EP3470362B1 - Method and device for monitoring the stability of a loading crane mounted on a vehicle - Google Patents

Method and device for monitoring the stability of a loading crane mounted on a vehicle Download PDF

Info

Publication number
EP3470362B1
EP3470362B1 EP18207557.2A EP18207557A EP3470362B1 EP 3470362 B1 EP3470362 B1 EP 3470362B1 EP 18207557 A EP18207557 A EP 18207557A EP 3470362 B1 EP3470362 B1 EP 3470362B1
Authority
EP
European Patent Office
Prior art keywords
wheels
support
support elements
vehicle
stability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18207557.2A
Other languages
German (de)
French (fr)
Other versions
EP3470362A1 (en
Inventor
Thomas Zinke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Palfinger AG
Original Assignee
Palfinger AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Palfinger AG filed Critical Palfinger AG
Publication of EP3470362A1 publication Critical patent/EP3470362A1/en
Application granted granted Critical
Publication of EP3470362B1 publication Critical patent/EP3470362B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C23/00Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes
    • B66C23/88Safety gear
    • B66C23/90Devices for indicating or limiting lifting moment
    • B66C23/905Devices for indicating or limiting lifting moment electrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C23/00Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes
    • B66C23/62Constructional features or details
    • B66C23/72Counterweights or supports for balancing lifting couples
    • B66C23/78Supports, e.g. outriggers, for mobile cranes

Definitions

  • the invention relates to a method and a device for monitoring at least one stability parameter of a loading crane mounted on a vehicle, the vehicle being supported or capable of being supported on the ground via wheels and via support elements separate from the wheels during crane operation.
  • the support elements are usually support legs that can be extended in the vertical direction and are mounted on a support widening that can be extended laterally in the horizontal direction.
  • the ability to extend the support legs and the widening of the support is made possible by a telescopic construction.
  • the vehicles relevant in connection with the invention usually have either one or two such support widenings, each with two support legs.
  • overload protection is required for loading cranes with a load capacity of more than 1000 kg.
  • the corresponding stability test is carried out with a test load that corresponds to 125% of the specified load-bearing capacity. It is important that at least one wheel that is braked by means of a (usually manually operated) parking brake must remain on the ground. In this case, the loading crane is in a so-called partially raised state. The at least one wheel braked by means of a parking brake, which must remain on the ground, acts as an additional friction point and serves to absorb horizontal forces.
  • the object of the invention is therefore to avoid the disadvantages described above and to specify a solution for monitoring the stability of a loading crane mounted on a vehicle that is improved compared to the prior art.
  • One of the basic ideas of the invention is that not only the contributions of the support elements, but also the contributions of the wheels to the size of at least one stability parameter are recorded and this size is compared with at least one predetermined limit value.
  • At least one warning signal is advantageously output (to the operating personnel of the crane) and/or at least a measure to Re-compliance with the limit value carried out. These include, in particular, correction movements of the boom system.
  • a rotation angle ⁇ of the Loading crane is detected about a vertical axis and / or an extended state of the supporting elements.
  • the at least one stability parameter as a function of the angle of rotation ⁇ and/or the extended state of the support elements.
  • the relative position of the supporting elements in relation to the vehicle is known by detecting the extended state of the supporting elements.
  • the detection of the extended state of the support elements includes both the detection of the distance by which the Outrigger extension is extended, as well as the detection of the distances by which the support legs are extended.
  • the number a of wheels and supporting elements, via which the vehicle is supported on the ground, and the force stability coefficient S F are monitored as stability parameters, with S F being calculated from the supporting forces F i provided via the wheels and the supporting elements.
  • the advantage of the force stability coefficient SF is that it can be used to monitor compliance with this specified limit value very easily by making sure that the value of SF - calculated using the above formula - is always greater than one.
  • the sum of forces in the denominator would assume the same value as the sum of forces in the numerator, since the three largest supporting forces are then the only three supporting forces different from zero .
  • the axle load is the proportion of the total mass (dead mass and mass of the load of a vehicle) that falls on one axle (axle) of this vehicle.
  • the maximum possible suspension distance corresponds to the distance in which a wheel lifts off the ground and the supporting force provided by this wheel assumes the value zero. This procedure is particularly useful for vehicles that have leaf springs with a linear spring characteristic.
  • the measured lengths L i of the vibration dampers of the wheels could also be converted directly into a longitudinal stability coefficient S L and the value of SL could be monitored.
  • S F the force-stability coefficient
  • Protection is also sought for a device for monitoring at least one stability parameter of a loading crane mounted on a vehicle, the vehicle being able to be supported on the ground during crane operation via wheels and via support elements separate from the wheels according to claim 9.
  • the at least one stability parameter is again - exactly the same as described in connection with the method according to the invention - by the number a of the wheels and supporting elements, over which the vehicle on Ground is supported and the force-stability coefficient S F It can also be the residual torque M rest,K ⁇ as a function of the rotation angle ⁇ of the loading crane in relation to the momentarily relevant tipping edge K ⁇ .
  • control and regulation unit can generate at least one warning signal and/or control at least one measure for maintaining the at least one predetermined limit value when the at least one predetermined limit value is exceeded or not reached.
  • the warning signal can be generated by the control and regulation unit, e.g. in the form of an electrical pulse sequence, and then converted into an optical and/or acoustic signal by means of warning lights and/or loudspeakers.
  • the at least one measure for maintaining the at least one predetermined limit value again can be stored, for example, as a programmed course of action in the control and regulation unit. In the simplest case, the course of action is a stopping process that stops the crane operation.
  • the device has a rotation angle measuring device for detecting a rotation angle ⁇ of the loading crane about a vertical axis and/or an extended status measuring device for detecting an extended status of the support elements, the measurement signals of the rotational angle and/or the extended status Measuring device (eg via appropriate signal lines or by wireless transmission) of the control and regulation unit can be fed.
  • the support elements are support legs that are mounted on a laterally extendable support extension and that all non-variable parameters (such as the installation position of the support extension on the vehicle frame) are known and stored in the control and regulation unit , in order to determine the position of the support elements relative to the vehicle, it is only necessary to use the extended state measuring device to record the extended lengths of the support widening and the support legs.
  • the support elements are arranged on at least one laterally extendable support extension and the loading crane rests on a crane base which is connected to the at least one support extension, it is advantageous to use the support element measuring devices in the support elements and/or to be arranged at the connection of the support elements with the support widening and/or at the connection of the support widening with the crane base.
  • the wheel and support element measuring devices can detect the support forces F i provided via the wheels and the support elements.
  • the supporting forces F i provided by the supporting elements this is possible, for example, by the supporting element measuring devices being designed as load cells.
  • the measurement of the supporting forces F i can be carried out, for example, by measuring the despringing distances (of the wheel spring systems) or the lengths L i of the vibration dampers (eg using cable length sensors) or by measuring the internal tire pressures. It is also conceivable to measure the wheel force using strain gauges near the ends of the axle.
  • FIG. 1 For exemplary embodiments, the tilting edges Kj of the vehicle during crane operation and, in addition, the distances l i,Kj of the wheels and supporting elements from the tilting edges K j are computable. Under this condition, the residual stability torque M rest,K ⁇ can then be monitored (as described further above) as a stability parameter.
  • a vehicle 1 is shown schematically, on which a loading crane 2 is mounted and whose stability can be monitored using the method according to the invention or the device according to the invention.
  • the vehicle 1 can be supported on the ground via two front wheels 3a and four rear wheels 3b designed as twin wheels, as well as a laterally extendable support widening 5 with two support elements 4 .
  • One of the axles 6 of the vehicle 1, part of the vehicle frame 9, a control and regulation unit 7 and the crane base 8 of the loading crane 2 can also be seen. since these are partially integrated into certain vehicle components--such as, for example, in the case of the supporting element measuring devices in the supporting feet 4--or are covered by other vehicle components.
  • the 2 shows a model of the in 1 illustrated vehicle 1 in plan view.
  • the support points on the ground black and white circles
  • the position of the crane base 8 which at the same time also defines the intersection of the vertical axis around which the loading crane 2 can be rotated, with the horizontal vehicle plane, are one of the in this state possible tipping edges K ⁇ and the distances l i , K ⁇ of the support points (wheels 3a and 3b and support elements 4) to the Tilting edges K ⁇ located.
  • the model also includes a definition of the angle of rotation ⁇ of the loading crane 2 about the vertical axis. It should be noted that the wheels 3a and 3b are of course not support points but support surfaces. In a first approximation, however, support points were assumed here.
  • FIGS 3a, 3b, 4a and 4b Preferred limit values for the minimum number of wheels 3a and 3b and supporting elements 4, via which the vehicle 1 must be supported at least on the ground in different embodiments, are shown as a function of the rotation angle ⁇ of the loading crane 2 and the extended state of the supporting elements 4.
  • the reference numbers are representative of this group of figures only in the Figure 3a specified.
  • the Figures 3a and 3b refer to the case in which the vehicle 1 can be supported on the ground at most via two front wheels 3a and two rear wheels 3b designed as twin wheels and two laterally extendable support widenings 5 each with two support elements 4 .
  • FIG. 6 shows a schematic representation of a possible vibration damper 10 of the wheels 3a and 3b.
  • the position of the vibration damper 10 at which the wheel would lift off the ground is shown in dashed lines.
  • the values L i and L limit , i relevant for the calculation of the length stability coefficient S L are shown.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Jib Cranes (AREA)

