EP3490758A1 - Verfahren zum steuern eines endelementes einer werkzeugmaschine und eine werkzeugmaschine - Google Patents

Verfahren zum steuern eines endelementes einer werkzeugmaschine und eine werkzeugmaschine

Info

Publication number
EP3490758A1
EP3490758A1 EP17745129.1A EP17745129A EP3490758A1 EP 3490758 A1 EP3490758 A1 EP 3490758A1 EP 17745129 A EP17745129 A EP 17745129A EP 3490758 A1 EP3490758 A1 EP 3490758A1
Authority
EP
European Patent Office
Prior art keywords
machine tool
workpiece
tool
optical markers
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP17745129.1A
Other languages
German (de)
English (en)
French (fr)
Inventor
Florian Ulli Wolfgang SCHNÖS
Dirk Hartmann
Birgit OBST
Utz Wever
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP3490758A1 publication Critical patent/EP3490758A1/de
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1694Programme controls characterised by use of sensors other than normal servo-feedback from position, speed or acceleration sensors, perception control, multi-sensor controlled systems, sensor fusion
    • B25J9/1697Vision controlled systems
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/401Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for measuring, e.g. calibration and initialisation, measuring workpiece for machining purposes
    • G05B19/4015Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for measuring, e.g. calibration and initialisation, measuring workpiece for machining purposes going to a reference at the beginning of machine cycle, e.g. for calibration
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37555Camera detects orientation, position workpiece, points of workpiece
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39045Camera on end effector detects reference pattern

