EP3481695B1 - Verfahren und kollisionswarnsystem zur detektion von entgegenkommenden fahrzeugen - Google Patents

Verfahren und kollisionswarnsystem zur detektion von entgegenkommenden fahrzeugen Download PDF

Info

Publication number
EP3481695B1
EP3481695B1 EP17755154.6A EP17755154A EP3481695B1 EP 3481695 B1 EP3481695 B1 EP 3481695B1 EP 17755154 A EP17755154 A EP 17755154A EP 3481695 B1 EP3481695 B1 EP 3481695B1
Authority
EP
European Patent Office
Prior art keywords
transport
transport vehicle
sensor signals
vehicles
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17755154.6A
Other languages
English (en)
French (fr)
Other versions
EP3481695A1 (de
Inventor
Gisbert Berger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Mobility GmbH
Original Assignee
Siemens Mobility GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Mobility GmbH filed Critical Siemens Mobility GmbH
Publication of EP3481695A1 publication Critical patent/EP3481695A1/de
Application granted granted Critical
Publication of EP3481695B1 publication Critical patent/EP3481695B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L23/00Control, warning or like safety means along the route or between vehicles or trains
    • B61L23/04Control, warning or like safety means along the route or between vehicles or trains for monitoring the mechanical state of the route
    • B61L23/041Obstacle detection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L23/00Control, warning or like safety means along the route or between vehicles or trains
    • B61L23/34Control, warning or like safety means along the route or between vehicles or trains for indicating the distance between vehicles or trains by the transmission of signals therebetween
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/161Decentralised systems, e.g. inter-vehicle communication
    • G08G1/162Decentralised systems, e.g. inter-vehicle communication event-triggered
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/166Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes

