EP3489762B1 - Système d'entretien pour pièce d'horlogerie - Google Patents
Système d'entretien pour pièce d'horlogerie Download PDFInfo
- Publication number
- EP3489762B1 EP3489762B1 EP17203337.5A EP17203337A EP3489762B1 EP 3489762 B1 EP3489762 B1 EP 3489762B1 EP 17203337 A EP17203337 A EP 17203337A EP 3489762 B1 EP3489762 B1 EP 3489762B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- cam
- wheel
- inertial mass
- control
- impulse
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000010355 oscillation Effects 0.000 claims description 43
- 230000005540 biological transmission Effects 0.000 claims description 40
- 230000000903 blocking effect Effects 0.000 claims description 11
- 230000000694 effects Effects 0.000 claims description 6
- 238000012423 maintenance Methods 0.000 description 21
- 239000000523 sample Substances 0.000 description 12
- 230000007704 transition Effects 0.000 description 12
- 230000033001 locomotion Effects 0.000 description 11
- 229940082150 encore Drugs 0.000 description 6
- 230000007246 mechanism Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 4
- 238000004804 winding Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 230000001360 synchronised effect Effects 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 229910003460 diamond Inorganic materials 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- 210000003739 neck Anatomy 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 230000001960 triggered effect Effects 0.000 description 2
- 108010010803 Gelatin Proteins 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 210000003423 ankle Anatomy 0.000 description 1
- 210000003323 beak Anatomy 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000011090 solid board Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B15/00—Escapements
- G04B15/06—Free escapements
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B17/00—Mechanisms for stabilising frequency
- G04B17/20—Compensation of mechanisms for stabilising frequency
- G04B17/26—Compensation of mechanisms for stabilising frequency for the effect of variations of the impulses
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B17/00—Mechanisms for stabilising frequency
- G04B17/32—Component parts or constructional details, e.g. collet, stud, virole or piton
Definitions
- the present invention relates to the field of watchmaking. It relates more particularly to a maintenance system for a watch movement.
- the aim of the invention is therefore to provide a maintenance system for a timepiece in which the aforementioned defects are at least partially overcome.
- a first aspect of the invention relates to a system for maintaining an oscillator for a timepiece such as a wristwatch or pocket watch, this oscillator comprising an inertial mass such as a balance arranged for oscillate under the effect of a restoring force provided by an elastic element such as a spiral spring.
- the inertial mass can be a tuning fork (the arms of which also constitute the elastic elements) or any other suitable construction.
- This system comprises an impulse wheel intended to be in direct or indirect kinematic connection with an energy source such as a mainspring housed in a barrel, the impulse wheel being arranged to supply impulses to said inertial mass in order to to maintain it in oscillation, as well as a locking member arranged to block and sequentially release said impulse wheel directly or indirectly.
- an energy source such as a mainspring housed in a barrel
- the impulse wheel being arranged to supply impulses to said inertial mass in order to to maintain it in oscillation, as well as a locking member arranged to block and sequentially release said impulse wheel directly or indirectly.
- said system further comprises a control wheel arranged to control said blocking member to block and release said impulse wheel in synchronism with the oscillations of said inertial mass, as well as a transmission member arranged to driving said control mobile in rotation at a rate of one step in a (single) predetermined direction by oscillation of said inertial mass.
- the time counting is dissociated from the cog linking the energy source to the impulse wheel, commonly called the “finishing cog", which improves the chronometric properties of the system since there is less disturbance of the oscillations. of inertial mass.
- said control mobile comprises at least one control cam which cooperates in particular indirectly with said impulse wheel, for example by means of a lever comprising a feeler arranged to cooperate with said cam, as well as at least one blocking element arranged to block and to release said impulse wheel under the control of said cam.
- This locking element can be for example a fork or a trigger whose angular position is controlled by said control cam, which rotates in discrete steps always in the same direction of rotation.
- said transmission member is a lever or a beam arranged to cooperate with said control wheel set as well as with said inertial mass, in particular with an element carried by the latter.
- An element integral with the inertial mass can thus drive the rocker or beam once by oscillation, this drive being transmitted to the control mobile in order to make it pivot.
- a display can be arranged to be driven either by said transmission member and / or by said control mobile.
- the display can be arranged to be driven by an energy source under the control of an element carried by said transmission member, or by said control wheel, or by the inertial mass.
- these displays are not driven by the finishing gear train, which can therefore present gear ratios adapted exclusively to the drive of the impulse wheel in order to maximize the efficiency and the power reserve of the system.
- the figure 1 schematically illustrates a first embodiment of a maintenance system 1 according to the first aspect of the invention.
- all the figures are purely schematic, are not to scale, and serve to illustrate the operation of the various variants of the invention in a clear manner.
- some elements have been represented with a relative size which is larger than in reality, some others with a smaller relative size.
- an arrangement of two elements in two different planes is made evident by means of overlaps of these elements.
- Those skilled in the art know how to size, shape and position the elements so that the system 1 operates correctly as described below, which also applies to the level of conventional kinematic chains which have been shown schematically by arrows.
- any direction, orientation etc. mentioned below is to be considered in relation to the representations of the figures.
- components performing a similar function have been indicated by the same reference signs, even if they are structurally different, in order to make these similar functionalities appear more clearly.
- the maintenance system 1 shown in figure 1 is arranged to maintain an inertial mass 3 in oscillation, such as a balance associated with a return spring (not shown), such as a spiral spring, in a known manner.
- the inertial mass 3 and its return spring may be integral or may be separate elements.
- the inertial mass 3 is thus arranged to perform oscillations on either side of a neutral position.
- the inertial mass can be a tuning fork or the like.
- the system 1 comprises an impulse wheel 5, which is in kinematic connection with an energy source 7 such as a barrel, an electric motor or the like, by the 'intermediary of a finishing gear 8.
- the fifteen teeth 5a of the impulse wheel 5 are arranged to enter the path of an impulse paddle 9 carried by a plate 11 integral in rotation with the inertial mass 3, in order to transmit force to the latter as generally known in the context of a detent escapement.
- the number of teeth 5a can be chosen at will. It is also possible to interpose a constant force system between the impulse wheel 5 and the energy source 7 and / or one to integrate a winding system of equality in the impulse wheel 5. It is It is also possible that the impulse wheel 5 cooperates indirectly with the impulse paddle 9, for example by means of an ad hoc lever.
- the impulse wheel 5 is integral in rotation with a locking wheel 13, which cooperates with a locking member in the form of a lever 12 comprising a fork 15 at one of its ends, the latter being arranged to lock and release the locking wheel 13 when the fork 15 oscillates from one extreme angular position to the other.
- the fork 15, as well as the shape of the teeth of the locking wheel 13 are purely illustrative, and various other solutions are also possible. For example, one could use a trigger instead of a fork 15, and the trigger or the fork 15 can alternatively cooperate directly with the teeth 5a of the impulse wheel.
- the fork 15 is controlled to pivot about its axis of rotation 15a by a control wheel 16.
- the control mobile 16 comprises a control cam 19 which is followed by a feeler 15b that includes one end of the fork 15 under the action of a return spring 14.
- the control cam 19 rotates, the fork 15 oscillates between two extreme angular positions, as is well known and will follow clearly below.
- the control cam 19 has three bearings with a lower radius, as well as three bearings with a greater radius, in order to control the oscillation of the fork 15, the shape of the control cam 19 being chosen in such a way. that the probe 15b can change bearings when the control cam 19 rotates.
- the cam 19 is integral in rotation with a control wheel 21, comprising a number of teeth which is an integer multiple of the number of sections of the cam 19.
- the cam 19 comprises three sections with a larger radius and three sections with a smaller radius (six sections in total), and the drive wheel 21 has 12 teeth. Consequently, the fork 15 will pass from one of its extreme angular positions to the other when the control wheel 21 has turned by an angle corresponding to two steps of its toothing.
- the control wheel 21 can be positioned by a jumper, friction or other means (not shown) to ensure that it does not rotate inadvertently. In the variant illustrated, the control wheel 21 has twelve teeth, but the manufacturer can choose the number of the latter according to his needs.
- the control wheel 21 is rotated by a transmission member 23, which is arranged to transmit the pulses received from the inertial mass 3 to the control wheel 21, each pulse driving the latter at the rate of one step (or d 'a tooth).
- the transmission member 23 is a beam, a first end 23a of which is arranged to penetrate into the teeth of the control wheel 21 and to cooperate with its teeth in order to advance the wheel 21 in steps. of a tooth, and a second end 23b of which is arranged to be driven by a finger 25 (or ankle) carried by an additional plate 27 integral in rotation with the inertial mass 3.
- the two plates 11, 27 are arranged to position the impulse paddle 9 and finger 25 in different planes, and may be integral with each other.
- the transmission member 23 is guided by an ad hoc guide 29, such as for example a guide based on flexible pivots (hereinafter “flexures”).
- ad hoc guide 29 such as for example a guide based on flexible pivots (hereinafter “flexures”).
- Such guides (such as necks, flexible blades, etc.) are known, in particular in the work Design of flexible guides, Simon Henein, Meta Collection, Presses polytechniques et understanding romandes, 2001 , from which the manufacturer can choose a guidance that meets his needs. Therefore, it is not necessary to describe the guidance here except for what refers to its properties. These will follow clearly thereafter.
- the system 1 is integrated into a movement comprising two displays, a first display 31 driven in a conventional manner from the finishing gear 8, and a second display 33 driven from the mobile control unit 16, which comprises an additional wheel 35 provided for this purpose. Either of these displays 31, 33 can be omitted.
- the various elements are not represented to scale.
- the second display 33, the transmission member 23, the control mobile 16 as well as the part of the fork which interacts with the latter are of size and inertia reduced compared to conventional watch components, and can thus have dimensions (diameter, length) in the plane of the system 1 which are for example less than 2.5 mm.
- they can be constructed not only of metal, alloy or composite, but advantageously also of non-metallic material, such as for example polymer, silicon, silicon oxide, silicon nitride, silicon carbide, alumina in all its forms. , natural or synthetic diamond, or combinations of these materials (for example silicon coated with another material mentioned). These materials can be non-magnetic.
- flexible guides (where appropriate) and / or bearings comprising contact surfaces of natural or synthetic diamond, or any other self-lubricating material can be used.
- the impulse wheel 5 is blocked by a blocking member.
- the latter is a beak formed by the branch of the fork 15 which is closest to the inertial mass, and the latter is in the process of pivoting in the counterclockwise direction.
- the control mobile 16 is at rest, and at the next step, the probe 15b will transit from a low bearing to an upper bearing of the control cam 19.
- the finger 25 is almost in contact with the second end 23b of the transmission member 23 which is in its rest position, and the impulse vane 9 has just entered the path of the teeth 5a of the impulse wheel.
- the transmission member 23 has been moved axially by the finger 25 so that its first end 23a has cooperated with a tooth of the control wheel 21 and has driven the latter (as well as the entire control wheel 16 ) in the counterclockwise (according to the orientation of the figures).
- the control mobile 16 is thus between two stable states, and the probe 15b has just mounted on a top bearing of the control cam 19.
- the flexibility of the flexible guide 29 perpendicular to the axis of the transmission member 23 allows its first end to rise to allow the next tooth of the control wheel 21 to position itself.
- the figure 3 illustrates the situation when the control mobile 16 has reached its next stable orientation, in which it has been positioned by the jumper (or similar) not shown.
- the impulse wheel 5 is again blocked by the other nose of the fork, in a manner similar to a conventional anchor.
- the path of the impulse paddle 9 is again free.
- the inertial mass 3 continues its course in the counterclockwise direction, ends its alternation, and returns back in the clockwise direction.
- the curved shape of the rear face of the finger 25 is adapted so that, when it comes into contact with the transmission member 23 during its clockwise travel, the latter is slightly raised in order to allow the finger 25 to pass, without disturbing the oscillation of the inertial mass 3.
- the flexible guide 29 is also arranged to allow this lifting of the transmission member 23.
