EP3472515B1 - Vertical heat recovery steam generator - Google Patents

Vertical heat recovery steam generator Download PDF

Info

Publication number
EP3472515B1
EP3472515B1 EP16741612.2A EP16741612A EP3472515B1 EP 3472515 B1 EP3472515 B1 EP 3472515B1 EP 16741612 A EP16741612 A EP 16741612A EP 3472515 B1 EP3472515 B1 EP 3472515B1
Authority
EP
European Patent Office
Prior art keywords
low
pressure
preheater
flow medium
hot gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16741612.2A
Other languages
German (de)
French (fr)
Other versions
EP3472515A1 (en
Inventor
Jan BRÜCKNER
Frank Thomas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Energy Global GmbH and Co KG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to PL16741612T priority Critical patent/PL3472515T3/en
Publication of EP3472515A1 publication Critical patent/EP3472515A1/en
Application granted granted Critical
Publication of EP3472515B1 publication Critical patent/EP3472515B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B21/00Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B29/00Steam boilers of forced-flow type
    • F22B29/06Steam boilers of forced-flow type of once-through type, i.e. built-up from tubes receiving water at one end and delivering superheated steam at the other end of the tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/62Component parts or details of steam boilers specially adapted for steam boilers of forced-flow type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22DPREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
    • F22D1/00Feed-water heaters, i.e. economisers or like preheaters
    • F22D1/003Feed-water heater systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22DPREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
    • F22D11/00Feed-water supply not provided for in other main groups

Definitions

  • the invention relates to a vertical heat recovery steam generator according to claim 1.
  • Heat recovery steam generators are used today in many power plants to increase the efficiency of the plant.
  • Current developments are aimed at developing an efficient vertical boiler in addition to the usual horizontal boiler design.
  • One consideration is to design all three pressure stages as a once-through system, so that in comparison to the current horizontal boiler design, the large and massive drums can also be dispensed with in the medium and low pressure range. This would also make the entire steel structure of the boiler leaner and cheaper.
  • the object of the invention is to provide an improved vertical heat recovery steam generator.
  • the low-pressure evaporator is no longer fed by the flow medium from the condensate preheater, but instead is implemented by its own preheating circuit, it must be ensured analogously to the condensate preheater that the temperature of the flow medium never falls below a system-relevant design temperature within the pipes of the low-pressure preheater. This is the only way to ensure that the pipes are not subject to corrosion during operation.
  • the vertical heat recovery steam generator has a condensate preheater with at least one condensate preheater heating surface through which hot gas flows and through which a flow medium flows, and a low-pressure preheater with at least one low-pressure preheater surface arranged in the hot gas duct and through which the flow medium flows comprises a low-pressure evaporator with at least one low-pressure evaporator heating surface arranged in the hot gas duct and through which the flow medium flows, the at least one low-pressure preheater heating surface and the at least one low-pressure evaporator heating surface being flowed through in succession and without additional pressure compensation by the flow medium.
  • a first of the at least one Low pressure preheater heating surfaces in the hot gas duct in the hot gas direction after a first of the at least one condensate preheater heating surfaces Preferably, a first of the at least one Low pressure preheater heating surfaces in the hot gas duct in the hot gas direction after a first of the at least one condensate preheater heating surfaces.
  • the low-pressure and the condensate preheater heating surfaces in the hot gas duct could also be arranged largely in the same area (for example, interlaced).
  • a separate low-pressure preheater (LP economizer) with corresponding low-pressure preheater heating surfaces is provided in the present invention.
  • LP economizer low-pressure preheater
  • a two-part arrangement of these heating surfaces is preferably selected, on the one hand behind the condensate preheater at the flue gas duct outlet and on the other hand from a thermodynamically suitable point of view between the heating surfaces of a two-part condensate preheater.
  • the arrangement of the low-pressure preheater in the coldest section of the flue gas duct ensures that the flow medium does not evaporate in the pipes with small internal diameters there, so that static and dynamic flow stability can be achieved.
  • the arrangement of the second low-pressure preheater heating surface at a suitable location between the two condensate preheater heating surfaces ensures that the feed water for the low-pressure system is preheated.
  • an arrangement which meets the requirements, namely to ensure a minimum temperature of the flow medium at the inlet of the low-pressure preheater, without additional economic or operational disadvantages occurring.
  • the flow medium at the inlet of the condensate preheater ie before the first condensate preheater heating surface, is removed to supply the low-pressure system.
  • This removal is advantageously carried out via a branch and a corresponding control valve behind or downstream of the integration of the condensate preheater circulating mass flow, which regulates the inlet temperature of the flow medium into the condensate preheater.
  • This ensures that the temperature of the flow medium at the entry of the first low-pressure preheating surface has the same temperature as at the entry of the first condensate preheating surface.
  • Both systems i.e. the condenser preheater and the low-pressure stage, are thus subjected to the same inlet temperature. This ensures that even in the low-pressure system, the minimum temperature of the flow medium required from a corrosion point of view is not exceeded.
  • the flow medium supplied at the inlet of the low-pressure preheater has almost the same temperature as at the inlet of the condensate preheater.
  • the regulation of the fluid temperature at the inlet of the condensate preheater which is usually ensured by the additional circulation circuit of the condensate preheater, thus also ensures the inlet temperature of the flow medium at the low-pressure preheater that is required from a corrosion point of view.
  • an increased temperature of the flow medium is thus also ensured in the inlet area of the low-pressure preheater.
  • an independent circulation circuit is integrated into the low-pressure system, consisting of low-pressure preheater and low-pressure evaporator, and the low-pressure evaporator is also over-fed.
  • the water that has not yet evaporated and is separated from the steam in a water-steam separator and is at the boiling temperature level is then returned to the inlet of the low-pressure preheater via a low-pressure circulation pump and mixed with the cold feed water.
  • the required minimum temperature of the flow medium at the inlet of the first low-pressure preheater heating surface can be set appropriately by a suitable choice of the degree of overfeeding of the low-pressure evaporator and the associated recirculation amount.
  • An advantage of this embodiment variant is that, due to the overfeeding, there is a comparatively high evaporator throughput, which in turn has a favorable influence on the stability properties of the flow in the low-pressure evaporator.
  • this embodiment has the disadvantage that additional equipment (such as a circulation pump, control valves, etc.) is required for the circulation circuit.
  • additional equipment such as a circulation pump, control valves, etc.
  • the flow medium cannot be overheated at any point in the entire operating range at the outlet of the low-pressure evaporator, since the low-pressure evaporator generally has to be operated in wet operation with an overfeeding level required to set the minimum temperature of the flow medium at the inlet of the low-pressure preheater.
  • FIG. 1 schematically shows the preferred embodiment variant of a forced-flow low pressure system of a vertical heat recovery steam generator to ensure flow stability.
  • This comprises a condensate preheater with a hot gas duct 1 through which hot gas H flows and a condensate preheater heating surface 20 through which a flow medium (S) flows, a low-pressure preheater with a low-pressure preheater heating surface 30 arranged in the hot gas channel 1 and through which the flow medium S flows, and a low-pressure evaporator with a low-pressure evaporator heating surface 40 arranged in the hot gas duct 1 and through which the flow medium S flows.
  • S flow medium
  • the low-pressure preheater heating surface 30 and the 40 are designed here so that the flow medium S flows through them in succession in a single pass and without additional pressure equalization.
  • the low-pressure preheater heating surfaces 30 is arranged in the hot gas duct 1 in the hot gas direction after the condensate preheater heating surfaces 20.
  • a branch 50 is provided in a first feed line 24 of the flow medium S to the condensate preheater for supplying part of the flow medium S to the low-pressure preheater. Furthermore, a control valve 35 is provided after the branch 50 in a second feed line 34 to the low pressure preheater, which regulates the amount of the branched flow medium S to the low pressure preheater.
  • a circulation pump 23 is provided here for the condensate preheater, which recirculates the flow medium heated in the condensate preheater heating surfaces via lines 25 and 27 and a first connection point 26, the first connection point 26 being arranged in the first supply line 24 in front of the branch 50 is.
  • FIG 2 shows a development of the previously described embodiment of a vertical heat recovery steam generator, but with a condensate preheater which comprises two condensate preheater heating surfaces 21 and 22, which are arranged spatially separated in the hot gas duct 1 and flowed through by the flow medium S in succession.
  • the heat recovery steam generator here has a low-pressure preheater, with two low-pressure preheater heating surfaces 31 and 32 arranged spatially separated in the hot gas duct 1 and through which the flow medium S flows in succession, and a low-pressure evaporator with at least one in the hot gas duct 1 arranged and flow medium from the flow medium S following the low pressure preheater heating surfaces on low pressure evaporator heating surface.
  • the first low-pressure preheater heating surface 31 through which the flow medium S flows is arranged in the hot gas duct 1 in the hot gas direction behind the first condensate preheater heating surface 21, and the second low-pressure preheater heating surface 32 through which the flow medium S flows is arranged in the hot gas direction between the first and the second condensate preheater heating surfaces 21 and 22.
  • a branch 50 is provided in a feed line 24 of the flow medium S to the condensate preheater for supplying part of the flow medium S to the low-pressure preheater, the amount of the branched-off flow medium S being regulated by a control valve 35.
  • FIG 3 and FIG 4 show an alternative embodiment of a vertical heat recovery steam generator.
  • the embodiment shown here is also provided for the low-pressure preheater and low-pressure evaporator circuit to return a low-pressure circulating pump 52 to the second feed line 34 via a water-steam separator 60, a return line 51 and a connection point 53 through which the low-pressure preheater and evaporator heating surfaces flow and are not evaporated.
  • the circulating mass flow conducted via the low-pressure circulating pump 52 and the return line 51 can be adjusted such that the desired temperature of the flow medium S is achieved at the entry into the first low-pressure preheating heating surface.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Description

