EP3478645A1 - Process for manufacturing a ceramic matrix composite part - Google Patents

Process for manufacturing a ceramic matrix composite part

Info

Publication number
EP3478645A1
EP3478645A1 EP17742814.1A EP17742814A EP3478645A1 EP 3478645 A1 EP3478645 A1 EP 3478645A1 EP 17742814 A EP17742814 A EP 17742814A EP 3478645 A1 EP3478645 A1 EP 3478645A1
Authority
EP
European Patent Office
Prior art keywords
fibrous reinforcement
porosity
ceramic matrix
ceramic
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP17742814.1A
Other languages
German (de)
French (fr)
Inventor
Aurélia CLERAMBOURG
Marie LEFEBVRE
Sébastien Denneulin
Eric Philippe
Eric Bouillon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Ceramics SA
Original Assignee
Safran Ceramics SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Ceramics SA filed Critical Safran Ceramics SA
Publication of EP3478645A1 publication Critical patent/EP3478645A1/en
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/573Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by reaction sintering or recrystallisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62857Coating fibres with non-oxide ceramics
    • C04B35/6286Carbides
    • C04B35/62863Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62857Coating fibres with non-oxide ceramics
    • C04B35/62865Nitrides
    • C04B35/62868Boron nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62857Coating fibres with non-oxide ceramics
    • C04B35/62873Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62894Coating the powders or the macroscopic reinforcing agents with more than one coating layer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62897Coatings characterised by their thickness
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/653Processes involving a melting step
    • C04B35/657Processes involving a melting step for manufacturing refractories
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D25/00Woven fabrics not otherwise provided for
    • D03D25/005Three-dimensional woven fabrics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3804Borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3821Boron carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/386Boron nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3873Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3895Non-oxides with a defined oxygen content, e.g. SiOC, TiON
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/404Refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/421Boron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5244Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5252Fibers having a specific pre-form
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5252Fibers having a specific pre-form
    • C04B2235/5256Two-dimensional, e.g. woven structures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/608Green bodies or pre-forms with well-defined density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/614Gas infiltration of green bodies or pre-forms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/616Liquid infiltration of green bodies or pre-forms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/02Inorganic fibres based on oxides or oxide ceramics, e.g. silicates
    • D10B2101/08Ceramic
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2505/00Industrial
    • D10B2505/02Reinforcing materials; Prepregs