Definitions

  • the invention relates to a method for the detection of oncoming transport vehicles in a route-bound transport system.
  • the invention further relates to a collision warning system for a route-bound transport system.
  • the invention also relates to a route-based transport system.
  • Route-bound transport systems are characterized by a fixed route of the routes used by the transport vehicles of these systems.
  • Systems of this type are, for example, rail systems whose routes are precisely defined by the rails.
  • a transport system should be understood to mean both a system for transporting freight and a system for transporting passengers, or a combination of both.
  • the driver of a vehicle usually cannot change his direction of travel independently, since his direction of travel is clearly defined by guide elements, such as railroad tracks.
  • guide elements such as railroad tracks.
  • the driver can still react to unforeseen events by braking or accelerating or passing on warning information to higher-level units that can influence the routes on the transport system, for example via switches.
  • Newer solutions include assistance systems which can use suitable sensors to detect obstacles and thus oncoming vehicles at an early stage and thus either warn the driver or initiate automatic braking themselves.
  • ADAS Advanced Driver Assistance System
  • the trains are equipped with sensors and evaluation units.
  • the trains are also supported with signaling information from signaling devices positioned on the railway line, some of which are processed by the driver and some which are already automated.
  • a method and a system for determining insurance premiums are known, in which correlations between recorded data, the are associated with the driver's behavior for the vehicle, and image data are used. Events during a journey are identified and put into context based on the image data. The events are then classified using the ratings of the classifications to determine driver behavior and these in turn are used to set the car insurance rates for the driver and the associated vehicle.
  • sensors are built into the vehicle in an Advanced Driver Assistance System (ADAS), which supports the driver while driving.
  • ADAS Advanced Driver Assistance System
  • the ADAS system includes, for example, a collision avoidance system (pre-crash system).
  • the ADAS system also includes a forward-facing camera that can perform proximity detection and obstacle detection (object detection) by detecting objects such as vehicles, pedestrians and animals and objects and their distance from the vehicle.
  • object detection object detection
  • the ADAS system can also include RADAR and LIDAR (Light Detection and Ranging) to perform proximity and object detection and is part of the obstacle sensors.
  • the collision warnings serve as reference points for a driver's reaction to the warning.
  • the sensors in the system can also detect how long the driver has been on the way to a collision, from driving up, crossing the lane, drifting off the road, and the like, until he realizes that he needs to respond to avoid the collision .
  • ADAS systems use sensors such as video cameras, radar systems or lidar systems utilized.
  • a computing unit connected to the aforementioned sensors can also track detected moving obstacles and objects and thus determine further possible collision risks and transmit them to the driver or an automatic train control system, which react taking into account the type of obstacle. For example, depending on the risk situation, emergency braking, for example using extremely decelerating rail brakes with a corresponding possible risk to cargo and passengers, can be triggered or only a comparatively safe service braking can be carried out.
  • sensors are used which are firmly connected to the transport vehicles and therefore scan a narrowly limited area of the travel path of the respective transport vehicle.
  • Active sensors are also used, which actively send out a signal, which is then reflected by any objects that may be present and is reflected back in the direction of the transport path and can be detected there.
  • the emitted signals have to cover approximately twice the distance to the object (e.g. reduced by the distance covered by the transport vehicle during the transmission time).
  • the detection with the aid of such sensors therefore has detection fields and ranges limited to half of the maximum possible range, so that a reliable detection of obstacles and other objects can currently only be carried out up to a maximum distance of 400 m. If more precise information about the type and condition of the obstacle or the object is to be recorded, the reachable ranges are often still far below.
  • This object is achieved by a method for the detection of oncoming transport vehicles in a track-bound transport system according to claim 1, a collision warning system for a track-bound transport system according to claim 10 and a track-bound transport system according to claim 11.
  • detectable sensor signals are actively transmitted by a first transport vehicle located on a route.
  • Detectable sensor signals are to be understood as electromagnetic waves that can be detected by another transport vehicle with a receiving unit that is complementary to the active sensor unit.
  • a route area lying in the forward direction is scanned by a second transportation vehicle located on the route and approaching the first transportation vehicle with regard to the occurrence of detectable sensor signals.
  • the scanning can take place, for example, with the aid of a passive sensor which is suitable for detecting sensor signals with a wavelength which corresponds to the wavelength of the sensor signals emitted by the first transport vehicle.
  • the sensor signals emitted by the first transport vehicle are detected by the second transport vehicle.
  • detection should be understood to mean that with the aid of the passive sensors of the second transport vehicle, a sensor signal is received which is interpreted as an indication of an oncoming vehicle.
  • detection should also be understood to mean that the sensor signal from the first transport vehicle is reliably identified as a sensor signal which was emitted by an oncoming vehicle. Measures are provided for the identification of the sensor signal, the sensor signal from the first transport vehicle from to distinguish a possibly reflected sensor signal originating from the second transport vehicle. The measures mentioned are described below as refinements of the method according to the invention.
  • the method according to the invention contains measures for differentiation (for example a modulation specific to each vehicle) which are not required in a "normal" ADAS since only expected signals are expected.
  • measures for differentiation for example a modulation specific to each vehicle
  • An image evaluation, as in a conventional ADAS system, in order to determine whether an obstacle is present and what it is, can advantageously be omitted in the method according to the invention.
  • the second transport vehicle can advantageously detect the first transport vehicle at a double distance compared to the conventional procedure since it does not have to emit the detectable sensor signals itself or the sensor signals need not be reflected because it receives the sensor signals of the first transport vehicle. In this way, the possible braking distance and the reaction time increase, so that the safety of the transport system is improved.
  • the sensor range also increases because a spatial resolution of the detection result can be dispensed with, because the reception of sensor signals that can be assigned to an oncoming vehicle as such already includes the information that a transport vehicle with an active sensor unit is approaching. An additional identification of the oncoming transport vehicle based on an image of a monitoring area is therefore not necessary in the method according to the invention.
  • the collision warning system according to the invention for a route-bound transport system has an active sensor unit arranged on a first transport vehicle for actively sending out detectable sensor signals. Furthermore, the collision warning system according to the invention comprises a passive sensor unit arranged on a second transport vehicle for scanning a route area lying in the forward direction of the direction of travel of the second transport vehicle.
  • a passive sensor unit is to be understood as a sensor unit which receives and can detect electromagnetic waves.
  • the collision warning system according to the invention has an evaluation unit arranged on the second transport vehicle for determining an oncoming vehicle on the basis of the sensor signals detected by the passive sensor unit and transmitted by the first transport vehicle. With the aid of the evaluation unit, it can be determined on the basis of the detected sensor signals whether a collision with an oncoming vehicle threatens or not.
  • the route-bound transport system according to the invention has a plurality of transport vehicles with a collision warning system according to the invention.
  • the collision warning system according to the invention can be installed, for example, as a supplement to an existing conventional security system. In this case, it represents an additional independent channel that is independent of the other security systems.
  • the collision warning system according to the invention can also be based on an already existing safety system, for example using the already existing sensor system. In this case, the safety of the collision monitoring is also improved due to the increase in the range of the detection, and the effort and the additional costs can be kept low due to the joint use of the sensors.
  • Some essential components of the monitoring system according to the invention can be designed in the form of software components. This applies in particular to parts of the sensor units and the evaluation unit.
  • a largely software-based implementation has the advantage that even previously used collision warning systems can be easily upgraded by a software update in order to work in the manner according to the invention.
  • the object is also achieved by a computer program product which can be loaded directly into a memory of a collision warning system with program code sections in order to carry out all steps of the method according to the invention when the program is executed in the collision warning system.
  • such a computer program product can optionally contain additional components, such as, for. B. Documentation and / or additional components and also hardware components, such as Hardware keys (dongles etc.) for using the software.