Definitions

  • the invention relates to a machine tool and a method for controlling an end element of a horrma ⁇ machine.
  • the relative position and orientation needs to Zvi ⁇ rule the workpiece and the tool during the machining process ⁇ tung be measured.
  • static, dynamic and pro- zess influencee forces, which act on the machine structure a ⁇ .
  • temperature changes of the machine structure can also lead to a shift in the relative pose between the tool and the workpiece.
  • An object of the present invention is to provide a method and a machine tool, which allow to control an end member with the highest possible accuracy.
  • the invention relates to a method for computer-aided control of an end element of a machine tool with the following method steps:
  • the terms “perform”, “compute”, “computationally”, “compute”, “determine”, “generate”, “configure”, “reconstruct” and the like preferably to actions and / or processes and / or processing steps that modify data and / or generate and / or convert the data into other data
  • the data is represented in particular as physical quantities or may be present, for example as electrical Impul ⁇ se.
  • the term “computer” should be interpreted as broadly as possible to cover in particular all electronic devices with data processing capabilities. Computers can thus be, for example, personal computers, servers, handheld computer systems, pocket PC devices, mobile devices and other communication devices that can handle computer-aided data, processors and other electronic data processing equipment.
  • a processor can be understood in the context of the invention, for example, a machine or an electronic scarf ⁇ tion.
  • a processor may, in particular, be a central processor (CPU), a microprocessor or a microcontroller, for example an application-specific integrated circuit or a digital signal processor, possibly in combination with a memory unit for storing pro - program commands, etc. act.
  • a processor may, for example, also be an IC (integrated circuit, engl. Integrated Circuit), in particular an FPGA (engl.
  • a processor can be understood as a virtualized processor or a soft CPU. It can also be, for example, a programmable processor which is equipped with configuration steps for carrying out said method according to the invention or is configured with configuration steps in such a way that the programmable processor features the method, the component, the security module or other aspects of the invention and sub-aspects of the invention implemented.
  • a “memory unit” can be understood, for example, as a memory in the form of random access memory (RAM) or a hard disk.
  • a “module” can be understood as meaning, for example, a processor and / or a memory unit for storing program instructions To implement method or a step of the method according to the invention.
  • a "working environment" in particular a robot, can be understood as, for example, a movement space of the robot and / or a working space of the robot.
  • the movement space particularly describes a space, for example of moving elements of the robot, in particular inclusive the end element, can be achieved with the totality of all axis movements.
  • the movement space into account, for example, a special form of the end effector and / or a Handhabungsob ⁇ jekts that can be achieved in particular with those in the work environment.
  • a "working space”, in particular a robot may, for example, be understood as a space formed, in particular, by the interfaces and / or axes of motion and / or an end effector, for example by placing all the principal axes in their respective maximum and maximum axes minimum position is moving.
  • the working chamber is independent of special shape of the end effector and / or the handling object is defined (or these aspects are in the working space is not taken into account).
  • preferential ⁇ example is the movement space at least as large as the Ar ⁇ beitsraum, wherein the movement space even greater can be as the workspace.
  • a "pose” may, for example, be understood to mean a spatial position, wherein the pose designates in particular a combination of position and orientation of an object in space.Particularly, the pose is the combination of position and orientation in three-dimensional space. for example, the Po ⁇ sition a point mass defined in relation to a Cartesian coordinate system, therefore, for example, by the distances along the coordinate directions x, y, z.
  • eccentricity to this ground point for example, a second Cartesian ULTRASONIC coordinate system, as defined, in particular the orientation of this coordinate system, for example by the angular offset of its coordinate axes, in particular with respect to the corresponding axes of the Basiskoordina ⁇ tensystems.
  • three additional angles are necessary, which for example describe the position of the new coordinate system relative to the basic coordinate system.
  • a movable axis for example, a kinematic axis of the work ⁇ generating machine or a component of the machine tool comparable stood may in connection with the invention are.
  • a machine tool, play be ⁇ a robot wherein, said machine tool at ⁇ play, of movable links (arm portions) is built.
  • the members form an open kinematic chain or a parallel kinematics.
  • each arm portion of the machine tool having a movable joint mounted in the kinematic chain to the preceding arm portion of the machine tool.
  • a hinge be understood with the example, the links are connected to each other.
  • the end member with the machine tool can be ver ⁇ connected through a movable axis.
  • no axis with a movable axis intellect n for example, by a Antrei ⁇ ben a tool is created (z. B. a rotary motion of a drill).
  • an end member for example, an end effector, a tool spindle or a tool holder of a machine tool can be understood in the context of the invention, preferably a last or second to last element of a kinematic chain of the machine tool.
  • ⁇ sondere may be an end member for example, a chirurgi ⁇ instrument and / or radiological instrument and / or medical instrument, such as syringes, probes, implants, tubes or the like.
  • a "machine tool” may be, for example, machines for producing workpieces. be understood with tools, such as robots, industrial robots or medical robots. In particular, it can also be a assistie ⁇ render medical robots, which can be used for example to lower support of doctors at the machine tool.