Die Erfindung betrifft einen vertikalen Abhitzedampferzeuger gemäß Anspruch 1.The invention relates to a vertical heat recovery steam generator according to claim 1.

Abhitzedampferzeuger kommen heute in vielen Kraftwerksanlagen zur Anwendung, um den Wirkungsgrad der Anlage zu steigern. Derzeitige Weiterentwicklungen zielen darauf ab, neben dem gängigen horizontalen Kesseldesign einen effizienten vertikalen Kessel zu entwickeln. Eine Überlegung besteht darin, alle drei Druckstufen als Zwangsdurchlaufsystem auszuführen, um so im Vergleich zum gegenwärtigen horizontalen Kesseldesign auch im Mittel- und Niederdruckbereich auf die großvolumigen und massigen Trommeln verzichten zu können. Dadurch ließe sich zudem auch der gesamte Stahlbau des Kessels schlanker und kostengünstiger ausführen.Heat recovery steam generators are used today in many power plants to increase the efficiency of the plant. Current developments are aimed at developing an efficient vertical boiler in addition to the usual horizontal boiler design. One consideration is to design all three pressure stages as a once-through system, so that in comparison to the current horizontal boiler design, the large and massive drums can also be dispensed with in the medium and low pressure range. This would also make the entire steel structure of the boiler leaner and cheaper.

Beispiele von vertikalen Abhitzedampferzeugern sind in den Dokumenten WO2015/039831 A2 und WO96/36792 A1 offenbart.Examples of vertical heat recovery steam generators are in the documents WO2015 / 039831 A2 and WO96 / 36792 A1 disclosed.

Thermohydraulische Untersuchungen, insbesondere des zwangsdurchströmten Niederdruckverdampfers haben gezeigt, dass eine stabile Durchströmung der Verdampfer im gesamten Lastbereich mit der heute üblicherweise eingesetzten Heizflächenkonfiguration für Kondensat- und Speisewasservorwärmung, bei denen die Speisewasservorwärmung des Niederdrucksystems ausschließlich im Kondensatvorwärmer stattfindet, nicht zu erreichen ist.Thermohydraulic studies, in particular of the low-pressure evaporator with forced flow, have shown that a stable flow through the evaporator in the entire load range cannot be achieved with the heating surface configuration commonly used today for condensate and feed water preheating, in which the feed water preheating of the low-pressure system takes place exclusively in the condensate preheater.