  • additional components such as, for. B. Documentation and / or additional components and also hardware components, such as Hardware keys (dongles etc.) for using the software.
  • a computer-readable medium for example a memory stick, a hard disk or another portable or permanently installed data carrier, on which the program sections of the computer program that can be read and executed by a computer unit are stored .
  • the computing unit can e.g. for this purpose have one or more cooperating microprocessors or the like.
  • the transport vehicles are particularly preferably railway trains. Due to the high speeds and long braking distances, detection of oncoming vehicles with a long range is particularly important in this type of vehicle.
  • the first transport vehicle additionally scans a route region lying in the forward direction and additionally sends out actively detectable sensor signals from the second transport vehicle.
  • the probability increased for a timely detection of an impending collision since both vehicles both detect sensor signals and emit sensor signals, so that both vehicles can take appropriate measures to avoid collisions (e.g. brakes or emergency brakes) and thus significantly reduce or even completely avoid the consequences of a collision can.
  • measures as described in d) are to be provided in order to be able to distinguish safely oncoming transport vehicles on the neighboring track from transport vehicles on a collision course.
  • the driver of the respective transport vehicle is automatically warned and / or a braking process is initiated by an automatic system. Due to the increased detection range in the method according to the invention, the driver advantageously has a longer reaction time in order to initiate countermeasures against a collision. In the case of an automatically initiated braking maneuver, collisions due to a lack of reaction by the driver are prevented, so that the safety for the transport vehicle is increased.
  • the earlier detection also increases the chance in vehicles with an active switch adjustment option (e.g. trams) that a possibly still possible track change can be carried out either manually or automatically.
  • both transport vehicles have a communication device, so that the transport vehicles can coordinate and thus optimize the measures for collision avoidance. For example, at a suitable distance, a transport vehicle that does not transport people could carry out emergency braking, while the other transport vehicle in passenger operation only carries out service braking that is less dangerous for the transported people. Or it is negotiated between the transport vehicles, which of the vehicles carries out a possibly risky track change.
  • the information exchange is carried out automatically using the information transmitted by modulation, and the strategy for collision avoidance is also automatically determined and initiated by computing units housed in the vehicles. In this way, valuable time can be saved, which is then additionally available for the measures for collision avoidance.
  • the risk of collision is automatically transmitted to one or more signal boxes.
  • the greater warning time increases the chances of manually or automatically enabling a possible track change for one of the two transport vehicles via a signal box responsible for one of the transport vehicles.
  • an ADAS system is used to carry out the method, which is supplemented by a detection of sensor signals from oncoming transport vehicles.
  • a detection of sensor signals of an oncoming transport vehicle can be facilitated, for example, by sending out the sensor signals and scanning different transport vehicles at the same frequency. That is, the reception by the passive sensor is limited, for example with the aid of a filter, to a frequency range which is used by the sensor signals of the active sensor of the oncoming vehicle. This prevents a detection event from being erroneously triggered when signals or generally electromagnetic waves from interference sources fall on the passive sensor unit. An incorrect interpretation of own sensor signals possibly reflected on the surroundings can also be avoided if the sensor signals from each transport vehicle include identification information. In this way, the reliability of the collision warning is further improved.
  • the sensor signals of the transport vehicles are particularly preferably modulated differently with an individual modulation signal, so that sensor signals from a specific transport vehicle can be clearly assigned to this.
  • the oncoming transport vehicle can also be given information about technical properties and parameters, such as the type of charge, the speed, the braking distance, etc.
  • This data can be used when countermeasures against a collision are initiated in order to keep the inconvenience for both vehicles as low as possible.
  • the signal can also provide information about the line used Contain track and thus enable a distinction between a safe encounter or an impending collision.
  • the transport vehicles can have suitable communication systems, which are preferably used automatically by the collision warning systems of the transport vehicles, so that coordination can take place with a minimal delay.
  • the variables mentioned can be incorporated into an automated optimization process in which an optimal braking behavior is determined for both transport vehicles. This minimizes damage and inconvenience when the two oncoming vehicles have to brake.
  • a camera offers the advantage of high resolution and easy clarity of the image information captured by the camera.
  • a camera can also be used in addition to the detection of the sensor signals for an image representation of a route area for a transport vehicle.
  • a lidar device has a laser with which a directed light beam can be emitted. With such a lidar device, the scanning area can be defined very precisely, so that interference from the sensor signals caused by exposure to the surroundings can be avoided.
  • Acoustic sensor systems have sensor shafts that can also prepare around curves or corners, so that oncoming transport vehicles can be detected even in confusing areas.
  • a combination of several of the sensor systems mentioned can also be used for the collision warning system according to the invention in order to combine the advantages of the different types of detection with one another.
  • FIG. 1 a section of a transport system 10, in this case a single-track railway line, is shown.
  • the section comprises a railway track 8 on which two trains 1, 2 approaching each other on the same track are located.
  • a first train 1 comprises a sensor unit 9a on its front side and transmits sensor signals 3 (shown in dashed lines as a sensor beam cone) in the direction of travel.
  • a second train 2 coming towards the first train 1 on the same track 8 also has a sensor unit 9b, which emits sensor signals 4 (also shown in dashed lines as a sensor beam cone) in the direction of the first train 1.
  • the sensor signals 3 of the first train 1 are detected by the sensor unit 9b of the second train 2, which also has a sensor signal reception function, and evaluated in an evaluation unit (not shown).
  • the embodiment shown is based on a signal modulated on the sensor signal 3 of the first train 1, which is demodulated and analyzed in the evaluation unit of the second train 2, on the identity of the first train 1, so that an automated assistance system of the second train is now aware that the first train 1 approaches the second train 2 at the maximum detection distance d 2 .
  • the maximum detection distance d 2 corresponds to twice the conventional maximum detection distance d 1 of a sensor unit, in which the emitted sensor signals are reflected by an object 5 to be detected and are detected again by the emitting sensor unit.
  • the first train 1 uses the sensor signal 4 of the second train 2 recognizes that the second train 2 approaches the first train 1 at a maximum detection distance d 2 .
  • the two trains 1, 2 now have sufficient time to coordinate, react to the situation and thus avoid a collision.
  • FIG 2 A flowchart is shown which illustrates a method for the detection of oncoming vehicles in a track-bound transport system according to an exemplary embodiment of the invention.
  • step 2.I detectable sensor signals 3 are emitted by a first transport vehicle 1, for example a train, located on a route.
  • a route region lying in the forward direction is scanned by a second transport vehicle 2, for example likewise a train, which is on the route and is approaching the first transport vehicle 1, using a passive sensor function PS.
  • the sensor signals 3 emitted by the first transport vehicle 1 are detected by the second transport vehicle 2.
  • step 2.IV the detected sensor signals 3 are evaluated by an evaluation unit of the second transport vehicle 2, the first transport vehicle 1 being identified and, for example on the basis of the detected signal amplitude of the sensor signals, determined that the first transport vehicle 1 is at the time the first detection must be approximately within the maximum range d 2 of the detectability of the sensor signals 3 of the first transport vehicle 1.
  • step 2.V communication takes place between the first transport vehicle 1 and the second transport vehicle 2, it being automatically coordinated with one another which transport vehicle should show which reaction to what extent to avoid a collision.
  • Step 2.VI of each of the two transport vehicles 1, 2 initiated a braking maneuver BM which was coordinated with one another and with the requirements of the individual trains 1, 2, thereby avoiding a collision between the two transport vehicles 1, 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur Detektion von entgegenkommenden Transportfahrzeugen in einem streckengebundenen Transportsystem. Weiterhin betrifft die Erfindung ein Kollisionswarnsystem für ein streckengebundenes Transportsystem. Zudem betrifft die Erfindung ein streckengebundenes Transportsystem.
  • Streckengebundene Transportsysteme zeichnen sich durch eine feste Streckenführung der von den Transportfahrzeugen dieser Systeme genutzten Fahrtwege aus. Derartige Systeme sind zum Beispiel Bahnsysteme, deren Fahrtstrecken durch die Schienen exakt definiert sind. Als Transportsystem soll in diesem Zusammenhang sowohl ein System zum Transport von Fracht als auch ein System zum Transport von Passagieren oder eine Kombination aus beidem verstanden werden. Bei Systemen mit fester Streckenführung kann der Fahrer eines Fahrzeugs üblicherweise seine Fahrtrichtung nicht selbsttätig ändern, da seine Fahrtrichtung durch Führungselemente, wie zum Beispiel Bahnschienen, eindeutig festgelegt ist. Allerdings kann der Fahrer trotzdem auf unvorhergesehene Ereignisse reagieren, indem er bremst oder beschleunigt oder Warninformationen an übergeordnete Einheiten weitergibt, die die Fahrwege auf dem Transportsystem, zum Beispiel über Weichen, beeinflussen können.