  • a holding and / or guiding and / or feeding for example of surgical and / or radiological instruments and / or medical instruments, such as syringes, probes, implants, hoses or the like, allows. This allows in particular a workpiece, for example in the form of a defined area in or a patient's body to safely meet and relieve the doctor, for example, routine Serving ⁇ possibilities.
  • a "workpiece” can be understood as meaning, for example, a piece of metal to be machined, an electronic component or, in a broader sense, a patient supplied, for example, by a medical robot.
  • the inventive method is particularly advantageous in order to drive the working machine in such a way ⁇ generating means of the first correction value, that in particular a deviation waste is minimized between the first relative pose and the reference pose or possible minimum.
  • the first relative Poste is in particular ⁇ sondere corrected so that remain rich into ⁇ particular unwanted deviations in the machining of the workpiece, for example, within predetermined tolerance range, or as completely as possible prevented.
  • the measuring system costs are significantly reduced.
  • the image-based or optical measurement system may for example be both in a control loop, for example during the operation of the machine tool, a ⁇ be bound setshim- and in particular for the calibration of off-line compensation mechanisms, such as during maintenance of the machine tool by a technician.
  • the method is particularly advantageous in order to meet the ever increasing demands on the speed and energetic efficiency of machine tools.
  • the method according to the invention allows machine tools to be provided in which, in particular, the moving masses are significantly lower than in conventional machine tools, the machine tools nevertheless achieving high precision in the machining of workpieces.
  • disadvantages that arise in the design of work ⁇ convincing machines with small moving masses are compensated.
  • a known disadvantage is in particular a higher compliance of the components.
  • This flexibility results in particular can not be compensated positioning ⁇ errors and thus geometric deviations at a machining of the workpiece.
  • the inventive method for example, greater displacements of the machine structures are tur allowed as these kom ⁇ can be detected and compensated control technology.
  • highly dynamic lightweight machine tools can be realized.
  • the plurality of optical markers are detected by the optical measuring system with a camera system.
  • the method is particularly advantageous in order to detect, for example, the spatial positions of the optical markers or a position of a tool in the end element.
  • the camera system can in particular comprise at least one first camera module and / or a second camera module.
  • the optical measuring system for example the camera system, in particular the first camera system and / or the second Kame ⁇ rasystem, can be fixedly connected for example to the end member by means of Hal ⁇ teiatan or rigidly connected to a tripod in the working environment by means of holding elements.
  • the camera system can be fixed by means of the holding elements un ⁇ movable and fixed to the end member.
  • the Kame ⁇ rasystem is preferably positioned so that it can detect a plurality of optical markers and / or the end member and / or the tool visually.
  • the optical Messsys ⁇ tems on the end member or the housing of the end member is conceivable, in particular the optical markers in the work environment of the machine tool and / or components of the machine tool are attached. It is also conceivable, for example, that some of the components of the machine tool, for example the end element, are exchanged for, for example, certain processing steps.
  • the optical measuring system can be attached to non-exchangeable / remaining components of the machine tool, for example the clamping surface of the machine tool.
  • the optical markers may be attached to the end member (or end members) or its housing.
  • the optical markers are arranged on components of the machine tool and / or the workpiece.
  • the method is particularly advantageous in order to detect the position of the workpiece and / or components relative to the end member.
  • the components of the machine tool In particular, a clamping device for the workpiece
  • At least three optical markers of the plurality of optical markers are attached to one of the components of the machine tool or the workpiece.
  • the method is particularly advantageous in order to detect the position of the workpiece and / or components as high precision as possible.
  • at least three optical markers of a component or of the workpiece, when detecting the plurality of optical markers, are detected by the optical measuring system.
  • first spatial positions are determined on the basis of the optical markers in the working environment.
  • second spatial ⁇ Posi tions are determined for the end member, wherein the second cavities ⁇ Liche positions and / or the first spatial positions are taken into account when determining the first spatial pose.
  • the method is particularly advantageous in order to detect the position of the workpiece and / or components as high precision as possible.
  • the second spatial positions may, for example, be known positions of the optical measuring system.
  • the second spatial positions can also be determined by the optical measuring system, in that the optical measuring system comprises, for example, a position module for position determination and the second spatial positions are read out as required.
  • the second spatial positions even when the measuring optical system can be determined by the measurement optical system such as a tool position, into ⁇ particular via an optical detection is determined.
  • NEN for example, to a tool holder, in particular the tool is held, further optical markers be ⁇ introduced .
  • a first movable axis wherein a position information is determined by a first in-axis sensor module, which is taken into account in determining the first relative pose.
  • the method is particularly advantageous in order to detect the position of the workpiece and / or the components with the highest possible precision, in particular in situatio ⁇ NEN, in which, for example, a direct visual detection, especially a spatial position determination of the workpiece is not possible.