Definitions

  • the present invention relates to the general field of manufacturing processes of ceramic matrix composite material parts.
  • CMC ceramic matrix composite material
  • Pre-preg The so-called "Pre-preg” process is also known in which pre-impregnated carbon precursor resin threads are formed into webs which are then draped to obtain a fibrous preform.
  • the fiber preform is molded, baked, and finally infiltrated by a silicon alloy in the liquid state (infiltration technique in the molten state: "MI” for "Melt-Infiltration”).
  • MI infiltration technique in the molten state
  • the parts obtained by the MI technique may have a significant residual porosity, due in particular to the inhomogeneous penetration of the molten metal into the fibrous reinforcement.
  • the mechanical properties of the parts obtained by this method can therefore be improved.
  • the main object of the present invention is therefore to overcome such drawbacks by proposing a method for manufacturing a part made of composite material comprising a fibrous reinforcement and a ceramic matrix present in the porosity of the fibrous reinforcement, the process comprising at least the following steps:
  • step b) introducing into the porosity of the fibrous reinforcement after implementation of step b) of a powder comprising ceramic particles and / or carbon particles, and
  • step d) the infiltration of the fibrous reinforcement, after implementation of step c), with a melt infiltration composition comprising at least silicon so as to form a second ceramic matrix phase in the porosity of the fibrous reinforcement and thus obtain the piece of composite material.
  • a fibrous reinforcement weave interlock weave provides better penetration of the powder particles in the porosity of the latter during step c).
  • the interlock armor defines, after step b), porosity channels adapted to a better penetration of the particles in the thickness of the reinforcement. It follows that the melt infiltration composition will also penetrate more easily into the fibrous reinforcement, during step d), by wetting the ceramic and / or carbon particles already present in the porosity of the fibrous reinforcement. .
  • the porosity in the part obtained after implementation of step d) may be less than or equal to 5%, or even less than or equal to 3%.
  • the mechanical properties of the piece of CMC material obtained are improved and the residual porosity is reduced.
  • the use of three-dimensional weaving to achieve the fiber reinforcement makes it possible to obtain pieces of complex geometry.
  • particles of SiC, Si 3 N 4 , BN, SiB 6 , B 4 C, or a mixture of such particles may be introduced during step c).
  • SiC particles may be introduced during step c).
  • a mixture of SiC particles and carbon particles is introduced in step c).
  • the average particle size introduced during step c) may be less than or equal to 5 ⁇ m or even less than or equal to 1 ⁇ m.
  • average particle size is meant the size D 50 of the particles. particles.
  • the first ceramic matrix phase may comprise silicon carbide (SiC).
  • an interphase may be formed on the ceramic son before step b).
  • the fiber reinforcement may comprise silicon carbide wires having an oxygen content of less than or equal to 1% atomic percentage.
  • the invention relates to the method described above wherein the manufactured part is a turbomachine part.
  • the part can be a part of hot part of a gas turbine of an aeronautical engine or an industrial turbine.
  • the part may constitute at least a part of a distributor, a wall of a combustion chamber, a turbine ring sector or a turbomachine blade.
  • FIG. 1 is a flowchart representing the different steps of an exemplary method according to the invention
  • FIG. 2 is a schematic view showing an example of interlock weave weave
  • FIG. 3 is a photograph showing a section of a part obtained by a method according to the invention.
  • FIG. 4 is a photograph showing a section of a piece obtained by a method outside the invention. Detailed description of the invention
  • a first step E1 of the method may consist of forming the fibrous reinforcement of the piece by three-dimensional weaving to obtain a fibrous reinforcement having an interlock weave.
  • the fiber reinforcement may be formed of ceramic son, for example silicon carbide son.
  • the fibrous reinforcement obtained during step E1 constitutes a fibrous preform of the part to be manufactured.
  • Examples of usable silicon carbide threads may be "Nicalon", “Hi-Nicalon” or “Hi-Nicalon-S” yarns marketed by the Japanese company NGS.
  • the ceramic son of the fiber reinforcement may have an oxygen content less than or equal to 1% atomic percentage.
  • "Hi-Nicalon-S" wires have such a characteristic.
  • the fibrous reinforcement has an interlock weave.
  • Armor or interlock fabric means a 3D weave armor in which each layer of warp thread C binds several layers of weft threads T with all the threads of the same warp column having the same movement in the thread plane. armor.
  • a weft layer is formed of two adjacent half-weft layers t-offset with respect to each other in the warp direction. We therefore have here 18 half-layers of weft positioned in staggered rows.
  • Each warp C binds 3 half-layers of weft t.
  • a reversal of roles between warp and weft is possible in the present text and should be considered as also covered by the claims.
  • a step E2 of surface treatment of the ceramic son, prior to the formation of an interphase, is preferably carried out in particular to eliminate the size that may be present on the fibers.
  • a defibrillation interphase can be formed by CVI on the ceramic son of the fibrous reinforcement.
  • the thickness of the interphase may for example be between 10 nm and 1000 nm, and for example between 10 nm and 100 nm.
  • the interphase can be monolayer or multilayer.
  • the interphase may comprise at least one layer of pyrolytic carbon (PyC), boron nitride (BN), silicon doped boron nitride (BN (Si), with silicon in a mass proportion of between 5% and 40%). %, the balance being boron nitride) or boron doped carbon (BC, with boron in an atomic proportion of between 5% and 20%, the balance being carbon).
  • the interphase here has a function of defragilating the composite material which favors the deflection of possible cracks reaching the interphase after having propagated in the matrix, preventing or delaying the breaking of fibers by such cracks.
  • a step E4 of forming a first ceramic matrix phase in the porosity of the fibrous reinforcement is then carried out on the interphase which may have been previously formed or directly on the fibers of the fibrous reinforcement.
  • This matrix phase can be formed by CVI.
  • the first ceramic matrix phase may for example comprise SiC.
  • the residual porosity rate of the fibrous reinforcement following this step E4 and before introduction of the powder may be greater than or equal to 30%, for example between 30% and 35%. In general, the residual porosity rate of the fibrous reinforcement after implementation of step E4 (step b)) is sufficient to allow the introduction of a powder into the porosity of the fibrous reinforcement and the formation of a second matrix phase.
  • step E5 the introduction of a powder comprising particles of ceramic material and / or carbon particles into the residual porosity of the fibrous reinforcement (step c)).
  • the fiber reinforcement can be impregnated with a composition, for example in the form of a slip, introduced into the porosity of the fibrous reinforcement by methods known per se, for example by injection.
  • Said composition may comprise the powder in suspension in a liquid medium.
  • the ceramic particles may be particles of SiC, Si 3 N 4 , BN, SiB 6 , B 4 C, or a mixture of such particles.
  • the size (D 50 ) of the particles of the powder may be less than or equal to 5 Mm, or even less than or equal to 1 Mm.
  • step E6 the fibrous reinforcement in which the powder introduced in step E5 is introduced is infiltrated with a melt infiltration composition (step d)) comprising at least silicon so as to form a second ceramic matrix phase in the porosity of the fibrous reinforcement and to finalize the densification to obtain the part.
  • a melt infiltration composition (step d)) comprising at least silicon so as to form a second ceramic matrix phase in the porosity of the fibrous reinforcement and to finalize the densification to obtain the part.
  • This infiltration step corresponds to a step of infiltration in the molten state (MI process).
  • the infiltration composition may consist of pure molten silicon or alternatively may be in the form of a molten silicon alloy and one or more other components.
  • the infiltration composition may comprise predominantly silicon mass, that is to say have a silicon mass content greater than or equal to 50%.
  • the infiltration composition may, for example, have a silicon mass content greater than or equal to 75%.
  • the constituent (s) present (s) within the silicon alloy may be selected from B, Al, Mo, Ti, and mixtures thereof.
  • the particles of the powder introduced in step E5 are particles of C, B 4 C, or a mixture of these particles, a chemical reaction may occur between the infiltration composition and the powder particles during infiltration resulting in the formation of silicon carbide.
  • step E6 the piece of material CMC is obtained.
  • a piece of CMC material may be a static or rotary turbine engine part. Examples of turbomachine parts have been mentioned above.
  • Such a piece may further be coated with an environmental / thermal barrier coating.
  • FIG. 3 shows a photograph of a sectional cut of CMC material obtained by an exemplary method according to the invention.
  • the fibrous reinforcement has an interlock weave and has been pre-densified by CVI (step E4) to obtain a first phase of SiC matrix.
  • the fibrous reinforcement had a residual porosity in volume of between 30% and 35%.
  • an SiC powder (sold by Marion Technologies under the reference SiC MT59) having an average size (D 50 ) of particles of 0.8 ⁇ m was introduced inside the porosity of the fibrous reinforcement. pre-densified.
  • the infiltration was carried out using pure silicon (marketed by HC Starck under the reference Silicium Grade AX-20).
  • the photograph of FIG. 3 shows the matrix M and the wires F in the piece of CMC material thus obtained.
  • the overall porosity measured in the room is less than 1%.
  • FIG. 4 is a photograph showing a sectional view of the CMC material part obtained in this test. Black pores are visible in the photograph of FIG. 4. An overall porosity greater than 15% has been measured in the part, and it can be seen in FIG. 4 that this porosity is also present between the F yarns. Thus, it can be seen that it is more difficult to fill the porosity in the fibrous reinforcement when the latter has a weave that is not interlocked. The mechanical properties are therefore less for this part than with that obtained in the previous test using a fibrous reinforcement with interlock weave.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Textile Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Products (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Woven Fabrics (AREA)

