EP3469618B1 - Interrupter unit for a circuit breaker - Google Patents

Interrupter unit for a circuit breaker Download PDF

Info

Publication number
EP3469618B1
EP3469618B1 EP17739931.8A EP17739931A EP3469618B1 EP 3469618 B1 EP3469618 B1 EP 3469618B1 EP 17739931 A EP17739931 A EP 17739931A EP 3469618 B1 EP3469618 B1 EP 3469618B1
Authority
EP
European Patent Office
Prior art keywords
channel
hot gas
housing
nozzle
compression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17739931.8A
Other languages
German (de)
French (fr)
Other versions
EP3469618A1 (en
Inventor
Radu-Marian Cernat
Volker Lehmann
Andrzej Nowakowski
Frank Reichert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Energy Global GmbH and Co KG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP3469618A1 publication Critical patent/EP3469618A1/en
Application granted granted Critical
Publication of EP3469618B1 publication Critical patent/EP3469618B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/70Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
    • H01H33/7015Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid characterised by flow directing elements associated with contacts
    • H01H33/7023Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid characterised by flow directing elements associated with contacts characterised by an insulating tubular gas flow enhancing nozzle
    • H01H33/703Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid characterised by flow directing elements associated with contacts characterised by an insulating tubular gas flow enhancing nozzle having special gas flow directing elements, e.g. grooves, extensions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/70Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
    • H01H33/72Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid having stationary parts for directing the flow of arc-extinguishing fluid, e.g. arc-extinguishing chamber
    • H01H33/74Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid having stationary parts for directing the flow of arc-extinguishing fluid, e.g. arc-extinguishing chamber wherein the break is in gas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/70Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
    • H01H33/80Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid flow of arc-extinguishing fluid from a pressure source being controlled by a valve
    • H01H33/82Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid flow of arc-extinguishing fluid from a pressure source being controlled by a valve the fluid being air or gas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/70Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
    • H01H33/88Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts
    • H01H33/90Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts this movement being effected by or in conjunction with the contact-operating mechanism
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/70Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
    • H01H33/88Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts
    • H01H33/90Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts this movement being effected by or in conjunction with the contact-operating mechanism
    • H01H33/901Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts this movement being effected by or in conjunction with the contact-operating mechanism making use of the energy of the arc or an auxiliary arc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/70Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
    • H01H33/88Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts
    • H01H33/90Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts this movement being effected by or in conjunction with the contact-operating mechanism
    • H01H33/91Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts this movement being effected by or in conjunction with the contact-operating mechanism the arc-extinguishing fluid being air or gas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/70Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
    • H01H33/88Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts
    • H01H33/90Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts this movement being effected by or in conjunction with the contact-operating mechanism
    • H01H2033/906Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts this movement being effected by or in conjunction with the contact-operating mechanism with pressure limitation in the compression volume, e.g. by valves or bleeder openings

Definitions

  • the invention relates to an interrupter unit for a circuit breaker.
  • the interrupter unit has two electrically conductive arcing contact pieces that can be moved relative to one another along a switching path between a switched-off position in which the arcing contact pieces are separated from one another by the switching path, and a switched-on position in which the arcing contact pieces are in galvanic contact with one another.
  • the interrupter unit has an insulating material nozzle that at least partially surrounds the switching path.
  • the invention relates to an interrupter unit such. B. from the EP 0 783 173 A1 known, which discloses an interrupter unit according to the preamble of claim 1, for a circuit breaker designed in the form of a so-called self-blowing switch.
  • self-blowing switches convert the energy released by an arc burning between the arcing contact pieces to build up an extinguishing pressure to the extinguisher: the arc.
  • an arc chamber in which the arc burns is connected to a heating volume in which insulating gas heated and expanding by the arc, insulating nozzle material released by ablation and thermal radiation from the arc chamber increase the gas pressure.
  • the insulating gas in the heating volume is used to extinguish the arc.