Aufgabe der Erfindung ist es, einen verbesserten vertikalen Abhitzedampferzeuger bereitzustellen.The object of the invention is to provide an improved vertical heat recovery steam generator.

Diese Aufgabe wird mit dem vertikalen Abhitzedampferzeuger mit den Merkmalen des Anspruchs 1 gelöst. Weitere vorteilhafte Ausführungsformen sind den Unteransprüchen zu entnehmen.This object is achieved with the vertical heat recovery steam generator with the features of claim 1. Further advantageous embodiments can be found in the subclaims.

Es hat sich gezeigt, dass eine stabile Durchströmung der Verdampferheizflächen auch bei den im Niederdruck bestehenden niedrigen Drücken erzielt werden kann, wenn der Vorwärmer und der Verdampfer in einem Durchgang ohne zusätzlichen Druckausgleich berohrt werden und im Bereich des Vorwärmers ein ausreichend hoher Druckverlust erzeugt wird. Üblicherweise kann dies dadurch erreicht werden, dass die Rohre dieser Heizfläche im Eintrittsbereich, in dem ausschließlich unterkühltes Medium im gesamten Lastbereich strömt, mit geringen Innendurchmessern ausgeführt werden. Erste Abschätzungen ergaben auch, dass dieser erforderliche Drossel-Druckverlust, der für eine stabile Durchströmung des Niederdruck-Verdampfers erforderlich ist, durch eine derartige Kombischaltung erzielt werden könnte. Dazu ist aber, im Gegensatz zu den heute bekannten Lösungen, eine zusätzliche Niederdruckvorwärmerheizfläche erforderlich. Wird nun aber die Speisung des Niederdruckverdampfers nicht mehr durch das Strömungsmedium aus dem Kondensatvorwärmer vorgenommen, sondern durch einen eigenen Vorwärmkreislauf realisiert, ist analog zum Kondensatvorwärmer zu gewährleisten, dass an keiner Stelle innerhalb der Rohre des Niederdruckvorwärmers die Temperatur des Strömungsmediums unter eine systemrelevante Auslegungstemperatur fällt. Nur so kann sichergestellt werden, dass die Rohre während des Betriebs keiner Korrosion unterliegen.It has been shown that a stable flow through the evaporator heating surfaces can also be achieved at the low pressures existing in low pressure if the preheater and the evaporator is drilled in one pass without additional pressure compensation and a sufficiently high pressure loss is generated in the area of the preheater. This can usually be achieved by designing the tubes of this heating surface with small internal diameters in the inlet area, in which only supercooled medium flows in the entire load area. Initial estimates also showed that this required throttle pressure loss, which is required for a stable flow through the low-pressure evaporator, could be achieved by such a combination circuit. In contrast to the solutions known today, this requires an additional low-pressure preheater heating surface. If, however, the low-pressure evaporator is no longer fed by the flow medium from the condensate preheater, but instead is implemented by its own preheating circuit, it must be ensured analogously to the condensate preheater that the temperature of the flow medium never falls below a system-relevant design temperature within the pipes of the low-pressure preheater. This is the only way to ensure that the pipes are not subject to corrosion during operation.

Erfindungsgemäß ist daher vorgesehen dass der vertikale Abhitzedampferzeuger, dessen Niederdruckstufen als Zwangsdurchlaufsystem ausgebildet sind, einen Kondensatvorwärmer mit zumindest einer in einem von Heißgas durchströmten Heißgaskanal angeordneten und von einem Strömungsmedium durchströmten Kondensatvorwärmerheizfläche, einen Niederdruckvorwärmer mit zumindest einer im Heißgaskanal angeordneten und vom Strömungsmedium durchströmten Niederdruckvorwärmerheizfläche, sowie einen Niederdruckverdampfer mit zumindest einer im Heißgaskanal angeordneten und vom Strömungsmedium durchströmten Niederdruckverdampferheizfläche, umfasst, wobei die zumindest eine Niederdruckvorwärmerheizfläche und die zumindest eine Niederdruckverdampferheizfläche in einem Durchgang nacheinander und ohne zusätzlichen Druckausgleich vom Strömungsmedium durchströmt werden. Vorzugsweise ist dabei eine erste der zumindest einen Niederdruckvorwärmerheizflächen im Heißgaskanal in Heißgasrichtung nach einer ersten der zumindest einen Kondensatvorwärmerheizflächen angeordnet. Alternativ könnten die Niederdruck- und die Kondensatvorwärmerheizflächen im Heißgaßkanal aber auch weitgehend im gleichen Bereich (z.B. ineinander verschränkt) angeordnet sein.According to the invention, it is therefore provided that the vertical heat recovery steam generator, the low-pressure stages of which are designed as a forced flow system, has a condensate preheater with at least one condensate preheater heating surface through which hot gas flows and through which a flow medium flows, and a low-pressure preheater with at least one low-pressure preheater surface arranged in the hot gas duct and through which the flow medium flows comprises a low-pressure evaporator with at least one low-pressure evaporator heating surface arranged in the hot gas duct and through which the flow medium flows, the at least one low-pressure preheater heating surface and the at least one low-pressure evaporator heating surface being flowed through in succession and without additional pressure compensation by the flow medium. Preferably, a first of the at least one Low pressure preheater heating surfaces in the hot gas duct in the hot gas direction after a first of the at least one condensate preheater heating surfaces. Alternatively, the low-pressure and the condensate preheater heating surfaces in the hot gas duct could also be arranged largely in the same area (for example, interlaced).