Abstract

The invention relates to a process for manufacturing a composite part comprising a fibrous reinforcement and a ceramic matrix present in the porosity of the fibrous reinforcement, the process comprising at least the following steps: a) the formation of the fibrous reinforcement by three-dimensional weaving of ceramic yarns (step E1), the fibrous reinforcement thus formed having an interlock weave; b) the formation of a first ceramic matrix phase in the porosity of the fibrous reinforcement (step E4); c) the introduction into the porosity of the fibrous reinforcement, after carrying out step b), of a powder comprising a mixture of SiC particles and carbon particles (step E5); and d) the infiltration of the fibrous reinforcement obtained after carrying out step c) by an infiltration composition in the melt state comprising at least silicon so as to form a second ceramic matrix phase in the porosity of the fibrous reinforcement and thus obtain the composite part (step E6).

Description

Procédé de fabrication d'une pièce en matériau composite à matrice céramique  Process for manufacturing a piece made of ceramic matrix composite material
Arrière-plan de l'invention Background of the invention
La présente invention se rapporte au domaine général des procédés de fabrication de pièces en matériau composite à matrice céramique.  The present invention relates to the general field of manufacturing processes of ceramic matrix composite material parts.
Différents procédés de fabrication de pièces en matériau composite à matrice céramique (CMC) sont connus. On connaît le procédé d'infiltration chimique en phase gazeuse (procédé CVI pour « Chemical Vapor Infiltration ») d'un renfort fibreux. La CVI permet d'obtenir des pièces présentant de bonnes propriétés mécaniques ainsi que des densités élevées. Cette méthode présente toutefois l'inconvénient d'être coûteuse. Various methods for manufacturing ceramic matrix composite material (CMC) parts are known. The method of chemical vapor infiltration (CVI process for "Chemical Vapor Infiltration") of a fibrous reinforcement is known. The CVI makes it possible to obtain parts having good mechanical properties as well as high densities. This method however has the disadvantage of being expensive.
On connaît également le procédé dit « Pre-preg » dans lequel des fils pré imprégnés de résine précurseur de carbone sont mis sous la forme de nappes qui sont ensuite drapées pour obtenir une préforme fibreuse. La préforme fibreuse est moulée, cuite, et enfin infiltrée par un alliage de silicium à l'état liquide (technique d'infiltration à l'état fondu : « MI » pour « Melt-Infiltration »). La réalisation d'une pièce de forme tridimensionnelle complexe par mise en œuvre de ce procédé peut toutefois être relativement difficile.  The so-called "Pre-preg" process is also known in which pre-impregnated carbon precursor resin threads are formed into webs which are then draped to obtain a fibrous preform. The fiber preform is molded, baked, and finally infiltrated by a silicon alloy in the liquid state (infiltration technique in the molten state: "MI" for "Melt-Infiltration"). The production of a piece of complex three-dimensional shape by implementing this method can, however, be relatively difficult.
Il est aussi à noter que les pièces obtenues par la technique MI peuvent présenter une porosité résiduelle significative, due notamment à la pénétration inhomogène du métal fondu dans le renfort fibreux. Les propriétés mécaniques des pièces obtenues par ce procédé peuvent donc être améliorées.  It should also be noted that the parts obtained by the MI technique may have a significant residual porosity, due in particular to the inhomogeneous penetration of the molten metal into the fibrous reinforcement. The mechanical properties of the parts obtained by this method can therefore be improved.
Il existe donc un besoin pour disposer d'un procédé de fabrication de coût de mise en œuvre relativement faible qui permette d'obtenir une pièce CMC de forme complexe ayant des propriétés mécaniques améliorées et un faible taux de porosité résiduelle. There is therefore a need to have a relatively low cost implementation manufacturing method that allows to obtain a CMC piece of complex shape having improved mechanical properties and a low residual porosity rate.
Objet et résumé de l'invention Object and summary of the invention
La présente invention a donc pour but principal de pallier de tels inconvénients en proposant un procédé de fabrication d'une pièce en matériau composite comprenant un renfort fibreux et une matrice céramique présente dans la porosité du renfort fibreux, le procédé comprenant au moins les étapes suivantes : The main object of the present invention is therefore to overcome such drawbacks by proposing a method for manufacturing a part made of composite material comprising a fibrous reinforcement and a ceramic matrix present in the porosity of the fibrous reinforcement, the process comprising at least the following steps:
a) la formation du renfort fibreux par tissage tridimensionnel de fils céramiques, le renfort fibreux ainsi formé présentant une armure interlock,  a) the formation of the fibrous reinforcement by three-dimensional weaving of ceramic threads, the fibrous reinforcement thus formed having an interlock weave,
b) la formation d'une première phase de matrice céramique dans la porosité du renfort fibreux,  b) forming a first ceramic matrix phase in the porosity of the fibrous reinforcement,
c) l'introduction dans la porosité du renfort fibreux après mise en œuvre de l'étape b) d'une poudre comprenant des particules céramiques et/ou des particules de carbone, et  c) introducing into the porosity of the fibrous reinforcement after implementation of step b) of a powder comprising ceramic particles and / or carbon particles, and
d) l'infiltration du renfort fibreux, après mise en œuvre de l'étape c), par une composition d'infiltration à l'état fondu comprenant au moins du silicium de manière à former une deuxième phase de matrice céramique dans la porosité du renfort fibreux et obtenir ainsi la pièce en matériau composite.  d) the infiltration of the fibrous reinforcement, after implementation of step c), with a melt infiltration composition comprising at least silicon so as to form a second ceramic matrix phase in the porosity of the fibrous reinforcement and thus obtain the piece of composite material.