- the control cam 19 ensures that the fork 15 changes state and releases the impulse wheel 5 one oscillation out of two of the inertial mass: in fact, the system is designed so that the cam of control 19 does not cause a change in position of the fork 15 at the next rotation of 1/12 of a revolution of the control mobile following the following oscillation, given that the probe 15b remains on the same level of the cam 19.
- the maintenance system 1 becomes more efficient, the power reserve of the movement increases, and the oscillations of the inertial mass 3 are less disturbed, which can improve the isochronism of motion. However, the oscillation amplitude of the inertial mass 3 is reduced accordingly.
- the figure 4 illustrates a variant of the arrangement of figures 1 to 3 , which differs from the latter mainly in that the transmission member 23 is mounted to tilt about a pivot point 23c. Consequently, when the finger 25 actuates the transmission member 23, its free end 23d cooperates with a tooth of the control wheel 21 in the same way as in the variant of figures 1 to 3 .
- the transmission member 23 comprises a flexible part 23e arranged to allow the free end 23d to pivot relative to the rest of the transmission member 23.
- This flexible part can be a flexure (for example a neck or a flexible blade allowing articulation in the plane of the member 23), or a hinge associated with a elastic element of ad hoc return.
- a second flexible part 23f is provided and allows the part intended to cooperate with the finger 25 to retract into the plane of the transmission member 23 following the passage of the finger 25 in said direction of rotation.
- the control cam 19 is a constant radius cam, the shape of the teeth of the locking wheel 13 as well as the shape of the fork 15 being arranged so as to allow a tooth of the locking wheel 13 to escape. following one rotation out of two of the control mobile 16.
- the same form of cam 19 as illustrated in the figures 1 to 3 can also be used.
- the figure 5 illustrates another variant which varies from that of figures 1 to 3 as following.
- the control cam has six tips, and is shaped like a Star of David.
- the fork 15 again comprises a single cam sensor 15c which is maintained in contact with the cam 19 by means of a return force exerted by an elastic return element 15d.
- the display device 31 is not driven by the finishing gear train, which is dedicated exclusively to driving the impulse wheel.
- the display 31 is driven by means of a secondary gear train 37, which comprises a secondary energy source 39, such as a barrel, as well as a blocking mobile 41 driven by said energy source.
- the blocking mobile comprises two fingers 41a, which are blocked and released by a blocking lever 43 which controls the release of energy from the secondary energy source in order to drive the display 31.
- the latter is subjected to a restoring force provided by an ad hoc elastic element 43a (or any element known to perform a return function), which serves to keep the lever in contact with a stop 43b, and which exerts sufficient force to lock the mobile locking device 41.
- said return force has been adapted so that said lever 43 can be lifted by means of an element integral in rotation with the inertial mass 3.
- this element is a pin 45 carried by the rim of the inertial mass 3, but may alternatively be the impulse paddle 9, the finger 25, or any other suitable member.
- One end 43c of the locking lever 43 is shaped to interact with the pin 45, and in the illustrated variant, it is curved and takes place in the path of the pin 45 so that, at each alternation of the inertial mass 3, the lever 43 is rotated and releases a finger 41a of the locking mobile 41.
- the elastic return element 43a ensures that the lever 43 returns to its position against the stop 43b before the next finger 41a comes into contact with the latter to again block the blocking mobile 41.
- the two energy sources 7, 39 as well as the cogs 8, 37 can be optimized for their respective roles. It should be noted in particular that the elements of the secondary gear 37 can have a significantly reduced size compared to a conventional finishing gear, as mentioned above in the context of figures 1 to 3 .
- the figure 6 further illustrates a variant of a system 1 according to the first aspect of the invention, which is based on that of figures 1 to 3 .
- This variant differs mainly in that the display device 31 is driven by a wheel 47 driven by a retractable finger 23g carried by the transmission member 23.
- This finger is arranged to drive the wheel 47 at the rate of one step in clockwise on each oscillation of the inertial mass 3, when the finger 25 pushes the transmission member 23 to the left.
- the wheel 47 is of course positioned by means of a jumper, a friction or the like (not shown).
- control cam 19 can be chosen according to the needs of the manufacturer, for example by using one of the shapes mentioned above.
- the figure 15 further illustrates a variant of a system 1 according to the first aspect of the invention.
- the display 31 is driven by its own energy source 39, as is the case in the variant of the figure 5 .
- this drive is controlled by means of a trigger system 111.
- the trigger lever 113 is actuated by means of a plurality of elements 45 (such as for example pins, fingers, or teeth) that comprises the control wheel 16. In doing so, each time the latter is actuated, the detent lever 113 is lifted which releases the detent wheel 115 at a rate of one step, which subsequently causes the display 31.
- the detent lever 113 can be arranged to be controlled by the teeth of the control wheel 21, or by an element carried by the transmission member 23.
- FIGS 7 , 8a and 8b illustrate an embodiment of a system 1 which is again based on that of figures 1 to 3 which is not only according to the first aspect of the invention, but is also according to a second aspect not forming part of the present invention.
- the control cam 19 is formed by a stack of two sub-cams 17a, 17b (see figures 8a and 8b ) coaxial and each having a different number of points.
- the lower sub-cam 17a has three points, and will therefore control the triggering of a pulse one oscillation out of two of the inertial mass as is the case in the figures 1 to 3 .
- the upper sub-cam 17b has six points, which will therefore trigger a pulse on each oscillation of the inertial mass 3. By choosing the desired sub-cam, the pulse rate given to the inertial mass 3 can be determined. . It should also be noted that it is possible to provide more than two sub-cams.
- the single cam sensor 15c is movable vertically, that is to say parallel to the axis of the cams 17a, 17b, thanks to a flexible part 15f that comprises the fork 15.
- This flexible part 15f is adapted to give sufficient rigidity in the plane of the fork 15 so that the latter functions correctly as regards the blocking and the release of the impulse wheel 5, but exhibits a lower rigidity in the direction perpendicular to said plane. In doing so, the probe 15c can come into contact with one or other of the sub-cams 17a, 17b, and can thus take information on one or the other of the latter.
- the flexible part 15f can for example be formed by a flexible blade perpendicular to the plane of the fork 15, and can also be arranged so that, in an unstressed state, the cam sensor 15c is in contact with one or the other. other of the sub-cams 17a, 17b, as shown in the figure 8a , which shows the probe 15c in contact with the lower sub-cam 17a when the flexible part 15f is at rest and is not constrained.
- actuating means 49 are provided.
- these means 49 are a flexible fork which includes the part located between the flexible part 15f and the cam sensor 15c.
- the actuating means 49 can be moved along an axis substantially parallel to the axis of the sub-cams 17a and 17b following a manual action on the part of the user, or automatically under the control of a function of the watch movement. in which the system is integrated, which will make it possible to move the cam sensor 15c in the direction of the upper sub-cam 17a, in the situations where this proves to be possible (see below).
- the shape of the two cams has been chosen to allow the probe 15c to rise from the lower sub-cam 17a towards the upper sub-cam 17b, at the places where the radii of the two sub-cams are substantially identical.
- This situation arises by arranging the spokes of the two sub-cams 17a, 17b in an identical manner at the mid-points located midway between the points of each cam, three of these mid-points of the upper sub-cam 17b with six points being superimposed on the midpoints of the lower three-pointed sub-cam 17a.
- These coincident midpoints consequently form transition positions, where the probe 15c can move up or down without causing the fork 15 to pivot in its plane, and therefore without triggering a pulse. It goes without saying that other forms of cams which meet these needs are also possible.
- the figure 8b illustrates the situation after such a transition, the probe 15c being in contact with the upper sub-cam 17b.
- the flexible part 15f of the fork is flexed, and depending on the arrangement of the actuating means 49, the distal part of the fork can move parallel (as illustrated), or can tilt.
- the illustrated shape of the cams only allows a transition at the transition positions since the tips of the upper cam 17b do not overlap. not at the tips of the upper cam 15a blocks a transition to any other orientation of the sub-cams 17a, 17b. However, this is not the case during a transition in the other direction.
- a security system 51 is provided.
- the latter consists of a safety wheel 53 comprising a plurality of notches 53a aligned with the aforementioned transition positions, as well as a plurality of lugs 53b interposed between the notches 53a.
- This safety wheel 53 cooperates with a safety finger 55 integral with the cam sensor 15c.
- the transition of the cam probe 15c cannot take place outside the transition positions, and the actuating means 49 have adequate elasticity so as not to exert too much force on the safety wheel 53 if a transition is controlled when the control mobile 16 is not in a transition position.
- the actuating means 49 can be controlled manually, for example by being in kinematic connection with an operating member such as a push button, a lever or the like located outside the watch case, or can be controlled automatically.
- the actuating means 49 could be controlled from a control system of a chronograph, in order to increase the rate of pulses transmitted to the inertial mass 3 when the chronograph is started. In doing so, it is possible to avoid the reduction in the amplitude of the inertial mass 3 which typically occurs when the chronograph is engaged and increases the torque load which the finishing gear 8 must provide.
- the figure 9 illustrates another variant of the control mobile 16 which makes it possible to vary the pulse rate. Only the command mobile 16 as well as the elements interacting directly with the latter are shown, the other components of the system being according to one of the variants of figures 1 to 6 .
- control wheel 21 is provided with a sun wheel 57 which acts as the first input of a differential planetary gear, the control cam 19 of which is integral in rotation with a sun gear 61 acting as an output.
- the planetary gear also comprises a planet carrier 59 acting as a second input, which is mounted idle on the axis connecting the sun gear 61 and the control cam 19.
- the planet carrier 59 carries at least one set of planet gears. 63 integral in rotation with one another, and one of which meshes with the sun wheel 57, respectively with the sun gear 61 in a known manner.
- the planet carrier 59 can be locked or released in rotation by actuating means 49, shown schematically by arrows.
- these means 49 can be for example a clamp, a locking lever the end of which penetrates into an external toothing which the planet carrier 59 comprises, or any other suitable means.
- the planet carrier 59 When the planet carrier 59 is free, it is kinematically linked to the sun gear 57 by means of a limited torque clutch 65 such as a pawl which it carries and which cooperates with the teeth of the sun wheel 57.
- a friction connection 66 can be provided instead of a pawl 65 (see figure 10 ). In this state, when the control wheel 21 rotates, the planet carrier 59 as well as the sun gear 61 are integral in rotation with the latter. Therefore, the transmission ratio between the drive wheel 21 and the drive cam 19 is 1: 1.
- the sun gear 61 (the output) has fewer teeth than the sun wheel 57 (the input), in particular half of the latter, and therefore the angular speed of the control cam 19 is twice that of the control wheel 21. If the control cam 19 has three points, it has the same effect as the six point cam of the figure 7 when the planet carrier 59 is blocked, which has the effect of doubling the pulse rate compared to the case where the planet carrier 59 is free.
- the actuation rate of the fork 15, and thus that of the pulses, can be varied by locking or unlocking the planet carrier 59.
- the figure 10 represents a variant of the mechanism of figure 9 , in which the limited torque clutch 65 is a friction washer 66 disposed between the planet carrier 59 and the sun gear 57 which serves to link these two components in rotation when the planet carrier 59 is free.
- the control cam 19 is no longer integral in rotation with the output 61 of the planetary gear, but is mounted on another wheel 67 which meshes with a pinion 69 which is integral in rotation with said output 61.
- the gear ratio between the control cam 19 and the control wheel 21 is chosen so that the input of pulses remains synchronous with the oscillations of the inertial mass 3.
- the figure 11 illustrates a variant based on that of figure 6 , which allows the pulse rate to be varied independently.
- the inertial mass 3 comprises an actuating element 71, which is represented by a pin 71 integral with the rim of the inertial mass 3.
- this actuating element 71 can be carried by a solid board in rotation of the inertial mass 3, or its functionality can simply be taken up by the finger 25.
- This actuating element 71 cooperates with a release lever 73, as described below.
- the latter is pivotally mounted on a frame member about a pivot point indicated by 73a, and the guide system 29 of the transmission member 23 is arranged to allow lifting of its end which interacts with the wheel. command 21.
- This arrangement effectively allows for negative feedback control over the amplitude of oscillation of the inertial mass.
- the interaction between the actuator 71 and the release lever 73 cancels the input of pulses to the inertial mass 3 when the amplitude is greater than the predetermined threshold.