Gegenüber bekannten Lösungen, bei denen die Vorwärmung des Speisewassers - bezeichnet als das die Heizflächen des Niederdrucksystems durchströmenden Strömungsmedium - ausschließlich im Kondensatvorwärmer stattfindet, ist bei der vorliegenden Erfindung ein separater Niederdruckvorwärmer (ND-Economizer) mit entsprechenden Niederdruckvorwärmerheizflächen vorgesehen. Dazu wird vorzugsweise eine zweiteilige Anordnung dieser Heizflächen, zum einen hinter dem Kondensatvorwärmer am Rauchgaskanalaustritt und zum Anderen an einer aus thermodynamisch geeigneter Sicht zwischen den Heizflächen eines zweigeteilten Kondesatvorwärmers gewählt. Durch die Anordnung des Niederdruckvorwärmers im kältesten Abschnitt des Rauchgaskanals wird sichergestellt, dass eine Verdampfung des Strömungsmediums in den dort mit geringen Innendurchmessern versehenen Rohren nicht stattfindet, so dass eine statische und dynamische Strömungsstabilität erzielt werden kann. Die Anordnung der zweiten Niederdruckvorwärmerheizfläche an geeigneter Stelle zwischen den beiden Kondensatvorwärmerheizflächen sorgt für die Sicherstellung der erforderlichen Vorwärmung des Speisewassers für das Niederdrucksystem.Compared to known solutions, in which the preheating of the feed water - referred to as the flow medium flowing through the heating surfaces of the low-pressure system - takes place exclusively in the condensate preheater, a separate low-pressure preheater (LP economizer) with corresponding low-pressure preheater heating surfaces is provided in the present invention. For this purpose, a two-part arrangement of these heating surfaces is preferably selected, on the one hand behind the condensate preheater at the flue gas duct outlet and on the other hand from a thermodynamically suitable point of view between the heating surfaces of a two-part condensate preheater. The arrangement of the low-pressure preheater in the coldest section of the flue gas duct ensures that the flow medium does not evaporate in the pipes with small internal diameters there, so that static and dynamic flow stability can be achieved. The arrangement of the second low-pressure preheater heating surface at a suitable location between the two condensate preheater heating surfaces ensures that the feed water for the low-pressure system is preheated.

Bei einer vorteilhaften erfindungsgemäßen Ausgestaltung wird eine Anordnung bereitgestellt, die die Anforderungen, nämlich eine Mindesttemperatur des Strömungsmediums am Eintritt des Niederdruckvorwärmers zu gewährleisten, erfüllt, ohne dass dabei zusätzliche ökonomische bzw. betriebliche Nachteile auftreten. Dazu wird zur Bespeisung des Niederdrucksystems das Strömungsmedium am Eintritt des Kondensatvorwärmers also vor der ersten Kondensatvorwärmerheizfläche entnommen.In an advantageous embodiment according to the invention, an arrangement is provided which meets the requirements, namely to ensure a minimum temperature of the flow medium at the inlet of the low-pressure preheater, without additional economic or operational disadvantages occurring. For this purpose, the flow medium at the inlet of the condensate preheater, ie before the first condensate preheater heating surface, is removed to supply the low-pressure system.

In vorteilhafter Weise erfolgt diese Entnahme über eine Abzweigung und ein entsprechendes Regelventil hinter bzw. stromabwärts der Einbindung des Kondensatvorwärmer-Umwälzmassenstroms, der die Eintrittstemperatur des Strömungsmediums in den Kondensatvorwärmer regelt. Damit wird sichergestellt, dass die Temperatur des Strömungsmediums am Eintritt der ersten Niederdruckvorwärmeheizfläche die gleiche Temperatur aufweist wie am Eintritt der ersten Kondensatvorwärmerheizfläche. Beide Systeme, also der Kondensatorvorwärmer als auch die Niederdruckstufe, werden somit mit der gleichen Eintrittstemperatur beaufschlagt. Somit ist gewährleistet, dass auch im Niederdruck-System eine aus korrosionstechnischer Sicht erforderliche Mindesttemperatur des Strömungsmediums nicht unterschritten wird.This removal is advantageously carried out via a branch and a corresponding control valve behind or downstream of the integration of the condensate preheater circulating mass flow, which regulates the inlet temperature of the flow medium into the condensate preheater. This ensures that the temperature of the flow medium at the entry of the first low-pressure preheating surface has the same temperature as at the entry of the first condensate preheating surface. Both systems, i.e. the condenser preheater and the low-pressure stage, are thus subjected to the same inlet temperature. This ensures that even in the low-pressure system, the minimum temperature of the flow medium required from a corrosion point of view is not exceeded.

Mit der bevorzugten Ausführung kann ohne zusätzliches Equipment sichergestellt werden, dass am Eingang des Niederdruckvorwärmers das zugeführte Strömungsmedium nahezu die gleiche Temperatur aufweist wie am Eintritt des Kondensatvorwärmers. Eine eigene Temperaturregelung für das Strömungsmedium am Eintritt des Niederdruckvorwärmers entfällt. Die Regelung der Fluidtemperatur am Eintritt des Kondensatvorwärmers, die üblicherweise durch den zusätzlichen Umwälzkreislauf des Kondensatvorwärmers sichergestellt wird, sorgt somit gleichzeitig auch für die aus korrosionstechnischer Sicht erforderliche Eintrittstemperatur des Strömungsmediums am Niederdruckvorwärmer. Insbesondere im Ölbetrieb der Gasturbinen wird somit auch im Eintrittsbereich des Niederdruckvorwärmers eine erhöhte Temperatur des Strömungsmediums sichergestellt.With the preferred embodiment it can be ensured without additional equipment that the flow medium supplied at the inlet of the low-pressure preheater has almost the same temperature as at the inlet of the condensate preheater. There is no separate temperature control for the flow medium at the inlet of the low pressure preheater. The regulation of the fluid temperature at the inlet of the condensate preheater, which is usually ensured by the additional circulation circuit of the condensate preheater, thus also ensures the inlet temperature of the flow medium at the low-pressure preheater that is required from a corrosion point of view. Particularly in the oil operation of the gas turbines, an increased temperature of the flow medium is thus also ensured in the inlet area of the low-pressure preheater.