La mise en œuvre d'un renfort fibreux à armure de tissage interlock permet d'obtenir une meilleure pénétration des particules de poudre dans la porosité de ce dernier lors de l'étape c). En effet, les inventeurs ont constaté que l'armure interlock définit, après l'étape b), des canaux de porosité adaptés à une meilleure pénétration des particules dans l'épaisseur du renfort. Il s'ensuit que la composition d'infiltration à l'état fondu pénétrera également plus facilement dans le renfort fibreux, lors de l'étape d), en mouillant les particules en céramique et/ou carbone déjà présentes dans la porosité du renfort fibreux. Dans un exemple de réalisation, la porosité dans la pièce obtenue après mise en œuvre de l'étape d) peut être inférieure ou égale à 5%, voire inférieure ou égale à 3%. Ainsi, les propriétés mécaniques de la pièce en matériau CMC obtenue sont améliorées et la porosité résiduelle est réduite. En outre, l'utilisation du tissage tridimensionnel pour réaliser le renfort fibreux permet d'obtenir des pièces de géométrie complexe.  The implementation of a fibrous reinforcement weave interlock weave provides better penetration of the powder particles in the porosity of the latter during step c). Indeed, the inventors have found that the interlock armor defines, after step b), porosity channels adapted to a better penetration of the particles in the thickness of the reinforcement. It follows that the melt infiltration composition will also penetrate more easily into the fibrous reinforcement, during step d), by wetting the ceramic and / or carbon particles already present in the porosity of the fibrous reinforcement. . In an exemplary embodiment, the porosity in the part obtained after implementation of step d) may be less than or equal to 5%, or even less than or equal to 3%. Thus, the mechanical properties of the piece of CMC material obtained are improved and the residual porosity is reduced. In addition, the use of three-dimensional weaving to achieve the fiber reinforcement makes it possible to obtain pieces of complex geometry.
Dans un exemple de réalisation, des particules de SiC, de Si3N4, de BN, de SiB6, de B4C, ou un mélange de telles particules peuvent être introduites lors de l'étape c). In an exemplary embodiment, particles of SiC, Si 3 N 4 , BN, SiB 6 , B 4 C, or a mixture of such particles may be introduced during step c).
Dans un exemple de réalisation, des particules de SiC peuvent être introduites lors de l'étape c). Un mélange de particules de SiC et de particules de carbone est introduit lors de l'étape c). In an exemplary embodiment, SiC particles may be introduced during step c). A mixture of SiC particles and carbon particles is introduced in step c).
Dans un exemple de réalisation, la taille moyenne des particules introduites lors de l'étape c) peut être inférieure ou égale à 5 Mm, voire inférieure ou égale à 1 Mm. Par « taille moyenne des particules » on entend la taille D50 des particules. In an exemplary embodiment, the average particle size introduced during step c) may be less than or equal to 5 μm or even less than or equal to 1 μm. By "average particle size" is meant the size D 50 of the particles. particles.
Dans un exemple de réalisation, la première phase de matrice céramique peut comprendre du carbure de silicium (SiC).  In an exemplary embodiment, the first ceramic matrix phase may comprise silicon carbide (SiC).
Dans un exemple de réalisation, le taux volumique de porosité résiduelle dans le renfort fibreux (=volume des pores/volume du renfort fibreux), après mise en œuvre de l'étape b), peut être compris entre 30% et 35%.  In an exemplary embodiment, the residual porosity volume rate in the fibrous reinforcement (= pore volume / volume of the fibrous reinforcement), after implementation of step b), may be between 30% and 35%.
Dans un exemple de réalisation, une interphase peut être formée sur les fils céramiques avant l'étape b).  In an exemplary embodiment, an interphase may be formed on the ceramic son before step b).
Dans un exemple de réalisation, le renfort fibreux peut comprendre des fils de carbure de silicium présentant une teneur en oxygène inférieure ou égale à 1% en pourcentage atomique.  In an exemplary embodiment, the fiber reinforcement may comprise silicon carbide wires having an oxygen content of less than or equal to 1% atomic percentage.
L'invention vise enfin le procédé décrit ci-dessus dans lequel la pièce fabriquée est une pièce de turbomachine. La pièce peut être une pièce de partie chaude d'une turbine à gaz d'un moteur aéronautique ou d'une turbine industrielle. En particulier, la pièce peut constituer une partie au moins d'un distributeur, une paroi d'une chambre de combustion, un secteur d'anneau de turbine ou une aube de turbomachine. Brève description des dessins  Finally, the invention relates to the method described above wherein the manufactured part is a turbomachine part. The part can be a part of hot part of a gas turbine of an aeronautical engine or an industrial turbine. In particular, the part may constitute at least a part of a distributor, a wall of a combustion chamber, a turbine ring sector or a turbomachine blade. Brief description of the drawings
D'autres caractéristiques et avantages de la présente invention ressortiront de la description faite ci-dessous, en référence aux dessins annexés fournis à titre non limitatif. Sur les figures :  Other features and advantages of the present invention will emerge from the description given below, with reference to the accompanying drawings provided without limitation. In the figures:
- la figure 1 est un ordinogramme représentant les différentes étapes d'un exemple de procédé selon l'invention,  FIG. 1 is a flowchart representing the different steps of an exemplary method according to the invention,
- la figure 2 est une vue schématique montrant un exemple d'armure de tissage interlock,  FIG. 2 is a schematic view showing an example of interlock weave weave,
- la figure 3 est une photographie montrant une coupe d'une pièce obtenue par un procédé selon l'invention, et  FIG. 3 is a photograph showing a section of a part obtained by a method according to the invention, and
- la figure 4 est une photographie montrant une coupe d'une pièce obtenue par un procédé hors invention. Description détaillée de l'invention - Figure 4 is a photograph showing a section of a piece obtained by a method outside the invention. Detailed description of the invention
Un exemple de procédé de fabrication d'une pièce en matériau CMC selon l'invention va maintenant être décrit en lien avec l'ordinogramme de la figure 1.  An example of a method of manufacturing a piece of CMC material according to the invention will now be described in connection with the flowchart of Figure 1.
Une première étape El du procédé (étape a)) peut consister à former le renfort fibreux de la pièce par tissage tridimensionnel pour obtenir un renfort fibreux présentant une armure interlock. Le renfort fibreux peut être formé de fils céramiques, par exemple de fils en carbure de silicium. Le renfort fibreux obtenu lors de l'étape El constitue une préforme fibreuse de la pièce à fabriquer.  A first step E1 of the method (step a)) may consist of forming the fibrous reinforcement of the piece by three-dimensional weaving to obtain a fibrous reinforcement having an interlock weave. The fiber reinforcement may be formed of ceramic son, for example silicon carbide son. The fibrous reinforcement obtained during step E1 constitutes a fibrous preform of the part to be manufactured.
Des exemples de fils en carbure de silicium utilisables peuvent être des fils « Nicalon », « Hi-Nicalon » ou « Hi-Nicalon-S » commercialisés par la société japonaise NGS. Les fils céramiques du renfort fibreux peuvent présenter une teneur en oxygène inférieure ou égale à 1% en pourcentage atomique. Les fils « Hi-Nicalon-S » présentent une telle caractéristique.  Examples of usable silicon carbide threads may be "Nicalon", "Hi-Nicalon" or "Hi-Nicalon-S" yarns marketed by the Japanese company NGS. The ceramic son of the fiber reinforcement may have an oxygen content less than or equal to 1% atomic percentage. "Hi-Nicalon-S" wires have such a characteristic.