- the amplitude of the inertial mass 3 decreases until the moment when its amplitude becomes less than that defined by said threshold.
- the actuating element 71 no longer cooperates with the disengaging lever 73, and the pulses start again until the moment when the oscillation amplitude again exceeds said threshold, at which time the pulses are at again canceled.
- the amplitude of the inertial mass 3 is thus maintained in a relatively narrow range, and this independently of the torque supplied by the finishing gear 8, this torque varying due to the engagement or release of additional mechanisms such as control mechanisms. chronograph.
- the system is thus self-regulating.
- the rotation of the finishing gear train is no longer synchronous with the oscillations of the inertial mass, and that consequently the display 31 is driven by the wheel 47 driven by a retractable finger 23g carried by the transmission member 23, as is the case in the figure 6 .
- the shape of the teeth of wheel 47 is chosen such that the latter is driven regardless of whether the transmission member 23 is in the “normal” position or in the “disengaged” position.
- a gear train dedicated to this training and having its own motor source or its own power take-off on the barrel which is triggered by the movements of the transmission member 23 or of the inertial mass 3.
- this is a trigger system in which the trigger is raised each time the transmission member 23 is actuated (as is the case in the variant of the figure 15 ), or by an ad hoc body which is driven by the inertial mass 3.
- the figure 12 illustrates yet another embodiment according to a second aspect not forming part of the invention.
- the input of the pulses is delocalized from the finishing gear 8.
- the latter extends from the energy source 7 to a detent wheel 75, which is blocked by a detent lever 77, which has been shown schematically but which can take a conventional form ensuring that, on each actuation of the lever 77, the detent wheel advances at the rate of one pitch of its toothing under the control of an ad hoc member 79 integral in rotation with the inertial mass 3.
- This member 79 has been represented by a pin fixed to the rim of the inertial mass, but can be a conventional pallet carried by a board.
- said pin 79 cooperates with a curved part of the trigger lever 77 in order to actuate the latter at a rate of once per alternation of the inertial mass.
- Other arrangements actuating the detent lever 77 once by alternation or by oscillation are of course possible.
- the pulses are supplied to the inertial mass 3 by means of an impulse wheel 5 which is separate from the detent wheel 75 and which cooperates with an impulse paddle 9 carried by a plate integral in rotation with the mass inertial 3.
- the impulse wheel 5 has its own power take-off 85 on the power source 7, which enables the impulse wheel 5 to take force independently of the finishing gear 8.
- a differential gear can be arranged in the cog in order to divide the torque coming from a single barrel and going on the one hand to the cog of finishing 8 and on the other hand to the impulse wheel 5, as is already well known in the context of movements comprising two (or even more) regulating systems.
- the impulse wheel 5 can be driven by its own dedicated energy source.
- the fork 15 locks and releases the locking wheel 13 in the manner described above, and is controlled by an appropriately shaped control cam 19, which pivots about its axis and controls the lever 15 to release the impulse wheel. at the rate of one tooth per actuation.
- a control cam 19 which pivots about its axis and controls the lever 15 to release the impulse wheel. at the rate of one tooth per actuation.
- the control cam 19 is rotated from a power take-off 81 on the finishing gear 8. In doing so, the rotation of the control cam 19 and consequently the supply of the pulses is synchronized with the oscillations of the inertial mass. 3 by means of the trigger 77 and its releases from the trigger wheel.
- a “gearbox” type gear 83 is interposed in the kinematic chain connecting the control cam 19 to the power take-off 81.
- This gearbox has been shown schematically, but can for example be a planetary gear of the same type as shown in the figures 9 and 10 , a stack or chaining of several such gears in order to provide more than two speeds of rotation of the control cam 19, or alternatively a gearbox gear of the type known in the context of bicycle transmissions (see for example the documents US3021728 , US2301852 , US832442 and others) or any other suitable arrangement.
- the number of speeds can be chosen according to the needs of the manufacturer.
- an actuating means 49 acts on the latter in order to select the speed of rotation of the output, and therefore that of the control cam 19. If the gearbox corresponds to the planetary gear of the figures 9 and 10 , the actuating means 49 may be as mentioned above in the context of the corresponding figures.
- the rate of the pulses can thus be modified, the speed ratios supplied by the gearbox 83 being chosen so as to maintain the synchronization between the impulse wheel 5 and the oscillations of the inertial mass 3.
- the speed ratios can be chosen so as to maintain the synchronization between the impulse wheel 5 and the oscillations of the inertial mass 3.
- the finishing gear 8 advances at a constant rate and can therefore drive a display device 31 in a conventional manner.
- the embodiment of the figure 13 is based on that of the figure 12 , and differs from the latter in that the control of the gearbox 83 is performed automatically.
- the default state of the gearbox 83 is chosen so as to supply pulses to the inertial mass 3 at a rate tending to make the latter oscillate with an amplitude greater than a predetermined threshold.
- an element of actuation 71 (such as a pin or a finger integral in rotation with the inertial mass) cooperates towards the end of an oscillation with a engagement lever 87 which is, in the illustrated variant, a clutch lever in desmodromic connection with the actuating means 49 of the gearbox 83 on the one hand (for example by means of one or more levers), and on the other hand which serves to engage a clutch 89 making it possible to kinematically link a cam holding 91 with the finishing gear 8.
- part of the actuating means 49 is kept in contact with the surface of the holding cam 91 by the intervention of an ad hoc elastic element.
- the actuating means 49 are in contact with the bottom of a notch 93 which is arranged to activate the actuating means 49 when the cam 91 pivots.
- the actuating element cooperates with the engagement lever 87, the latter is rotated counterclockwise, which acts on the actuating means 49 to change the state of the gearbox 83 and thereby reducing the pulse rate to a level which is insufficient to maintain the desired oscillation amplitude.
- the clutch 89 is engaged, and the locking cam 91 begins to rotate clockwise under the control of the finishing gear 8.
- the shape of the notch as well as the cylindrical circumference of the retaining cam 91 makes it possible to retain the actuating means 49 in the activated state, which also maintains the clutch in the engaged state thanks to the desmodromic connection between these elements.
- the holding cam subsequently performs a full revolution, during which the pulse rate is reduced, this reduced rate being chosen such that the amplitude of oscillations of the inertial mass 3 decreases below said predetermined threshold.
- the actuating means 49 fall back into the notch 93 under the effect of the ad hoc elastic element, which returns the gearbox to its previous state, and disengages again the clutch 89.
- the output speed of the gearbox 83 therefore increases the rate of pulses supplied to the inertial mass 3, which begins to increase the amplitude of the latter until the moment when the actuating element 71 again cooperates with the engagement lever 87.
- the amplitude of the inertial mass is thus maintained within a relatively narrow range, and this independently of the torque supplied by the finishing gear 8 and its variations due to engagement or disengagement. Additional mechanisms such as chronograph mechanisms.
- the system is thus self-regulating.
- the figure 14 further illustrates an embodiment according to the second aspect which does not form part of the invention.
- the maintenance system 1 may for example be according to the embodiment of one of the figures 7 to 10 or 12 , and the actuating means 49 are controlled automatically by means of a rest detector 95.
- This detector 95 is designed to determine whether the user is no longer wearing his watch which contains the maintenance system 1 according to this aspect, and controls the servicing system 1 such that the pulse rate is reduced, i.e. the system is in a mode in which fewer pulses are supplied to the inertial mass 3. This doing so, the power reserve of the part can be increased since the mainspring 7 takes place less quickly.
- the detector comprises an oscillating mass 97 arranged to wind up an auxiliary barrel 99 of conventional shape which houses a mainspring 99a in a known manner.
- This oscillating weight can also be used to wind the motor source 7 in a known manner, as represented by the dashed line.
- the oscillating mass 97 can be dedicated to the detector 95.
- the drum of the barrel 99 rotates a regulating device 105, allowing the mainspring 99a of the auxiliary barrel 99 to unwind at an appropriate speed, for example in five minutes, in 10 minutes, or according to another period chosen by the manufacturer. and which ensures that the barrel does not unwind faster than it is fed by the oscillating mass 97.
- the illustrated adjustment device comprises a paddle wheel 107 which is in kinematic connection with the drum of the barrel 99 and which rotates in a chamber 109 filled with a viscous fluid such as oil, gelatin or the like. It is also possible to use a flywheel, a paddle wheel which rotates in air or another gas, or even a sprung balance which cooperates with an escapement. It is of course possible that the auxiliary barrel 99 is wound up by its drum and unwinds by its shaft, as is generally known.
- the auxiliary barrel 99 is associated with a power reserve system 101 of any kind.
- the power reserve system is based on a differential gear, one of the inputs 101a of which is in kinematic connection with the drum of the auxiliary barrel 99, and thus pivots when the motor spring (not illustrated) located at the interior of the auxiliary barrel 99 unwinds.
- the second entry 101b meshes with a wheel integral with the inner end of the mainspring, and therefore pivots when the mainspring is wound up under the effect of the oscillating mass 97.
- Those skilled in the art are already familiar with various forms of oscillating masses 97. and automatic winding systems which connect mass 97 to the mainspring in order to wind it, and it is therefore not necessary to describe this aspect of the system in more detail.
- the output 101c of the differential gear 101 drives a mobile 103 (also shown in a plan on the left of the figure 14 ) whose angular position corresponds to the state of winding of the motor spring of the auxiliary barrel 99.
- this mobile 103 carries a cam, a finger or the like 103a arranged to control the actuating means 49 when the winding state of said barrel 99 is below a predetermined threshold.
- the actuating means 49 act on the pulse rate control system, in order to select an operating mode in which the pulses are supplied at a reduced rate (lower rate) than the inertial mass 3.
- the sub-cam 17a having a lower number of points is thus palpated by the feeler 15c, in that of the figures 9, 10 and 12 , the control cam 19 pivots at its lower speed.
- the cam 103a controls the actuating means 49 to select the lower rate of the maintenance system 1.
- the movements of the wearer's arm cause movements of the oscillating mass 97, which winds up the mainspring of the auxiliary barrel 99 more quickly than it unwinds by driving the regulating device 105.
- the mobile 103 thus pivots, and the cam 103a controls them.
- the inertial mass 3 thus receives more pulses.
- the oscillating mass 97 stops oscillating, and the auxiliary barrel 99 is no longer powered.
- the latter unwinds by driving the regulation device 105, and the mobile 103 pivots so that the cam 103a cooperates with the actuating means 49 so that the maintenance system is put back into a mode ensuring the supply. pulses at the lower rate.
- a power reserve device 101 based on elements cooperating by screwing, as for example disclosed in the documents EP2869137 , CH330559 , CH337786 and others.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measurement Of Unknown Time Intervals (AREA)
- Transmission Devices (AREA)
Description
- La présente invention se rapporte au domaine de l'horlogerie. Elle concerne, plus particulièrement, un système d'entretien pour mouvement horloger.
- On connait depuis plus de deux siècles des échappements dits « à détente ». Ce genre de système d'entretien diffère de l'échappement à ancre suisse usuel en ce que les impulsions qui entretiennent les oscillations du balancier viennent directement du rouage de finissage par l'intermédiaire d'une roue d'impulsion, et ne sont pas transférés par le biais d'une ancre. À cet effet, les impulsions sont données par les dents de la roue d'impulsion directement à une pièce solidaire en rotation du balancier. Une détente, qui est commandée par une cheville ou similaire solidaire en rotation du balancier, bloque la roue d'impulsion et la libère une fois par oscillation. Le document
CH 3299 - Ces échappements ont trouvé une application notamment dans des chronomètres de marine, grâce à leurs propriétés chronométriques excellentes, ainsi que leur efficacité améliorée par rapport à un échappement à ancre suisse. D'autres constructions de l'art antérieur moins pertinentes sont également dévoilées par les documents
EP 3153935 ,EP 3121660 ,EP 2290476 etCH 709752 - Cependant, le fait que le comptage du temps s'effectue au niveau du rouage de finissage laisse encore de la marge pour une amélioration au niveau des propriétés chronométriques du mouvement.