  • the power converted in the arc does not cause a sufficient pressure build-up in the heating volume, so that compressed extinguishing gas is used to support the movement of the switch.
  • the invention is based on the object of specifying an improved interrupter unit for a circuit breaker.
  • the arcing contact pieces can be moved relative to one another along a switching path between a switched-off position in which the arcing contact pieces are separated from one another by the switching path, and a switched-on position in which the arcing contact pieces are in galvanic contact with one another.
  • the insulating material nozzle at least partially surrounds the switching path.
  • a nozzle channel runs through the insulating material nozzle, through which the switching path runs and which is connected to the heating volume.
  • the separating housing divides the heating volume into a cold gas area and a hot gas area and has at least one connection opening connecting the cold gas area to the hot gas area.
  • the cold gas duct runs through a nozzle duct end section of the nozzle duct and is connected to the cold gas region of the heating volume.
  • the hot gas channel runs through the nozzle channel end section of the nozzle channel and is connected to the hot gas area of the heating volume.
  • the interrupter unit is particularly advantageously suitable for a power switch in the form of a self-blowing switch.
  • the heating volume serves as a reservoir for storing insulating gas, which is used to extinguish an arc burning between the arcing contact pieces during a switch-off process.
  • a switch-off process is understood to mean a movement of the arcing contact pieces from the switch-on position into the switch-off position.
  • the hot gas duct enables insulating gas to be conducted between the arc chamber, in which the arc burns in the nozzle duct, and the heating volume. During the switch-off process, insulating gas is heated and expanded by the arc passed into the heating volume and the pressure in the heating volume increases.
  • the power converted in the arc does not cause a sufficient pressure build-up in the heating volume, so that additional compressed insulating gas is passed into the heating volume.
  • the larger the heating volume the lower the pressure increase in the heating volume due to the additional insulating gas.
  • the division of the heating volume into a cold gas area and a hot gas area makes it possible that additional insulating gas is only or predominantly directed into one of these areas and thus, due to the smaller volume of this area compared to the entire heating volume, a greater pressure increase is achieved by the additional insulating gas in this area than in in the event that the additional insulating gas is evenly distributed over the entire heating volume. This advantageously increases the extinguishing effect of the additional insulating gas.
  • a first arcing contact piece has a contact end with a contact opening into which the second arcing contact piece is retracted in the switched-on position, and that the hot gas duct surrounds the contact end of the first arcing contact piece, while the cold gas duct surrounds the hot gas duct. Because the hot gas duct surrounds the contact end of the first arcing contact piece and the cold gas duct surrounds the hot gas duct, the hot gas duct is released sooner than the cold gas area when the arcing contact pieces are separated. Thus, pressure is built up in the heating volume via the hot gas duct at a point in time at which the cold gas duct is not yet released.
  • the delayed release of the cold gas duct ensures that at this point in time the pressure difference between the arc chamber and the heating volume is lower, so that only a little hot gas reaches the heating volume via the cold gas duct.
  • insulating gas escapes both via the cold gas and the hot gas duct the heating volume.
  • there is a temperature gradient inside the heating volume as a result of which the cold gas flow is fed from the cold gas area, while the hot gas flow is fed from the hot gas area.
  • the joint action of both channels means that the arc flows over a greater axial extent, and a pronounced dielectrically strengthened area is created, which contributes to successful extinguishing.
  • One embodiment of the invention provides a duct partition which separates the cold gas duct and the hot gas duct from one another and which is designed, for example, essentially as a hollow cylinder.
  • a duct partition wall separating the cold gas duct and the hot gas duct from one another simultaneously delimits the cold gas duct and the hot gas duct and therefore enables the cold gas duct and the hot gas duct to be constructed in a component-saving manner.
  • the duct partition wall preferably protrudes into the nozzle duct end section and the cold gas duct is bordered by an outer surface of the duct partition wall and an inner surface of the insulating material nozzle which borders the nozzle duct end section.