  • a direct visual detection especially a spatial position determination of the workpiece is not possible.
  • This may be the case, for example, if the workpiece is partially covered by the tool of the end element in processing steps such that, in particular, the optical markers of the workpiece can not be detected by the optical measuring system. It may also be that, for example, no optical markers can be attached to workpieces since the workpiece is particularly hot, for example.
  • a second movable axis when controlling the end member is gesteu ⁇ ert with the end member to the machine tool is angeord ⁇ net.
  • the method is particularly advantageous to simply as possible takes place in particular a correction of the first relative pose, so that the first relative pose particular as possible corresponds to the Refe ⁇ renzpose.
  • the first correction value at each joint in an industrial robot, it would be possible to take into account, for example, the first correction value at each joint. In particular, this is relatively expensive, since, for example, a relatively complex movement model of the industrial robot often has to be recalculated.
  • inventive Driving this embodiment, it is particularly possible to take into account the first correction value in particular only in the (second) movable axis, and thus in particular to dispense with a complex model calculation.
  • the opti ⁇ cal measuring system is firmly connected to the end member.
  • the method is particularly advantageous in order to prevent an undesired change in position of the optical measuring system.
  • the measuring system is preferably non-movably ⁇ and / or fixed connected to the end member.
  • the end member is fixedly connected with a tool or the tool is connected via a third movable axis with the end member verbun ⁇ , the third movable shaft is movable in particular in one direction.
  • the method is particularly advantageous, for example to inaccuracies, for example, Zvi ⁇ rule arise the end member and the tool to kompensie ⁇ ren.
  • a simplified model of the end member and of the tool can for example be calculated that the inaccuracies or discrepancies considered by a reference position or another reference pose, in particular to compensate for these inaccuracies.
  • the deviations or inaccuracies are determined, or by another sensor module in the end member, for example in a tool holder for the tool.
  • the simplified model for example, a motion model of an industrial robot is, for example, been simplified, for example, the third mov- axis is preferably movable in one direction only, and thus, for example, relatively simple movements mo be delliert ⁇ .
  • the method is detected by the measuring optical system after completion of the machining of the workpiece by the machine tool first geometry values of the workpiece, wherein a second correction value Toggle handle of the first geometry values and predetermined geometry values is calculated and the second correction value when Ermit ⁇ twelfths of first correction value for a next workpiece ⁇ taken into account.
  • the method is particularly advantageous in order to increase the precision in the machining of the workpiece.
  • higher-order geometry features are detected in one measurement cycle, whereby, for example, a significantly higher measurement speed can be achieved in comparison to the probing of individual points.
  • the measurement for each workpiece, after a predetermined number of finished workpieces or at predetermined times can be performed.
  • the method of the machine tool and / or the end member is controlled by means of the first correction value that as the workpiece is a fixed ⁇ defined area is approached in a patient or the body.
  • the method is particularly advantageous in that in particular a workpiece, for example a workpiece as a defined area in or on the body of a patient, safely with the terminal to meet or approach and relieve the doctor, for example, of routine activities.
  • the first correction value and / or the second correction value are determined as continuously as possible, for. B. at predetermined time intervals that are as short as possible, preferably to account for example the patient's movements and in particular to point a doctor beispielswei ⁇ se on a display device that is ⁇ play, the position of the patient has changed at.
  • this can be significant for operations of significant importance. tion, in which in particular small deviations lead to undesired effects, eg. As injuries of nerves, which lead in particular to paralysis.
  • the invention relates to a STEU ⁇ ervorraumiques for computer-aided controlling a / the end member of a machine tool, comprising:
  • an optical measuring system for detecting one or more optical markers in a working environment of the machine tool
  • a first control module for controlling the end element for machining the workpiece taking into account the first correction value.
  • control device comprises at least one further module or a plurality of modules which are set up to carry out one of the embodiments of the method according to the invention.
  • the invention relates to a machine tool, comprising:
  • an optical measuring system for detecting a plurality of optical markers in a working environment of the machine tool
  • the optical measuring system comprises a camera system for detecting the plurality of optical markers.
  • the machine tool is particularly advantageous to the effect ⁇ way to detect for example, the spatial positions of the optical ⁇ rule marker or a position of a tool in the end member.
  • the camera system may, in particular at least a first camera module and / key comprise a secondthermmo ⁇ dul.
  • the optical measuring system for example the Ka ⁇ merasystem, in particular the first camera system and / or the second camera system is fixedly connected or for example to the end member by means of retaining elements to be rigidly connected to a tripod in the working environment by means Halteele ⁇ elements.
  • the camera system by means of the retaining elements can ⁇ immovably fixed and be attached to the end member.
  • the camera system is preferably positioned so that it can optically detect a plurality of optical markers and / or the end element and / or the tool.