- Le but de l'invention est par conséquent de proposer un système d'entretien pour pièce d'horlogerie dans laquelle les défauts susmentionnés sont au moins partiellement surmontés.
- De façon plus précise, un premier aspect de l'invention concerne un système d'entretien d'un oscillateur pour pièce d'horlogerie tel qu'une montre bracelet ou de poche, cet oscillateur comprenant une masse inertielle tel qu'un balancier agencé pour osciller sous l'effet d'une force de rappel fournie par un élément élastique tel qu'un ressort spiral. Alternativement, la masse inertielle peut être un diapason (dont les bras constituent également les éléments élastiques) ou toute autre construction appropriée.
- Ce système comprend une roue d'impulsion destinée à être en liaison cinématique directe ou indirecte avec une source d'énergie tel qu'un ressort moteur logé dans un barillet, la roue d'impulsion étant agencée pour fournir des impulsions à ladite masse inertielle afin de l'entretenir en oscillation, ainsi qu'un organe de blocage agencé pour bloquer et libérer séquentiellement ladite roue d'impulsion de manière directe ou indirecte.
- Selon l'invention, ledit système comprend en outre un mobile de commande agencé pour commander ledit organe de blocage de bloquer et de libérer ladite roue d'impulsion en synchronisme avec les oscillations de ladite masse inertielle, ainsi qu'un organe de transmission agencé pour entrainer ledit mobile de commande en rotation à raison d'un pas dans un (seul) sens prédéterminé par oscillation de ladite masse inertielle.
- Ce faisant, le comptage du temps est dissocié du rouage liant la source d'énergie à la roue d'impulsion, communément appelé « rouage de finissage », ce qui améliore les propriétés chronométriques du système puisqu'il y a moins de perturbation des oscillations de la masse inertielle.
- Avantageusement, ledit mobile de commande comprend au moins une came de commande qui coopère notamment indirectement avec ladite roue d'impulsion, par exemple par l'intermédiaire d'un levier comprenant un palpeur agencé pour coopérer avec ladite came, ainsi qu'au moins un élément de blocage agencé pour bloquer et pour libérer ladite roue d'impulsion sous la commande de ladite came. Cet élément de blocage peut être par exemple une fourchette ou une détente dont la position angulaire est commandée par ladite came de commande, qui tourne par pas discrets toujours dans le même sens de rotation.
- Avantageusement, ledit organe de transmission est une bascule ou une poutre agencée pour coopérer avec ledit mobile de commande ainsi qu'avec ladite masse inertielle, notamment avec un élément porté par cette dernière. Un élément solidaire de la masse inertielle peut ainsi entrainer la bascule ou poutre une fois par oscillation, cet entrainement étant transmis au mobile de commande pour le faire pivoter.
- Avantageusement, un affichage peut être agencé pour être entrainé ou par ledit organe de transmission et/ou par ledit mobile de commande. Alternativement, l'affichage peut être agencé pour être entrainé par une source d'énergie sous la commande d'un élément porté par ledit organe de transmission, ou par ledit mobile de commande, ou par la masse inertielle. Ce faisant, ces affichages ne sont pas entrainés par le rouage de finissage, qui peut donc présenter des rapports d'engrenages adaptés exclusivement à l'entrainement de la roue d'impulsions afin de maximiser l'efficacité et la réserve de marche du système.
- D'autres détails de l'invention apparaîtront plus clairement à la lecture de la description qui suit, faite en référence aux dessins annexés dans lesquels :
-
Figures 1 à 3 sont des vues schématiques d'un système d'entretien selon le premier aspect de l'invention dans trois phases de fonctionnement ; -
Figure 4 est une vue schématique d'une variante d'un système d'entretien selon le premier aspect de l'invention ; -
Figure 5 est une vue schématique d'encore une variante d'un système d'entretien selon le premier aspect de l'invention ; -
Figure 6 est une vue schématique d'encore une variante d'un système d'entretien selon le premier aspect de l'invention ; -
Figure 7 est une vue schématique d'une variante d'un système d'entretien selon le premier aspect de l'invention et selon un deuxième aspect ne faisant pas partie de l'invention ; -
Figures 8a et 8b sont des vues schématiques en coupe d'une partie du système de lafigure 7 ; -
Figures 9 et 10 sont des vues schématiques en coupe de deux variantes alternatives de la partie du système représentée sur lesfigures 8a et 8b ; -
Figure 11 est une vue schématique d'une variante d'un système d'entretien selon ledit deuxième aspect ; -
Figure 12 une vue schématique d'encore une variante d'un système d'entretien selon ledit deuxième aspect ; -
Figure 13 une vue schématique d'encore une variante d'un système d'entretien selon ledit deuxième aspect ; -
Figure 14 une vue schématique d'encore une variante d'un système d'entretien selon ledit deuxième aspect ; et -
Figure 15 une vue schématique d'encore une variante d'un système d'entretien selon le premier aspect de l'invention. - La
figure 1 illustre schématiquement un premier mode de réalisation d'un système d'entretien 1 selon le premier aspect de l'invention. Il faut souligner que l'ensemble des figures sont purement schématiques, ne sont nullement à l'échelle, et servent à illustrer le fonctionnement des diverses variantes de l'invention d'une façon claire. À cet effet, certains éléments ont été représentés avec une taille relative qui est plus grande qu'en réalité, certains autres avec une taille relative plus petite. Par ailleurs, un agencement de deux éléments dans deux plans différents est rendu évident par l'intermédiaire de chevauchements de ces éléments. L'homme du métier sait comment dimensionner, former et positionner les éléments afin que le système 1 fonctionne correctement comme décrit ci-dessous, ce qui s'applique également au niveau des chaines cinématiques conventionnelles qui ont été représentées schématiquement par des flèches. Par ailleurs, toute direction, orientation etc. mentionnée par la suite est à considérer par rapport aux représentations des figures. On note finalement que des composants effectuant une fonction similaire ont été indiqués par les mêmes signes de référence, même s'ils sont structurellement différents, afin de faire apparaitre plus clairement ces fonctionnalités similaires. - Le système d'entretien 1 représenté sur la
figure 1 est agencé pour entretenir en oscillation une masse inertielle 3, tel qu'un balancier associé à un ressort de rappel (non illustré), tel qu'un ressort spiral, de façon connue. La masse inertielle 3 et son ressort de rappel peuvent être venus de matière ou peuvent être des éléments distincts. La masse inertielle 3 est ainsi agencée pour effectuer des oscillations de part et d'autre d'une position neutre. Alternativement, la masse inertielle peut être un diapason ou autre. - Afin de fournir de l'énergie à la masse inertielle 3, le système 1 comporte une roue d'impulsion 5, qui est en liaison cinématique avec une source d'énergie 7 tel qu'un barillet, un moteur électrique ou similaire, par l'intermédiaire d'un rouage de finissage 8. Les quinze dents 5a de la roue d'impulsion 5 sont agencées pour pénétrer dans la trajectoire d'une palette d'impulsion 9 portée par un plateau 11 solidaire en rotation de la masse inertielle 3, afin de transmettre de la force à ce dernier comme généralement connu dans le cadre d'un échappement à détente. Le nombre de dents 5a peut être choisi à volonté. Il est également possible d'interposer un système à force constante entre la roue d'impulsion 5 et la source d'énergie 7 et/ou un d'intégrer un système de remontoir d'égalité dans la roue d'impulsion 5. Il est également possible que la roue d'impulsion 5 coopère indirectement avec la palette d'impulsion 9, par exemple par l'intermédiaire d'un levier ad hoc.
- Les positions des divers éléments du système 1 correspondent à leur état juste avant une impulsion, et il est clair que la palette d'impulsion 9 est libre et peut donc se déplacer sans empêchement par les dents 5a de la roue d'impulsion 5.
- La roue d'impulsion 5 est solidaire en rotation d'une roue de blocage 13, qui coopère avec un organe de blocage en forme de levier 12 comprenant une fourchette 15 à l'une de ses extrémités, cette dernière étant agencée pour bloquer et libérer la roue de blocage 13 lorsque la fourchette 15 oscille d'une position angulaire extrême à l'autre. La fourchette 15, ainsi que la forme des dents de la roue de blocage 13 sont purement illustratives, et diverses autres solutions sont également possibles. Par exemple, on pourrait utiliser une détente au lieu d'une fourchette 15, et la détente ou la fourchette 15 peut alternativement coopérer directement avec les dents 5a de la roue d'impulsion.
- La fourchette 15 est commandée en pivotement autour de son axe de rotation 15a par un mobile de commande 16.
- Dans le mode de réalisation illustré, le mobile de commande 16 comporte une came de commande 19 qui est suivie par un palpeur 15b que comporte une extrémité de la fourchette 15 sous l'action d'un ressort de rappel 14. Lorsque la came de commande 19 tourne, la fourchette 15 oscille entre deux positions angulaires extrêmes, comme cela est bien connu et découlera clairement par la suite. À cet effet, la came de commande 19 comporte trois paliers à un rayon inférieur, ainsi que trois paliers à un rayon supérieur, afin de commander l'oscillation de la fourchette 15, la forme de la came de commande 19 étant choisie de telle sorte que le palpeur 15b puisse changer de palier lorsque la came de commande 19 tourne.
- La came 19 est solidaire en rotation d'une roue de commande 21, comportant un nombre de dents qui est un multiple entier du nombre de sections de la came 19. Dans l'agencement illustré, la came 19 comporte trois sections à rayon supérieur et trois sections à rayon inférieur (six sections au total), et la roue de commande 21 comporte 12 dents. Par conséquent, la fourchette 15 va transiter de l'une de ses positions angulaires extrêmes à l'autre lorsque la roue de commande 21 aura tourné d'un angle correspondant à deux pas de sa denture. La roue de commande 21 peut être positionnée par un sautoir, une friction ou d'autres moyens (non illustrés) afin d'assurer qu'elle ne pivote pas de manière intempestive. Dans la variante illustrée, la roue de commande 21 présente douze dents, mais le constructeur peut choisir le nombre de ces dernières selon ses besoins.
- La roue de commande 21 est entrainée en rotation par un organe de transmission 23, qui est agencé pour transmettre les impulsions reçues depuis la masse inertielle 3 à la roue de commande 21, chaque impulsion entrainant cette dernière à raison d'un pas (ou d'une dent).
- À cet effet, dans la variante illustrée, l'organe de transmission 23 est une poutre dont une première extrémité 23a est agencée pour pénétrer dans la denture de la roue de commande 21 et coopérer avec ses dents afin d'avancer la roue 21 par pas d'une dent, et dont une deuxième extrémité 23b est agencée pour être entrainée par un doigt 25 (ou cheville) porté par un plateau supplémentaire 27 solidaire en rotation de la masse inertielle 3. Les deux plateaux 11, 27 sont agencés pour positionner la palette d'impulsion 9 et le doigt 25 dans des plans différents, et peuvent être venus de matière l'un avec l'autre.
- L'organe de transmission 23 est guidé par un guidage 29 ad hoc, comme par exemple un guidage se basant sur des pivots flexibles (ci-après « flexures »). De tels guidages (comme par exemple des cols, des lames flexibles etc.) sont connus, notamment dans l'ouvrage Conception des guidages flexibles, Simon Henein, Collection Meta, Presses polytechniques et universitaires romandes, 2001, à partir duquel le constructeur peut choisir un guidage qui correspond à ses besoins. Par conséquent, il n'est pas nécessaire de décrire le guidage ici, excepté pour ce qui se réfère à ses propriétés. Ces dernières découleront clairement par la suite.