  • This embodiment of the invention therefore provides that the cold gas duct forms an outer area of the nozzle duct end section and the hot gas area forms an inner area of the nozzle duct end section. This realizes the advantageous arrangement of the cold gas duct already described above around the hot gas duct.
  • the duct partition wall is part of the partition housing.
  • the duct partition wall preferably forms a housing end section of the partition housing facing the switching path.
  • the separating housing is designed, for example, like a funnel, the channel separating wall forming a housing neck which protrudes into the nozzle channel end section and is followed by a housing body which is arranged in the heating volume and has a larger inner diameter than the housing neck. Execution the duct partition wall as part of the partition housing enables the partition housing and the duct partition wall to be designed in one piece and thereby simplifies the manufacture and assembly of the partition housing and the duct partition wall.
  • the design of the duct partition wall as a housing end section of the separating housing facing the switching path takes into account that there is insufficient space available along the switching path to accommodate the separating housing, since the arcing contact pieces move relative to one another in this area of the interrupter unit.
  • the funnel-like design of the separating housing enables a suitable division of the heating volume into a cold gas area and a hot gas area and the formation of the cold gas channel and the hot gas channel through the separating housing.
  • Another embodiment of the invention provides that the nozzle channel widens to the nozzle channel end section. This embodiment of the invention enables or simplifies the arrangement of the cold gas duct and the hot gas duct in the nozzle duct end section.
  • the invention provides a compression volume which is separated from the heating volume by a compression wall.
  • the compression wall is coupled to an arcing contact piece so that it reduces the compression volume in the event of a relative movement of the arcing contact pieces from the switched-on position to the switched-off position.
  • the compression wall has at least one compression wall opening which is closed by an overflow valve when the pressure in the heating volume is greater than the pressure in the compression volume.
  • the invention further provides that the overflow valve closes at least one connection opening between the cold gas area and the hot gas area of the heating volume when the pressure in the heating volume is less than the pressure in the compression volume.
  • This further development of the invention uses the overflow valve not only to close the compression volume at high pressures in the heating volume, but also to at least partially close the hot gas area at low pressures in the hot gas area.
  • compressed insulating gas is advantageously passed from the compression volume only or at least predominantly into the cold gas area, so that the compressed insulating gas from the compression volume in the cold gas area generates a greater pressure increase than would be the case if the compressed insulating gas from the compression volume were uniform would be distributed over the entire heating volume.
  • Another embodiment of the invention provides that the cold gas channel protrudes further into the nozzle channel than the hot gas channel. This embodiment of the invention also has the effect that the hot gas duct is released sooner when the arcing contact pieces are separated than the cold gas area with the advantages already mentioned above.
  • a circuit breaker according to the invention has an interrupter unit according to the invention with the advantages already mentioned above.
  • Figure 1 shows a perspective sectional illustration of a first embodiment of an interrupter unit 100 for a circuit breaker.
  • the interrupter unit 100 has an essentially rotationally symmetrical structure which extends around a longitudinal axis 1.
  • the interrupter unit 100 has a first arcing contact piece 5 and a second arcing contact piece 6.
  • a first rated current contact piece 3 is assigned to the first arcing contact piece 5.
  • a second rated current contact piece 4 is assigned to the second arcing contact piece 6.
  • the rated current contact pieces 3, 4 and the arcing contact pieces 5, 6 are each formed rotationally symmetrical to the longitudinal axis 1 and are arranged coaxially to the longitudinal axis 1.
  • the first arcing contact piece 5 is tubular and has a contact end 20 facing the second arcing contact piece 6 with a tulip-shaped contact opening 21 and a protective sleeve 9 made of an electrically insulating material surrounding an end section.
  • the second arcing contact piece 6 is designed in the shape of a bolt so that it can be moved into the contact opening 21 of the first arcing contact piece 5 with galvanic contact.
  • the second rated current contact piece 4 has a multiplicity of contact fingers 22 which are elastically deformable and can be moved onto a lateral surface 23 of the first rated current contact piece 3 to make contact with the first rated current contact piece 3.