Description

Die Erfindung betrifft ein Verfahren bzw. eine Vorrichtung zur Überwachung wenigstens eines Standsicherheitsparameters eines auf einem Fahrzeug montierten Ladekrans, wobei das Fahrzeug im Kranbetrieb über Räder und über von den Rädern gesonderte Abstützelemente am Untergrund abgestützt wird bzw. abstützbar ist.The invention relates to a method and a device for monitoring at least one stability parameter of a loading crane mounted on a vehicle, the vehicle being supported or capable of being supported on the ground via wheels and via support elements separate from the wheels during crane operation.

Üblicherweise handelt es sich bei den Abstützelementen um in vertikaler Richtung ausfahrbare Stützbeine, die an einer in horizontaler Richtung seitlich ausfahrbaren Abstützverbreiterung montiert sind. Dabei wird die Eigenschaft der Ausfahrbarkeit der Stützbeine und der Abstützverbreiterung durch eine teleskopartige Bauweise ermöglicht. Die im Zusammenhang mit der Erfindung relevanten Fahrzeuge weisen in der Regel entweder eine oder zwei derartige Abstützverbreiterungen mit jeweils zwei Stützbeinen auf.The support elements are usually support legs that can be extended in the vertical direction and are mounted on a support widening that can be extended laterally in the horizontal direction. The ability to extend the support legs and the widening of the support is made possible by a telescopic construction. The vehicles relevant in connection with the invention usually have either one or two such support widenings, each with two support legs.

Nach der EN 12999 ist eine Überlastsicherung für Ladekrane mit Tragfähigkeiten über 1000 kg erforderlich. Gemäß dieser Norm wird die entsprechende Standsicherheitsprüfung mit einer Prüflast durchgeführt, die 125 % der angegebenen Tragfähigkeit entspricht. Wichtig ist, dass dabei mindestens ein mittels einer (in der Regel handbetätigten) Feststellbremse gebremstes Rad am Boden verbleiben muss. In diesem Fall befindet sich der Ladekran in einem sogenannten teilausgehobenen Zustand. Das mindestens eine mittels einer Feststellbremse gebremste Rad, das am Boden verbleiben muss, fungiert als zusätzliche Reibstelle und dient der Aufnahme von Horizontalkräften.According to EN 12999, overload protection is required for loading cranes with a load capacity of more than 1000 kg. According to this standard, the corresponding stability test is carried out with a test load that corresponds to 125% of the specified load-bearing capacity. It is important that at least one wheel that is braked by means of a (usually manually operated) parking brake must remain on the ground. In this case, the loading crane is in a so-called partially raised state. The at least one wheel braked by means of a parking brake, which must remain on the ground, acts as an additional friction point and serves to absorb horizontal forces.

Es ist bekannt, dass die Lastmomentbegrenzung für die Überlastsicherung gemäß der EN 12999 über Hubkraftanpassungen in der Kranhydraulik gelöst wird. Für Kranarbeiten mit seitlich nicht vollständig ausgefahrenen Abstützelementen und/oder Auslegerstellungen über dem Fahrerhaus sind zusätzliche Hubkraftbegrenzungen vorzunehmen. Kennfeldbasierende Hubkraftanpassungen zählen zum Stand der Technik.It is known that the load moment limitation for the overload protection according to EN 12999 is solved by adjusting the lifting force in the crane hydraulics. For crane work with laterally incompletely extended support elements and/or jib positions above the driver's cab, additional lifting capacity limitations must be implemented. Map-based lifting force adjustments are state-of-the-art.

Bei derartigen Systemlösungen wird der hohe Einstellungs- und Prüfaufwand allerdings als nachteilig bewertet. Die Gefahr von Fehleinstellungen besteht. Zudem werden keine Nutzlasten berücksichtigt. Um diese Nachteile zu vermeiden, sind bevorzugt Wirkungen der Kranarbeit auf die Gesamtmaschine sensorisch zu erfassen.With such system solutions, however, the high adjustment and testing effort is rated as disadvantageous. There is a risk of incorrect settings. Also become no payloads considered. In order to avoid these disadvantages, the effects of the crane work on the entire machine should preferably be detected by sensors.

Für Autobetonpumpen gibt es Lösungsansätze, die in diese Richtung zielen. Exemplarisch sei in diesem Zusammenhang die Patentschrift DE 103 49 234 A1 genannt. Hier werden zur Überwachung der Standsicherheit die Stützkräfte in den Stützbeinen ermittelt und zu einer Standsicherheitszahl verrechnet. Allerdings befinden sich Autobetonpumpen während ihres Betriebs in einem vollausgehobenen Zustand, d.h. dass keines der Räder den Untergrund berührt. Die für Autobetonpumpen verwendeten Lösungen eignen sich also nicht für die im Zusammenhang mit der vorliegenden Erfindung relevanten Ladekrane, welche der EN 12999 genügen müssen. Weitere Lösungsansätze zur Überwachung der Standsicherheit eines auf einem Fahrzeug montierten Krans sind aus der EP 2 298 689 A2 , der EP 1 757 739 A2 und der EP 0 864 473 A2 bekannt. Mit keinem dieser Ansätze kann der EN 12999 Genüge geleistet werden.There are solutions for truck-mounted concrete pumps that aim in this direction. The patent specification is an example in this context DE 103 49 234 A1 called. Here, to monitor the stability, the supporting forces in the support legs are determined and offset to form a stability number. However, truck-mounted concrete pumps are in a fully raised state during operation, ie none of the wheels touch the ground. The solutions used for truck-mounted concrete pumps are therefore not suitable for the loading cranes which are relevant in connection with the present invention and which must comply with EN 12999. Other approaches to monitoring the stability of a crane mounted on a vehicle are from EP 2 298 689 A2 , the EP 1 757 739 A2 and the EP 0 864 473 A2 known. EN 12999 cannot be satisfied with any of these approaches.

Daher besteht die Aufgabe der Erfindung darin, die vorbeschriebenen Nachteile zu vermeiden und eine gegenüber dem Stand der Technik verbesserte Lösung zur Standsicherheitsüberwachung eines auf einem Fahrzeug montierten Ladekrans anzugeben.The object of the invention is therefore to avoid the disadvantages described above and to specify a solution for monitoring the stability of a loading crane mounted on a vehicle that is improved compared to the prior art.

Diese Aufgabe wird erfindungsgemäß durch die Merkmale der beiden unabhängigen Ansprüche 1 und 9 gelöst.According to the invention, this object is achieved by the features of the two independent claims 1 and 9 .

Eine der Grundideen der Erfindung besteht also darin, dass nicht nur die Beiträge der Abstützelemente, sondern auch die Beiträge der Räder zur Größe wenigstens eines Standsicherheitsparameters erfasst werden und diese Größe mit wenigstens einem vorbestimmten Grenzwert verglichen wird.One of the basic ideas of the invention is that not only the contributions of the support elements, but also the contributions of the wheels to the size of at least one stability parameter are recorded and this size is compared with at least one predetermined limit value.

Vorteilhafterweise wird dabei - je nachdem, ob es sich bei dem wenigstens einen vorbestimmten Grenzwert um eine obere oder eine untere kritische Grenze handelt, - bei einer Über- oder Unterschreitung des Grenzwertes wenigstens ein Warnsignal (an das Bedienpersonal des Krans) ausgegeben und/oder wenigstens eine Maßnahme zur Wiedereinhaltung des Grenzwertes durchgeführt. Hierzu zählen insbesondere Korrekturbewegungen des Auslegersystems.Depending on whether the at least one predetermined limit value is an upper or a lower critical limit, at least one warning signal is advantageously output (to the operating personnel of the crane) and/or at least a measure to Re-compliance with the limit value carried out. These include, in particular, correction movements of the boom system.