- Dans le mode de réalisation de la
figure 1 , le système 1 est intégré dans un mouvement comprenant deux affichages, un premier affichage 31 entrainé de façon conventionnelle à partir du rouage de finissage 8, et un deuxième affichage 33 entrainé à partir du mobile de commande 16, qui comprend une roue supplémentaire 35 prévue à cet effet. L'un ou l'autre de ces affichages 31, 33 peut être omis. - Ayant maintenant décrit la cinématique du système 1, on note à nouveau que les divers éléments ne sont pas représentés à l'échelle. En particulier, le deuxième affichage 33, l'organe de transmission 23, le mobile de commande 16 ainsi que la partie de la fourchette qui interagit avec ce dernier sont de taille et d'inertie réduite par rapport à des composants horlogers conventionnels, et peuvent ainsi présenter des dimensions (diamètre, longueur) dans le plan du système 1 qui sont par exemple inférieures à 2,5mm. À cet effet, ils peuvent être construits non seulement en métal, alliage ou composite, mais avantageusement aussi en matière non métallique, comme par exemple en polymère, silicium, oxyde de silicium, nitrure de silicium, carbure de silicium, alumine sous toutes ses formes, diamant naturel ou synthétique, ou des combinaisons de ces matériaux (par exemple en silicium revêtu par un autre matériau mentionné). Ces matériaux peuvent être amagnétiques. Afin de réduire les frottements et d'ainsi réduire la consommation d'énergie, des guidage flexibles (où approprié) et/ou des paliers comprenant des surfaces de contact en diamant naturel ou synthétique, ou tout autre matériau auto-lubrifiant peuvent être utilisés.
- Le fonctionnement du système de la
figure 1 sera maintenant décrit en référence auxfigures 1 à 3 . Par la suite, seuls les signes de référence mentionnés dans le texte sont reproduits afin de ne pas surcharger les figures, les autres composants étant correspondant à ceux de lafigure 1 . - Dans l'orientation des éléments de la
figure 1 , la roue d'impulsion 5 est bloquée par un organe de blocage. Ce dernier est un bec que comporte la branche de la fourchette 15 qui est la plus proche de la masse inertielle, et ce dernier est en train de pivoter dans le sens antihoraire. Le mobile de commande 16 est au repos, et au prochain pas, le palpeur 15b va transiter depuis un palier bas vers un palier haut de la came de commande 19. Au moment illustré, le doigt 25 est presque en contact avec la deuxième extrémité 23b de l'organe de transmission 23 qui est dans sa position de repos, et la palette d'impulsion 9 vient de pénétrer dans la trajectoire des dents 5a de la roue d'impulsion. - En regardant maintenant la
figure 2 , l'organe de transmission 23 a été déplacé axialement par le doigt 25 de telle sorte que sa première extrémité 23a a coopérée avec une dent de la roue de commande 21 et a entrainé cette dernière (ainsi que l'ensemble du mobile de commande 16) dans le sens antihoraire (selon l'orientation des figures). Le mobile de commande 16 est ainsi entre deux états stables, et le palpeur 15b vient de monter sur un palier haut de la came de commande 19. La flexibilité du guidage flexible 29 perpendiculairement à l'axe de l'organe de transmission 23 permet à sa première extrémité de se soulever pour permettre à la prochaine dent de la roue de commande 21 de se positionner. - Le fait que le palpeur 15b vient de monter sur un palier haut de la came de commande 19 a obligé la fourchette 15 d'adopter son autre position angulaire extrême, ce qui a permis à la roue d'impulsion 5 d'effectuer un 1/15ème de tour, pendant lequel l'une de ses dents applique une impulsion à la palette d'impulsion 9.
- La
figure 3 illustre la situation lorsque le mobile de commande 16 a atteint sa prochaine orientation stable, dans laquelle il a été positionné par le sautoir (ou similaire) non représenté. La roue d'impulsion 5 est à nouveau bloquée par l'autre bec de la fourchette, de façon semblable à une ancre conventionnelle. La trajectoire de la palette d'impulsion 9 est à nouveau libre. - Lorsque le doigt 25 n'est plus en contact avec l'organe de transmission 23, ce dernier réadopte sa position de repos, comme illustré sur la
figure 3 . - La masse inertielle 3 continue son parcours dans le sens antihoraire, termine son alternance, et revient en arrière dans le sens horaire. La forme courbée de la face arrière du doigt 25 est adaptée de manière à ce que, lorsqu'elle entre en contact avec l'organe de transmission 23 lors de son parcours dans le sens horaire, ce dernier soit légèrement soulevé afin de permettre au doigt 25 de passer, sans perturber l'oscillation de la masse inertielle 3. À cet effet, le guidage flexible 29 est également agencé pour permettre ce soulèvement de l'organe de transmission 23.
- Puis, le cycle se répète, la came de commande 19 assure que la fourchette 15 change d'état et libère la roue d'impulsion 5 une oscillation sur deux de la masse inertielle : en effet, le système est prévu pour que la came de commande 19 n'engendre pas de changement de position de la fourchette 15 à la prochaine rotation de 1/12 d'un tour du mobile de commande suite à l'oscillation suivante, étant donné que le palpeur 15b reste sur le même palier de la came 19. En modifiant la forme de la came de commande 19, notamment au niveau du nombre de paliers, et la forme et le nombre de dents de la roue de commande 21, le nombre d'oscillations de la masse inertielle 3 par impulsion peut être varié selon les besoins du constructeur. Si l'on augmente le nombre d'oscillations entre les impulsions, le système d'entretien 1 devient plus efficace, la réserve de marche du mouvement augmente, et les oscillations de la masse inertielle 3 sont moins perturbées, ce qui peut améliorer l'isochronisme du mouvement. Cependant, l'amplitude d'oscillation de la masse inertielle 3 est réduite en conséquence.
- La
figure 4 illustre une variante de l'agencement desfigures 1 à 3 , qui diffère de cette dernière principalement en ce que l'organe de transmission 23 est monté basculant autour d'un point de pivotement 23c. Par conséquent, lorsque le doigt 25 actionne l'organe de transmission 23, son extrémité libre 23d coopère avec une dent de la roue de commande 21 de la même manière que dans la variante desfigures 1 à 3 . Afin de permettre à l'extrémité libre 23d de l'organe de commande 23 de s'escamoter lorsque la prochaine dent de la roue de commande 21 arrive, l'organe de transmission 23 comporte une partie flexible 23e agencée pour permettre l'extrémité libre 23d de pivoter par rapport au reste de l'organe de transmission 23. Cette partie flexible peut être une flexure (par exemple un col ou une lame flexible permettant une articulation dans le plan de l'organe 23), ou une charnière associée à un élément élastique de rappel ad hoc. - Afin de permettre au doigt 25 de passer sans empêchement lorsque la masse inertielle 3 tourne dans le sens horaire, une deuxième partie flexible 23f est prévue et permet à la partie destinée à coopérer avec le doigt 25 de s'escamoter dans le plan de l'organe de transmission 23 suite au passage du doigt 25 dans ledit sens de rotation. Dans cette variante, la came de commande 19 est une came à rayon constant, la forme des dents de la roue de blocage 13 ainsi que la forme de la fourchette 15 étant agencées de telle sorte à laisser échapper une dent de la roue de blocage 13 suite à une rotation sur deux du mobile de commande 16. Bien entendu, la même forme de came 19 telle qu'illustrée sur les
figures 1 à 3 peut également être utilisée. - La
figure 5 illustre une autre variante qui varie de celle desfigures 1 à 3 comme suit. Premièrement, la came de commande comporte six pointes, et est en forme d'étoile de David. La fourchette 15 comporte à nouveau un seul palpeur de came 15c qui est maintenu en contact avec la came 19 par l'intermédiaire d'une force de rappel exercée par un élément élastique de rappel 15d. - Deuxièmement, le dispositif d'affichage 31 n'est pas entrainé par le rouage de finissage, qui est dédié exclusivement à l'entrainement de la roue d'impulsion. Par contre, l'affichage 31 est entrainé par le biais d'un rouage secondaire 37, qui comprend une source d'énergie secondaire 39, tel qu'un barillet, ainsi qu'un mobile de blocage 41 entrainé par ladite source d'énergie secondaire. Dans la variante illustrée, le mobile de blocage comporte deux doigts 41a, qui sont bloqués et libérés par un levier de blocage 43 qui commande la libération d'énergie de la source d'énergie secondaire afin d'entrainer l'affichage 31. Ce dernier est soumis à une force de rappel fournie par un élément élastique ad hoc 43a (ou tout élément connu pour effectuer une fonction de rappel), qui sert à maintenir le levier en contact avec une butée 43b, et qui exerce suffisamment de force pour bloquer le mobile de blocage 41. Cependant, ladite force de rappel a été adaptée pour que ledit levier 43 puisse être soulevé par l'intermédiaire d'un élément solidaire en rotation de la masse inertielle 3. Dans la variante illustrée, cet élément est une goupille 45 portée par la serge de la masse inertielle 3, mais peut alternativement être la palette d'impulsion 9, le doigt 25, ou tout autre organe approprié.
- Une extrémité 43c du levier de blocage 43 est conformée pour interagir avec la goupille 45, et dans la variante illustrée, elle est courbée et prend place dans la trajectoire de la goupille 45 afin que, à chaque alternance de la masse inertielle 3, le levier de blocage 43 soit pivoté et libère un doigt 41 a du mobile de blocage 41. L'élément élastique de rappel 43a assure que le levier 43 reprenne sa position contre la butée 43b avant que le prochain doigt 41a entre en contact avec ce dernier pour à nouveau bloquer le mobile de blocage 41.
- Ce faisant, les deux sources d'énergie 7, 39 ainsi que les rouages 8, 37 peuvent être optimisés pour leurs rôles respectifs. On note particulièrement que les éléments du rouage secondaire 37 peuvent présenter une taille significativement réduite par rapport à un rouage de finissage conventionnel, comme mentionné ci-dessus dans le cadre des
figures 1 à 3 . - La
figure 6 illustre encore une variante d'un système 1 selon le premier aspect de l'invention, qui se base sur celui desfigures 1 à 3 . Cette variante diffère principalement en ce que le dispositif d'affichage 31 est entrainé par une roue 47 menée par un doigt escamotable 23g porté par l'organe de transmission 23. Ce doigt est agencé pour entrainer la roue 47 à raison d'un pas dans le sens horaire à chaque oscillation de la masse inertielle 3, lorsque le doigt 25 pousse l'organe de transmission 23 vers la gauche. La roue 47 est bien entendu positionnée par l'intermédiaire d'un sautoir, d'une friction ou similaire (non représenté). - La forme de la came de commande 19 peut être choisie selon les besoins du constructeur, par exemple en reprenant l'une des formes mentionnées ci-dessus.
- La
figure 15 illustre encore une variante d'un système 1 selon le premier aspect de l'invention. Dans cette variante, l'affichage 31 est entrainé par sa propre source d'énergie 39, comme c'est le cas dans la variante de lafigure 5 . Dans cette variante, cet entrainement est commandé par l'intermédiaire d'un système à détente 111. Le levier à détente 113 est actionné par l'intermédiaire d'une pluralité d'éléments 45 (comme par exemple des goupilles, des doigts, ou des dents) que comporte le mobile de commande 16. Ce faisant, à chaque actionnement de ce dernier, le levier à détente 113 est soulevé ce qui libère la roue à détente 115 à raison d'un pas, ce qui entraine par la suite l'affichage 31. Alternativement, le levier à détente 113 peut être agencé pour être commandé par les dents de la roue de commande 21, ou par un élément porté par l'organe de transmission 23. - Les
figures 7 ,8a et 8b illustrent un mode de réalisation d'un système 1 qui se base à nouveau sur celui desfigures 1 à 3 qui est non seulement selon le premier aspect de l'invention, mais est également selon un deuxième aspect ne faisant pas partie de la présente invention. - La came de commande 19 est formée d'un empilement de deux sous-cames 17a, 17b (voir les
figures 8a et 8b ) coaxiales et présentant chacune un nombre de pointes différent. Dans le mode de réalisation illustré, la sous-came inférieure 17a présente trois pointes, et va donc commander le déclenchement d'une impulsion une oscillation sur deux de la masse inertielle comme c'est le cas dans lesfigures 1 à 3 . La sous-came supérieure 17b comporte quant à elle six pointes, ce qui enclenchera donc une impulsion à chaque oscillation de la masse inertielle 3. En choisissant la sous-came voulue, la cadence d'impulsions donnée à la masse inertielle 3 peut être déterminée. On note par ailleurs qu'il est possible de prévoir plus de deux sous-cames. - Le palpeur de came 15c unique est déplaçable verticalement, c'est-à-dire parallèle à l'axe des cames 17a, 17b, grâce à une partie flexible 15f que comporte la fourchette 15. Cette partie flexible 15f est adaptée pour conférer suffisamment de rigidité dans le plan de la fourchette 15 afin que cette dernière fonctionne correctement en ce qui concerne le blocage et la libération de la roue d'impulsion 5, mais présente une rigidité plus faible dans le sens perpendiculaire audit plan. Ce faisant, le palpeur 15c peut entrer en contact avec l'une ou l'autre des sous-cames 17a, 17b, et peut ainsi prendre une information sur l'une ou l'autre de ces dernières. La partie flexible 15f peut par exemple être formée par une lame flexible perpendiculaire au plan de la fourchette 15, et peut également être agencée pour que, dans un état non contraint, le palpeur de came 15c soit en contact avec l'une ou l'autre des sous-cames 17a, 17b, comme illustré sur la
figure 8a , qui montre le palpeur 15c en contact avec la sous-came inférieure 17a lorsque la partie flexible 15f est au repos et n'est pas contrainte. - Afin de sélectionner la sous-came 17a, 17b avec laquelle le palpeur 15c est en contact, des moyens d'actionnement 49 sont prévus. Dans la variante illustrée, ces moyens 49 sont une fourchette flexible qui englobe la partie se trouvant entre la partie flexible 15f et le palpeur de came 15c.