  • the first rated current contact piece 3 and the first arcing contact piece 5 belong to one another and always have the same electrical potential regardless of a switching state of the interrupter unit 100.
  • the second rated current contact piece 4 and the second arcing contact piece 6 also belong to one another and always have the same electrical potential regardless of the switching state of the interrupter unit 100.
  • the rated current contact pieces 3, 4 and the arcing contact pieces 5, 6 are along the longitudinal axis 1 relative to one another between a in Figure 1 shown switch-off position and a switch-on position movable.
  • the switched-off position the two arcing contact pieces 5, 6 are separated from one another by a switching path 2.
  • the two rated current contact pieces 3, 4 are separated from one another in the switched-off position.
  • the second arcing contact piece 6 is inserted into the contact opening 21 of the first arcing contact piece 5 and the contact fingers 22 of the second nominal current contact piece 4 rest on the lateral surface 23 of the first nominal current contact piece 3.
  • the arcing contact pieces 5, 6 contact each other before the rated current contact pieces 3, 4.
  • the rated current contact pieces 3, 4 separate first and then the arcing contact pieces 5, 6.
  • An insulating material nozzle 7 is provided in order to direct and conduct the arc.
  • the insulating material nozzle 7 has a nozzle channel 8.
  • the nozzle channel 8 is designed to be rotationally symmetrical and has a channel constriction 24, the diameter of which corresponds to a diameter of the second arcing contact piece 6.
  • the insulating material nozzle 7 at least partially surrounds the switching path 2 and is aligned coaxially to the longitudinal axis 1.
  • the nozzle channel 8 widens towards a nozzle channel end section 25 into which the first arcing contact piece 5 projects.
  • the insulating material nozzle 7 has a circumferential nozzle collar 26 on the outer jacket side, which runs in a ring around the first arcing contact piece 5 and is mounted in an opposite recess on the first rated current contact piece 3.
  • the heating volume 10 extends radially with respect to the longitudinal axis 1 between an outer surface of the first arcing contact piece 5 and an inner surface of the first rated current contact piece 3.
  • the heating volume 10 extends axially with respect to the longitudinal axis 1 between an end of the insulating material nozzle 7 facing away from the second arcing contact piece 6 and a compression wall 27, which separates the heating volume 10 from a compression volume 28.
  • the compression wall 27 is connected to the first arcing contact piece 5 and, when the first arcing contact piece 5 is switched off, moves away from the second arcing contact piece 6, reducing the compression volume 28 during the movement and compressing insulating gas in the compression volume 28.
  • the compression wall 27 has a plurality of compression wall openings 29 to the heating volume 10.
  • a separating housing 11 divides the heating volume 10 into a cold gas area 31 and a hot gas area 32. Furthermore, the separating housing 11 divides the nozzle channel end section 25 into a cold gas channel 33 connected to the cold gas area 31 and a hot gas channel 34 connected to the hot gas area 32.
  • the separating housing 11 is essentially rotationally symmetrical formed around the longitudinal axis 1 and surrounds a End section of the first arcing contact piece 5 having contact end 20.
  • the separating housing 11 is funnel-shaped with a housing body 30 arranged in the heating volume 10 and a housing neck protruding into the nozzle channel end section 25.
  • the housing neck has a hollow cylindrical channel partition 35 between the cold gas channel 33 and the hot gas channel 34 and a housing opening 36 of the separating housing 11 on the switching path side.
  • the cold gas duct 33 is bordered by an outer surface of the duct partition 35 and an inner surface of the insulating material nozzle 7 which borders the nozzle duct end section 25.
  • the hot gas channel 34 is bordered by an inner surface of the channel partition 35 and an outer surface of the first arcing contact piece 5.
  • the housing body 30 of the separating housing 11 is formed by a housing jacket 37, a housing shoulder 38 and a housing collar 39.