In einer weiteren erfindungsgemäßen Ausgestaltung wird ein eigenständiger Umwälzkreislauf in das Niederdrucksystem, bestehend aus Niederdruckvorwärmer und Niederdruckverdampfer integriert und zudem der Niederdruckverdampfer überspeist. Das noch nicht verdampfte und in einem Wasser-DampfAbscheider vom Dampf getrennte Wasser, dass sich auf Siedetemperaturniveau befindet, wird dann über eine Niederdruckumwälzpumpe zum Eintritt des Niederdruckvorwärmer zurückgeführt und dem kalten Speisewasser zugemischt. Durch geeignete Wahl des Überspeisungsgrades des Niederdruckverdampfers und die damit verbundene Rezirkulationsmenge kann die erforderliche Mindesttemperatur des Strömungsmediums am Eintritt der ersten Niederdruckvorwärmerheizfläche passend eingestellt werden. Ein Vorteil dieser Ausführungsvariante besteht darin, dass aufgrund der Überspeisung ein vergleichsweise hoher Verdampferdurchsatz existiert, der wiederum die Stabilitätseigenschaften der Strömung im Niederdruckverdampfer günstig beeinflusst. Allerdings hat diese Ausführung gegenüber der besonders bevorzugen Ausführungsvariante den Nachteil, dass hier zusätzliches Equipment (wie Umwälzpumpe, Regelventile etc.) für den Umwälzkreislauf erforderlich ist. Zudem kann bei dieser Ausführungsform im gesamten Betriebsbereich am Austritt des Niederdruckverdampfers zu keinem Zeitpunkt eine Überhitzung des Strömungsmediums erzielt werden, da der Niederdruckverdampfer grundsätzlich im Nassbetrieb mit einem zur Einstellung der Mindesttemperatur des Strömungsmediums am Eintritt des Niederdruckvorwärmers erforderlichen Überspeisungsgrad betrieben werden muss.In a further embodiment according to the invention, an independent circulation circuit is integrated into the low-pressure system, consisting of low-pressure preheater and low-pressure evaporator, and the low-pressure evaporator is also over-fed. The water that has not yet evaporated and is separated from the steam in a water-steam separator and is at the boiling temperature level is then returned to the inlet of the low-pressure preheater via a low-pressure circulation pump and mixed with the cold feed water. The required minimum temperature of the flow medium at the inlet of the first low-pressure preheater heating surface can be set appropriately by a suitable choice of the degree of overfeeding of the low-pressure evaporator and the associated recirculation amount. An advantage of this embodiment variant is that, due to the overfeeding, there is a comparatively high evaporator throughput, which in turn has a favorable influence on the stability properties of the flow in the low-pressure evaporator. However, compared to the particularly preferred embodiment variant, this embodiment has the disadvantage that additional equipment (such as a circulation pump, control valves, etc.) is required for the circulation circuit. In addition, in this embodiment, the flow medium cannot be overheated at any point in the entire operating range at the outlet of the low-pressure evaporator, since the low-pressure evaporator generally has to be operated in wet operation with an overfeeding level required to set the minimum temperature of the flow medium at the inlet of the low-pressure preheater.

Die Erfindung soll nun anhand der nachfolgenden Figuren beispielhaft erläutert werden. Es zeigen:

FIG 1
schematisch ein bevorzugtes erfindungsgemäßes Ausführungsbeispiel der Niederdruckstufen eines vertikalen Abhitzedampferzeugers,
FIG 2
schematisch ein erfindungsgemäßes Ausführungsbeispiel eines vertikalen Abhitzedampferzeugers mit aufgeteilten Heizflächen,
FIG 3-4
schematisch zwei weitere erfindungsgemäße Ausführungsbeispiele.
The invention will now be explained by way of example with reference to the following figures. Show it:
FIG. 1
schematically a preferred embodiment of the low pressure stages of a vertical heat recovery steam generator according to the invention,
FIG 2
schematically an embodiment of a vertical heat recovery steam generator according to the invention with divided heating surfaces,
FIG 3-4
schematically two further exemplary embodiments according to the invention.

FIG 1 zeigt schematisch die zur Gewährleistung der Strömungsstabilität bevorzugte Ausführungsvariante eines zwangsdurchströmten Niederdrucksystems eines vertikalen Abhitzedampferzeugers. Dieser umfasst einen Kondensatvorwärmer mit einer in einem von Heißgas H durchströmten Heißgaskanal 1 angeordneten und von einem Strömungsmedium (S) durchströmten Kondensatvorwärmerheizfläche 20, einen Niederdruckvorwärmer mit einer im Heißgaskanal 1 angeordneten und vom Strömungsmedium S durchströmten Niederdruckvorwärmerheizfläche 30, sowie einen Niederdruckverdampfer mit einer im Heißgaskanal 1 angeordneten und vom Strömungsmedium S durchströmten Niederdruckverdampferheizfläche 40. Die Niederdruckvorwärmerheizfläche 30 und die Niederdruckverdampferheizfläche 40 sind hier so ausgebildet, dass sie in einem Durchgang nacheinander und ohne zusätzlichen Druckausgleich vom Strömungsmedium S durchströmt werden. Zudem ist die Niederdruckvorwärmerheizflächen 30 im Heißgaskanal 1 in Heißgasrichtung nach der Kondensatvorwärmerheizflächen 20 angeordnet. FIG. 1 schematically shows the preferred embodiment variant of a forced-flow low pressure system of a vertical heat recovery steam generator to ensure flow stability. This comprises a condensate preheater with a hot gas duct 1 through which hot gas H flows and a condensate preheater heating surface 20 through which a flow medium (S) flows, a low-pressure preheater with a low-pressure preheater heating surface 30 arranged in the hot gas channel 1 and through which the flow medium S flows, and a low-pressure evaporator with a low-pressure evaporator heating surface 40 arranged in the hot gas duct 1 and through which the flow medium S flows. The low-pressure preheater heating surface 30 and the 40 are designed here so that the flow medium S flows through them in succession in a single pass and without additional pressure equalization. In addition, the low-pressure preheater heating surfaces 30 is arranged in the hot gas duct 1 in the hot gas direction after the condensate preheater heating surfaces 20.