Par « tissage tridimensionnel » ou « tissage 3D », il faut comprendre un mode de tissage par lequel certains au moins des fils de chaîne lient des fils de trame sur plusieurs couches de trame. Selon l'invention, le renfort fibreux présente une armure interlock. Par « armure ou tissu interlock », il faut comprendre une armure de tissage 3D dont chaque couche de fils de chaîne C lie plusieurs couches de fils de trame T avec tous les fils de la même colonne de chaîne ayant le même mouvement dans le plan de l'armure. Dans l'exemple illustré à la figure 2, une couche de trame est formée de deux demi-couches de trame t adjacentes décalées l'une par rapport à l'autre dans le sens chaîne. On a donc ici 18 demi-couches de trame positionnées en quinconce. Chaque fil de chaîne C lie 3 demi-couches de trame t. Il est toutefois possible d'adopter une disposition en trame non en quinconce, les fils de trame de deux couches de trame voisines étant alignés sur des mêmes colonnes. Une inversion des rôles entre chaîne et trame est possible dans le présent texte et doit être considérée comme couverte aussi par les revendications.  By "three-dimensional weaving" or "3D weaving", it is necessary to understand a weaving mode whereby at least some of the warp threads bind weft threads on several weft layers. According to the invention, the fibrous reinforcement has an interlock weave. "Armor or interlock fabric" means a 3D weave armor in which each layer of warp thread C binds several layers of weft threads T with all the threads of the same warp column having the same movement in the thread plane. armor. In the example illustrated in FIG. 2, a weft layer is formed of two adjacent half-weft layers t-offset with respect to each other in the warp direction. We therefore have here 18 half-layers of weft positioned in staggered rows. Each warp C binds 3 half-layers of weft t. However, it is possible to adopt a non-staggered layout in which the weft threads of two adjacent weft layers are aligned on the same columns. A reversal of roles between warp and weft is possible in the present text and should be considered as also covered by the claims.
Une étape E2 de traitement de surface des fils céramiques, préalablement à la formation d'une interphase, est de préférence réalisée pour notamment éliminer l'ensimage qui peut être présent sur les fibres. Dans une étape E3, on peut former une interphase de défragilisation par CVI sur les fils céramiques du renfort fibreux. L'épaisseur de l'interphase peut par exemple être comprise entre 10 nm et 1000 nm, et par exemple entre 10 nm et 100 nm. Après formation de l'interphase, le renfort fibreux reste poreux, la porosité accessible initiale n'étant comblée que pour une partie minoritaire par l'interphase. A step E2 of surface treatment of the ceramic son, prior to the formation of an interphase, is preferably carried out in particular to eliminate the size that may be present on the fibers. In a step E3, a defibrillation interphase can be formed by CVI on the ceramic son of the fibrous reinforcement. The thickness of the interphase may for example be between 10 nm and 1000 nm, and for example between 10 nm and 100 nm. After formation of the interphase, the fibrous reinforcement remains porous, the initial accessible porosity being filled only for a minority part by the interphase.
L'interphase peut être monocouche ou multicouches. L'interphase peut comporter au moins une couche de carbone pyrolytique (PyC), de nitrure de bore (BN), de nitrure de bore dopé au silicium (BN(Si), avec du silicium en une proportion massique comprise entre 5% et 40%, le complément étant du nitrure de bore) ou de carbone dopé au bore (BC, avec du bore en une proportion atomique comprise entre 5% et 20%, le complément étant du carbone). L'interphase a ici une fonction de défragilisation du matériau composite qui favorise la déviation de fissures éventuelles parvenant à l'interphase après s'être propagées dans la matrice, empêchant ou retardant la rupture de fibres par de telles fissures. En variante, on notera qu'il est possible de former l'interphase sur les fils céramiques avant le tissage du renfort fibreux, c'est-à-dire avant mise en œuvre de l'étape El (étape a)).  The interphase can be monolayer or multilayer. The interphase may comprise at least one layer of pyrolytic carbon (PyC), boron nitride (BN), silicon doped boron nitride (BN (Si), with silicon in a mass proportion of between 5% and 40%). %, the balance being boron nitride) or boron doped carbon (BC, with boron in an atomic proportion of between 5% and 20%, the balance being carbon). The interphase here has a function of defragilating the composite material which favors the deflection of possible cracks reaching the interphase after having propagated in the matrix, preventing or delaying the breaking of fibers by such cracks. Alternatively, it will be noted that it is possible to form the interphase on the ceramic son before weaving the fibrous reinforcement, that is to say before implementation of step E1 (step a)).
II est ensuite réalisé une étape E4 de formation d'une première phase de matrice céramique dans la porosité du renfort fibreux (étape b)), sur l'interphase qui peut avoir été formée au préalable ou directement sur les fils du renfort fibreux. Cette phase de matrice peut être formée par CVI. La première phase de matrice céramique peut par exemple comprendre du SiC. Le taux de porosité résiduelle du renfort fibreux suite à cette étape E4 et avant introduction de la poudre peut être supérieur ou égal à 30%, par exemple compris entre 30% et 35%. De manière générale, le taux de porosité résiduelle du renfort fibreux après mise en œuvre de l'étape E4 (étape b)) est suffisant pour permettre l'introduction d'une poudre dans la porosité du renfort fibreux et la formation d'une deuxième phase de matrice.  A step E4 of forming a first ceramic matrix phase in the porosity of the fibrous reinforcement (step b) is then carried out on the interphase which may have been previously formed or directly on the fibers of the fibrous reinforcement. This matrix phase can be formed by CVI. The first ceramic matrix phase may for example comprise SiC. The residual porosity rate of the fibrous reinforcement following this step E4 and before introduction of the powder may be greater than or equal to 30%, for example between 30% and 35%. In general, the residual porosity rate of the fibrous reinforcement after implementation of step E4 (step b)) is sufficient to allow the introduction of a powder into the porosity of the fibrous reinforcement and the formation of a second matrix phase.
On réalise ensuite, lors de l'étape E5, l'introduction d'une poudre comprenant des particules en matériau céramique et/ou des particules en carbone dans la porosité résiduelle du renfort fibreux (étape c)). Pour ce faire, on peut imprégner le renfort fibreux à l'aide d'une composition, par exemple sous la forme d'une barbotine, introduite dans la porosité du renfort fibreux par des méthodes connues en soi, par exemple par injection. Ladite composition peut comprendre la poudre en suspension dans un milieu liquide. Les particules en céramique peuvent être des particules de SiC, de Si3N4, de BN, de SiB6, de B4C, ou un mélange de telles particules. La taille (D50) des particules de la poudre peut être inférieure ou égale à 5 Mm, voire inférieure ou égale à 1 Mm. Une fois la poudre introduite dans le renfort fibreux, par exemple par injection d'une barbotine, le renfort fibreux peut être séché. Then, in step E5, the introduction of a powder comprising particles of ceramic material and / or carbon particles into the residual porosity of the fibrous reinforcement (step c)). To do this, the fiber reinforcement can be impregnated with a composition, for example in the form of a slip, introduced into the porosity of the fibrous reinforcement by methods known per se, for example by injection. Said composition may comprise the powder in suspension in a liquid medium. The ceramic particles may be particles of SiC, Si 3 N 4 , BN, SiB 6 , B 4 C, or a mixture of such particles. The size (D 50 ) of the particles of the powder may be less than or equal to 5 Mm, or even less than or equal to 1 Mm. Once the powder has been introduced into the fibrous reinforcement, for example by injection of a slip, the fibrous reinforcement can be dried.