  • the optical measuring system is firmly connected to the end element.
  • the end element is fixedly connected to a tool or the work ⁇ tool is connected via a third movable axis with the end member, wherein the third movable axis is movable in particular in one direction.
  • the machine tool comprises at least one additional module or meh ⁇ eral modules that are configured to carry out one of the embodiments of the inventive method.
  • a variant of the computer program product is claimed with program instructions for configuring a creation device, for example a 3D printer or for creating processors and / or devices, wherein the creation device is configured with the program instructions in such a way that said machine tool and / or control device is created.
  • a provision device for storing and / or providing the computer program product is claimed .
  • the provisioning device is, for example, a data carrier which stores and / or makes available the computer program product.
  • the providing apparatus is, for example, a network service, a computer system, a server system, in particular a distributed computer system, a cloud-based computer system and / or virtual computer system which stores the Computerpro ⁇ program product preferably in the form of a data stream and / or provides.
  • This provision takes place, for example, as a download in the form of a program data block and / or command data block, preferably as a file, in particular as a download file, or as a data stream, in particular as a download data stream, of the complete computer program product.
  • this provision can also take place, for example, as a partial download, which consists of several parts and in particular is downloaded via a peer-to-peer network or made available as a data stream.
  • a computer program product is read into a system using the data carrier providing device and executes the program instructions, so that the method of the present invention is executed on a computer or the authoring device is configured to execute the same the machine tool according to the invention and / or Steuerervorrich ⁇ device created.
  • FIG. 1 shows a flow chart of a first embodiment of the method according to the invention
  • FIG. 2 shows a further embodiment of a machine tool according to the invention
  • FIG. 3 shows a further embodiment of a machine tool according to Inventive ⁇ . 4 shows a further exemplary embodiment of a control device according to the invention
  • the following exemplary embodiments have at least one processor and / or a memory device in order to implement or execute the method.
  • FIG. 1 shows a flowchart of a first embodiment of the method according to the invention.
  • FIG. 1 shows a method for computer-aided control of an end element of a machine tool with a first method step 210 for detecting meh eral optical markers in a working environment of the machine tool by means of an optical measuring system.
  • the method comprises a second method step 220 for determining a first relative pose between the end element and a workpiece based on the plurality of detected optical markers.
  • the method includes a third method step 230 for determining a first correction value based on a Ver ⁇ equalization the first relative pose with a reference pose;
  • the method comprises a fourth method step 240 for controlling the end element for machining the workpiece taking into account the first correction value.
  • a processor is specifically adapted to the program instructions such as threshold ⁇ reindeer, so that the processor performs functions to implement the method according to the invention or at least one of the steps of the inventive method.
  • FIG. 2 shows a further embodiment of a machine tool according to the invention.
  • FIG. 2 shows a machine tool with at least three controllable degrees of freedom.
  • the machine tool comprises a plurality of components example ⁇ , a (camera-based) optical measuring system, a structural ⁇ t pasture 101, a (movable) clamping table 102, a clamping area 103, an end member, a first camera holder 106, a second camera holder 107, clamping means 110 for fixing a workpiece 111, a tool holder 112, and a work 113.
  • generating a plurality of optical markers 114 to the components of the machine tool or the tool is attached piece 111.
  • the end element comprises a tool ⁇ spindle housing 104 and / or a tool spindle 105th
  • the machine tool may additionally comprise a further component or a plurality of further components, such as a processor, a memory unit, an input device, in particular a computer keyboard or a computer mouse, or a monitor.
  • a kinematics of the machine tool allows relative
  • the optical measuring system comprises at least two digital camera modules, for example a first camera module 108 and a second camera module 109.
  • the first camera module 108 is, for example, via a first holding means, for example, the first camera holder 106, with the end member of the machine tool, for example, the work ⁇ imaging spindle 105 or the tool spindle housing 104 verbun ⁇ .
  • the second camera module 109 is for example a two-th holding means, such as the second camera holder 107, with the end member of the machine tool, for example, the tool spindle 105, or the tool spindle housing 104, ver ⁇ prevented.
  • the tool spindle 105 includes the tool holder 112 to receive a tool 113. Between the camera modules 108, 109 and the tool 113, apart from the tool spindle 105, there are preferably no further movable axes.
  • the workpiece 111 is fixed or fastened on the clamping surface 103, for example via the clamping means 110, for example a vise.
  • the clamping table 102 can be over Tere movable axes to be connected to the machine structure 101.
  • Optical markers 114 are distributed in the working environment of the machine tool and the adjoining areas.
  • the opti ⁇ rule markers can be attached 101 directly to the workpiece 111 on the chuck 110, on the rake face 103, the chuck table 102 and the machine structure.
  • at least three optical markers, which are attached to the same component of the machine tool or the workpiece 111 are preferably located in the field of view of the at least two camera modules 108 , 109.
  • a achsintegrators sensor module of these axes for determining the first relative pose between the workpiece 111 and tool 113 or the end member is pulled with zoom in.