- Les moyens d'actionnement 49 peuvent être déplacés selon un axe sensiblement parallèle à l'axe des sous-cames 17a et 17b suite à une action manuelle de la part de l'utilisateur, ou automatiquement sous la commande d'une fonction du mouvement horloger dans lequel le système est intégré, ce qui permettra de déplacer le palpeur de came 15c en direction de la sous-came supérieure 17a, dans les situations où cela s'avère possible (voir plus bas).
- Dans l'agencement illustré, la forme des deux cames a été choisie pour permettre au palpeur 15c de monter de la sous-came inférieure 17a vers la sous-came supérieure 17b, aux endroits où les rayons des deux sous-cames sont substantiellement identiques. Cette situation se présente en agençant les rayons des deux sous-cames 17a, 17b de manière identique aux points médians situés à mi-distance entre les pointes de chaque came, trois de ces points médians de la sous-came supérieure 17b à six pointes étant superposés aux points médians de la sous-came inférieure 17a à trois pointes. Ces points médians coïncidents forment par conséquent des positions de transition, où le palpeur 15c peut monter ou descendre sans engendrer de pivotement de la fourchette 15 dans son plan, et donc sans déclencher d'impulsion. Il va sans dire que d'autres formes de cames qui répondent à ces besoins sont également envisageables.
- La
figure 8b illustre la situation après une telle transition, le palpeur 15c étant en contact avec la sous-came supérieure 17b. La partie flexible 15f de la fourchette est fléchie, et selon l'agencement des moyens d'actionnement 49, la partie distale de la fourchette peut se déplacer parallèlement (comme illustré), ou peut s'incliner. - En ce qui concerne une transition depuis la came inférieure 17a à six pointes vers la came supérieure 17b à trois pointes, la forme illustrée des cames ne permet une transition qu'aux positions de transition puisque les pointes de la came supérieure 17b qui ne se superpose pas à des pointes de la came supérieure 15a bloque une transition dans toute autre orientation des sous-cames 17a, 17b. Cependant, ceci n'est pas le cas lors d'une transition dans l'autre sens.
- Sans prévoir de moyen de sécurité, lorsque le palpeur de came 15c se trouve sur une pointe de la sous-came 17b supérieure qui coïncide avec un point intermédiaire de la sous-came inférieure 17a, un déplacement des moyens d'actionnement 49 vers le bas va enclencher un déplacement angulaire de la fourchette 15 dans son plan, et libérer la roue d'impulsion intempestivement. Si cette impulsion non voulue se produit à un moment où la palette d'impulsion 9 se trouve dans une mauvaise orientation pour recevoir une impulsion, une impulsion sera déclenchée et perdue, ce qui est néfaste au rendement et pour la réserve de marche, ou pire encore, une dent de la roue d'impulsion 5 pourrait frapper la palette d'impulsion 9 lorsque cette dernière se déplace dans le mauvais sens. Cette dernière situation risquerait d'arrêter les oscillations de la masse inertielle 3, et/ou d'endommager la roue d'impulsion 5 et/ou la palette d'impulsion 9.
- Afin d'empêcher cette situation, un système de sécurité 51 est prévu. Ce dernier se compose d'une roue de sécurité 53 comportant une pluralité d'encoches 53a alignées avec les positions de transitions susmentionnées, ainsi qu'une pluralité d'ergots 53b interposés entre les encoches 53a. Cette roue de sécurité 53 coopère avec un doigt de sécurité 55 solidaire du palpeur de came 15c.
- Ce faisant, la transition du palpeur de came 15c ne peut pas avoir lieu en dehors des positions de transition, et les moyens d'actionnement 49 présentent une élasticité adéquate afin de ne pas exercer trop de force sur la roue de sécurité 53 si une transition est commandée lorsque le mobile de commande 16 ne se trouve pas dans une position de transition.
- Les moyens d'actionnement 49 peuvent être commandés manuellement, par exemple en étant en liaison cinématique avec un organe de manoeuvre tel qu'un bouton poussoir, un levier ou similaire situé à l'extérieur de la boite de montre, ou peuvent être commandés automatiquement. Par exemple, on pourrait commander les moyens d'actionnement 49 à partir d'un système de commande d'un chronographe, afin d'augmenter la cadence d'impulsions transmises au masse inertielle 3 lorsque le chronographe est enclenché. Ce faisant, on peut éviter la diminution de l'amplitude de la masse inertielle 3 qui intervient typiquement lorsque le chronographe est embrayé et augmente la charge de couple que doit fournir le rouage de finissage 8.
- La
figure 9 illustre une autre variante du mobile de commande 16 qui permet de varier la cadence d'impulsions. Seul le mobile de commande 16 ainsi que les éléments interagissant directement avec ce dernier sont représentés, les autres composants du système étant selon l'une des variantes desfigures 1 à 6 . - Dans cette variante, la roue de commande 21 est munie d'une roue solaire 57 qui fait office de première entrée d'un engrenage planétaire différentiel dont la came de commande 19 est solidaire en rotation d'un pignon solaire 61 faisant office de sortie. L'engrenage planétaire comporte également un porte-satellites 59 faisant office de deuxième entrée, qui est monté fou sur l'axe liant le pignon solaire 61 et la came de commande 19. Le porte-satellites 59 porte au moins un jeu de pignons satellites 63 solidaires en rotation l'un avec l'autre, et dont l'un engrène avec la roue solaire 57, respectivement avec le pignon solaire 61 de façon connue.
- Le porte-satellites 59 peut être bloqué ou libéré en rotation par des moyens d'actionnement 49, représentés schématiquement par des flèches. Dans ce mode de réalisation, ces moyens 49 peuvent être par exemple une pince, un levier de blocage dont l'extrémité pénètre dans une denture extérieure que comporte le porte-satellites 59, ou tout autre moyen approprié.
- Lorsque le porte-satellites 59 est libre, il est lié cinématiquement à la roue solaire 57 par l'intermédiaire d'un embrayage à couple limité 65 tel qu'un cliquet qu'il porte et qui coopère avec la denture de la roue solaire 57. Alternativement, une liaison à friction 66 peut être prévue au lieu d'un cliquet 65 (voir la
figure 10 ). Dans cet état, lorsque la roue de commande 21 pivote, le porte-satellites 59 ainsi que le pignon solaire 61 sont solidaires en rotation avec cette dernière. Par conséquent, le rapport de transmission entre la roue de commande 21 et la came de commande 19 est de 1:1. - Par contre, lorsque le porte-satellites 59 est bloqué en rotation par les moyens d'actionnement 49, la force de rétention fournie par le cliquet 65 (ou par la friction) est surmontée, et les pignons satellites 63 pivotent et transmettent la rotation entre la roue solaire 57 et le pignon solaire 61, le rapport d'engrenages de l'ensemble définissant le rapport de vitesse entre la roue de commande 21 et la came de commande 19. Dans la variante illustrée, le pignon solaire 61 (la sortie) présente moins de dents que la roue solaire 57 (l'entrée), notamment la moitié de cette dernière, et donc la vitesse angulaire de la came de commande 19 est le double de celle de la roue de commande 21. Si la came de commande 19 présente trois pointes, elle présente le même effet que la came à six pointes de la
figure 7 lorsque le porte-satellites 59 est bloqué, ce qui a pour effet de doubler la cadence d'impulsions par rapport au cas où le porte-satellites 59 est libre. - Par conséquent, la cadence d'actionnement de la fourchette 15, et ainsi celle des impulsions, peuvent être variées en bloquant ou débloquant le porte-satellites 59.
- Il va sans dire que d'autres formes et agencements d'engrenage planétaire sont également à la portée de l'homme du métier, et que les rapports de vitesses angulaires peuvent être modifiés à volonté. Par exemple, la vitesse de rotation de la came peut être réduite au lieu d'être augmentée lorsque la deuxième entrée est bloquée.
- La
figure 10 représente une variante du mécanisme de lafigure 9 , dans laquelle l'embrayage à couple limité 65 est une rondelle de friction 66 disposée entre le porte-satellites 59 et la roue solaire 57 qui sert à lier ces deux composants en rotation lorsque le porte-satellites 59 est libre. Par ailleurs, la came de commande 19 n'est plus solidaire en rotation de la sortie 61 de l'engrenage planétaire, mais est montée sur une autre roue 67 qui engrène avec un pignon 69 qui est solidaire en rotation de ladite sortie 61. - Dans chacune des variantes des
figures 9 et 10 , le rapport d'engrenages entre la came de commande 19 et la roue de commande 21 est choisi de telle sorte que l'apport d'impulsions reste synchrone avec les oscillations de la masse inertielle 3. - La
figure 11 illustre une variante se basant sur celle de lafigure 6 , qui permet de varier la cadence d'impulsions de façon autonome. - Dans la variante illustrée, la masse inertielle 3 comporte un élément d'actionnement 71, qui est représenté par une goupille 71 solidaire de la serge de la masse inertielle 3. Alternativement, cet élément d'actionnement 71 peut être porté par une planche solidaire en rotation de la masse inertielle 3, ou sa fonctionnalité peut simplement être reprise par le doigt 25.
- Cet élément d'actionnement 71 coopère avec un levier de débrayage 73, comme décrit par la suite. Ce dernier est monté en pivotement sur un élément de bâti autour d'un point de pivotement indiqué par 73a, et le système de guidage 29 de l'organe de transmission 23 est agencé pour permettre un soulèvement de son extrémité qui interagit avec la roue de commande 21.
- Lorsque le levier de débrayage 73 est au repos (non illustré), il n'interagit pas avec l'organe de transmission 23, qui fonctionne ainsi comme décrit à la
figure 6 pour entrainer le mobile de commande 16 en rotation. - La position de l'élément d'actionnement 71 sur la masse inertielle et la géométrie du levier de débrayage 73 sont choisis de telle sorte que :
- lorsque l'amplitude d'oscillation de la masse inertielle 3 se trouve en dessous d'un seuil prédéterminé, l'élément d'actionnement 71 n'interagit pas avec le levier de débrayage. À chaque oscillation, le doigt 25 actionne l'organe de transmission 23, qui coopère avec la roue de commande 21 comme décrit ci-dessus.
- lorsque l'amplitude d'oscillation de la masse inertielle 3 excède ledit seuil prédéterminé, l'élément d'actionnement 71 entre en contact avec le levier de débrayage 73 juste après que le doigt 25 ait actionné l'organe de transmission 23, mais avant que ce dernier ait fait pivoter la roue de commande 21 d'un pas. Le levier de débrayage 73 soulève ainsi l'extrémité de l'organe de transmission 23, ce qui l'empêche de faire pivoter la roue de commande 21. La prochaine impulsion est ainsi annulée.