  • Insbesondere für Eisenbahnen wurden verschiedene Systeme zur Kollisionsvermeidung auf in beiden Richtungen befahrbaren Strecken entwickelt. So werden beispielsweise Strecken bereits durch das Stellwerk oder durch automatische Einrichtungen "verriegelt". Hat zum Beispiel ein Zug die Strecke befahren, wird die Einfahrt weiterer Züge durch ein Signalsystem verhindert. Ferner gibt es automatische Systeme, welche bei einer nicht zulässigen mehrfachen Nutzung einer solchen Strecke die automatische Bremsung der Fahrzeuge einleiten. Bei Straßenbahnen gibt es ferner Verfahren, bei denen ein nur einmal vorhandenes Staffelholz von den Fahrern (auch über einen Briefkasten) übergeben werden muss. Nur der Fahrer, der den Stab an der Einfahrt zur eingleisigen Strecke übergeben bekommt oder vorfindet und dann bei dem Durchfahren der Strecke im Besitz des Stabes ist, darf die Strecke befahren. Dieses, im englischsprachigen Raum als "token railways signalling" bezeichnete Verfahren wurde früher zum Beispiel bei der Berliner Straßenbahn auf einigen eingleisigen Strecken regulär eingesetzt und wird auch heute noch im Baustellenbetrieb genutzt. Alle diese Verfahren setzen aber entweder voraus, dass die Regeln von den Fahrern eingehalten werden und auch nicht unabsichtlich gebrochen werden oder dass die automatischen Systeme sicher Fahrzeuge detektieren können. Es sind aber immer wieder Fälle bekannt geworden, in denen diese Systeme versagt haben, zum Beispiel durch menschliches Versagen oder durch Fehldetektionen von Fahrzeugen auf zum Beispiel gesandeten Gleisen.
  • Neuere Lösungen umfassen Assistenzsysteme, welche mittels geeigneter Sensorik frühzeitig Hindernisse und damit auch entgegenkommende Fahrzeuge erkennen können und damit entweder den Fahrer warnen oder auch selbst eine automatische Bremsung einleiten können.
  • Bei der Überwachung des Fahrwegs von Eisenbahnzügen werden teilweise automatisierte Fahrerassistenzsysteme (ADAS = Advanced Driver Assistance System) verwendet. Bei diesen ADAS-Systemen sind die Züge mit Sensoren und Auswertungseinheiten ausgestattet. Die Züge werden auch zusätzlich mit Signalinformationen von an der Eisenbahnstrecke positionierten Signalgebern unterstützt, die teilweise vom Fahrer und teilweise auch bereits automatisiert verarbeitet werden.
  • Aus der Veröffentlichung EP 2 892 020 A1 sind ein Verfahren und ein System zum Bestimmen von Versicherungsprämien bekannt, bei dem Korrelationen zwischen erfassten Daten, die mit dem Fahrerverhalten für das Fahrzeug assoziiert sind, und Bilddaten verwendet werden. Dabei werden Ereignisse während einer Fahrt identifiziert und basierend auf den Bilddaten in einen Kontext gesetzt. Die Ereignisse werden dann klassifiziert, wobei die Bewertungen der Klassifizierungen zum Bestimmen des Fahrerverhaltens und diese wiederum zum Festlegen der Kfz-Versicherungssätze für den Fahrer und das zugehörige Fahrzeug verwendet werden. Hierzu sind Sensoren in einem Advanced Driver Assistance System (ADAS) in das Fahrzeug eingebaut, welches den Fahrer beim Fahren unterstützt. Das ADAS-System umfasst zum Beispiel ein Kollisionsvermeidungssystem (Precrash-System). Das ADAS-System umfasst auch eine nach vorne gerichtete Kamera, die eine Annäherungserfassung und eine Hinderniserkennung (Objekterkennung) durchführen kann, indem Objekte wie Fahrzeuge, Fußgänger und Tiere und Objekte sowie deren Abstand zum Fahrzeug erfasst werden. Das ADAS-System kann auch RADAR und LIDAR (Light Detection and Ranging) enthalten, um eine Näherungserfassung und eine Objekterfassung durchzuführen, und ist Teil der Hindernissensoren. Beispielsweise dienen in dem ADAS-System die Kollisionswarnungen als Referenzpunkte für die Reaktion eines Fahrers auf die Warnung. Die Sensoren in dem System können auch erfassen, wie lange sich der Fahrer auf einem Weg zu einer Kollision befand, vom Auffahren, Überqueren der Fahrspur, Abdriften von der Straße und dergleichen, bis er erkannte, dass er reagieren musste, um die Kollision zu vermeiden.
  • Mit Hilfe der fahrzeugseitig angeordneten Sensoren werden Hindernisse auf dem Gleis und dessen näherer Umgebung erfasst und die Auswertungseinheiten werden dazu genutzt, die Hindernisse entsprechend Ihrer Gefährdung oder ihres Gefahrenpotentials für den weiteren Fahrbetrieb zu beurteilen und entsprechende Informationen für den Fahrer zu erzeugen oder direkt in die Fahrzeugsteuerung einzugreifen. Es werden auch andere Objekte, wie zum Beispiel Signale, eine Beschilderung oder Weichen- und Gleiszustände erkannt. Als Sensoren werden von den ADAS-Systemen Videokameras, Radarsysteme oder Lidarsysteme genutzt. Eine mit den genannten Sensoren verbundene Recheneinheit kann ferner eine Verfolgung erfasster beweglicher Hindernisse und Objekte durchführen und damit weitere mögliche Kollisionsgefahren ermitteln und an den Fahrer oder eine automatische Zugsteuerung übermitteln, welche unter Berücksichtigung der Art des Hindernisses reagieren. Beispielsweise kann je nach Gefährdungslage eine Notbremsung, beispielsweise unter Verwendung von extrem verzögernden Schienenbremsen mit entsprechender möglicher Gefährdung von Ladung und Passagieren, ausgelöst werden oder auch nur eine im Vergleich dazu gefahrlose Betriebsbremsung durchgeführt werden.
  • Herkömmlich werden Sensoren verwendet, die mit den Transportfahrzeugen fest verbunden sind und mithin einen eng begrenzten Bereich des Fahrwegs des jeweiligen Transportfahrzeugs abtasten. Dabei werden auch aktive Sensoren eingesetzt, welche aktiv ein Signal aussenden, das dann von ggf. vorhandenen Objekten reflektiert und in Richtung des Transportweges zurückgeworfen wird und dort detektiert werden kann. Dabei müssen die ausgesandten Signale in der Regel ungefähr (z.B. vermindert um die während der Übertragungszeit durch das Transportfahrzeug zurückgelegte Wegstrecke) die doppelte Entfernung zum Objekt zurücklegen. Daher weist die Erkennung mit Hilfe solcher Sensoren entsprechend auf die Hälfte der maximal möglichen Reichweite begrenzte Erkennungsfelder und Reichweiten auf, so dass eine sichere Erkennung von Hindernissen und anderen Objekten gegenwärtig meist nur bis zu Entfernungen von maximal 400 m erfolgen kann. Sollen genauere Informationen über die Art und den Zustand des Hindernisses oder des Objekts erfasst werden, so liegen die erreichbaren Reichweiten oft noch weit darunter.
  • Es besteht allerdings ein Problem darin, dass die erreichbaren Sensorreichweiten für schnell fahrende, sich begegnende Fahrzeuge zu gering sind und daher Kollisionswarnsysteme mit größeren Reichweiten wünschenswert sind.
  • Diese Aufgabe wird durch ein Verfahren zur Detektion von entgegenkommenden Transportfahrzeugen in einem streckengebundene Transportsystem gemäß Patentanspruch 1, ein Kollisionswarnsystem für ein streckengebundenes Transportsystem gemäß Patentanspruch 10 und ein streckengebundenes Transportsystem gemäß Patentanspruch 11 gelöst.
  • Bei dem erfindungsgemäßen Verfahren zur Detektion von entgegenkommenden Fahrzeugen in einem streckengebundenen Transportsystem werden detektierbare Sensorsignale durch ein auf einer Strecke befindliches erstes Transportfahrzeug aktiv ausgesendet. Als detektierbare Sensorsignale sollen elektromagnetische Wellen verstanden werden, die von einem anderen Transportfahrzeug mit einer zu der aktiven Sensoreinheit komplementären Empfangseinheit detektiert werden können. Weiterhin wird ein in Vorwärtsrichtung liegender Streckenbereich durch ein auf der Strecke befindliches, dem ersten Transportfahrzeug entgegenkommendes zweites Transportfahrzeug hinsichtlich des Auftretens von detektierbaren Sensorsignalen abgetastet. Das Abtasten kann zum Beispiel mit Hilfe eines passiven Sensors geschehen, der für eine Erfassung von Sensorsignalen mit einer Wellenlänge, die der Wellenlänge der von dem ersten Transportfahrzeug ausgesandten Sensorsignale entspricht, geeignet ist.
  • Die von dem ersten Transportfahrzeug ausgesandten Sensorsignale werden durch das zweite Transportfahrzeug detektiert. Als Detektion soll in diesem Zusammenhang verstanden werden, dass mit Hilfe der passiven Sensoren des zweiten Transportfahrzeugs ein Sensorsignal empfangen wird, welches als Hinweis auf ein entgegenkommendes Fahrzeug interpretiert wird. Als Detektion soll in diesem Zusammenhang auch verstanden werden, dass das Sensorsignal von dem ersten Transportfahrzeug sicher als ein Sensorsignal identifiziert wird, welches von einem entgegenkommenden Fahrzeug ausgesandt wurde. Für die Identifizierung des Sensorsignals sind Maßnahmen vorgesehen, das Sensorsignal von dem ersten Transportfahrzeug von einem eventuell zufällig von dem zweiten Transportfahrzeug stammenden reflektierten Sensorsignal zu unterscheiden. Die genannten Maßnahmen werden weiter unten als Ausgestaltungen des erfindungsgemäßen Verfahrens beschrieben.
  • Der Unterschied zu einem herkömmlichen ADAS-System, bei dem eventuell Signale von entgegenkommenden Fahrzeugen versehentlich als eigene Signale interpretiert werden, besteht darin, dass bei einem herkömmlichen ADAS-System "versehentlich" detektierte Signale mit der gleichen Unsicherheit behaftet sind wie alle passiv reflektierten Signale: Es gibt keine sichere Information über die Art des Hindernisses, welche aber für eine z.B. automatisch ausgelöste Notbremsung erforderlich ist (z.B. ist eine Notbremsung für ein Tier wegen der möglichen Personengefährdung im Zug nicht zulässig). Da das versehentlich detektierte Signal als reflektiertes Signal interpretiert würde, wäre die Einordnung als Kollisionswarnung mit einem entgegenkommenden Fahrzeug nicht sicher möglich. Bei einem herkömmlichen ADAS-System muss das detektierte Signal also Bildinformationen bzw. geometrische Informationen über das Hindernis enthalten, ansonsten kann es nicht zur Kollisionswarnung genutzt werden.
  • Dagegen sind bei dem erfindungsgemäßen Verfahren Maßnahmen zur Unterscheidung enthalten (z.B. eine für jedes Fahrzeug spezifische Modulation), die in einem "normalen" ADAS nicht erforderlich sind, da man nur reflektierte Signale erwartet. Bei dem erfindungsgemäßen Verfahren aber sucht man genau nach diesen nicht vom eigenen Fahrzeug ausgesandten Signalen. Treten diese auf, kann man mit hoher Sicherheit von einer Kollisionsgefahr ausgehen und entsprechende Maßnahmen einleiten (bei zweigleisigen Strecken mit Gegenverkehr sind zusätzliche Maßnahmen zu treffen, z.B. die Codierung der Gleis- oder Streckennummer im ausgesandten Signal). Eine Bildauswertung, wie bei einem herkömmlichen ADAS-System, um zu ermitteln, ob ein Hindernis vorhanden ist und welcher Art es ist, kann bei dem erfindungsgemäßen Verfahren vorteilhaft unterbleiben.