  • the described approach may be supplemented by further sensors, for example, Vibrationssenso ⁇ reindeer, which are rated Toggle example, on the tool spindle housing 104th
  • Vibrationssenso ⁇ reindeer which are rated Toggle example
  • the different sensor data for example vibration sensor data of the vibration sensors with optical sensor data
  • high-frequency oscillations can also be well detected and correspondingly used to increase the working accuracy.
  • FIG. 3 shows a further embodiment of a machine tool according to the invention.
  • Fig. 3 shows an industrial robot system.
  • the industrial robot system comprises several components.
  • the components are for example a robot 120, an end element, an optical measuring system, a chuck table 102, a chip surface 103, a tensioning means 110, a tool holder 112, a milling cutter 113, a base frame 121 of the robot 120, a robotic flange 122 at the end member and a fixed mounting part 130 of the holding table 102.
  • the end element comprises a work ⁇ imaging spindle housing and / or a tool spindle 105.
  • the Ro ⁇ boter 120 includes a plurality of movable axes, for example, a second movable axis A2, a fourth movable axis A4, a fifth movable axis A5, a sixth movable axis A6, a seventh movable axis A7 and an eighth be ⁇ wegliche axis A8.
  • the end member by means of the robot ⁇ flange 122 and the second movable axis A2 attached to the robot.
  • the industrial robot system may additionally comprise a further component or a plurality of further components, such as a processor, a memory unit, an input device, in particular a computer keyboard or a computer mouse, or a monitor.
  • the optical measuring system in this exemplary embodiment consists of a first camera module 108 with a first field of view 108a and a second camera module 109 with a second field of view 108b, which are fixedly and immovably fixed to the end element, for example on the tool spindle housing.
  • the tool spindle 105 includes the tool holder 112 to receive a tool 113. Between the camera modules 108, 109 and the tool 113, apart from the tool spindle 105, there are preferably no further movable axes.
  • the fixed workpiece purple is, for example, fixed or fastened on the clamping surface 103 via the clamping means 110, for example a vice.
  • the optical markers 114a, 114b, 114c, 114d are distributed.
  • optical markers 114a, 114b, 114c, 114d can be directly on the stationary workpiece purple and / or on the movable workpiece 111b and / or on the clamping means 110 and / or on the clamping surface 103 and / or the clamping table 102 and / or fixed part 130 may be attached.
  • the first relative pose between the workpiece such as purple the stationary workpiece or the movable workpiece 111b, and the end member or the tool 113 are preferably located at least three optical markers on the same component of the horrma ⁇ machine or the workpiece purple are attached 111b, in the field of view of at least two camera modules 108, 109. If there are, for example, between the measured optical markers 114 and purple the workpiece, 111b first movable axes, a achsintegrators sensor module of these axes to He averaging ⁇ the first relative pose between the Workpiece 111 and tool 113 or the end element used with.
  • vibration sensor data of the vibration sensors with optical sensor data of the optical markers detected by the optical measuring system, in particular high-frequency oscillations can be well detected and used accordingly to increase the working accuracy.
  • 4 shows a further embodiment of he ⁇ inventive control device.
  • FIG. 4 shows a control device for the computerized control of one / of the end element of a machine tool.
  • the control device has an optical measuring system 410, a first calculation module 420, a first control module 430 and an optional first communication interface 404, which are communicatively connected to one another via a first bus 405.
  • the first communication interface is connected with play ⁇ with a machine tool via a communica ⁇ tionsbus.
  • the control device may, for example, in addition a further component or more further components umfas ⁇ sen, such as a processor, a memory unit, an input device, in particular a computer keyboard or a computer mouse, or monitor.
  • the corresponding component (s) may, for example, be communicatively connected to the other modules of the control device via the first bus 405.
  • the optical measurement system 410 is configured to detect one or more optical markers in a work environment of the machine tool.
  • the optical measuring system 410 can be implemented, for example, by means of the processor, the memory unit, one or more camera modules and a first program component, which, for example by executing program instructions, drive the one or more camera modules in such a way that the optical markers are detected.
  • the first calculation module 420 is configured to determine a first relative pose between the end member and a workpiece from the plurality of detected optical markers. Additionally, the first calculation module 420 is configured to determine a first correction value based on a comparison of the ers ⁇ th pose relative to a reference pose.
  • the first computing module 420 may be implemented for example by means of the processor, the memory unit and a second ⁇ Pro program component, which determine for example, by executing program instructions, the relative pose and / or the first correction value.
  • the first control module 430 is configured to control the end member for machining the workpiece taking into account the first correction value.
  • the first control module 430 may be implemented, for example, which drive, for example, by executing program instructions, the end member taking into account the first correction value by the processor, the memory unit, and a third program ⁇ component.
EP17745129.1A 2016-07-26 2017-07-10 Verfahren zum steuern eines endelementes einer werkzeugmaschine und eine werkzeugmaschine Pending EP3490758A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016213663.1A DE102016213663A1 (de) 2016-07-26 2016-07-26 Verfahren zum Steuern eines Endelementes einer Werkzeugmaschine und eine Werkzeugmaschine
PCT/EP2017/067182 WO2018019550A1 (de) 2016-07-26 2017-07-10 Verfahren zum steuern eines endelementes einer werkzeugmaschine und eine werkzeugmaschine