Des Weiteren ist in einer ersten Zuleitung 24 des Strömungsmediums S hin zum Kondensatvorwärmer eine Abzweigung 50 zur Bespeisung des Niederdruckvorwämers mit einem Teil des Strömungsmediums S vorgesehen. Ferner ist nach der Abzweigung 50 in einer zweiten Zuleitung 34 hin zum Niederdruckvorwärmer ein Regelventil 35 vorgesehen, dass die Menge des abgezweigten Strömungsmediums S zum Niederdruckvorwärmer regelt. Zudem ist hier für den Kondensatvorwärmer eine Umwälzpumpe 23 vorgesehen, die über Leitungen 25 und 27 und eine erste Einbindestelle 26 das in den Kondensatvorwärmerheizflächen erwärmte Stömungsmedium in die erste Zuleitung 24 zurückführt, wobei die erste Einbindestelle 26 in der ersten Zuleitung 24 vor der Abzweigung 50 angeordnet ist.Furthermore, a branch 50 is provided in a first feed line 24 of the flow medium S to the condensate preheater for supplying part of the flow medium S to the low-pressure preheater. Furthermore, a control valve 35 is provided after the branch 50 in a second feed line 34 to the low pressure preheater, which regulates the amount of the branched flow medium S to the low pressure preheater. In addition, a circulation pump 23 is provided here for the condensate preheater, which recirculates the flow medium heated in the condensate preheater heating surfaces via lines 25 and 27 and a first connection point 26, the first connection point 26 being arranged in the first supply line 24 in front of the branch 50 is.

FIG 2 zeigt eine Weiterbildung der zuvor beschriebenen Ausführungsform eines vertikalen Abhitzedampferzeuger, allerdings mit einem Kondensatvorwärmer der zwei im Heißgaskanal 1 räumlich getrennt angeordnete und vom Strömungsmedium S nacheinander durchströmten Kondensatvorwärmerheizflächen 21 und 22 umfasst. Zudem weist hier der Abhitzedampferzeuger einen Niederdruckvorwämer, mit zwei im Heißgaskanal 1 räumlich getrennt angeordneten und vom Strömungsmedium S nacheinander durchströmten Niederdruckvorwärmerheizflächen 31 und 32, sowie einen Niederdruckverdampfer mit zumindest einer im Heißgaskanal 1 angeordneten und vom Strömungsmedium S im Anschluss an die Niederdruckvorwärmerheizflächen durchströmten Niederdruckverdampferheizfläche 40 auf. Erfindungsgemäß ist nun vorgesehen, dass die erste von Strömungsmedium S durchströmte Niederdruckvorwärmerheizfläche 31 im Heißgaskanal 1 in Heißgasrichtung hinter der ersten Kondensatvorwärmerheizfläche 21 und die zweite vom Strömungsmedium S anschließend durchströmte Niederdruckvorwärmeheizfläche 32 in Heißgasrichtung zwischen der ersten und der zweiten Kondensatvorwärmerheizfläche 21 und 22 angeordnet ist. Weiterhin ist in einer Zuleitung 24 des Strömungsmediums S zu dem Kondensatvorwärmer eine Abzweigung 50 zur Bespeisung des Niederdruckvorwämers mit einem Teil des Strömungsmediums S vorgesehen, wobei die Menge des abgezweigten Strömungsmediums S durch ein Regelventil 35 geregelt wird. Dadurch, dass für den Kondensatvorwärmer zudem eine Umwälzpumpe 23 vorgesehen ist, um über eine Leitung 27 und eine Einbindestelle 26 das in den Kondensatvorwärmerheizflächen erwärmte Stömungsmedium zu der Zuleitung 24 zurückzuführen, und die Abzweigung 50 stromabwärts der Einbindung 26 angeordnet ist, steht nun beiden Systemen ein Strömungsmedium mit nahezu gleichem Temperaturniveau zu Verfügung. FIG 2 shows a development of the previously described embodiment of a vertical heat recovery steam generator, but with a condensate preheater which comprises two condensate preheater heating surfaces 21 and 22, which are arranged spatially separated in the hot gas duct 1 and flowed through by the flow medium S in succession. In addition, the heat recovery steam generator here has a low-pressure preheater, with two low-pressure preheater heating surfaces 31 and 32 arranged spatially separated in the hot gas duct 1 and through which the flow medium S flows in succession, and a low-pressure evaporator with at least one in the hot gas duct 1 arranged and flow medium from the flow medium S following the low pressure preheater heating surfaces on low pressure evaporator heating surface. According to the invention, it is now provided that the first low-pressure preheater heating surface 31 through which the flow medium S flows is arranged in the hot gas duct 1 in the hot gas direction behind the first condensate preheater heating surface 21, and the second low-pressure preheater heating surface 32 through which the flow medium S flows is arranged in the hot gas direction between the first and the second condensate preheater heating surfaces 21 and 22. Furthermore, a branch 50 is provided in a feed line 24 of the flow medium S to the condensate preheater for supplying part of the flow medium S to the low-pressure preheater, the amount of the branched-off flow medium S being regulated by a control valve 35. The fact that a circulation pump 23 is also provided for the condensate preheater in order to return the flow medium heated in the condensate preheater heating surfaces to the supply line 24 via a line 27 and a connection point 26, and the branch 50 is arranged downstream of the connection 26, both systems are now available Flow medium with almost the same temperature level available.

FIG 3 und FIG 4 zeigen eine alternative Ausgestaltung eines vertikalen Abhitzedampferzeugers. Im Gegensatz zu der in FIG 1 bzw. FIG 2 dargestellten Ausführung ist hier auch für den Niederdruckvorwärmer- und Niederdruckverdampferkreis eine Niederdruckumwälzpumpe 52 vorgesehen um über einen Wasser-Dampfabscheider 60, eine Rückführleitung 51 und eine Einbindestelle 53 das die Niederdruckvorwärmer- und -verdampferheizflächen durchströmende und nicht verdampfte Strömungsmedium S zu der zweiten Zuleitung 34 zurückzuführen. Mit Hilfe einer geeigneten Verdampferüberspeisung kann der über die Niederdruckumwälzpumpe 52 und die Rückführleitung 51 geführte Umwälzmassenstrom gerade so eingestellt werden, dass die gewünschte Temperatur des Strömungsmediums S am Eintritt in die erste Niederdruckvorwärmheizfläche erzielt wird. FIG 3 and FIG 4 show an alternative embodiment of a vertical heat recovery steam generator. In contrast to that in FIG. 1 or. FIG 2 The embodiment shown here is also provided for the low-pressure preheater and low-pressure evaporator circuit to return a low-pressure circulating pump 52 to the second feed line 34 via a water-steam separator 60, a return line 51 and a connection point 53 through which the low-pressure preheater and evaporator heating surfaces flow and are not evaporated. With the help of a suitable evaporator oversupply, the circulating mass flow conducted via the low-pressure circulating pump 52 and the return line 51 can be adjusted such that the desired temperature of the flow medium S is achieved at the entry into the first low-pressure preheating heating surface.