- Cet agencement permet effectivement un contrôle de rétroaction négative au niveau de l'amplitude d'oscillation de la masse inertielle. En agençant le système de manière à fournir une cadence d'impulsions trop élevée pour maintenir l'amplitude d'oscillation voulue, l'interaction entre l'élément d'actionnement 71 et le levier de débrayage 73 annule l'apport d'impulsions à la masse inertielle 3 lorsque l'amplitude est supérieure au seuil prédéterminé. Ce faisant, l'amplitude de la masse inertielle 3 diminue jusqu'au moment où son amplitude devient inférieure à celle définie par ledit seuil. À ce moment-là, l'élément d'actionnement 71 ne coopère plus avec le levier de débrayage 73, et les impulsions recommencent jusqu'au moment où l'amplitude d'oscillations excède à nouveau ledit seuil, auquel moment les impulsions sont à nouveau annulées.
- L'amplitude de la masse inertielle 3 est ainsi maintenue dans une plage relativement étroite, et ce indépendamment du couple fourni par le rouage de finissage 8, ce couple variant à cause de l'enclenchement ou du déclenchement de mécanismes supplémentaires tels que des mécanismes de chronographe. Le système est ainsi auto-réglant.
- Par contre, il faut noter que la rotation du rouage de finissage n'est plus synchrone avec les oscillations de la masse inertielle, et que par conséquent l'affichage 31 est entrainé par la roue 47 menée par un doigt escamotable 23g que porte l'organe de transmission 23, comme c'est le cas dans la
figure 6 . La forme des dents de la roue 47 est choisie de telle sorte que cette dernière est entrainée indépendamment de si l'organe de transmission 23 est en position « normale » ou en position « débrayée ». On note par ailleurs que d'autres possibilités existent pour l'entrainement de l'affichage 31, et à ce titre on peut mentionner un rouage dédié à cet entrainement et présentant sa propre source motrice ou sa propre prise de force sur le barillet qui est déclenché par les déplacements de l'organe de transmission 23 ou de la masse inertielle 3. On peut imaginer à ce titre un système à détente dans lequel la détente est soulevée à chaque actionnement de l'organe de transmission 23 (comme c'est le cas dans la variante de lafigure 15 ), ou par un organe ad hoc qui est entrainé par la masse inertielle 3. - La
figure 12 illustre encore un autre mode de réalisation selon un deuxième aspect ne faisant pas partie de l'invention. - Dans ce mode de réalisation, l'apport des impulsions est délocalisé du rouage de finissage 8. Ce dernier s'étend depuis la source d'énergie 7 jusqu'à une roue à détente 75, qui est bloquée par un levier de détente 77, qui a été représenté schématiquement mais qui peut prendre une forme classique assurant que, à chaque actionnement du levier 77, la roue à détente avance à raison d'un pas de sa denture sous la commande d'un organe ad hoc 79 solidaire en rotation de la masse inertielle 3. Cet organe 79 a été représenté par une goupille fixée sur la serge de la masse inertielle, mais peut être une palette classique portée par une planche. Dans la variante illustrée, ladite goupille 79 coopère avec une partie courbée du levier de détente 77 afin d'actionner ce dernier à raison d'une fois par alternance de la masse inertielle. D'autres agencements actionnant le levier de détente 77 une fois par alternance ou par oscillation sont bien entendu possibles.
- Les impulsions sont fournies à la masse inertielle 3 par l'intermédiaire d'une roue d'impulsion 5 qui est distincte de la roue à détente 75 et qui coopère avec une palette d'impulsion 9 portée par une planche solidaire en rotation de la masse inertielle 3. La roue d'impulsion 5 présente sa propre prise de force 85 sur la source d'énergie 7, qui permet à la roue d'impulsion 5 de prendre de la force de manière indépendante du rouage de finissage 8.Ce faisant, un engrenage différentiel peut être disposé dans le rouage afin de diviser du couple venant d'un seul barillet et allant d'une part au rouage de finissage 8 et d'autre part à la roue d'impulsion 5, comme cela est déjà bien connu dans le contexte de mouvements comprenant deux (ou même plus) systèmes réglant. Alternativement, la roue d'impulsion 5 peut être entrainée par sa propre source d'énergie dédiée.
- La fourchette 15 bloque et libère la roue de blocage 13 de la manière décrite ci-dessus, et est commandée par une came de commande 19 de forme appropriée, qui pivote autour de son axe et commande le levier 15 pour libérer la roue d'impulsion à raison d'une dent par actionnement. L'homme du métier sait comment agencer la came, le levier, et la forme de la roue d'impulsion pour atteindre ce but, comme décrit ci-dessus.
- La came de commande 19 est entrainée en rotation depuis une prise de force 81 sur le rouage de finissage 8. Ce faisant, la rotation de la came de commande 19 et par conséquent l'apport des impulsions est synchronisé avec les oscillations de la masse inertielle 3 par le biais du levier de détente 77 et ses libérations de la roue à détente.
- Afin de varier la cadence des impulsions, un engrenage de type « boite à vitesses » 83 est interposé dans la chaine cinématique liant la came de commande 19 à la prise de force 81. Cette boite à vitesse a été représentée schématiquement, mais peut par exemple être un engrenage planétaire du même genre que celui illustré sur les
figures 9 et 10 , un empilement ou enchainement de plusieurs tels engrenages afin de fournir plus de deux vitesses de rotation de la came de commande 19, ou encore alternativement un engrenage boite à vitesses du genre connu dans le cadre de transmissions de bicyclettes (voir par exemple les documentsUS3021728 ,US2301852 ,US832442 et autres) ou tout autre agencement approprié. Le nombre de vitesses peut être choisi selon les besoins du constructeur. - Afin de modifier la vitesse de rotation de la sortie de la boite à vitesses 83, un moyen d'actionnement 49 agit sur cette dernière afin de sélectionner la vitesse de rotation de la sortie, et donc celle de la came de commande 19. Si la boite à vitesse correspond à l'engrenage planétaire des
figures 9 et 10 , le moyen d'actionnement 49 peut être comme mentionné ci-dessus dans le cadre des figures correspondantes. - La cadence des impulsions peut ainsi être modifiée, les rapports de vitesse fournis par la boite à vitesses 83 étant choisis de telle sorte à maintenir la synchronisation entre la roue d'impulsion 5 et les oscillations de la masse inertielle 3. Par exemple, on pourrait choisir les rapports de vitesse pour obtenir une impulsion par oscillation, une impulsion par deux oscillations, une par trois, une par quatre, ..., ou toute combinaison de deux ou plus de ces possibilités selon les besoins du constructeur.
- Dans cette variante, le rouage de finissage 8 avance à une cadence constante et peut donc entrainer un dispositif d'affichage 31 de manière classique.
- Le mode de réalisation de la
figure 13 se base sur celui de lafigure 12 , et diffère de ce dernier en ce que la commande de la boite à vitesses 83 est effectuée automatiquement. - Dans cette variante, l'état par défaut de la boite à vitesses 83 est choisi de telle sorte à fournir des impulsions à la masse inertielle 3 à une cadence tendant à faire osciller cette dernière avec une amplitude supérieure à un seuil prédéterminé.
- Lorsque l'amplitude de la masse inertielle 3 excède ce seuil (qui peut être par exemple 330°, 300°, 280° ou n'importe quelle autre valeur inférieure à 360°, de préférence inférieure à 340°), un élément d'actionnement 71 (tel qu'une goupille ou un doigt solidaire en rotation avec la masse inertielle) coopère vers la fin d'une oscillation avec un levier d'enclenchement 87 qui est, dans la variante illustrée, une bascule d'embrayage en liaison desmodromique avec les moyens d'actionnement 49 de la boite à vitesses 83 d'une part (par exemple par l'intermédiaire d'un ou plusieurs leviers), et d'autre part qui sert à embrayer un embrayage 89 permettant de lier cinématiquement une came de maintien 91 avec le rouage de finissage 8. Par défaut, une partie des moyens d'actionnement 49 est maintenu en contact avec la surface de la came de maintien 91 par l'intervention d'un élément élastique ad hoc. Lorsque cette came 91 est au repos, les moyens d'actionnement 49 sont en contact avec le fond d'une encoche 93 qui est agencée pour activer les moyens d'actionnement 49 lorsque la came 91 pivote.
- Par conséquent, lorsque l'élément d'actionnement coopère avec le levier d'enclenchement 87, ce dernier est pivoté dans le sens antihoraire, ce qui agit sur les moyens d'actionnement 49 pour changer l'état de la boite à vitesses 83 et ainsi de réduire la cadence des impulsions à un niveau qui est insuffisant pour maintenir l'amplitude d'oscillation voulue. En même temps, l'embrayage 89 est embrayé, et la came de blocage 91 commence à pivoter dans le sens horaire sous la commande du rouage de finissage 8. La forme de l'encoche ainsi que le pourtour cylindrique de la came de maintien 91 permet de retenir les moyens d'actionnement 49 dans l'état activé, ce qui maintient également l'embrayage dans l'état embrayé grâce à la liaison desmodromique entre ces éléments.
- La came de maintien effectue par la suite un tour complet, pendant lequel la cadence des impulsions est réduite, cette cadence réduite étant choisie de telle sorte que l'amplitude d'oscillations de la masse inertielle 3 diminue en dessous dudit seuil prédéterminé.
- À la fin du cycle de la came de blocage 91, les moyens d'actionnement 49 retombent dans l'encoche 93 sous l'effet de l'élément élastique ad hoc, ce qui remet la boite à vitesses dans son état précédent, et débraye à nouveau l'embrayage 89. La vitesse de sortie de la boite à vitesses 83 assure donc l'augmentation de la cadence d'impulsions fournies au masse inertielle 3, ce qui commence à augmenter l'amplitude de ce dernier jusqu'au moment où l'élément d'actionnement 71 coopère à nouveau avec le levier d'enclenchement 87.
- Si, par contre, l'amplitude reste trop importante, à la fin du cycle de la came de blocage 91, le levier d'enclenchement 87 sera actionné à nouveau, et un nouveau cycle recommence.
- L'amplitude de la masse inertielle est ainsi maintenue dans une plage relativement étroite, et ce indépendamment du couple fourni par le rouage de finissage 8 et ses variations dû à l'enclenchement ou au désenclenchement de mécanismes supplémentaires tels que des mécanismes de chronographe. Le système est ainsi auto-réglant.
- La
figure 14 illustre encore un mode de réalisation selon le deuxième aspect qui ne fait pas partie de l'invention. Dans cette variante, le système d'entretien 1 peut être par exemple selon le mode de réalisation d'une desfigures 7 à 10 ou12 , et les moyens d'actionnement 49 sont commandés automatiquement par le biais d'un détecteur de repos 95. Ce détecteur 95 est agencé pour déterminer si l'utilisateur ne porte plus sa montre qui contient le système d'entretien 1 selon cet aspect, et commande le système d'entretien 1 de telle sorte que la cadence d'impulsions soit réduite, c'est-à-dire que le système se trouve dans un mode dans lequel moins d'impulsions sont fournies à la masse inertielle 3. Ce faisant, la réserve de marche de la pièce peut être augmentée puisque le ressort moteur 7 se déroule moins rapidement. - À cet effet, le détecteur comporte une masse oscillante 97 agencée pour remonter un barillet auxiliaire 99 de forme conventionnelle qui loge un ressort moteur 99a de façon connue. Cette masse oscillante peut également être utilisée pour remonter la source motrice 7 de façon connue, comme représenté par la ligne en traitillées. Cependant, la masse oscillante 97 peut être dédiée au détecteur 95.
- Le tambour du barillet 99 entraine en rotation un dispositif de régulation 105, permettant au ressort moteur 99a du barillet auxiliaire 99 de se dévider à une vitesse appropriée, par exemple en cinq minutes, en 10 minutes, ou selon une autre période choisie par le constructeur et qui assure que le barillet ne se dévide pas plus rapidement qu'il est alimenté par la masse oscillante 97. Le dispositif de réglage illustré comporte une roue à aubes 107 qui est en liaison cinématique avec le tambour du barillet 99 et qui tourne dans une chambre 109 remplie d'un fluide visqueux comme de l'huile, de la gélatine ou similaire. Il est également possible d'utiliser un volant d'inertie, une roue à aubes qui tourne dans de l'air ou dans un autre gaz, ou même un balancier-spiral qui coopère avec un échappement. Il est bien entendu possible que le barillet auxiliaire 99 soit remonté par son tambour et se dévide par son arbre, comme cela est généralement connu.
