr) Matériau silicate phosphate de structure cristallographique olivine
EP4423327A1 (fr) Composés inorganiques possédant une structure de type argyrodite, leurs procédés de préparation et leurs utilisations dans des applications électrochimiques
WO2021195778A1 (fr) Matériaux d&#39;électrode comprenant un oxyde de sodium et de métal de type tunnel, électrodes les comprenant et leur utilisation en électrochimie
EP3218306B1 (fr) Materiau d&#39;electrode de formule limnxco(1-x)bo3, et son procede de preparation
EP3802460A1 (fr) Céramiques, leurs procédés de préparation et leurs utilisations
WO2014030112A1 (fr) ELECTRODE COMPOSITE Si-Ge ET SON PROCEDE DE FABRICATION

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20181127

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: C01B 25/45 20060101AFI20200120BHEP

Ipc: H01M 4/58 20100101ALI20200120BHEP

Ipc: H01M 4/62 20060101ALI20200120BHEP

Ipc: H01M 4/136 20100101ALI20200120BHEP

Ipc: C01B 33/32 20060101ALI20200120BHEP

Ipc: H01M 10/052 20100101ALI20200120BHEP

Ipc: H01M 4/36 20060101ALI20200120BHEP

INTG Intention to grant announced

Effective date: 20200214

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1288267

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602018005886

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1288267

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200708

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201008

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201009

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201109

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201008

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602018005886

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602018005886

Country of ref document: DE

26N No opposition filed

Effective date: 20210409

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201127

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20221127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221127

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231121

Year of fee payment: 6