Da die durch die üblicherweise verwendeten Abstützelemente erzielbare Standsicherheit nicht in jedem Teilbereich des theoretisch denkbaren Arbeitsraums des Auslegersystems gleich groß ist und die Abstützelemente unter bestimmten Arbeitsumständen, z.B. auf beengten Baustellen, nicht vollständig ausgefahren werden können, ist es weiterhin vorteilhaft, wenn ein Drehwinkel α des Ladekrans um eine vertikale Achse und/oder ein Ausfahrzustand der Abstützelemente erfasst wird. In diesem Fall ist es möglich, den wenigstens einen Standsicherheitsparameter in Abhängigkeit von dem Drehwinkel α und/oder dem Ausfahrzustand der Abstützelemente zu überwachen. Durch die Erfassung des Ausfahrzustands der Abstützelemente ist die relative Position der Abstützelemente in Bezug auf das Fahrzeug bekannt. Wenn es sich bei den Abstützelementen - wie oben beschrieben - um in vertikaler Richtung ausfahrbare Stützbeine, die an einer in horizontaler Richtung seitlich ausfahrbaren Abstützverbreiterung montiert sind, handelt, so zählt zu der Erfassung des Ausfahrzustands der Abstützelemente sowohl die Erfassung der Strecke, um welche die Abstützverbreiterung ausgefahren ist, als auch die Erfassung der Strecken, um welche die Stützbeine ausgefahren sind.Since the stability that can be achieved with the support elements that are usually used is not the same in every part of the theoretically conceivable working space of the boom system and the support elements cannot be fully extended under certain working conditions, e.g. on cramped construction sites, it is also advantageous if a rotation angle α of the Loading crane is detected about a vertical axis and / or an extended state of the supporting elements. In this case it is possible to monitor the at least one stability parameter as a function of the angle of rotation α and/or the extended state of the support elements. The relative position of the supporting elements in relation to the vehicle is known by detecting the extended state of the supporting elements. If the support elements - as described above - are support legs that can be extended in the vertical direction and are mounted on a support extension that can be extended laterally in the horizontal direction, then the detection of the extended state of the support elements includes both the detection of the distance by which the Outrigger extension is extended, as well as the detection of the distances by which the support legs are extended.

Laut Erfindung wird als Standsicherheitsparameter die Anzahl a der Räder und Abstützelemente, über welche das Fahrzeug am Untergrund abgestützt ist, und der Kraft-Standsicherheitsbeiwert SF überwacht, wobei SF aus den über die Räder und die Abstützelemente bereitgestellten Abstützkräften Fi berechnet wird. Dabei erfolgt die Berechnung von SF vorzugsweise nach folgender Formel: S F = i = 1 a ges F i i = 1 a min 1 F i , max ,

Figure imgb0001
wobei ages die Gesamtanzahl der Räder und Abstützelemente, amin eine vorbestimmte Mindestanzahl an Rädern und Abstützelementen, über welche das Fahrzeug wenigstens am Untergrund abgestützt sein muss, und F i,max die (amin -1) größten Abstützkräfte angeben. Bei SF handelt es sich um eine dimensionslose Größe, die folgenden Effekt hat: Angenommen, das Fahrzeug sei über zwei Vorder- und zwei Hinterräder sowie eine seitlich ausgefahrene Abstützverbreiterung mit zwei Abstützelementen am Untergrund abstützbar, d.h. es würde ages =6 gelten. Sei weiterhin angenommen, dass ein labiler Zustand, in dem das Fahrzeug umzukippen droht, dann vorliegt, wenn das Fahrzeug nur noch auf einem Vorder- und einem Hinterrad sowie einem Abstützelement steht, wobei sich das Vorder- und das Hinterrad sowie das Abstützelement auf der gleichen Fahrzeugseite befinden, so müsste man fordern, dass im Betriebszustand zu keiner Zeit der Grenzwert amin =4 unterschritten wird, um nicht diesen labilen Zustand zu erreichen. Der Vorteil des Kraft-Standsicherheitsbeiwert SF besteht nun darin, dass man mit seiner Hilfe sehr leicht die Einhaltung dieses vorgegebenen Grenzwertes überwachen kann, indem man darauf achtet, dass der Wert von SF - nach obiger Formel berechnet - immer größer als eins ist. Im Falle des labilen Zustands, d.h. im Falle von nur noch drei Abstützpunkten, würde nämlich die Kräftesumme im Nenner den gleichen Wert annehmen, wie die Kräftesumme im Zähler, da es sich dann bei den drei größten Abstützkräften um die drei einzigen von Null verschiedenen Abstützkräfte handelt.According to the invention, the number a of wheels and supporting elements, via which the vehicle is supported on the ground, and the force stability coefficient S F are monitored as stability parameters, with S F being calculated from the supporting forces F i provided via the wheels and the supporting elements. S F is preferably calculated using the following formula: S f = i = 1 a total f i i = 1 a at least 1 f i , Max ,
Figure imgb0001
where a tot is the total number of wheels and supporting elements, a min is a predetermined minimum number of wheels and supporting elements by which the vehicle must be supported at least on the ground, and F i ,max indicates the ( a min -1) greatest supporting forces. S F is a dimensionless quantity that has the following effect: Assuming that the vehicle can be supported on the ground via two front and two rear wheels as well as a laterally extended outrigger extension with two outrigger elements, ie a tot =6 would apply. It is also assumed that an unstable state in which the vehicle threatens to tip over is present when the vehicle is only standing on a front and a rear wheel and a support element, with the front and rear wheel and the support element being on the same level side of the vehicle, one would have to demand that the operating condition never falls below the limit value a min =4 in order not to reach this unstable condition. The advantage of the force stability coefficient SF is that it can be used to monitor compliance with this specified limit value very easily by making sure that the value of SF - calculated using the above formula - is always greater than one. In the case of the unstable state, ie in the case of only three support points, the sum of forces in the denominator would assume the same value as the sum of forces in the numerator, since the three largest supporting forces are then the only three supporting forces different from zero .

In dem Fall, dass das Fahrzeug über zwei Vorderräder und zwei, insbesondere als Zwillingsräder ausgebildete, Hinterräder sowie zwei seitlich ausfahrbare Abstützverbreiterungen mit jeweils zwei Abstützelementen am Untergrund abstützbar ist und der Drehwinkel α des Ladekrans um eine vertikale Achse sowie der Ausfahrzustand der Abstützelemente erfasst wird, ist es vorteilhaft, wenn bei seitlich voll ausgefahrenen Abstützverbreiterungen je nach Drehwinkel α des Ladekrans amin =6 oder amin =5 und bei seitlich nicht voll ausgefahrenen Abstützverbreiterungen amin =6 gewählt wird.In the event that the vehicle can be supported on the ground via two front wheels and two rear wheels, in particular designed as twin wheels, as well as two laterally extendable support extensions, each with two support elements, and the angle of rotation α of the loading crane about a vertical axis and the extended state of the support elements are recorded, it is advantageous if a min = 6 or a min = 5 is selected depending on the angle of rotation α of the loading crane when the support extensions are fully extended at the side and a min = 6 is selected for the support extensions that are not fully extended at the side.

In dem Fall, dass das Fahrzeug über zwei Vorderräder und zwei, insbesondere als Zwillingsräder ausgebildete, Hinterräder sowie eine seitlich ausfahrbare Abstützverbreiterung mit zwei Abstützelementen am Untergrund abstützbar ist und der Drehwinkel α des Ladekrans um eine vertikale Achse sowie der Ausfahrzustand der Abstützelemente erfasst wird, ist es vorteilhaft, wenn bei seitlich voll ausgefahrener Abstützverbreiterung je nach Drehwinkel α des Ladekrans amin =6 oder amin =4 und bei seitlich nicht voll ausgefahrener Abstützverbreiterung amin =6 gewählt wird.In the event that the vehicle can be supported on the ground via two front wheels and two rear wheels, in particular designed as twin wheels, as well as a laterally extendable support extension with two support elements and the angle of rotation α of the loading crane about a vertical axis and the extended state of the support elements is recorded it is advantageous if a min =6 or a min =4 is selected with the laterally fully extended outrigger extension, depending on the angle of rotation α of the loading crane, and with the laterally not fully extended outrigger extension a min =6.