Claims (6)

  1. Vertical heat recovery steam generator, the low-pressure stages of which are designed as a once-through system, comprising
    - a condensate preheater with at least one condensate preheater heating surface (20, 21, 22), through which a flow medium (S) flows and which is disposed in a hot gas channel (1), through which hot gas (H) flows,
    - a low-pressure preheater with at least one low-pressure preheater heating surface (30, 31, 32), through which the flow medium (S) flows and which is disposed in the hot gas channel (1),
    - a low-pressure evaporator with at least one low-pressure evaporator heating surface (40), through which the flow medium (S) flows and which is disposed in the hot gas channel (1),
    - wherein the flow medium (S) flows successively through the at least one low-pressure preheater heating surface (30, 31, 32) and the at least one low-pressure evaporator heating surface (40) in one pass and without additional pressure compensation and wherein a first (30, 31) of the at least one low-pressure preheater heating surfaces in the hot gas channel (1) is disposed in the region of the hot gas channel outlet and is disposed after a first (20, 21) of the at least one condensate preheater heating surfaces in the hot gas direction or substantially in the same region as the first (20, 21) of the at least one condensate preheater heating surfaces in the hot gas direction.
  2. Vertical heat recovery steam generator according to Claim 1,
    characterized in that
    the condensate preheater comprises two condensate preheater heating surfaces (21, 22), through which the flow medium (S) flows successively and which are disposed in a spatially separate manner in the hot gas channel (1), and the low-pressure preheater comprises two low-pressure preheater heating surfaces (31, 32), through which the flow medium (S) flows successively and which are disposed in a spatially separate manner in the hot gas channel (1), wherein the first low-pressure preheater heating surface (31), through which flow medium (S) flows, is disposed in the hot gas channel (1) after the first condensate preheater heating surface (21) in the hot gas direction, and the second low-pressure preheater heating surface (32), through which the flow medium (S) subsequently flows, is disposed between the first and the second condensate preheater heating surface (21, 22) in the hot gas direction.
  3. Vertical heat recovery steam generator according to Claim 1 or 2,
    characterized in that
    a branch (50) for feeding the low-pressure preheater with some of the flow medium (S) is provided in a first feed line (24) of the flow medium (S) toward the condensate preheater.
  4. Vertical heat recovery steam generator according to Claim 3,
    characterized in that
    a control valve (35) is provided after the branch (50), in a second feed line (34) toward the low-pressure preheater, said valve controlling the quantity of flow medium (S) diverted to the low-pressure preheater.
  5. Vertical heat recovery steam generator according to Claim 3 or 4,
    characterized in that
    a circulating pump (23) is furthermore provided for the condensate preheater, said pump returning the flow medium heated in the condensate preheater heating surfaces to the first feed line (24) via lines (25, 27) and a first connection point (26), wherein the first connection point (26) is disposed in the first feed line (24), ahead of the branch (50).
  6. Vertical heat recovery steam generator according to Claim 1 or 2,
    characterized in that
    a low-pressure circulating pump (52) is provided for the low-pressure preheater and the low-pressure evaporator, said pump returning the unevaporated flow medium (S) flowing through the low-pressure preheater and the low-pressure evaporator heating surfaces (30, 31, 32, 40), via a water/steam separator (60), a return line (51) and a second connection point (53), to a second feed line (34) toward the low-pressure preheater.
EP16741612.2A 2016-07-19 2016-07-19 Vertical heat recovery steam generator Active EP3472515B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL16741612T PL3472515T3 (en) 2016-07-19 2016-07-19 Vertical heat recovery steam generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2016/067169 WO2018014941A1 (en) 2016-07-19 2016-07-19 Vertical heat recovery steam generator

Publications (2)

Publication Number Publication Date
EP3472515A1 EP3472515A1 (en) 2019-04-24
EP3472515B1 true EP3472515B1 (en) 2020-06-24

Family

ID=56507591

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16741612.2A Active EP3472515B1 (en) 2016-07-19 2016-07-19 Vertical heat recovery steam generator

Country Status (9)

Country Link
US (1) US11118781B2 (en)
EP (1) EP3472515B1 (en)
JP (1) JP6745971B2 (en)
KR (1) KR102229868B1 (en)
CN (1) CN109477633B (en)
CA (1) CA3031202C (en)
ES (1) ES2819906T3 (en)
PL (1) PL3472515T3 (en)
WO (1) WO2018014941A1 (en)