  • Vorteilhaft kann das zweite Transportfahrzeug das erste Transportfahrzeug im Vergleich zur herkömmlichen Vorgehensweise in einer doppelten Entfernung detektieren, da es die detektierbaren Sensorsignale nicht selbst aussenden muss bzw. die Sensorsignale nicht reflektiert werden müssen, weil es die Sensorsignale des ersten Transportfahrzeugs empfängt. Auf diese Weise erhöht sich der mögliche Bremsweg und die Reaktionszeit, so dass die Sicherheit des Transportsystems verbessert ist. Die Sensorreichweite erhöht sich auch deshalb, weil auf eine räumliche Auflösung des Detektionsergebnisses verzichtet werden kann, denn der Empfang von einem entgegenkommenden Fahrzeug zuordenbaren Sensorsignalen als solche umfasst bereits die Information, dass sich ein Transportfahrzeug mit einer aktiven Sensoreinheit nähert. Eine zusätzliche Identifikation des entgegenkommenden Transportfahrzeugs auf Basis einer Bilddarstellung eines Überwachungsbereichs ist also bei dem erfindungsgemäßen Verfahren nicht nötig.
  • Das erfindungsgemäße Kollisionswarnsystem für ein streckengebundenes Transportsystem weist eine an einem ersten Transportfahrzeug angeordnete aktive Sensoreinheit zum aktiven Aussenden von detektierbaren Sensorsignalen auf. Weiterhin umfasst das erfindungsgemäße Kollisionswarnsystem eine an einem zweiten Transportfahrzeug angeordnete passive Sensoreinheit zum Abtasten eines in Vorwärtsrichtung der Fahrtrichtung des zweiten Transportfahrzeugs liegenden Streckenbereichs. Als passive Sensoreinheit soll in diesem Zusammenhang eine Sensoreinheit verstanden werden, welche elektromagnetische Wellen empfängt und detektieren kann. Zudem weist das erfindungsgemäße Kollisionswarnsystem eine an dem zweiten Transportfahrzeug angeordnete Auswertungseinheit zum Ermitteln eines entgegenkommenden Fahrzeugs auf Basis der von der passiven Sensoreinheit erfassten und von dem ersten Transportfahrzeug ausgesandten Sensorsignale auf. Mit Hilfe der Auswertungseinheit kann auf Basis der erfassten Sensorsignale ermittelt werden, ob eine Kollision mit einem entgegenkommenden Fahrzeug droht oder nicht.
  • Das erfindungsgemäße streckengebundene Transportsystem weist eine Mehrzahl von Transportfahrzeugen mit einem erfindungsgemäßen Kollisionswarnsystem auf. Das erfindungsgemäße Kollisionswarnsystem kann zum Beispiel als Ergänzung zu einem vorhandenen herkömmlichen Sicherheitssystem installiert sein. In diesem Fall stellt es einen zusätzlichen unabhängigen Kanal dar, der von den anderen Sicherheitssystemen unabhängig ist. Alternativ kann das erfindungsgemäße Kollisionswarnsystem auch auf einem bereits vorhandenen Sicherheitssystem beruhen, wobei es zum Beispiel die ohnehin bereits vorhandene Sensorik nutzt. In diesem Fall wird aufgrund der Erhöhung der Reichweite der Detektion ebenfalls die Sicherheit der Kollisionsüberwachung verbessert, wobei der Aufwand und die zusätzlichen Kosten aufgrund der gemeinsamen Verwendung der Sensorik gering gehalten werden können.
  • Einige wesentliche Komponenten des erfindungsgemäßen Überwachungssystems können in Form von Softwarekomponenten ausgebildet sein. Dies betrifft insbesondere Teile der Sensoreinheiten und die Auswertungseinheit.
  • Grundsätzlich können diese Komponenten aber auch zum Teil, insbesondere wenn es um besonders schnelle Berechnungen geht, in Form von softwareunterstützter Hardware, beispielsweise FPGAs oder dergleichen, realisiert sein.
  • Eine weitgehend softwaremäßige Realisierung hat den Vorteil, dass auch schon bisher verwendete Kollisionswarnsysteme auf einfache Weise durch ein Software-Update nachgerüstet werden können, um auf die erfindungsgemäße Weise zu arbeiten. Insofern wird die Aufgabe auch durch ein Computerprogrammprodukt gelöst, welches direkt in einen Speicher eines Kollisionswarnsystems ladbar ist, mit Programmcodeabschnitten, um alle Schritte des erfindungsgemäßen Verfahrens auszuführen, wenn das Programm in dem Kollisionswarnsystem ausgeführt wird.
  • Ein solches Computerprogrammprodukt kann neben dem Computerprogramm gegebenenfalls zusätzliche Bestandteile, wie z. B. eine Dokumentation und/oder zusätzliche Komponenten und auch Hardware-Komponenten, wie z.B. Hardware-Schlüssel (Dongles etc.) zur Nutzung der Software, umfassen.
  • Zum Transport zu dem Kollisionswarnsystem und/oder zur Speicherung an oder in dem Kollisionswarnsystem kann ein computerlesbares Medium, beispielsweise ein Memorystick, eine Festplatte oder ein sonstiger transportabler oder fest eingebauter Datenträger dienen, auf welchem die von einer Rechnereinheit einlesbaren und ausführbaren Programmabschnitte des Computerprogramms gespeichert sind. Die Rechnereinheit kann z.B. hierzu einen oder mehrere zusammenarbeitende Mikroprozessoren oder dergleichen aufweisen.
  • Die abhängigen Ansprüche sowie die nachfolgende Beschreibung enthalten jeweils besonders vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung. Dabei können insbesondere die Ansprüche einer Anspruchskategorie auch analog zu den abhängigen Ansprüchen einer anderen Anspruchskategorie weitergebildet sein. Zudem können im Rahmen der Erfindung die verschiedenen Merkmale unterschiedlicher Ausführungsbeispiele und Ansprüche auch zu neuen Ausführungsbeispielen kombiniert werden.
  • Besonders bevorzugt handelt es sich bei den Transportfahrzeugen um Eisenbahnzüge. Aufgrund der hohen Geschwindigkeiten und langen Bremswege ist eine Detektion von entgegenkommenden Fahrzeugen mit großer Reichweite bei dieser Art von Fahrzeugen besonders wichtig.
  • In einer bevorzugten Ausgestaltung des erfindungsgemäßen Verfahrens tastet das erste Transportfahrzeug zusätzlich einen in Vorwärtsrichtung liegenden Streckenbereich ab und sendet das zweite Transportfahrzeug zusätzlich aktiv detektierbare Sensorsignale aus. Bei dieser Variante ist die Wahrscheinlichkeit für eine rechtzeitige Erkennung einer drohenden Kollision erhöht, da beide Fahrzeuge sowohl Sensorsignale detektieren als auch Sensorsignale aussenden, so dass beide Fahrzeuge entsprechende Maßnahmen zur Kollisionsvermeidung (z.B. Bremsen, oder Notbremsen) vornehmen können und so die Folgen einer Kollision erheblich stärker mindern oder gar ganz vermeiden können.
  • Um auf dem zweiten Transportfahrzeug eine Verwechslung der empfangenen Sensorsignale von möglichen vom selbigen Transportfahrzeug ausgesandten und von eventuellen Objekten in der Umgebung des Fahrweges reflektierten Signalen sicher unterscheiden zu können, können entsprechend geeignete Maßnahmen vorgesehen werden. Als derartige Maßnahme können je nach Anwendungsfall die folgenden Ausprägungen genannt werden:
    1. a) Das zweite Transportfahrzeug verfügt nur über Sensoren und sendet selbst keine Signale aus. In diesem Fall kann das zweite Transportfahrzeug allerdings selbst nicht von anderen Fahrzeugen detektiert werden. Aber auf Grund dieser Tatsache, deutet eine Detektion von entsprechenden Signalen immer auf ein entgegenkommendes Fahrzeug hin. Eine derartige Lösung könnte beispielsweise während einer Migrationsphase bei der Einführung eines derartigen Systems eine erste kostengünstige Variante bei der Umrüstung von Fahrzeugen, beispielsweise als Zwischenlösung, sinnvoll sein.
    2. b) Die Detektion für Signale entgegenkommender Transportfahrzeuge findet in einer Austastlücke statt, d.h. die Detektion zum Zwecke der Kollisionswarnung wird nur vorgenommen, wenn vom jeweiligen Transportfahrzeug selbst gerade kein Signal ausgesandt wird - oder umgekehrt - Signale, die empfangen werden, wenn gerade vom einem Transportfahrzeug selbst keine Signale ausgesandt werden, können in diesem Falle einem entgegenkommenden Transportfahrzeug zugeordnet werden.
    3. c) Für Signale, für die technisch die Möglichkeit besteht, diese zirkular polarisiert auszusenden, und deren Polarisation durch technische Maßnahmen detektierbar ist (z.B. polarisiertes Licht), können die Signale entgegenkommender Transportfahrzeuge von denen vom eigenen Transportfahrzeug ausgesandten und reflektierten Signalen durch deren unterschiedliche Polarisation unterschieden werden.
    4. d) Wird das ausgesandte Signal von jedem Transportfahrzeug in einer ausschließlich diesem Transportfahrzeug eigenen Art und Weise moduliert, können die Signale entgegenkommender Transportfahrzeuge auf Grund der unterschiedlichen Modulation von den eigenen Signalen unterschieden werden. Diese Modulation kann in einer besonders vorteilhaften Ausprägung verschiedene Zusatzinformationen über das Transportfahrzeug kodieren, die über eine Dekodierung während der Demodulation auf dem entgegenkommenden Transportfahrzeug wieder nutzbar gemacht werden. Neben der Unterscheidung der Transportfahrzeuge können nützliche Zusatzinformationen, wie beispielsweise die Geschwindigkeit, das Gewicht, die Ladung, die Belegung oder Nichtbelegung mit Passagieren, eine Information über das genutzte Gleis oder ähnliches, übertragen werden.
  • Für zwei- oder mehrgleisige Strecken sind auf jeden Fall Maßnahmen, wie in d) beschrieben vorzusehen, um gefahrlos entgegenkommende Transportfahrzeuge auf dem Nachbargleis von Transportfahrzeugen auf Kollisionskurs unterscheiden zu können.
  • In einer speziellen Variante des erfindungsgemäßen Verfahrens wird für den Fall einer Detektion eines entgegenkommenden Transportfahrzeugs der Fahrer des jeweiligen Transportfahrzeugs automatisiert gewarnt und/oder wird ein Bremsvorgang durch ein automatisches System eingeleitet. Vorteilhaft verbleibt dem Fahrer aufgrund der erhöhten Detektionsreichweite bei dem erfindungsgemäßen Verfahren eine längere Reaktionszeit, um Gegenmaßnahmen gegen eine Kollision einzuleiten. Bei einem automatisiert eingeleiteten Bremsmanöver werden Kollisionen aufgrund einer ausbleibenden Reaktion des Fahrers verhindert, so dass die Sicherheit für das Transportfahrzeug erhöht ist. Durch die frühzeitigere Detektion ist ferner bei Fahrzeugen mit aktiver Weichenverstellmöglichkeit (z.B. wie bei Straßenbahnen) auch die Chance erhöht, einen eventuell noch möglichen Gleiswechsel entweder manuell oder auch automatisch durchzuführen.
  • In einer weiteren Variante des erfindungsgemäßen Verfahrens verfügen beide Transportfahrzeuge über eine Kommunikationseinrichtung, so dass die Transportfahrzeuge die Maßnahmen zur Kollisionsvermeidung koordinieren und damit optimieren können. Beispielsweise könnte bei entsprechender Entfernung ein Transportfahrzeug, welches keine Personen befördert, eine Notbremsung durchführen, während das andere Transportfahrzeug im Personenbetrieb lediglich eine, für die beförderten Personen gefahrlosere Betriebsbremsung durchführt. Oder zwischen den Transportfahrzeugen wird ausgehandelt, welches der Fahrzeuge einen eventuell riskanten Gleiswechsel durchführt.
  • In einer vorteilhaften Verfeinerung dieser Variante wird der Informationsaustausch unter Nutzung der per Modulation übertragenen Informationen automatisch vorgenommen und auch die Strategie zur Kollisionsvermeidung automatisch durch in den Fahrzeugen untergebrachte Recheneinheiten ermittelt und in die Wege geleitet. Auf diese Weise kann wertvolle Zeit gewonnen werden, welche dann zusätzlich für die Maßnahmen zur Kollisionsvermeidung zur Verfügung steht.