Publications (1)

Publication Number Publication Date
EP3490758A1 true EP3490758A1 (de) 2019-06-05

Family

ID=59409313

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17745129.1A Pending EP3490758A1 (de) 2016-07-26 2017-07-10 Verfahren zum steuern eines endelementes einer werkzeugmaschine und eine werkzeugmaschine

Country Status (6)

Country Link
US (1) US11498219B2 (zh)
EP (1) EP3490758A1 (zh)
JP (1) JP2019526127A (zh)
CN (1) CN109789551B (zh)
DE (1) DE102016213663A1 (zh)
WO (1) WO2018019550A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3510454A4 (en) * 2016-09-08 2020-10-07 Fives Line Machines Inc. PROCESSING STATION, HOLDING SYSTEM FOR WORKPIECE AND METHOD FOR PROCESSING A WORKPIECE
EP3345723A1 (de) * 2017-01-10 2018-07-11 Ivoclar Vivadent AG Verfahren zur steuerung einer werkzeugmaschine
JP6915288B2 (ja) 2017-02-08 2021-08-04 オムロン株式会社 画像処理システム、画像処理装置、FPGA(Field Programmable Gate Array)における回路の再構成方法、および、FPGAにおける回路の再構成プログラム
CN110825026B (zh) * 2018-08-07 2023-02-28 武汉鑫成旌实业有限公司 一种三维图像定位的数控车床及三维图像构建输出方法
EP3685969A1 (de) 2019-01-28 2020-07-29 Siemens Aktiengesellschaft Rechnergestützte optimierung einer numerisch gesteuerten bearbeitung eines werkstücks
DE102019201723A1 (de) * 2019-02-11 2020-08-13 Trumpf Laser- Und Systemtechnik Gmbh Verfahren zum Einrichten einer Werkzeugmaschine und Fertigungssystem
US11270717B2 (en) * 2019-05-08 2022-03-08 Microsoft Technology Licensing, Llc Noise reduction in robot human communication
JP6785931B1 (ja) * 2019-08-30 2020-11-18 Dmg森精機株式会社 生産システム
CN111452043B (zh) * 2020-03-27 2023-02-17 陕西丝路机器人智能制造研究院有限公司 机器人与工业相机手眼标定的方法
CN113400318B (zh) * 2021-07-16 2023-03-24 四川成焊宝玛焊接装备工程有限公司 机器人用户坐标系补偿方法、汽车在线滚边系统及方法
DE102022200461A1 (de) 2022-01-17 2023-07-20 Volkswagen Aktiengesellschaft Verfahren und Robotersystem zum Bearbeiten eines Werkstücks sowie Koordinatensystemmarker für ein Robotersystem
CN115502981B (zh) * 2022-10-25 2024-04-19 华中科技大学 一种基于动柔度分布的机器人铣削进给方向优化方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2679614B2 (ja) 1994-03-24 1997-11-19 村田機械株式会社 モービルロボットのハンド位置決め装置
DE10108547B4 (de) 2001-02-22 2006-04-20 Siemens Ag Operationssystem zur Steuerung chirurgischer Instrumente auf Basis von intra-operativen Röngtenbildern
DE10250326A1 (de) 2001-10-31 2003-05-15 Grob Werke Burkhart Grob Ek Werkzeugmaschine und Verfahren zur Justage der Spindelposition dieser Werkzeugmaschine
DE10237724A1 (de) 2002-08-17 2004-03-11 Bayerische Motoren Werke Ag Vorrichtung zur punktgenauen Zuordnung eines Werkzeugs zu einem Werkstück
DE10239673A1 (de) * 2002-08-26 2004-03-11 Markus Schwarz Vorrichtung zur Bearbeitung von Teilen
DE10249786A1 (de) * 2002-10-24 2004-05-13 Medical Intelligence Medizintechnik Gmbh Referenzierung eines Roboters zu einem Werkstück und Vorrichtung hierfür
DE10251829B4 (de) * 2002-11-07 2007-02-22 Dr. Johannes Heidenhain Gmbh Meßeinrichtung für thermische Drift
US6836702B1 (en) 2003-06-11 2004-12-28 Abb Ab Method for fine tuning of a robot program
DE10345743A1 (de) 2003-10-01 2005-05-04 Kuka Roboter Gmbh Verfahren und Vorrichtung zum Bestimmen von Position und Orientierung einer Bildempfangseinrichtung
JP3733364B2 (ja) * 2003-11-18 2006-01-11 ファナック株式会社 教示位置修正方法
GB2428110A (en) 2005-07-06 2007-01-17 Armstrong Healthcare Ltd A robot and method of registering a robot.
JP4982493B2 (ja) 2005-09-13 2012-07-25 スレッテモエン,グドムン 光機械位置測定器
US8010224B2 (en) 2005-10-27 2011-08-30 Komatsu Industries Corporation Automatic cutting device and production method for beveled product
DE102007055205A1 (de) 2007-11-19 2009-05-20 Kuka Roboter Gmbh Verfahren zum Ermitteln eines Aufstellortes und zum Aufstellen einer Erfassungsvorrichtung eines Navigationssystems
EP2075096A1 (de) * 2007-12-27 2009-07-01 Leica Geosystems AG Verfahren und System zum hochpräzisen Positionieren mindestens eines Objekts in eine Endlage im Raum
JP5549129B2 (ja) * 2009-07-06 2014-07-16 セイコーエプソン株式会社 位置制御方法、ロボット
DE102010006504B4 (de) * 2010-01-28 2013-11-21 Chiron-Werke Gmbh & Co. Kg Verfahren zur Bestimmung der Position eines Werkzeuges
DE102010025601A1 (de) * 2010-06-30 2012-01-05 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren und Vorrichtung zur Bestimmung von Strukturparametern eines Roboters
DE202010008191U1 (de) * 2010-07-30 2010-11-04 Walter Maschinenbau Gmbh Vorrichtung zum Einlernen einer Greifeinrichtung
DE102012014312A1 (de) * 2012-07-19 2014-05-15 Kuka Roboter Gmbh Robotergeführte Messanordnung
WO2014020739A1 (ja) * 2012-08-02 2014-02-06 富士機械製造株式会社 多関節型ロボットを備えた作業機および電気部品装着機
JP6174906B2 (ja) 2013-05-23 2017-08-02 中村留精密工業株式会社 機械の自己診断及び機械精度の補正方法
CN105658167B (zh) * 2013-08-23 2018-05-04 斯瑞克欧洲控股I公司 用来对用于手术导航的坐标转换进行确定的计算机实现技术
DE102014011852A1 (de) * 2014-08-08 2015-03-12 Daimler Ag Verfahren zum Verfolgen wenigstens einer an einem Bauteil vorgesehenen Arbeitsposition für zumindest einen Roboter
JP6126067B2 (ja) * 2014-11-28 2017-05-10 ファナック株式会社 工作機械及びロボットを備えた協働システム