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5795121A (en) 1980-12-02 1982-06-12 Denriyoku Chuo Kenkyusho Method for preventing wind noise for wire of double conductor type transmission line and electric wire
JPS593101U (en) 1982-06-24 1984-01-10 三井造船株式会社 Exhaust gas economizer device
EP0561220B1 (en) * 1992-03-16 1995-09-13 Siemens Aktiengesellschaft Process for operating a steam generating system and steam generator
EP0582898A1 (en) * 1992-08-10 1994-02-16 Siemens Aktiengesellschaft Method of operating a steam and gas turbine system and system for carrying out the method
JPH06241005A (en) * 1993-02-17 1994-08-30 Ishikawajima Harima Heavy Ind Co Ltd Compound generating equipment
DE4321081A1 (en) 1993-06-24 1995-01-05 Siemens Ag Process for operating a gas and steam turbine plant and a combined cycle gas plant
DE19512466C1 (en) 1995-04-03 1996-08-22 Siemens Ag Steam generator operating method for gas and steam turbine plant
WO1996036792A1 (en) * 1995-05-15 1996-11-21 Siemens Aktiengesellschaft Process and device for degassing a condensate
DE19544224B4 (en) 1995-11-28 2004-10-14 Alstom Chemical operation of a water / steam cycle
DE19736885A1 (en) 1997-08-25 1999-03-04 Siemens Ag Steam generator, in particular waste heat steam generator and method for operating this steam generator
DE19736889C1 (en) * 1997-08-25 1999-02-11 Siemens Ag Operating method for combined gas-and-steam turbine plant
DE19736886C2 (en) * 1997-08-25 2000-05-18 Siemens Ag Process for operating a steam generator and steam generator for carrying out the process, and gas and steam turbine system
US5924389A (en) * 1998-04-03 1999-07-20 Combustion Engineering, Inc. Heat recovery steam generator
DE10001995A1 (en) * 2000-01-19 2001-07-26 Alstom Power Schweiz Ag Baden Method for setting or regulating the steam temperature of the live steam and / or reheater steamer in a composite power plant and composite power plant for carrying out the method
DE50211611D1 (en) * 2001-09-14 2008-03-13 Alstom Technology Ltd G THE WORKING AIDS OF A TWO-PHASE PROCESS
JP2009063205A (en) * 2007-09-05 2009-03-26 Babcock Hitachi Kk Once-through exhaust heat recovery boiler
US7874162B2 (en) * 2007-10-04 2011-01-25 General Electric Company Supercritical steam combined cycle and method
US20110113786A1 (en) * 2009-11-18 2011-05-19 General Electric Company Combined cycle power plant with integrated organic rankine cycle device
CN101776399A (en) * 2010-02-10 2010-07-14 中冶长天国际工程有限责任公司 Waste heat boiler for sintering circular cooler and heat-electricity combined supply system of waste heat boiler
US8813471B2 (en) * 2011-06-29 2014-08-26 General Electric Company System for fuel gas moisturization and heating
CA2924710C (en) * 2013-09-19 2018-03-27 Siemens Aktiengesellschaft Combined cycle gas turbine plant having a waste heat steam generator
KR101984361B1 (en) * 2013-09-26 2019-09-03 누터/에릭슨 인코퍼레이티드 Heat exchanging system and method for a heat recovery steam generator
EP3219940B1 (en) * 2016-03-18 2023-01-11 General Electric Technology GmbH Combined cycle power plant and method for operating such a combined cycle power plant

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2018014941A1 (en) 2018-01-25
ES2819906T3 (en) 2021-04-19
US20190170344A1 (en) 2019-06-06
CA3031202C (en) 2020-07-21
US11118781B2 (en) 2021-09-14
CN109477633A (en) 2019-03-15
KR102229868B1 (en) 2021-03-19
JP2019522168A (en) 2019-08-08
CA3031202A1 (en) 2018-01-25
JP6745971B2 (en) 2020-08-26
KR20190026913A (en) 2019-03-13
EP3472515A1 (en) 2019-04-24
CN109477633B (en) 2020-10-13
PL3472515T3 (en) 2020-12-14

Similar Documents

Publication Publication Date Title
DE102009036064B4 (en) in order to operate a forced-circulation steam generator operating at a steam temperature of more than 650 ° C, as well as forced circulation steam generators
DE10041413B4 (en) Method for operating a power plant
EP1059488B1 (en) Process and installation for heating a liquid medium
EP0591163B1 (en) Combined gas and steam turbine plant
EP1009920B1 (en) Steam generator, especially waste heat recovery steam generator and method for operating said generator
EP2603672B1 (en) Waste heat steam generator
DE102016214960B3 (en) Power plant with optimized preheating of feed water for low-level turbo sets
DE2311066A1 (en) STEAM GENERATOR FOR UNFIRED POWER PLANT
DE102018123663A1 (en) Fuel preheating system for a combustion gas turbine
EP2986910B1 (en) System and method for preheating makeup water in steam power plants, with process steam outcoupling
EP3420202B1 (en) Condensate recirculation
DE19901656A1 (en) Regulating temp. at outlet of steam superheater involves spraying water into superheater near steam inlet; water can be sprayed into wet, saturated or superheated steam
EP1320665B1 (en) Method for operating a gas and steam turbine system and a corresponding system
EP0981014B1 (en) Power plant and process for starting and for purification of its water-steam cycle
EP3017152B1 (en) Combined cycle gas turbine plant having a waste heat steam generator and fuel pre-heating
EP0410111B1 (en) Heat recovery boiler for a gas and steam turbine plant
DE19720789B4 (en) Method and apparatus for generating steam
CH645433A5 (en) COMBINED GAS TURBINE STEAM POWER PLANT.
WO2010102864A2 (en) Continuous evaporator
EP3472515B1 (en) Vertical heat recovery steam generator
EP1512905A1 (en) Once-through steam generator and method of operating said once-through steam generator
CH497664A (en) High pressure steam power plant
DE102010043683A1 (en) Fossil fired steam generator
EP0657627B1 (en) Method and arrangement for starting a HRSG comprising at least two separated pressure systems
EP3267100B1 (en) Steam creation system

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20181219

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200224

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016010323

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1284257

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200925

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200924

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200924

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502016010323

Country of ref document: DE

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG, DE

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201026

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201024

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016010323

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2819906

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20210419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200719

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200719

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20211202 AND 20211209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1284257

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210719

REG Reference to a national code

Ref country code: NL

Ref legal event code: PD

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG; DE

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), ASSIGNMENT; FORMER OWNER NAME: SIEMENS AKTIENGESELLSCHAFT

Effective date: 20221220

REG Reference to a national code

Ref country code: BE

Ref legal event code: PD

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG; DE

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), ASSIGNMENT; FORMER OWNER NAME: SIEMENS AKTIENGESELLSCHAFT

Effective date: 20221214

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20230623

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230721

Year of fee payment: 8

Ref country code: GB

Payment date: 20230725

Year of fee payment: 8

Ref country code: ES

Payment date: 20230816

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230726

Year of fee payment: 8

Ref country code: BE

Payment date: 20230726

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240725

Year of fee payment: 9