Es sei angemerkt, dass durch die Einhaltung der in den letzten beiden Abschnitten genannten Grenzwerte für amin automatisch auch die eingangs erwähnte Norm EN 12999 erfüllt wird, vorausgesetzt, dass alle Räder durch eine Feststellbremse bremsbar sind.It should be noted that by complying with the limit values for a min mentioned in the last two sections, the EN 12999 standard mentioned at the beginning is also automatically met, provided that all wheels can be braked with a parking brake.

Werden die über die Räder bereitgestellten Abstützkräfte Fi erfasst, so bietet es sich an, im Zuge der Standsicherheitsüberwachung auch noch zusätzlich die Achslasten zu überwachen, da sie sich sehr einfach aus den entsprechenden Abstützkräften Fi (durch Summenbildung) berechnen lassen. Bei der Achslast handelt es sich um den Anteil der Gesamtmasse (Eigenmasse und Masse der Ladung eines Fahrzeugs), der auf eine Achse (einen Radsatz) dieses Fahrzeugs entfällt.If the support forces F i provided by the wheels are recorded, it makes sense to also monitor the axle loads as part of the stability monitoring, since they can be calculated very easily from the corresponding support forces F i (by summation). The axle load is the proportion of the total mass (dead mass and mass of the load of a vehicle) that falls on one axle (axle) of this vehicle.

Besonders vorteilhaft ist es, die über die Räder bereitgestellten Abstützkräfte Fi über eine Messung von Entfederungswegen (der Radfederungen) zu ermitteln. Hierzu ist es vorteilhaft, für jedes der Räder einmal eine Entfederungskennlinie (Entfederungsweg in Abhängigkeit von der Abstützkraft) zu ermitteln. Anschließend können diese Kennlinien jederzeit für eine Umrechnung der gemessenen Entfederungswege in Abstützkräfte verwendet werden. Der maximal mögliche Entfederungsweg entspricht dem Weg, bei dem ein Rad vom Untergrund abhebt und die von diesem Rad bereitgestellte Abstützkraft den Wert Null annimmt. Diese Vorgehensweise bietet sich vor allem bei Fahrzeugen an, die Blattfederungen mit einer linearen Federcharakteristik aufweisen. Bei andersartigen Federungen könnte man z.B. der Einfachheit halber auch die gemessenen Längen Li der Schwingungsdämpfer der Räder direkt in einen Längen-Standsicherheitsbeiwert SL umrechnen, und den Wert von SL überwachen. Dabei erfolgt die Berechnung von SL vorzugsweise nach folgender Formel: S L = i = 1 r ges L rest , i i = 1 r min 1 L rest , i , max , mit L rest , i = L grenz , i L i ,

Figure imgb0002
wobei rges die Gesamtanzahl der Räder, rmin eine vorbestimmte Mindestanzahl an Rädern, über welche das Fahrzeug wenigstens am Untergrund abgestützt sein muss, Lrest,i die Restlängen der Schwingungsdämpfer bis zum Abheben der Räder, Lgrenz,i die Grenzlängen der Schwingungsdämpfer, bei denen die Räder vom Untergrund abheben, und Lrest,i,max die (rmin-1) größten Restlängen der Schwingungsdämpfer angeben. Wie im Falle des Kraft-Standsicherheitsbeiwert SF könnte man dann im Zuge der Standsicherheitsüberwachung darauf achten, dass der Wert von SL immer größer als eins ist.It is particularly advantageous to determine the supporting forces F i provided by the wheels by measuring the spring deflection distances (of the wheel spring systems). To this end, it is advantageous to determine a de-springing characteristic (de-springing path as a function of the supporting force) for each of the wheels. These characteristic curves can then be used at any time to convert the measured deflection distances into support forces. The maximum possible suspension distance corresponds to the distance in which a wheel lifts off the ground and the supporting force provided by this wheel assumes the value zero. This procedure is particularly useful for vehicles that have leaf springs with a linear spring characteristic. In the case of other types of suspension, for example, for the sake of simplicity, the measured lengths L i of the vibration dampers of the wheels could also be converted directly into a longitudinal stability coefficient S L and the value of SL could be monitored. SL is preferably calculated using the following formula: S L = i = 1 right total L rest , i i = 1 right at least 1 L rest , i , Max , With L rest , i = L limit , i L i ,
Figure imgb0002
where r tot is the total number of wheels, r min a predetermined minimum number of wheels by which the vehicle must be supported at least on the ground, L rest , i the remaining lengths of the vibration dampers until the wheels are lifted, L limit , i the limit lengths of the vibration dampers, where the wheels lift off the ground, and L rest,i,max the ( r min - 1) greatest residual lengths of the vibration dampers specify. As in the case of the force-stability coefficient S F , one could then make sure in the course of stability monitoring that the value of SL is always greater than one.

Ein weiteres vorteilhaftes Ausführungsbeispiel besteht darin, dass der Ausfahrzustand der Abstützelemente erfasst wird, und darauf basierend, die möglichen Kippkanten Kj des Fahrzeugs im Kranbetrieb berechnet werden. Berechnet man darüber hinaus die Abstände li,Kj der Räder und Abstützelemente zu den Kippkanten Kj und erfasst man gleichzeitig den Drehwinkel α des Ladekrans um eine vertikale Achse sowie die über die Räder und die Abstützelemente bereitgestellten Abstützkräften Fi , so ist es möglich, in Abhängigkeit von dem Drehwinkel α des Ladekrans in Bezug auf die momentan relevante Kippkante Kα als Standsicherheitsparameter das Reststandmoment Mrest,Kα zu überwachen, wobei sich Mrest,Kα nach folgender Formel berechnen lässt: M rest , = i = 1 a ges F i l iKα ,

Figure imgb0003
wobei ages wiederum die Gesamtanzahl der Räder und Abstützelemente angibt.A further advantageous exemplary embodiment consists in the fact that the extended state of the supporting elements is detected and, based on this, the possible tipping edges K j of the vehicle are calculated during crane operation. If one also calculates the distances l i,Kj of the wheels and support elements to the tipping edges K j and at the same time records the rotation angle α of the loading crane around a vertical axis and the support forces F i provided by the wheels and the support elements, then it is possible to monitor the residual torque M rest,Kα as a stability parameter, depending on the rotation angle α of the loading crane in relation to the currently relevant tipping edge K α , where M rest,Kα can be calculated using the following formula: M rest , = i = 1 a total f i l iKα ,
Figure imgb0003
where a tot indicates the total number of wheels and support elements.

Schutz wird auch begehrt für eine Vorrichtung zur Überwachung wenigstens eines Standsicherheitsparameters eines auf einem Fahrzeug montierten Ladekrans, wobei das Fahrzeug im Kranbetrieb über Räder und über von den Rädern gesonderte Abstützelemente am Untergrund abstützbar laut Anspruch 9 Bei dem wenigstens einen Standsicherheitsparameter handelt es sich wiederum - genauso wie im Zusammenhang mit dem erfindungsgemäßen Verfahren beschrieben - um die Anzahl a der Räder und Abstützelemente, über welche das Fahrzeug am Untergrund abgestützt ist und den Kraft-Standsicherheitsbeiwert SF Es kann sich weiterhin um das Reststandmoment Mrest,Kα in Abhängigkeit von dem Drehwinkel α des Ladekrans in Bezug auf die momentan relevante Kippkante Kα handeln.Protection is also sought for a device for monitoring at least one stability parameter of a loading crane mounted on a vehicle, the vehicle being able to be supported on the ground during crane operation via wheels and via support elements separate from the wheels according to claim 9. The at least one stability parameter is again - exactly the same as described in connection with the method according to the invention - by the number a of the wheels and supporting elements, over which the vehicle on Ground is supported and the force-stability coefficient S F It can also be the residual torque M rest,Kα as a function of the rotation angle α of the loading crane in relation to the momentarily relevant tipping edge K α .