Puis, dans l'étape E6, on infiltre le renfort fibreux dans lequel est présente la poudre introduite à l'étape E5 avec une composition d'infiltration à l'état fondu (étape d)) comprenant au moins du silicium de manière à former une deuxième phase de matrice céramique dans la porosité du renfort fibreux et à finaliser la densification pour obtenir la pièce. Cette étape d'infiltration correspond à une étape d'infiltration à l'état fondu (procédé MI). La composition d'infiltration peut être constituée de silicium pur fondu ou en variante être sous la forme d'un alliage fondu de silicium et d'un ou plusieurs autres constituants. La composition d'infiltration peut comprendre majoritairement en masse du silicium, c'est- à-dire présenter une teneur massique en silicium supérieure ou égale à 50%. La composition d'infiltration peut par exemple présenter une teneur massique en silicium supérieure ou égale à 75%. Le(s) constitua nt(s) présent(s) au sein de l'alliage de silicium peuvent être choisi(s) parmi B, Al, Mo, Ti, et leurs mélanges. Lorsque les particules de la poudre introduite à l'étape E5 sont des particules de C, de B4C, ou un mélange de ces particules, une réaction chimique peut se produire entre la composition d'infiltration et les particules de poudre lors de l'infiltration aboutissant à la formation de carbure de silicium. Then, in step E6, the fibrous reinforcement in which the powder introduced in step E5 is introduced is infiltrated with a melt infiltration composition (step d)) comprising at least silicon so as to form a second ceramic matrix phase in the porosity of the fibrous reinforcement and to finalize the densification to obtain the part. This infiltration step corresponds to a step of infiltration in the molten state (MI process). The infiltration composition may consist of pure molten silicon or alternatively may be in the form of a molten silicon alloy and one or more other components. The infiltration composition may comprise predominantly silicon mass, that is to say have a silicon mass content greater than or equal to 50%. The infiltration composition may, for example, have a silicon mass content greater than or equal to 75%. The constituent (s) present (s) within the silicon alloy may be selected from B, Al, Mo, Ti, and mixtures thereof. When the particles of the powder introduced in step E5 are particles of C, B 4 C, or a mixture of these particles, a chemical reaction may occur between the infiltration composition and the powder particles during infiltration resulting in the formation of silicon carbide.
Après l'étape E6, on obtient la pièce en matériau CMC. Une telle pièce en matériau CMC peut être une pièce statique ou rotative de turbomachine. Des exemples de pièces de turbomachine ont été mentionnés plus haut. Une telle pièce peut en outre être revêtue d'un revêtement de barrière environnementale / thermique.  After step E6, the piece of material CMC is obtained. Such a piece of CMC material may be a static or rotary turbine engine part. Examples of turbomachine parts have been mentioned above. Such a piece may further be coated with an environmental / thermal barrier coating.
La figure 3 montre une photographie d'une coupe de pièce en matériau CMC obtenue par un exemple de procédé selon l'invention. Dans cet essai, le renfort fibreux présente une armure de tissage interlock et a été pré-densifié par CVI (étape E4) pour obtenir une première phase de matrice de SiC. Le renfort fibreux présentait après cette pré-densification une porosité résiduelle en volume comprise entre 30% et 35%. Lors de l'étape E5, une poudre de SiC (commercialisée par Marion Technologies sous la référence SiC MT59) présentant une taille moyenne (D50) de particules de 0,8 Mm a été introduite à l'intérieur de la porosité du renfort fibreux pré-densifié. Enfin, l'infiltration (étape E6) a été réalisée à l'aide de silicium pur (commercialisé par HC Starck sous la référence Silicium Grade AX-20). La photographie de la figure 3 montre la matrice M et les fils F dans la pièce en matériau CMC ainsi obtenue. Avec le procédé selon l'invention, la porosité globale mesurée dans la pièce est inférieure à 1%. FIG. 3 shows a photograph of a sectional cut of CMC material obtained by an exemplary method according to the invention. In this test, the fibrous reinforcement has an interlock weave and has been pre-densified by CVI (step E4) to obtain a first phase of SiC matrix. After this pre-densification, the fibrous reinforcement had a residual porosity in volume of between 30% and 35%. In step E5, an SiC powder (sold by Marion Technologies under the reference SiC MT59) having an average size (D 50 ) of particles of 0.8 μm was introduced inside the porosity of the fibrous reinforcement. pre-densified. Finally, the infiltration (step E6) was carried out using pure silicon (marketed by HC Starck under the reference Silicium Grade AX-20). The photograph of FIG. 3 shows the matrix M and the wires F in the piece of CMC material thus obtained. With the method according to the invention, the overall porosity measured in the room is less than 1%.
A titre de comparaison, un essai similaire à celui décrit ci-dessus a été réalisé à la différence près que l'armure de tissage est multi-satin au lieu d'interlock. La figure 4 est une photographie montrant une coupe de la pièce en matériau CMC obtenue lors de cet essai. Des pores £ de couleur noire sont visibles sur la photographie de la figure 4. Une porosité globale supérieure à 15% a été mesurée dans la pièce, et on peut voir sur la figure 4 que cette porosité est aussi bien présente entre les fils F qu'à l'intérieur des fils F. Ainsi, on peut voir qu'il est plus difficile de combler la porosité dans le renfort fibreux lorsque ce dernier présente une armure de tissage qui n'est pas interlock. Les propriétés mécaniques sont donc moindres pour cette pièce qu'avec celle obtenue à l'essai précédent mettant en œuvre un renfort fibreux à armure interlock.  For comparison, a test similar to that described above was carried out with the difference that the weave is multi-satin instead of interlock. Figure 4 is a photograph showing a sectional view of the CMC material part obtained in this test. Black pores are visible in the photograph of FIG. 4. An overall porosity greater than 15% has been measured in the part, and it can be seen in FIG. 4 that this porosity is also present between the F yarns. Thus, it can be seen that it is more difficult to fill the porosity in the fibrous reinforcement when the latter has a weave that is not interlocked. The mechanical properties are therefore less for this part than with that obtained in the previous test using a fibrous reinforcement with interlock weave.