  • In einer weiteren Variante des Verfahrens wird die Kollisionsgefahr automatisiert an eines oder mehrere Stellwerke übermittelt. Durch die größere Vorwarnzeit erhöhen sich damit die Chancen, über ein für eines der Transportfahrzeuge zuständigen Stellwerke noch einen eventuell möglichen Gleiswechsel für eines der beiden Transportfahrzeuge manuell oder automatisch zu ermöglichen.
  • In einer besonders praktikablen Variante des erfindungsgemäßen Verfahrens wird zum Durchführen des Verfahrens ein ADAS-System verwendet, welches um eine Erkennung von Sensorsignalen von entgegenkommenden Transportfahrzeugen ergänzt ist. Eine solche Erkennung von Sensorsignalen eines entgegenkommenden Transportfahrzeugs kann zum Beispiel dadurch erleichtert werden, dass das Aussenden der Sensorsignale und der Abtastvorgang unterschiedlicher Transportfahrzeuge auf derselben Frequenz erfolgen. D.h., das Empfangen durch den passiven Sensor wird zum Beispiel mit Hilfe eines Filters auf einen Frequenzbereich beschränkt, der von den Sensorsignalen des aktiven Sensors des entgegenkommenden Fahrzeugs genutzt wird. Damit wird verhindert, dass ein Detektionsereignis irrtümlich auch dann ausgelöst wird, wenn Signale oder allgemein elektromagnetische Wellen aus Störquellen auf die passive Sensoreinheit fallen. Auch eine falsche Deutung eigener, eventuell an der Umgebung reflektierter Sensorsignale kann dadurch vermieden werden, wenn die Sensorsignale von jedem Transportfahrzeug eine Identifikationsinformation umfassen. Auf diese Weise wird die Zuverlässigkeit der Kollisionswarnung weiter verbessert.
  • Besonders bevorzugt sind die Sensorsignale der Transportfahrzeuge mit einem individuellen Modulationssignal unterschiedlich moduliert, so dass Sensorsignale von einem bestimmten Transportfahrzeug diesem eindeutig zuordenbar sind.
  • Mit Hilfe der dem Sensorsignal zusätzlich aufgeprägten Daten können dem entgegenkommenden Transportfahrzeug zusätzlich zur Identität des Transportfahrzeugs auch Informationen über technische Eigenschaften und Kenngrößen, wie zum Beispiel die Art der Ladung, die Geschwindigkeit, der Bremsweg usw. übermittelt werden. Diese Daten können bei dem Einleiten von Gegenmaßnahmen gegen eine Kollision genutzt werden, um die dabei entstehenden Unannehmlichkeiten für beide Fahrzeuge möglichst gering zu halten. Bei zwei- oder mehrgleisigen Strecken kann das Signal ferner Informationen über das verwendete Gleis enthalten und damit eine Unterscheidung zwischen einer gefahrlosen Begegnung oder einer drohenden Kollision ermöglichen.
  • In einer Variante des erfindungsgemäßen Verfahrens wird nach der Detektion eines entgegenkommenden Transportfahrzeugs zwischen dem ersten und dem zweiten Transportfahrzeug eine automatisierte Kommunikation durchgeführt, um Reaktionen der Transportfahrzeuge zur Vermeidung einer Kollision aufeinander abzustimmen. Durch das Aushandeln der Bremsstrategien zwischen den Transportfahrzeugen kann ein möglicher Schaden, insbesondere Personenschaden, infolge eines notwendigen Bremsmanövers möglichst klein gehalten werden. Für die Kommunikation zwischen den einzelnen Transportfahrzeugen können die Transportfahrzeuge geeignete Kommunikationssysteme aufweisen, welche vorzugsweise von den Kollisionswarnsystemen der Transportfahrzeuge automatisiert genutzt werden, so dass die Abstimmung mit minimaler Verzögerung erfolgen kann.
  • Dabei erfolgt die Abstimmung bevorzugt in Abhängigkeit von Fahrzeugdaten, welche eine der folgenden Kenngrößen umfassen:
    • die Geschwindigkeit des Transportfahrzeugs,
    • die Masse des Transportfahrzeugs,
    • die Art der Ladung des Transportfahrzeugs,
    • Bremscharakteristiken des Transportfahrzeugs.
  • Die genannten Größen können in einen automatisierten Optimierungsprozess einfließen, bei dem für beide Transportfahrzeuge jeweils ein optimales Bremsverhalten ermittelt wird. Auf diese Weise werden Schäden und Unannehmlichkeiten bei einem notwendigen Bremsmanöver der beiden entgegenkommenden Fahrzeuge minimiert.
  • Besonders bevorzugt werden bei dem erfindungsgemäßen Verfahren zum Abtasten und Aussenden der Sensorsignale Sensorsysteme verwendet, welche mindestens eine der folgenden Arten von Funktionseinheiten umfassen:
    • eine Kamera,
    • eine Radareinrichtung
    • eine Lidareinrichtung,
    • eine Ultraschallsensoreinrichtung,
    • eine Schallsensoreinrichtung.
  • Eine Kamera bietet den Vorteil einer hohen Auflösung und einer einfachen Deutbarkeit der mit der Kamera erfassten Bildinformationen. Eine Kamera kann auch zusätzlich zu der Detektion der Sensorsignale für eine Bilddarstellung eines Streckenbereichs für ein Transportfahrzeug genutzt werden.
  • Mit Hilfe einer Radareinrichtung lassen sich entgegenkommende Fahrzeuge auch bei schlechten Sichtverhältnissen noch detektieren. Weiterhin lassen sich mit Radarsystemen Abstände und Geschwindigkeiten von entgegenkommenden Objekten ermitteln.
  • Eine Lidareinrichtung weist einen Laser auf, mit dem ein gerichteter Lichtstrahl emittiert werden kann. Mit einer solchen Lidareinrichtung lässt sich der Abtastbereich sehr präzise festlegen, so dass Störungen durch die Sensorsignale durch eine Beaufschlagung der Umgebung vermieden werden können.
  • Akustische Sensorsysteme weisen Sensorwellen auf, die sich auch um Kurven oder Ecken herum ausbereiten können, so dass auch in unübersichtlichen Bereichen entgegenkommende Transportfahrzeuge erkannt werden können.
  • Es kann auch eine Kombination mehrerer der genannten Sensorsysteme für das erfindungsgemäße Kollisionswarnsystem eingesetzt werden, um die Vorteile der unterschiedlichen Detektionsarten miteinander zu verbinden.
  • Die Erfindung wird im Folgenden unter Hinweis auf die beigefügten Figuren anhand von Ausführungsbeispielen noch einmal näher erläutert. Es zeigen:
  • FIG 1
    eine schematische Darstellung eines streckengebundenen Transportsystems gemäß einem Ausführungsbeispiel der Erfindung,
    FIG 2
    ein Flussdiagramm, welches ein Verfahren zur Detektion von entgegenkommenden Transportfahrzeugen in einem streckengebundenen Transportsystem gemäß einem Ausführungsbeispiel der Erfindung veranschaulicht.
  • In FIG 1 ist ein Abschnitt eines Transportsystems 10, in diesem Fall eine eingleisige Eisenbahnstrecke, gezeigt. Der Abschnitt umfasst ein Eisenbahngleis 8, auf dem sich zwei auf demselben Gleis aufeinander zufahrende Züge 1, 2 befinden. Ein erster Zug 1 umfasst an seiner Frontseite eine Sensoreinheit 9a und sendet Sensorsignale 3 (als Sensorstrahlkegel gestrichelt gezeichnet) in Fahrtrichtung aus. Ein dem ersten Zug 1 auf demselben Gleis 8 entgegenkommender zweiter Zug 2 weist ebenfalls eine Sensoreinheit 9b auf, welche Sensorsignale 4 (ebenfalls als Sensorstrahlkegel gestrichelt gezeichnet) in Richtung des ersten Zugs 1 aussendet. Die Sensorsignale 3 des ersten Zugs 1 werden von der Sensoreinheit 9b des zweiten Zugs 2, die auch eine Sensorsignalempfangsfunktion aufweist, erfasst und in einer Auswertungseinheit (nicht gezeigt) ausgewertet.
  • In dem in FIG 1 gezeigten Ausführungsbeispiel wird anhand eines dem Sensorsignal 3 des ersten Zugs 1 aufmodulierten Signals, welches in der Auswertungseinheit des zweiten Zugs 2 demoduliert und analysiert wird, auf die Identität des ersten Zugs 1 geschlossen, so dass einem automatisierten Assistenzsystem des zweiten Zugs nun bekannt ist, dass der erste Zug 1 im maximalen Detektionsabstand d2 dem zweiten Zug 2 entgegenkommt. Dabei entspricht der maximale Detektionsabstand d2 dem doppelten herkömmlichen maximalen Detektionsabstand d1 einer Sensoreinheit, bei der die emittierten Sensorsignale von einem zu detektierenden Objekt 5 reflektiert werden und von der emittierenden Sensoreinheit wieder erfasst werden. Genauso wird auch von dem ersten Zug 1 anhand des Sensorsignals 4 des zweiten Zugs 2 erkannt, dass sich der zweite Zug 2 in einem maximalen Detektionsabstand d2 dem ersten Zug 1 nähert. Auf Basis der frühzeitig erfassten Information, dass sie auf Kollisionskurs liegen, haben die beiden Züge 1, 2 nun ausreichend Zeit, sich abzustimmen, auf die Situation abgestimmt zu reagieren und so eine Kollision zu vermeiden.
  • In FIG 2 ist ein Flussdiagramm gezeigt, welches ein Verfahren zur Detektion von entgegenkommenden Fahrzeugen in einem streckengebundenen Transportsystem gemäß einem Ausführungsbeispiel der Erfindung veranschaulicht.
  • Bei dem Schritt 2.I werden detektierbare Sensorsignale 3 durch ein auf einer Strecke befindliches erstes Transportfahrzeug 1, beispielsweise ein Zug, ausgesendet. Bei dem Schritt 2.II wird ein in Vorwärtsrichtung liegender Streckenbereich durch ein auf der Strecke befindliches, dem ersten Transportfahrzeug 1 entgegenkommendes zweites Transportfahrzeug 2, beispielsweise ebenfalls ein Zug, mit Hilfe einer passiven Sensorfunktion PS abgetastet. Weiterhin werden bei dem Schritt 2.III die von dem ersten Transportfahrzeug 1 ausgesandten Sensorsignale 3 durch das zweite Transportfahrzeug 2 detektiert.
  • Bei dem Schritt 2.IV werden die detektierten Sensorsignale 3 von einer Auswertungseinheit des zweiten Transportfahrzeugs 2 ausgewertet, wobei das erste Transportfahrzeug 1 identifiziert wird und, beispielsweise auf Basis der erfassten Signalamplitude der Sensorsignale, festgestellt wird, dass sich das erste Transportfahrzeug 1 bei dem Zeitpunkt der ersten Detektion etwa in maximaler Reichweite d2 der Erfassbarkeit der Sensorsignale 3 des ersten Transportfahrzeugs 1 befinden muss. Bei dem Schritt 2.V erfolgt eine Kommunikation zwischen dem ersten Transportfahrzeug 1 und dem zweiten Transportfahrzeug 2, wobei automatisiert miteinander abgestimmt wird, welches Transportfahrzeug in welchem Maße welche Reaktion zur Vermeidung einer Kollision zeigen soll. Schließlich wird bei dem Schritt 2.VI von beiden Transportfahrzeugen 1, 2 jeweils ein aufeinander und auf die jeweiligen Erfordernisse der einzelnen Züge 1, 2 abgestimmtes Bremsmanöver BM eingeleitet, wodurch eine Kollision der beiden Transportfahrzeuge 1, 2 vermieden wird.
  • Es wird abschließend noch einmal darauf hingewiesen, dass es sich bei den vorbeschriebenen Verfahren und Vorrichtungen lediglich um bevorzugte Ausführungsbeispiele der Erfindung handelt und dass die Erfindung vom Fachmann variiert werden kann, ohne den Bereich der Erfindung zu verlassen, soweit er durch die Ansprüche vorgegeben ist. So wurden das Verfahren und die Vorrichtung in erster Linie im Zusammenhang mit der Überwachung des Fahrwegs von Zügen erläutert. Das genannte Verfahren und das beschriebene Kollisionswarnsystem sind jedoch nicht auf die Anwendung auf Züge beschränkt, sondern kann auch in anderen streckengebundenen Verkehrsmitteln eingesetzt werden. Es wird der Vollständigkeit halber auch darauf hingewiesen, dass die Verwendung der unbestimmten Artikel "ein" bzw. "eine" nicht ausschließt, dass die betreffenden Merkmale auch mehrfach vorhanden sein können. Ebenso schließt der Begriff "Einheit" nicht aus, dass diese aus mehreren Komponenten besteht, die gegebenenfalls auch räumlich verteilt sein können.