Vorteilhafterweise ist durch die Steuer- und Regeleinheit bei einer Über- bzw. Unterschreitung des wenigstens einen vorbestimmten Grenzwertes wenigstens ein Warnsignal generierbar und/oder wenigstens eine Maßnahme zur Wiedereinhaltung des wenigstens einen vorbestimmten Grenzwertes steuerbar. Das Warnsignal kann durch die Steuer- und Regeleinheit z.B. in Form einer elektrischen Pulsfolge generiert und anschließend mittels Warnleuchten und/oder Lautsprechern in ein optisches und/oder akustisches Signal umgewandelt werden. Die wenigstens eine Maßnahme zur Wiedereinhaltung des wenigstens einen vorbestimmten Grenzwertes kann beispielsweise als programmierter Handlungsablauf in der Steuer- und Regeleinheit hinterlegt sein. Im einfachsten Fall handelt es sich bei dem Handlungsablauf um einen Stopp-Vorgang, durch den der Kranbetrieb gestoppt wird.Advantageously, the control and regulation unit can generate at least one warning signal and/or control at least one measure for maintaining the at least one predetermined limit value when the at least one predetermined limit value is exceeded or not reached. The warning signal can be generated by the control and regulation unit, e.g. in the form of an electrical pulse sequence, and then converted into an optical and/or acoustic signal by means of warning lights and/or loudspeakers. The at least one measure for maintaining the at least one predetermined limit value again can be stored, for example, as a programmed course of action in the control and regulation unit. In the simplest case, the course of action is a stopping process that stops the crane operation.

Es ist weiterhin vorteilhaft, wenn die Vorrichtung eine Drehwinkel-Messeinrichtung zur Erfassung eines Drehwinkels α des Ladekrans um eine vertikale Achse und/oder eine Ausfahrzustand-Messeinrichtung zur Erfassung eines Ausfahrzustands der Abstützelemente aufweist, wobei die Messsignale der Drehwinkel- und/oder der Ausfahrzustand-Messeinrichtung (z.B. über entsprechende Signalleitungen oder durch eine drahtlose Übertragung) der Steuer- und Regeleinheit zuführbar sind. Für den Fall, dass es sich bei den Abstützelementen um Stützbeine, die an einer seitlich ausfahrbaren Abstützverbreiterung montiert sind, handelt und dass alle nicht-variablen Parameter (wie z.B. die Montageposition der Abstützverbreiterung am Fahrzeugrahmen) bekannt und in der Steuer- und Regeleinheit hinterlegt sind, ist es zur Bestimmung der Position der Abstützelemente relativ zum Fahrzeug nur noch erforderlich, mit Hilfe der Ausfahrzustand-Messeinrichtung die Ausfahrlängen der Abstützverbreiterung und der Stützbeine zu erfassen.It is also advantageous if the device has a rotation angle measuring device for detecting a rotation angle α of the loading crane about a vertical axis and/or an extended status measuring device for detecting an extended status of the support elements, the measurement signals of the rotational angle and/or the extended status Measuring device (eg via appropriate signal lines or by wireless transmission) of the control and regulation unit can be fed. In the event that the support elements are support legs that are mounted on a laterally extendable support extension and that all non-variable parameters (such as the installation position of the support extension on the vehicle frame) are known and stored in the control and regulation unit , in order to determine the position of the support elements relative to the vehicle, it is only necessary to use the extended state measuring device to record the extended lengths of the support widening and the support legs.

Für den Fall, dass die Abstützelemente an wenigstens einer seitlich ausfahrbaren Abstützverbreiterung angeordnet sind und der Ladekran auf einem Kransockel, welcher mit der wenigstens einen Abstützverbreiterung verbunden ist, ruht, ist es vorteilhaft, die Abstützelement-Messeinrichtungen in den Abstützelementen und/oder an der Verbindung der Abstützelemente mit der Abstützverbreiterung und/oder an der Verbindung der Abstützverbreiterung mit dem Kransockel anzuordnen.In the event that the support elements are arranged on at least one laterally extendable support extension and the loading crane rests on a crane base which is connected to the at least one support extension, it is advantageous to use the support element measuring devices in the support elements and/or to be arranged at the connection of the support elements with the support widening and/or at the connection of the support widening with the crane base.

In einer bevorzugten Ausführungsform sind durch die Rad- und Abstützelement-Messeinrichtungen die über die Räder und die Abstützelemente bereitgestellten Abstützkräfte Fi erfassbar. Das ist im Falle der durch die Abstützelemente bereitgestellten Abstützkräfte Fi z.B. dadurch möglich, dass die Abstützelement-Messeinrichtungen als Kraftmesszellen ausgebildet sind. Im Falle der Räder kann die Messung der Abstützkräfte Fi beispielsweise über eine Messung von Entfederungswegen (der Radfederungen) bzw. der Längen Li der Schwingungsdämpfer (z.B. mittels Seillängengebern) oder über eine Messung der Reifeninnendrücke erfolgen. Weiterhin ist es denkbar, eine Radkraftmessung mit Hilfe von Dehnungsmessstreifen nahe der Achsenenden zu realisieren. Werden die über die Räder bereitgestellten Abstützkräfte Fi erfasst, so bietet es sich (wie weiter oben bereits beschrieben) an, im Zuge der Standsicherheitsüberwachung - mit Hilfe der Steuer- und Regeleinheit - auch noch zusätzlich die Achslasten zu überwachen, da sie sich sehr einfach aus den entsprechenden Abstützkräften (durch Summenbildung) berechnen lassen.In a preferred embodiment, the wheel and support element measuring devices can detect the support forces F i provided via the wheels and the support elements. In the case of the supporting forces F i provided by the supporting elements, this is possible, for example, by the supporting element measuring devices being designed as load cells. In the case of the wheels, the measurement of the supporting forces F i can be carried out, for example, by measuring the despringing distances (of the wheel spring systems) or the lengths L i of the vibration dampers (eg using cable length sensors) or by measuring the internal tire pressures. It is also conceivable to measure the wheel force using strain gauges near the ends of the axle. If the support forces F i provided via the wheels are recorded, then it makes sense (as already described above) to also monitor the axle loads as part of the stability monitoring—with the aid of the control and regulation unit—because they are very simple can be calculated from the corresponding support forces (by summation).

Weitere Ausführungsbeispiele zeichnen sich dadurch aus, dass (bei bekannter Position der Position der Abstützelemente relativ zum Fahrzeug) durch die Steuer- und Regeleinheit die Kippkanten Kj des Fahrzeugs im Kranbetrieb und zusätzlich die Abstände li,Kj der Räder und Abstützelemente zu den Kippkanten Kj berechenbar sind. Unter dieser Voraussetzung kann dann nämlich (wie weiter oben beschrieben) in weiterer Folge als Standsicherheitsparameter das Reststandmoment Mrest,Kα überwacht werden.Further exemplary embodiments are characterized in that (when the position of the supporting elements relative to the vehicle is known) the tilting edges Kj of the vehicle during crane operation and, in addition, the distances l i,Kj of the wheels and supporting elements from the tilting edges K j are computable. Under this condition, the residual stability torque M rest,Kα can then be monitored (as described further above) as a stability parameter.

Weitere Einzelheiten und Vorteile der vorliegenden Erfindung werden anhand der Figurenbeschreibung unter Bezugnahme auf die in den Zeichnungen dargestellten Ausführungsbeispiele näher erläutert. Dabei zeigt:

Fig. 1
eine schematische Darstellung eines Ausführungsbeispiels eines Fahrzeugs, auf dem ein Ladekran montiert ist und das für die vorliegende Erfindung relevant ist,
Fig. 2
ein Modell des in Fig. 1 dargestellten Fahrzeugs, in dem einige der für die Standsicherheitsüberwachung relevanten Parameter eingezeichnet sind,
Fig. 3a, 3b, 4a, 4b
Grenzwertdarstellungen für die Mindestanzahl an Rädern und Abstützelementen, über welche das Fahrzeug in unterschiedlichen Ausführungsformen wenigstens am Untergrund abgestützt sein muss, in Abhängigkeit von dem Drehwinkel α des Ladekrans und dem Ausfahrzustand der Abstützelemente,
Fig. 5
einen beispielhaften Verlauf des Kraft-Standsicherheitsbeiwerts SF in Abhängigkeit von dem Drehwinkel α des Ladekrans und
Fig. 6
eine schematische Darstellung eines möglichen Schwingungsdämpfers eines Rads.
Further details and advantages of the present invention are explained in more detail on the basis of the description of the figures with reference to the exemplary embodiments illustrated in the drawings. It shows:
1
a schematic representation of an embodiment of a vehicle on which a loading crane is mounted and which is relevant to the present invention,
2
a model of the in 1 vehicle shown, in which some of the parameters relevant for the stability monitoring are marked,
Figures 3a, 3b, 4a, 4b
Representations of limit values for the minimum number of wheels and supporting elements, via which the vehicle must be supported at least on the ground in different embodiments, depending on the rotation angle α of the loading crane and the extended state of the supporting elements,
figure 5
an exemplary course of the force stability coefficient SF as a function of the rotation angle α of the loading crane and
6
a schematic representation of a possible vibration damper of a wheel.