Claims

REVENDICATIONS
1. Procédé de fabrication d'une pièce en matériau composite comprenant un renfort fibreux et une matrice céramique présente dans la porosité du renfort fibreux, le procédé comprenant au moins les étapes suivantes : A method of manufacturing a composite material part comprising a fibrous reinforcement and a ceramic matrix present in the porosity of the fibrous reinforcement, the method comprising at least the following steps:
a) la formation du renfort fibreux par tissage tridimensionnel de fils céramiques (étape El), le renfort fibreux ainsi formé présentant une armure interlock,  a) the formation of the fibrous reinforcement by three-dimensional weaving of ceramic yarns (step E1), the fibrous reinforcement thus formed having an interlock weave,
b) la formation d'une première phase de matrice céramique dans la porosité du renfort fibreux (étape E4),  b) forming a first ceramic matrix phase in the porosity of the fibrous reinforcement (step E4),
c) l'introduction dans la porosité du renfort fibreux après mise en œuvre de l'étape b) d'une poudre comprenant un mélange de particules de SiC et de particules de carbone (étape E5), et  c) introducing into the porosity of the fibrous reinforcement after carrying out step b) of a powder comprising a mixture of SiC particles and carbon particles (step E5), and
d) l'infiltration du renfort fibreux, après mise en œuvre de l'étape c), par une composition d'infiltration à l'état fondu comprenant au moins du silicium de manière à former une deuxième phase de matrice céramique dans la porosité du renfort fibreux et obtenir ainsi la pièce en matériau composite (étape E6).  d) the infiltration of the fibrous reinforcement, after implementation of step c), with a melt infiltration composition comprising at least silicon so as to form a second ceramic matrix phase in the porosity of the fibrous reinforcement and thus obtain the composite material part (step E6).
2. Procédé selon la revendication 1, dans lequel la première phase de matrice céramique comprend du carbure de silicium. The method of claim 1, wherein the first ceramic matrix phase comprises silicon carbide.
3. Procédé selon la revendication 1 ou 2, dans lequel la taille moyenne des particules, introduites lors de l'étape c), est inférieure ou égale à 5 Mm, par exemple à 1 Mm. 3. The method of claim 1 or 2, wherein the average particle size, introduced in step c), is less than or equal to 5 Mm, for example 1 Mm.
4. Procédé selon l'une quelconque des revendications 1 à 3, dans lequel le taux volumique de porosité résiduelle dans le renfort fibreux, après mise en œuvre de l'étape b), est compris entre 30% et 35%. 4. Method according to any one of claims 1 to 3, wherein the residual porosity rate in the fibrous reinforcement, after implementation of step b), is between 30% and 35%.
5. Procédé selon l'une quelconque des revendications 1 à 4, dans lequel une interphase est formée sur les fils céramiques avant l'étape b) (étape E3). The method of any one of claims 1 to 4, wherein an interphase is formed on the ceramic wires prior to step b) (step E3).
6. Procédé selon l'une quelconque des revendications 1 à 5, dans lequel le renfort fibreux comprend des fils de carbure de silicium présentant une teneur en oxygène inférieure ou égale à 1% en pourcentage atomique. The method of any one of claims 1 to 5, wherein the fibrous reinforcement comprises silicon carbide wires having an oxygen content of less than or equal to 1 atomic percent.
7. Procédé selon l'une quelconque des revendications 1 à 6, dans lequel la pièce fabriquée est une pièce de turbomachine. 7. Method according to any one of claims 1 to 6, wherein the manufactured part is a turbomachine part.
EP17742814.1A 2016-06-29 2017-06-28 Process for manufacturing a ceramic matrix composite part Ceased EP3478645A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1656093A FR3053328B1 (en) 2016-06-29 2016-06-29 METHOD FOR MANUFACTURING A COMPOSITE MATERIAL PART WITH A CERAMIC MATRIX
PCT/FR2017/051733 WO2018002525A1 (en) 2016-06-29 2017-06-28 Process for manufacturing a ceramic matrix composite part