Claims (12)

  1. Verfahren zur Detektion von entgegenkommenden Transportfahrzeugen (1, 2) in einem streckengebundenen Transportsystem (10), aufweisend die Schritte:
    - Aktives Aussenden von detektierbaren Sensorsignalen (3) durch ein auf einer Strecke befindliches erstes Transportfahrzeug (1),
    - Abtasten eines in Vorwärtsrichtung liegenden Streckenbereichs durch ein auf der Strecke befindliches, dem ersten Transportfahrzeug (1) entgegenkommendes zweites Transportfahrzeug (2),
    - Detektieren der von dem ersten Transportfahrzeug (1) ausgesandten Sensorsignale (3) durch das zweite Transportfahrzeug (2), wobei zum Durchführen des Verfahrens ein ADAS-System verwendet wird, welches um eine Erkennung von Sensorsignalen (3, 4) von entgegenkommenden Transportfahrzeugen (1, 2) ergänzt ist.
  2. Verfahren nach Anspruch 1, wobei auch das erste Transportfahrzeug (1) zusätzlich einen in Vorwärtsrichtung liegenden Streckenbereich abtastet und das zweite Transportfahrzeug (2) zusätzlich aktiv detektierbare Sensorsignale (4) aussendet.
  3. Verfahren nach Anspruch 1 oder 2, wobei für den Fall einer Detektion eines entgegenkommenden Transportfahrzeugs (1, 2) die Fahrer der beiden Transportfahrzeuge gewarnt werden und/oder ein Bremsvorgang durch ein automatisches System eingeleitet wird.
  4. Verfahren nach einem der Ansprüche 1 bis 3, wobei das Aussenden der Sensorsignale (3, 4) und der Abtastvorgang unterschiedlicher Transportfahrzeuge (1, 2) auf derselben Frequenz erfolgen.
  5. Verfahren nach einem der Ansprüche 1 bis 4, wobei die Sensorsignale (3, 4) der Transportfahrzeuge (1, 2) mit einem individuellen Modulationssignal unterschiedlich moduliert sind, so dass Sensorsignale (3, 4) von einem Transportfahrzeug (1, 2) diesem eindeutig zuordenbar sind.
  6. Verfahren nach einem der Ansprüche 1 bis 5, wobei nach der Detektion eines entgegenkommenden Transportfahrzeugs (1, 2) zwischen dem ersten und dem zweiten Transportfahrzeug (1, 2) eine automatisierte Kommunikation durchgeführt wird, um Reaktionen der Transportfahrzeuge (1, 2) zur Vermeidung einer Kollision aufeinander abzustimmen.
  7. Verfahren nach Anspruch 6, wobei die Abstimmung in Abhängigkeit von Fahrzeugdaten erfolgt, welche eine der folgenden Kenngrößen umfassen:
    - Geschwindigkeit der Transportfahrzeuge (1, 2),
    - Masse der Transportfahrzeuge (1, 2),
    - Art der Ladung der Transportfahrzeuge (1, 2),
    - Bremscharakteristiken der Transportfahrzeuge (1, 2).
  8. Verfahren nach einem der Ansprüche 1 bis 7, wobei zum Abtasten und Aussenden der Sensorsignale Sensorsysteme verwendet werden, welche mindestens eine der folgenden Arten von Funktionseinheiten umfassen:
    - eine Kamera,
    - eine Radareinrichtung,
    - eine Lidareinrichtung,
    - eine Ultraschallsensoreinrichtung.
  9. Kollisionswarnsystem für ein streckengebundenes Transportsystem (10), aufweisend:
    - eine an einem ersten Transportfahrzeug (1) angeordnete aktive Sensoreinheit (9a) zum aktiven Aussenden von detektierbaren Sensorsignalen (3),
    - eine an einem zweiten Transportfahrzeug (2) angeordnete passive Sensoreinheit (9b) zum Abtasten eines in Vorwärtsrichtung liegenden Streckenbereichs,
    - eine an dem zweiten Transportfahrzeug (2) angeordnete Auswertungseinheit zum Ermitteln eines entgegenkommenden Fahrzeugs (1) auf Basis der von der passiven Sensoreinheit (9b) erfassten, von dem ersten Transportfahrzeug (1) ausgesandten Sensorsignale (3), wobei die passive Sensoreinheit Teil eines ADAS-System ist, das um eine Erkennung von Sensorsignalen von entgegenkommenden Transportfahrzeugen ergänzt ist.
  10. Streckengebundenes Transportsystem (10), aufweisend eine Mehrzahl von Transportfahrzeugen (1, 2) mit einem Kollisionswarnsystem nach Anspruch 9.
  11. Computerprogrammprodukt mit einem Computerprogramm, welches direkt in eine Speichereinrichtung eines Kollisionswarnsystems eines Transportfahrzeugs (1, 2) ladbar ist, mit Programmabschnitten, um alle Schritte eines Verfahrens nach einem der Ansprüche 1 bis 8 auszuführen, wenn das Computerprogramm in dem Transportfahrzeug (1, 2) ausgeführt wird.
  12. Computerlesbares Medium, auf welchem von einer Rechnereinheit einlesbare und ausführbare Programmabschnitte gespeichert sind, um alle Schritte eines Verfahrens nach einem der Ansprüche 1 bis 8 auszuführen, wenn die Programmabschnitte von der Rechnereinheit ausgeführt werden.
EP17755154.6A 2016-09-14 2017-08-16 Verfahren und kollisionswarnsystem zur detektion von entgegenkommenden fahrzeugen Active EP3481695B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016217491.6A DE102016217491A1 (de) 2016-09-14 2016-09-14 Verfahren zur Detektion von entgegenkommenden Fahrzeugen
PCT/EP2017/070781 WO2018050388A1 (de) 2016-09-14 2017-08-16 Verfahren und kollisionswarnsystem zur detektion von entgegenkommenden fahrzeugen