Also Published As

Publication number Publication date
US11498219B2 (en) 2022-11-15
CN109789551B (zh) 2022-07-08
CN109789551A (zh) 2019-05-21
US20190152064A1 (en) 2019-05-23
DE102016213663A1 (de) 2018-02-01
WO2018019550A1 (de) 2018-02-01
JP2019526127A (ja) 2019-09-12

Similar Documents

Publication Publication Date Title
WO2018019550A1 (de) Verfahren zum steuern eines endelementes einer werkzeugmaschine und eine werkzeugmaschine
DE112016002797B4 (de) Kalibriervorrichtung und robotersystem mit einer solchen kalibriervorrichtung
EP3165978B1 (de) Verfahren zur erstinbetriebnahme einer anlage
DE102015015094B4 (de) Kooperationssystem mit Werkzeugmaschine und Roboter
DE102013021917B4 (de) Robotersystemanzeigevorrichtung
DE602006000541T2 (de) Servosteuervorrichtung und Verfahren zur Einstellung eines Servosystems
DE102018213985B4 (de) Robotersystem
DE102010036499B4 (de) Werkzeugvektor-Anzeigevorrichtung für eine Werkzeugmaschine mit Drehachse
DE102018112820B4 (de) Teach-Positionskorrekturvorrichtung und Teach-Positionskorrekturverfahren
DE102015219141A1 (de) Verfahren und Vorrichtung zur Vermessung einer numerisch gesteuerten Werkzeugmaschine
WO2008141608A2 (de) Einrichtung und verfahren zum einmessen von schwenkaggregaten, insbesondere an schneidmaschinen
DE102004026814A1 (de) Verfahren und Vorrichtung zum Verbessern der Positioniergenauigkeit eines Handhabungsgeräts
EP2500148B1 (de) Verfahren und Vorrichtung zum Steuern eines Roboters mit Hilfe eines virtuellen Modells des Roboters
DE102020110252B4 (de) Vibrationsanzeigeeinrichtung, Betriebsprogrammerstellungseinrichtung und System
EP2835702B1 (de) Verfahren zur Vermessung wenigstens einer Rundachse einer Werkzeugmaschine
DE102018218298A1 (de) Bearbeitungssystem
EP3221094B1 (de) Verfahren und system zur korrektur einer bearbeitungsbahn eines robotergeführten werkzeugs
DE102019001207A1 (de) Kollaborativer Roboter und Verfahren zum Betreiben eines kollaborativen Roboters und Verwendung zum Bearbeiten eines Werkstücks
DE102015011535A1 (de) Trajektorie-Anzeigevorrichtung zum Anzeigen von Motorende- und Maschinenende-Trajektorien
DE10393527T5 (de) Systeme und Verfahren zur Darstellung komplexer n-Kurven für die Direktsteuerung einer Werkzeugbewegung
DE102014014524A1 (de) Werkzeugbahnanzeigevorrichtung, mit einer Anzeigeeinheit für Bahndaten
DE10349361A1 (de) Verfahren und Vorrichtung zum Positionieren eines Handhabungsgeräts
DE102012022190B4 (de) Inverse Kinematik
DE102018205443B4 (de) Steuerungssystem einer Werkzeugmaschine
DE102018124595A1 (de) Vorrichtung zur Erfassung einer Position und Lage eines Endeffektors eines Roboters

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190116

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20201105

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20240227