- Le barillet auxiliaire 99 est associé à un système de réserve de marche 101 de genre quelconque. Dans la variante illustrée, le système de réserve de marche se base sur un engrenage différentiel dont l'une des entrées 101a est en liaison cinématique avec le tambour du barillet auxiliaire 99, et pivote ainsi lorsque le ressort moteur (non illustré) se situant à l'intérieur du barillet auxiliaire 99 se dévide. La deuxième entrée 101b engrène avec une roue solidaire de l'extrémité intérieure du ressort moteur, et pivote donc lorsque le ressort moteur est remonté sous l'effet de la masse oscillante 97. L'homme du métier connait déjà diverses formes de masses oscillantes 97 et de systèmes de remontage automatique qui relient la masse 97 au ressort moteur afin de le remonter, et il n'est donc pas nécessaire de décrire cet aspect du système en plus de détails.
- La sortie 101c de l'engrenage différentiel 101 entraine un mobile 103 (illustré également en plan sur la gauche de la
figure 14 ) dont la position angulaire correspond à l'état de remontage du ressort moteur du barillet auxiliaire 99. Afin de commander les moyens d'actionnement 49, ce mobile 103 porte une came, un doigt ou similaire 103a agencée pour commander les moyens d'actionnement 49 lorsque l'état de remontage dudit barillet 99 est en dessous d'un seuil prédéterminé. À ce moment donné, les moyens d'actionnement 49 agissent sur le système de commande de la cadence des impulsions, afin de sélectionner un mode de fonctionnement dans lequel les impulsions sont fournies à une cadence réduite (cadence inférieure) à la masse inertielle 3. Dans le contexte du mode de réalisation desfigures 7 à 8b , la sous-came 17a présentant un nombre inférieur de pointes est ainsi palpée par le palpeur 15c, dans celui desfigures 9, 10 et12 , la came de commande 19 pivote à sa vitesse inférieure. - En présumant que la montre a été posée pendant un laps de temps suffisant pour dévider entièrement le barillet 99, la came 103a commande les moyens d'actionnement 49 pour sélectionner la cadence inférieure du système d'entretien 1. Lorsque l'utilisateur commence à porter sa montre, les mouvements du bras du porteur entrainent des déplacements de la masse oscillante 97, qui remonte le ressort moteur du barillet auxiliaire 99 plus rapidement qu'il se dévide en entrainant le dispositif de régulation 105. Le mobile 103 pivote ainsi, et la came 103a commande les moyens d'actionnement 49 pour sélectionner une cadence d'impulsions supérieure du système d'entretien 1. La masse inertielle 3 reçoit ainsi davantage d'impulsions.
- Lorsque l'utilisateur enlève sa montre et la pose sur une surface, la masse oscillante 97 cesse d'osciller, et le barillet auxiliaire 99 n'est plus alimenté. Ce dernier se dévide en entrainant le dispositif de régulation 105, et le mobile 103 pivote de telle sorte que la came 103a coopère avec les moyens d'actionnement 49 de telle sorte que le système d'entretien est remis dans un mode assurant l'apport d'impulsions à la cadence inférieure.
- Dans le cadre de la variante de la
figure 14 , on peut alternativement utiliser un dispositif de réserve de marche 101 se basant sur des éléments coopérant par vissage, comme par exemple divulgué dans les documentsEP2869137 ,CH330559 CH337786 - Bien que l'invention ait été décrite ci-dessus en lien avec des modes de réalisation spécifiques, des variantes supplémentaires sont également envisageables sans sortir de la portée de l'invention comme définie par les revendications. Par ailleurs, les divers modes de réalisation peuvent être combinés selon l'ensemble de modalités faisant un sens technique.
Claims (6)
- Système d'entretien (1) d'un oscillateur horloger comprenant une masse inertielle (3) agencée pour osciller sous l'effet d'une force de rappel fournie par un élément élastique, ledit système (1) comprenant :- une roue d'impulsion (5) destinée à être en liaison cinématique avec une source d'énergie (7) et agencée pour fournir des impulsions à ladite masse inertielle (3) afin de l'entretenir en oscillation ;- un organe de blocage (15) agencé pour bloquer et libérer séquentiellement ladite roue d'impulsion (5) ;caractérisé en ce que ledit système (1) comprend en outre- un mobile de commande (16) agencé pour commander ledit organe de blocage (15) de bloquer et de libérer ladite roue d'impulsion (5) en synchronisme avec les oscillations de ladite masse inertielle (3) ; et- un organe de transmission (23) agencé pour entrainer ledit mobile de commande (16) en rotation à raison d'un pas par oscillation de ladite masse inertielle (3).
- Système (1) selon la revendication précédente, dans lequel ledit mobile de commande (16) comprend au moins une came de commande (19) qui coopère avec ladite roue d'impulsion (5).
- Système (1) selon la revendication précédente, dans lequel ladite came de commande (19) coopère avec ladite roue d'impulsion (5) par l'intermédiaire d'un levier (12) comprenant un palpeur (15b) agencé pour coopérer avec ladite came (19), ainsi qu'au moins un élément de blocage agencé pour bloquer et pour libérer ladite roue d'impulsion (55) sous la commande de ladite came (19).
- Système (1) selon l'une des revendications précédentes, dans lequel ledit organe de transmission (23) est une bascule ou une poutre agencée pour coopérer avec ledit mobile de commande (16) ainsi qu'avec ladite masse inertielle (3).
- Système (1) selon l'une des revendications précédentes, dans lequel un affichage (31 ; 33) est agencé pour être entrainé et/ou commandé par ledit organe de transmission (23) ou par ledit mobile de commande (16).
- Système (1) selon l'une des revendications 1 à 4, dans lequel un affichage (31 ; 33) est agencé pour être entrainé par une source d'énergie (39) sous la commande d'un élément (23g ; 45) porté par ledit organe de transmission (23), ou par ledit mobile de commande (16) ou par ladite masse inertielle (3).
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17203337.5A EP3489762B1 (fr) | 2017-11-23 | 2017-11-23 | Système d'entretien pour pièce d'horlogerie |
CH01425/17A CH714363B1 (fr) | 2017-11-23 | 2017-11-23 | Système d'entretien d'un oscillateur horloger. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17203337.5A EP3489762B1 (fr) | 2017-11-23 | 2017-11-23 | Système d'entretien pour pièce d'horlogerie |
CH01425/17A CH714363B1 (fr) | 2017-11-23 | 2017-11-23 | Système d'entretien d'un oscillateur horloger. |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3489762A1 EP3489762A1 (fr) | 2019-05-29 |
EP3489762B1 true EP3489762B1 (fr) | 2020-09-09 |
Family
ID=67513319
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17203337.5A Active EP3489762B1 (fr) | 2017-11-23 | 2017-11-23 | Système d'entretien pour pièce d'horlogerie |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP3489762B1 (fr) |
CH (1) | CH714363B1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024132952A1 (fr) * | 2022-12-20 | 2024-06-27 | Greubel Forsey S.A. | Mecanisme d'echappement a force constante pour mouvement horloger |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH3299A (fr) * | 1891-03-05 | 1891-08-31 | Emile James | Perfectionnement apporté aux échappements à détente |
EP2290476B1 (fr) * | 2009-08-18 | 2014-04-23 | CSEM Centre Suisse d'Electronique et de Microtechnique SA - Recherche et Développement | Correcteur d'isochronisme pour échappement horloger et échappement muni d'un tel correcteur |
CH709755B1 (fr) * | 2014-06-11 | 2018-03-29 | Dominique Renaud Sa | Mécanisme d'horlogerie muni d'un résonateur diapason. |
EP3121660B1 (fr) * | 2015-07-21 | 2018-02-14 | Cartier International AG | Mécanisme d'échappement à détente et pièce d'horlogerie comportant un tel mécanisme |
EP3153935B1 (fr) * | 2015-10-06 | 2019-02-20 | Montres Breguet S.A. | Mecanisme d'echappement a detente d'horlogerie a force constante |
-
2017
- 2017-11-23 CH CH01425/17A patent/CH714363B1/fr unknown
- 2017-11-23 EP EP17203337.5A patent/EP3489762B1/fr active Active
Non-Patent Citations (1)
Title |
---|
None * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024132952A1 (fr) * | 2022-12-20 | 2024-06-27 | Greubel Forsey S.A. | Mecanisme d'echappement a force constante pour mouvement horloger |
Also Published As
Publication number | Publication date |
---|---|
EP3489762A1 (fr) | 2019-05-29 |
CH714363A2 (fr) | 2019-05-31 |
CH714363B1 (fr) | 2022-06-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2548084B1 (fr) | Mouvement pour piece d'horlogerie a remontoir d'egalite | |
EP1658531B1 (fr) | Dispositif d affichage pour montre | |
EP3764168B1 (fr) | Mécanisme d'affichage d'horlogerie à aiguille élastique | |
EP3435176B1 (fr) | Lissage de couple pour pièce d'horlogerie avec mécanisme de sonnerie, notamment avec mécanisme de sonnerie | |
EP3945374A1 (fr) | Ensemble sympathique d horlogerie | |
WO2011160970A1 (fr) | Mouvement horloger presentant des fonctions de chronographe et de compte-a-rebours | |
CH716841B1 (fr) | Mouvement d'horlogerie à chronographe. | |
CH707181B1 (fr) | Dispositif horloger comprenant un organe de commande lié cinématiquement à une roue de seconde sautante. | |
EP3489762B1 (fr) | Système d'entretien pour pièce d'horlogerie | |
EP3382468B1 (fr) | Mouvement avec prolongateur de réserve de marche | |
CH716800A2 (fr) | Mécanisme d'affichage d'horlogerie à aiguille élastique. | |
CH699056B1 (fr) | Mouvement pour pièce d'horlogerie à remontoir d'égalité | |
CH713705A2 (fr) | Mécanisme à force constante, mouvement de pièce d'horlogerie et pièce d'horlogerie. | |
EP4189489B1 (fr) | Procédé de mise à l'heure d'une montre dans un ensemble sympathique d'horlogerie | |
EP3599517B1 (fr) | Tourbillon ou carrousel rétrogradé d'horlogerie | |
EP4002016A1 (fr) | Montre a mouvement mecanique a mecanisme de controle de force | |
WO2018114613A1 (fr) | Mouvement pour piece d'horlogerie | |
CH707182A2 (fr) | Dispositif horloger. | |
CH707183A2 (fr) | Dispositif horloger. | |
EP4310603A1 (fr) | Mouvement d'horlogerie | |
CH713658B1 (fr) | Mouvement horloger comprenant deux organes réglants. | |
EP4421567A1 (fr) | Mecanisme de déclenchement d'un mécanisme horloger et pièce d' horlogerie comprenant un tel mécanisme de déclenchement | |
EP3979008A1 (fr) | Montre a mouvement mecanique a mecanisme de controle de force | |
CH717651B1 (fr) | Procédé de remontage d'une montre sympathique. | |
WO2000062129A1 (fr) | Moteur pour mouvement d'horlogerie |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20191121 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20200408 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: BURNS, MICHAEL JAMES Inventor name: GREUBEL, ROBERT Inventor name: ZWAHLEN, CHRISTOPHE Inventor name: CORNEILLE, FLORIAN Inventor name: FORSEY, STEPHEN Inventor name: DESCHANEL, FABRICE |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1312366 Country of ref document: AT Kind code of ref document: T Effective date: 20200915 Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602017023206 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201210 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201209 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201209 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1312366 Country of ref document: AT Kind code of ref document: T Effective date: 20200909 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20200909 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210111 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210109 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602017023206 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201123 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20201130 |
|
26N | No opposition filed |
Effective date: 20210610 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201123 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200923 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20231127 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20231127 Year of fee payment: 7 Ref country code: DE Payment date: 20231129 Year of fee payment: 7 Ref country code: CH Payment date: 20231201 Year of fee payment: 7 |