Publications (2)

Publication Number Publication Date
EP3481695A1 EP3481695A1 (de) 2019-05-15
EP3481695B1 true EP3481695B1 (de) 2020-06-24

Family

ID=59683564

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17755154.6A Active EP3481695B1 (de) 2016-09-14 2017-08-16 Verfahren und kollisionswarnsystem zur detektion von entgegenkommenden fahrzeugen

Country Status (4)

Country Link
EP (1) EP3481695B1 (de)
DE (1) DE102016217491A1 (de)
ES (1) ES2820754T3 (de)
WO (1) WO2018050388A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019206341A1 (de) * 2019-05-03 2020-11-05 Zf Friedrichshafen Ag Vorrichtung und Verfahren zum Vermeiden einer Kollision zwischen Schienenfahrzeugen
DE102019206344A1 (de) * 2019-05-03 2020-11-05 Zf Friedrichshafen Ag Sensor-basierte Steuerung zur Gefahrenvermeidung im Schienenverkehrssystem
DE102021212700A1 (de) 2021-11-11 2023-05-11 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren, Vorrichtung und System zum Betreiben eines Schienenfahrzeugs zum Warnen vor einer möglichen Kollision

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3365572A (en) 1965-08-06 1968-01-23 Strauss Henry Frank Automatic collision prevention, alarm and control system
DE19650981A1 (de) 1996-12-09 1998-06-10 Iht Innovationsgesellschaft Fu Meßverfahren und Einrichtung zur Ermittlung des Abstandes und von Datenübertragung zwischen relativ zueinander bewegten Objekten, insbesondere von Transportmitteln auf gemeinsamen Bahnen
AT410531B (de) 1999-05-25 2003-05-26 Bernard Ing Douet Verfahren und system zur automatischen erfassung bzw. überwachung der position wenigstens eines schienenfahrzeugs
AUPS123702A0 (en) * 2002-03-22 2002-04-18 Nahla, Ibrahim S. Mr The train navigtion and control system (TNCS) for multiple tracks
US7486199B2 (en) * 2005-11-17 2009-02-03 Nissan Technical Center North America, Inc. Forward vehicle brake warning system
DE102008003872A1 (de) * 2008-01-08 2009-08-27 Siemens Aktiengesellschaft Verfahren zur Kollisionswarnung und Kollisionswarnsystem
DE102008060185A1 (de) 2008-11-28 2010-06-10 Siemens Aktiengesellschaft Verfahren zur Kollisionswarnung und Kollisionswarnsystem
EP2892020A1 (de) * 2014-01-06 2015-07-08 Harman International Industries, Incorporated Kontinuierliche Identitätsüberwachung zur Klassifizierung von Fahrinformationen zur Fahrleistungsanalyse

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
ES2820754T3 (es) 2021-04-22
WO2018050388A1 (de) 2018-03-22
DE102016217491A1 (de) 2018-03-15
EP3481695A1 (de) 2019-05-15

Similar Documents

Publication Publication Date Title
EP3414141B1 (de) Verfahren und system zum erkennen von hindernissen in einem gefahrraum vor einem schienenfahrzeug
EP1873737B1 (de) Verfahren zur Erkennung einer kritischen Situation vor einem Kraftfahrzeug
EP3481695B1 (de) Verfahren und kollisionswarnsystem zur detektion von entgegenkommenden fahrzeugen
DE102016000199A1 (de) Steuerungs-System und Verfahren zum Ermitteln eines sicheren Spurwechsels durch Kraftfahrzeuge
DE102014220778A1 (de) Verfahren zum Überwachen von Gleisabschnitten bei einem Schienenfahrzeug
DE102009018311A1 (de) Verfahren und Vorrichtung zum Betrieb eines radargestützten Umfelderkennungssystems
EP3414140B1 (de) Verfahren und system zum erkennen von hindernissen in einem gefahrraum vor einem schienenfahrzeug
DE102012008846A1 (de) Fahrerloses Transportsystem und Verfahren zum Betreiben eines solchen fahrerlosen Transportsystems
DE102015223241A1 (de) Verfahren und Steuereinheit zur Unterstützung bei Überholmanövern
DE102017204878A1 (de) Verfahren zum Betreiben eines Fahrzeugkonvois
DE102009022588A1 (de) Verfahren und System zur Überwachung eines Umgebungsbereichs eines Fahrzeugs
DE102016216320A1 (de) Überwachung von streckengebundenen Transportsystemen
DE102017201196A1 (de) Verfahren zum Betreiben eines Fahrzeugkonvois
EP3381766B1 (de) Verfahren zur kollisionsvermeidung von schienenfahrzeugen
EP3795451B1 (de) Verfahren zum orten eines fahrzeugs an einer für einen halt des fahrzeugs vorgesehenen station
EP3333044A2 (de) Verfahren und vorrichtung zum betreiben einer rangierlok
EP1572517B1 (de) Hochgeschwindigkeitszug mit einem system zur hinderniswarnung
DE102019206870A1 (de) Verfahren zum Ermitteln einer durch einen Verkehrsteilnehmer verursachten Gefährdung und zum Einleiten einer Überwachung des Verkehrsteilnehmers und Steuergerät
DE102019206344A1 (de) Sensor-basierte Steuerung zur Gefahrenvermeidung im Schienenverkehrssystem
AT8832U1 (de) Verfahren und vorrichtung zur standortbestimmung von spurgebundenen fahrzeugen
EP3738855A1 (de) System zum kontrollierten abbremsen und positionsdefinierten stoppen eines schienenfahrzeugs
DE102019206348A1 (de) Verfahren und Computer-Programm-Produkt zum Erkennen von Signalzeichen zur Verkehrssteuerung spurgebundener Fahrzeuge sowie Signalzeichenerkennungssystem und Spurgebundenes Fahrzeug, insbesondere Schienenfahrzeug
WO2019038041A1 (de) Geschwindigkeitsüberwachung in abhängigkeit von der kurvenkrummung der strecke
EP2584314A2 (de) Verfahren und Vorrichtung zur Unschärfestellung einer Positionsinformation und/oder davon abgeleiteter Informationen
EP3558787A2 (de) Anzeigesystem für eine fahrzeugseitige anordnung

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190207

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200227

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1283605

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017005896

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG, CH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200924

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200925

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200813

Year of fee payment: 4

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200924

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201026

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20201124

Year of fee payment: 4

Ref country code: DE

Payment date: 20201019

Year of fee payment: 4

Ref country code: CH

Payment date: 20201102

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201024

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017005896

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2820754

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20210422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200816

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200831

26N No opposition filed

Effective date: 20210325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200816

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502017005896

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210816

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210831

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220301

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210817

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1283605

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220816