In der Fig. 1 ist schematisch eines der Beispiele für ein Fahrzeug 1 dargestellt, auf dem ein Ladekran 2 montiert ist und dessen Standsicherheit mit Hilfe des erfindungsgemäßen Verfahrens bzw. der erfindungsgemäßen Vorrichtung überwacht werden kann. In diesem Fall ist das Fahrzeug 1 über zwei Vorderräder 3a und vier als Zwillingsräder ausgebildete Hinterräder 3b sowie eine seitlich ausfahrbare Abstützverbreiterung 5 mit zwei Abstützelementen 4 am Untergrund abstützbar. Zu sehen sind weiterhin eine der Achsen 6 des Fahrzeugs 1, ein Teil des Fahrzeuggestells 9, eine Steuer- und Regeleinheit 7 und der Kransockel 8 des Ladekrans 2. Nicht zu sehen sind die Rad-, Abstützelement-, Drehwinkel- und Ausfahrzustand-Messeinrichtungen, da diese teilweise in bestimmte Fahrzeugbestandteile - wie z.B. im Falle der Abstützelement-Messeinrichtungen in die Stützfüße 4 - integriert sind oder von anderen Fahrzeugbestandteilen verdeckt werden.In the 1 one of the examples of a vehicle 1 is shown schematically, on which a loading crane 2 is mounted and whose stability can be monitored using the method according to the invention or the device according to the invention. In this case, the vehicle 1 can be supported on the ground via two front wheels 3a and four rear wheels 3b designed as twin wheels, as well as a laterally extendable support widening 5 with two support elements 4 . One of the axles 6 of the vehicle 1, part of the vehicle frame 9, a control and regulation unit 7 and the crane base 8 of the loading crane 2 can also be seen. since these are partially integrated into certain vehicle components--such as, for example, in the case of the supporting element measuring devices in the supporting feet 4--or are covered by other vehicle components.

Die Fig. 2 zeigt ein Modell des in Fig. 1 dargestellten Fahrzeugs 1 in der Draufsicht. In diesem Modell sind die Abstützpunkte am Untergrund (schwarz-weiße Kreise), die Position des Kransockels 8, die gleichzeitig auch den Schnittpunkt der vertikalen Achse, um welche der Ladekran 2 gedreht werden kann, mit der horizontalen Fahrzeugebene definiert, eine der in diesem Zustand möglichen Kippkanten Kα und die Abstände li, der Abstützpunkte (Räder 3a und 3b und Abstützelemente 4) zu der Kippkanten Kα eingezeichnet. Das Modell beinhaltet weiterhin eine Definition des Drehwinkels α des Ladekrans 2 um die vertikale Achse. Es sei angemerkt, dass es sich bei den Rädern 3a und 3b in Wirklichkeit natürlich nicht um Abstützpunkte, sondern um Abstützflächen handelt. In erster Nährung sei hier aber von Abstützpunkten ausgegangen.the 2 shows a model of the in 1 illustrated vehicle 1 in plan view. In this model, the support points on the ground (black and white circles), the position of the crane base 8, which at the same time also defines the intersection of the vertical axis around which the loading crane 2 can be rotated, with the horizontal vehicle plane, are one of the in this state possible tipping edges K α and the distances l i , of the support points (wheels 3a and 3b and support elements 4) to the Tilting edges K α located. The model also includes a definition of the angle of rotation α of the loading crane 2 about the vertical axis. It should be noted that the wheels 3a and 3b are of course not support points but support surfaces. In a first approximation, however, support points were assumed here.

Den Figuren 3a, 3b, 4a und 4b können bevorzugte Grenzwerte für die Mindestanzahl an Rädern 3a und 3b und Abstützelementen 4, über welche das Fahrzeug 1 in unterschiedlichen Ausführungsformen wenigstens am Untergrund abgestützt sein muss, in Abhängigkeit von dem Drehwinkel α des Ladekrans 2 und dem Ausfahrzustand der Abstützelemente 4 dargestellt. Die Bezugszeichen sind stellvertretend für diese Figurengruppe nur in der Fig. 3a angegeben. Die Figuren 3a und 3b beziehen sich auf den Fall, dass das Fahrzeug 1 maximal über zwei Vorderräder 3a und zwei als Zwillingsräder ausgebildete Hinterräder 3b sowie zwei seitlich ausfahrbare Abstützverbreiterungen 5 mit jeweils zwei Abstützelementen 4 am Untergrund abstützbar ist. In diesem Fall ist es vorteilhaft, wenn bei seitlich voll ausgefahrenen Abstützverbreiterungen 5 (Fig. 3b) bei einem Drehwinkel α des Ladekrans 2 zwischen ca. 225° und 315° amin =6 oder amin =5 und bei seitlich nicht voll ausgefahrenen Abstützverbreiterungen 5 (Fig. 3a) immer amin =6 gewählt wird, um die Standsicherheit des Fahrzeugs 1 im Kranbetrieb zu gewährleisten. Wenn das Fahrzeug hingegen nur eine seitlich ausfahrbare Abstützverbreiterung 5 mit zwei Abstützelementen 4 aufweist, so ist es vorteilhaft, bei seitlich voll ausgefahrenen Abstützverbreiterungen 5 (Fig. 4b) bei einem Drehwinkel α des Ladekrans 2 zwischen ca. 225° und 315° amin =6 oder amin =4 und bei seitlich nicht voll ausgefahrenen Abstützverbreiterungen 5 (Fig. 4a) amin =6 zu wählen.The Figures 3a, 3b, 4a and 4b Preferred limit values for the minimum number of wheels 3a and 3b and supporting elements 4, via which the vehicle 1 must be supported at least on the ground in different embodiments, are shown as a function of the rotation angle α of the loading crane 2 and the extended state of the supporting elements 4. The reference numbers are representative of this group of figures only in the Figure 3a specified. the Figures 3a and 3b refer to the case in which the vehicle 1 can be supported on the ground at most via two front wheels 3a and two rear wheels 3b designed as twin wheels and two laterally extendable support widenings 5 each with two support elements 4 . In this case it is advantageous if, with the laterally fully extended outrigger extensions 5 ( Figure 3b ) with a rotation angle α of the loading crane 2 between approx. 225° and 315° a min =6 or a min =5 and with laterally not fully extended outriggers 5 ( Figure 3a ) always a min =6 is chosen to ensure the stability of the vehicle 1 in crane operation. If, on the other hand, the vehicle has only one laterally extendable support extension 5 with two support elements 4, it is advantageous, with the laterally fully extended support extensions 5 ( Figure 4b ) with a rotation angle α of the loading crane 2 between approx. 225° and 315° a min =6 or a min =4 and with laterally not fully extended outriggers 5 ( Figure 4a ) to choose a min =6.

In der Fig. 5 ist ein beispielhafter Verlauf des Kraft-Standsicherheitsbeiwerts SF in Abhängigkeit von dem Drehwinkel α des Ladekrans 2 dargestellt. Dieser Verlauf ergibt sich in etwa für die in Fig. 3b dargestellte Situation. Es ist sehr gut erkennbar, dass der Wert von SF zwischen ca. 225° und 315° ein absolutes Minimum annimmt. Hier befindet sich der Ladekran 2 bzw. das Auslegersystem über der Fahrerkabine. Zur Gewährleistung der Standsicherheit ist es daher vorteilhaft, für diesen Winkelbereich amin =6 zu fordern.In the figure 5 an exemplary course of the force stability coefficient S F as a function of the rotation angle α of the loading crane 2 is shown. This course results approximately for the in Figure 3b depicted situation. It can be seen very clearly that the value of S F assumes an absolute minimum between approx. 225° and 315°. Here the loading crane 2 or the boom system is located above the driver's cab. To ensure stability, it is therefore advantageous to require a min =6 for this angular range.

Fig. 6 zeigt eine schematische Darstellung eines möglichen Schwingungsdämpfers 10 eines der Räder 3a und 3b. Gestrichelt ist die Stellung des Schwingungsdämpfers 10 eingezeichnet, bei der das Rad vom Untergrund abheben würde. Weiterhin sind die für die Berechnung des Längen-Standsicherheitsbeiwert SL relevanten Größen Li und Lgrenz,i eingezeichnet. 6 shows a schematic representation of a possible vibration damper 10 of the wheels 3a and 3b. The position of the vibration damper 10 at which the wheel would lift off the ground is shown in dashed lines. Furthermore, the values L i and L limit , i relevant for the calculation of the length stability coefficient S L are shown.