Publications (1)

Publication Number Publication Date
EP3478645A1 true EP3478645A1 (en) 2019-05-08

Family

ID=57583145

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17742814.1A Ceased EP3478645A1 (en) 2016-06-29 2017-06-28 Process for manufacturing a ceramic matrix composite part

Country Status (5)

Country Link
US (1) US20200181029A1 (en)
EP (1) EP3478645A1 (en)
CN (1) CN109415269A (en)
FR (1) FR3053328B1 (en)
WO (1) WO2018002525A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020201202A1 (en) * 2019-04-05 2020-10-08 Safran Ceramics Method for manufacturing a part made from cmc
FR3101629B1 (en) * 2019-10-07 2022-06-17 Safran Ceram Manufacturing process of a CMC part
FR3098514B1 (en) * 2019-07-10 2023-10-27 Safran Ceram Porous ceramic structure for part made of CMC material and process for obtaining it
FR3129615A1 (en) * 2021-11-26 2023-06-02 Safran Ceramics Core for the realization of distributor in Composite with Ceramic Matrix

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060163773A1 (en) * 2005-01-24 2006-07-27 General Electric Company Method for performing silicon melt infiltration of ceramic matrix composites
FR2955609B1 (en) * 2010-01-26 2012-04-27 Snecma AUBE COMPOSITE WITH INTERNAL CHANNELS
CN101913894A (en) * 2010-07-08 2010-12-15 西北工业大学 Dual self-healing modification method for silicon carbide ceramic matrix composite material
FR2983193B1 (en) * 2011-11-30 2014-05-09 Snecma Propulsion Solide PROCESS FOR MANUFACTURING A PIECE OF MATERIAL CMC
US9650303B2 (en) * 2013-03-15 2017-05-16 Rolls-Royce Corporation Silicon carbide ceramic matrix composites
FR3023212B1 (en) * 2014-07-03 2019-10-11 Safran Ceramics METHOD FOR MANUFACTURING A COATED PART BY A SURFACE COATING COMPRISING AN ALLOY

Also Published As

Publication number Publication date
WO2018002525A1 (en) 2018-01-04
FR3053328B1 (en) 2022-01-21
US20200181029A1 (en) 2020-06-11
FR3053328A1 (en) 2018-01-05
CN109415269A (en) 2019-03-01

Similar Documents

Publication Publication Date Title
EP2900623B1 (en) Method for manufacturing a cmc workpiece
WO2018002525A1 (en) Process for manufacturing a ceramic matrix composite part
EP3024801B1 (en) Process for fabricating composite parts by low melting point impregnation
EP3416929B1 (en) Method for manufacturing a part made of a ceramic matrix composite material
EP2785665A1 (en) Cmc material part manufacture method
EP3313651B1 (en) Silicon carbide fiber treatment method
EP3478870B1 (en) Method for chemical vapour deposition or infiltration
EP4115000B1 (en) Method for coating a ceramic matrix composite part with an environmental barrier
EP3455192B1 (en) Part in ceramic matrix composite
FR3055624B1 (en) FIBROUS PREFORM FOR MANUFACTURING A COMPOSITE MATERIAL PART AND ASSOCIATED METHOD
FR3071246A1 (en) PROCESS FOR MANUFACTURING A CMC PIECE
EP3781537B1 (en) Method for manufacturing a part made of a composite material
FR3141171A1 (en) Process for manufacturing a part made of ceramic matrix composite material
FR3118096A1 (en) BLADE IN COMPOSITE MATERIAL WITH AT LEAST PARTLY CERAMIC MATRIX
EP4377278A1 (en) Method for manufacturing a thick part made of cmc composite material
FR3141170A1 (en) Process for manufacturing a part made of ceramic matrix composite material
WO2024084152A1 (en) Fibrous preform and process for manufacturing same to produce a part made of a composite material having a ceramic matrix
FR3141167A1 (en) Process for manufacturing a part made of ceramic matrix composite material
FR3081157A1 (en) PROCESS FOR MANUFACTURING A CMC PIECE
FR3055625A1 (en) FIBROUS PREFORM FOR MANUFACTURING A COMPOSITE MATERIAL PART AND ASSOCIATED METHOD
FR3032977A1 (en) METHOD FOR MANUFACTURING COMPOSITE MATERIAL

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20181220

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200324

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20210615