Claims (15)

  1. A method for monitoring at least one stability parameter of a loading crane (2) mounted on a vehicle (1) by means of a device, wherein during crane operation the vehicle (1) is supported on the ground by means of wheels (3a, 3b) and by means of support elements (4) separate from the wheels (3a, 3b), characterized in that both contributions of the wheels (3a, 3b) and contributions of the support elements (4) to a magnitude of the stability parameter are detected and said magnitude is compared to at least one predetermined limit value, wherein the device comprises wheel and support element measuring devices, by which both contributions of the wheels (3a, 3b) and contributions of the support elements (4) to the magnitude of the at least one stability parameter can be detected, wherein the device comprises a control and regulating unit (7), to which measuring signals of the wheel and support element measuring devices can be fed, wherein a magnitude of the at least one stability parameter can be detected and can be compared to at least one predetermined limit value by the control and regulating unit (7), and in that a number (a) of the wheels (3a, 3b) and support elements (4), by means of which the vehicle (1) is supported on the ground, is monitored as stability parameter, and in that a force-stability coefficient (SF) is monitored as stability parameter, wherein the force-stability coefficient (SF) is calculated from support forces (Fi ) provided by means of the wheels (3a, 3b) and the support elements (4), wherein the force stability coefficient (SF) is calculated in accordance with the following formula: S F = i = 1 a ges F i i = 1 a min 1 F i , max ,
    Figure imgb0007
    wherein (ages) specifies a total number of the wheels (3a, 3b) and support elements (4), (amin) specifies a predetermined minimum number of wheels (3a, 3b) and support elements (4), by means of which the vehicle (1) must be supported at least on the ground, and (Fi,max) specifies the (amin-1) greatest support forces.
  2. The method as set forth in claim 1, characterized in that
    - when said magnitude exceeds or falls below the at least one predetermined limit value, at least one warning signal is output and/or at least one measure for return to compliance with the at least one predetermined limit value is implemented and/or
    - a rotational angle (a) of the loading crane (2) about a vertical axis and/or an extension condition of the support elements (4) is detected, wherein preferably the at least one stability parameter is monitored in dependence on the rotational angle (a) of the loading crane (2) and/or the extension condition of the support elements (4).
  3. The method as set forth in claim 1 or 2, wherein the wheels (3a, 3b) of the vehicle (1) are arranged on axles (6), characterized in that axle loads are monitored, wherein the axle loads are calculated from the support forces (Fi ) provided by means of the wheels (3a, 3b).
  4. The method as set forth in one of the claims 1 through 3, characterized in that the support forces (Fi) provided by means of the wheels (3a, 3b) are detected by measurement of spring relief travel.
  5. The method as set forth in one of the claims 1 through 4, characterized in that lengths (Li) of vibration dampers (10) of the wheels (3a, 3b) are detected and that a length-stability coefficient (SL) is monitored, wherein the length-stability coefficient (SL) is calculated from the detected lengths (Li), and wherein preferably the length-stability coefficient (SL) is calculated in accordance with the following formula: S L = i = 1 r ges L rest , i i = 1 r min 1 L rest , i , max , with L rest , i = L grenz , i L i ,
    Figure imgb0008
    wherein (rges ) specifies a total number of the wheels (3a, 3b), (rmin) specifies a predetermined minimum number of wheels (3a, 3b), by means of which the vehicle (1) must be supported at least on the ground, (Lrest,i) specifies remaining lengths of the vibration dampers (10) until the wheels (3a, 3b) lift off, (Lgrenz,i) specifies limit lengths of the vibration dampers (10), at which the wheels (3a, 3b) lift off the ground, and (Lrest,i,max) specifies the (rmin-1) greatest remaining lengths of the oscillation dampers (10).
  6. The method as set forth in claims 1 through 5, characterized in that during crane operation a condition SF >1 and/or a condition SL>1 is met.
  7. The method as set forth in one of the claims 1 through 6, characterized in that tipping lines (Kj) of the vehicle (1) are calculated during crane operation and that preferably distances (li,Kj ) of the wheels (3a, 3b) and the support elements (4) relative to the tipping lines (Kj) are calculated.
  8. The method as set forth in claim 7, wherein the rotational angle (a) of the loading crane (2) about a vertical axis is detected and the support forces (Fi) provided by means of the wheels (3a, 3b) and the support elements (4) are detected, characterized in that in dependence on the rotational angle (a) of the loading crane (2) in relation to a current tipping line (Kα) as stability parameter a remaining stability moment (Mrest,Kα) is monitored, wherein the remaining stability moment (Mrest,Kα) is calculated in accordance with the following formula: M rest , = i = 1 a ges F i l iKα
    Figure imgb0009
    wherein (ages) specifies the total number of wheels (3a, 3b) and support elements (4).
  9. A device for monitoring at least one stability parameter of a loading crane (2) mounted on a vehicle (1), wherein during crane operation the vehicle (1) can be supported on the ground by means of wheels (3a, 3b) and at the same time by means of support elements (4) separate from the wheels (3a, 3b), characterized in that the device has:
    - wheel and support element measuring devices, by which both contributions of the wheels (3a, 3b) and contributions of the support elements (4) to the magnitude of the at least one stability parameter can be detected, and
    - a control and regulating unit (7), to which measuring signals of the wheel and support element measuring devices can be fed,
    wherein a magnitude of the at least one stability parameter can be detected and can be compared to at least one predetermined limit value by the control and regulating unit (7), wherein the device is configured for performing a method as set forth in one of claims 1 through 8.
  10. The device as set forth in claim 9, characterized in that
    - when the magnitude exceeds or falls below the at least one predetermined limit value, at least one warning signal can be generated and/or at least one measure for returning to compliance of the at least one predetermined limit value is controllable by the control and regulating unit (7), and/or
    - the device has a rotational angle measuring device for detecting a rotational angle (a) of the loading crane (2) about a vertical axis and/or an extension condition measuring device for detecting an extension condition of the support elements (4), wherein measuring signals of the rotational angle and/or extension condition measuring device can be fed to the control and regulating unit (7).
  11. The device as set forth in claim 9 or 10, wherein the support elements (4) are arranged on at least one laterally extendable support extension (5) and the loading crane (2) rests on a crane base (8) connected to the at least one support extension (5), characterized in that the support element measuring devices are arranged in the support elements (4) and/or at a connection of the support elements (4) to the support extension (5) and/or at a connection of the support extension (5) to the crane base (8).
  12. The device as set forth in one of claims 9 through 11, characterized in that the support forces (Fi) provided by means of the wheels (3a, 3b) and the support elements (4) can be detected by the wheel and support element measuring devices, wherein preferably the support forces (Fi) provided by means of the wheels (3a, 3b) can be detected by means of a measurement of spring relief travels.
  13. The device as set forth in one of the claims 9 through 12, characterized in that lengths (Li) of vibration dampers (10) of the wheels (3a, 3b) can be detected by the wheel measuring devices.
  14. The device as set forth in one of the claims 9 through 13, characterized in that tipping lines (Kj) of the vehicle (1) can be calculated during crane operation by the control and regulating unit (7), and that preferably distances (li,Kj) of the wheels (3a, 3b) and support elements (4) relative to the tipping lines (Kj) can be calculated by the control and regulating unit (7).
  15. A vehicle (1) on which a loading crane (2) is mounted, and which has wheels (3a, 3b) and extendable support elements (4), characterized in that the vehicle (1) has a device as set forth in one of the claims 9 through 14.
EP18207557.2A 2011-04-08 2012-04-05 Method and device for monitoring the stability of a loading crane mounted on a vehicle Active EP3470362B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
ATA500/2011A AT511234B1 (en) 2011-04-08 2011-04-08 STAND SAFETY MONITORING OF A LOADING CRANE MOUNTED ON A VEHICLE
PCT/AT2012/000092 WO2012135882A1 (en) 2011-04-08 2012-04-05 Method and device for monitoring the stability of a loading crane mounted on a vehicle
EP12721693.5A EP2694426A1 (en) 2011-04-08 2012-04-05 Method and device for monitoring the stability of a loading crane mounted on a vehicle

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
EP12721693.5A Division EP2694426A1 (en) 2011-04-08 2012-04-05 Method and device for monitoring the stability of a loading crane mounted on a vehicle

Publications (2)

Publication Number Publication Date
EP3470362A1 EP3470362A1 (en) 2019-04-17
EP3470362B1 true EP3470362B1 (en) 2022-06-08

Family

ID=46124214

Family Applications (2)

Application Number Title Priority Date Filing Date
EP18207557.2A Active EP3470362B1 (en) 2011-04-08 2012-04-05 Method and device for monitoring the stability of a loading crane mounted on a vehicle
EP12721693.5A Ceased EP2694426A1 (en) 2011-04-08 2012-04-05 Method and device for monitoring the stability of a loading crane mounted on a vehicle

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP12721693.5A Ceased EP2694426A1 (en) 2011-04-08 2012-04-05 Method and device for monitoring the stability of a loading crane mounted on a vehicle

Country Status (11)

Country Link
US (1) US8874329B2 (en)
EP (2) EP3470362B1 (en)
CN (1) CN103476699B (en)
AT (1) AT511234B1 (en)
AU (1) AU2012239830B2 (en)
BR (1) BR112013025008A8 (en)
DK (1) DK3470362T3 (en)
ES (1) ES2926531T3 (en)
PL (1) PL3470362T3 (en)
RU (1) RU2597043C2 (en)
WO (1) WO2012135882A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3002799B1 (en) * 2013-03-01 2015-07-31 Haulotte Group EFFORT MEASUREMENT CELL FOR AN ELEVATOR BOOM AND AN ELEVATOR NACELLE COMPRISING SUCH A CELL
US9776846B2 (en) 2014-03-13 2017-10-03 Oshkosh Corporation Systems and methods for dynamic machine stability
FI125464B (en) * 2014-03-18 2015-10-15 Novatron Oy System and method for locating a construction machine
DE102014105618A1 (en) * 2014-04-22 2015-10-22 Terex Cranes Germany Gmbh Method and device for operating a mobile crane and mobile crane
US10077174B1 (en) * 2015-04-21 2018-09-18 Auto Crane Company Automatic de-rate operating system and method for a truck mounted crane
US10450716B2 (en) * 2016-12-19 2019-10-22 Caterpillar Inc. Power limiting stress-strain monitor system and method for machine
IT201700037143A1 (en) * 2017-04-05 2018-10-05 Jacques Tranchero Crane with sector anti-tipping system
DE102018204079A1 (en) * 2018-03-16 2019-09-19 Putzmeister Engineering Gmbh Truck-mounted concrete pump and method for the stability-relevant control of a truck-mounted concrete pump
US10456610B1 (en) * 2018-04-23 2019-10-29 Oshkosh Corporation Stability system for a fire apparatus
JP7342548B2 (en) * 2019-09-12 2023-09-12 株式会社タダノ Loading truck crane
JP7525826B2 (en) 2021-03-24 2024-07-31 株式会社タダノ Loading truck crane

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4136104A1 (en) * 1991-11-02 1993-05-06 Fichtel & Sachs Ag, 8720 Schweinfurt, De METHOD FOR INFLUENCING A SPRING AND DAMPING SUPPORT SYSTEM BETWEEN CHASSIS AND ASSEMBLY OF A VEHICLE AND SUPPORT SYSTEM FOR IMPLEMENTING THIS PROCESS
JPH07144884A (en) * 1993-11-26 1995-06-06 Komatsu Mec Corp Mobile reach tower crane
DE29519928U1 (en) * 1995-12-15 1996-04-04 Liebherr-Werk Ehingen Gmbh, 89584 Ehingen Crane vehicle with an overload protection device
DE19710341C2 (en) * 1997-03-13 1999-01-21 Deutsche Bahn Ag Support device for rail vehicles
EP1097069B1 (en) * 1998-07-17 2002-07-31 Continental Teves AG & Co. oHG Method and device for determining and detecting the overturning hazard of a vehicle
IT1319455B1 (en) * 2000-06-29 2003-10-10 Dana Italia Spa DEVICE FOR THE DYNAMIC STABILITY CONTROL OF AN INDUSTRIAL VEHICLE.
GB2390595B (en) * 2002-07-12 2005-08-24 Bamford Excavators Ltd Control system for a machine
DE10349234A1 (en) 2003-10-20 2005-05-19 Putzmeister Ag Mobile implement with support arms
RU2267458C1 (en) * 2004-04-28 2006-01-10 Тульский государственный университет System for checking load stability of mobile load-lifting machine
CA2588461C (en) * 2004-11-25 2014-08-26 M.A.T. Malmedie Antriebstechnik Gmbh System arrangement of a lifting device, in particular for a container crane for the lifting of loads and moving for the operation of the system arrangement
DE202005013310U1 (en) * 2005-08-23 2007-01-04 Liebherr-Hydraulikbagger Gmbh Overload warning device for excavators
SE534723C2 (en) * 2009-09-22 2011-11-29 Cargotec Patenter Ab Truck and method for controlling the maximum permissible lifting torque of a hydraulic truck crane

Also Published As

Publication number Publication date
BR112013025008A2 (en) 2017-03-21
RU2013149870A (en) 2015-05-20
WO2012135882A1 (en) 2012-10-11
ES2926531T3 (en) 2022-10-26
US8874329B2 (en) 2014-10-28
AT511234B1 (en) 2013-05-15
RU2597043C2 (en) 2016-09-10
DK3470362T3 (en) 2022-09-12
AU2012239830A1 (en) 2013-10-17
CN103476699A (en) 2013-12-25
BR112013025008A8 (en) 2018-03-13
AU2012239830B2 (en) 2016-07-14
US20140032060A1 (en) 2014-01-30
CN103476699B (en) 2015-09-09
EP3470362A1 (en) 2019-04-17
AT511234A1 (en) 2012-10-15
PL3470362T3 (en) 2023-01-02
EP2694426A1 (en) 2014-02-12

Similar Documents

Publication Publication Date Title
EP3470362B1 (en) Method and device for monitoring the stability of a loading crane mounted on a vehicle
EP3134344B1 (en) Method and apparatus for operating a mobile crane and the mobile crane
DE102018204079A1 (en) Truck-mounted concrete pump and method for the stability-relevant control of a truck-mounted concrete pump
EP3091143B1 (en) Vehicle-mounted concrete pump with supporting device
EP1675760A1 (en) Moveable working device with supporting extension arms
DE102008020777B4 (en) Skip loader with overload protection
DE102011107754A1 (en) Method for monitoring crane safety during set-up, as well as crane and crane control
EP1937913A1 (en) Working mast, in particular for large manipulators and movable concrete pumps
WO2009141193A1 (en) Mobile implement provided with stability monitoring system
DE102012004739A1 (en) Crane and crane control method
DE2232536A1 (en) SAFETY DEVICE FOR A CRANE WITH SWINGING UP AND SWINGING BOOM
DE60303090T2 (en) Device and method for measuring the overturning moment
EP2799386A1 (en) Device and method for determination and monitoring a counterweight which is fitted to a crane
WO2018115270A1 (en) Mobile large manipulator
DE102015117086A1 (en) Support device for supporting a mobile device
EP3313771B1 (en) Crane controller
EP2391874A1 (en) Lifting device, in particular for an industrial truck
DE2903035A1 (en) LOAD MONITORING DEVICE
DE202005013310U1 (en) Overload warning device for excavators
DE102013114940A1 (en) Method for determining the load center of a forklift
EP0672889A2 (en) Procedure to determine the variation in radius of the boom of a crane
DE2509641B2 (en) Circuit for generating an overload signal on a crane
WO2014173609A1 (en) Sensor-based monitoring of wind direction and thermal radiation for a mobile work appliance
DE102014015363A1 (en) implement
DE102017202009A1 (en) crane

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AC Divisional application: reference to earlier application

Ref document number: 2694426

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20191017

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210525

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20211124

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AC Divisional application: reference to earlier application

Ref document number: 2694426

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1496812

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220615

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012017060

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20220907

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2926531

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20221026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220908

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220909

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221010

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221008

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012017060

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20230310

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230405

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230430

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230405

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230405

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240425

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20240321

Year of fee payment: 13

Ref country code: PL

Payment date: 20240322

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240423

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240429

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20240425

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240517

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240430

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240423

Year of fee payment: 13

Ref country code: FR

Payment date: 20240430

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20240429

Year of fee payment: 13