  • the housing jacket 37 is designed as a hollow cylinder, the cylinder axis of which is the longitudinal axis 1 and which has a larger inner diameter than the duct partition wall 35.
  • the housing shoulder 38 connects the housing jacket 37 to the duct partition 35.
  • the housing collar 39 forms an end of the partition housing 11 facing away from the switching path 2 and facing the compression volume 28.
  • the housing collar 39 projects inward from the housing body 30 and extends from the housing body 30 up to the first arcing contact piece 5, which is guided through the housing collar 39.
  • the housing collar 39 runs parallel to the compression wall 27 and is spaced apart from the compression wall 27.
  • the housing collar 39 has a plurality of connection openings 40 which lie opposite the compression wall openings 29 in the compression wall 27.
  • the area of the heating volume 10 surrounded by the separating housing 11 forms the hot gas area 32 of the heating volume 10, the remaining area of the heating volume 10 forms the cold gas area 31.
  • an overflow valve 41 is arranged, which runs annularly around the first arcing contact piece 5.
  • the spill valve 41 is between an in Figure 1 illustrated first valve position and a second valve position movable. In the first valve position the overflow valve 41 closes the compression wall openings 29 in the compression wall 27, in the second valve position the overflow valve 41 closes the connection openings 40 in the housing collar 39.
  • the valve position of the overflow valve 41 depends on the pressure difference between the pressure in the compression volume 28 and the Pressure in the heating volume 10 in the area of the overflow valve 41. When the pressure in the compression volume 28 is less than this pressure in the heating volume 10, the overflow valve 41 assumes the first valve position. If the pressure in the compression volume 28 is greater than this pressure in the heating volume 10, the overflow valve 41 assumes the second valve position.
  • the compression volume 28 is followed by a pressure relief chamber 42 which has a pressure relief valve 43 for the compression volume 28. If the pressure in the compression volume 28 exceeds a pressure threshold value, the pressure relief valve 43 opens so that insulating gas can flow from the compression volume 28 into the pressure release chamber 42 and through chamber openings 45 of the pressure release chamber 42 from the pressure release chamber 42.
  • the pressure relief valve 43 of this exemplary embodiment is designed to be spring-loaded, so that the pressure threshold value is determined by a preload of a spring 44.
  • the interrupter unit 100 When the interrupter unit 100 is in operation, the interrupter unit 100 is filled with an insulating gas, for example with sulfur hexafluoride, nitrogen or another suitable gas. Insulating gas is located in particular in the nozzle channel 8, the heating volume 10 and the compression volume 28.
  • an arc burns between the two arcing contact pieces 5, 6.
  • the arc heats insulating gas in its surroundings, which then expands and mainly through the hot gas duct 34 into the The hot gas region 32 of the heating volume 10 flows because the hot gas duct 34 is released upstream of the cold gas duct 33 when the arcing contact pieces 5, 6 are separated.
  • the insulating gas flowing into the hot gas area 32 increases the pressure in the hot gas area 32.
  • the movement of the compression wall 27 compresses the insulating gas in the compression volume 28 and increases the pressure in the compression volume 28.
  • the pressure increase in the hot gas area 32 is dependent on the current strength. With small currents, the pressure increase in the hot gas area 32 is relatively small, so that the pressure generated in the compression volume 28 is greater than the pressure in the hot gas area 32 and the overflow valve 41 assumes the second valve position in which it connects the connection openings 40 in the housing collar 39 of the separating housing 11 closes. As a result, the cold gas area 31 is separated from the hot gas area 32 and connected to the compression volume 28 via the compression wall openings 29 in the compression wall 27, so that insulating gas flows from the compression volume 28 into the cold gas area 31.
  • the insulating gas flows from the cold gas region 31 through the cold gas duct 33 to the arc and finally extinguishes the arc. Since the hot gas area 32 is closed by the overflow valve 41, the space of the heating volume 10 available for the insulating gas flowing out of the compression volume 28 is reduced to the cold gas area 31, which advantageously reduces the pressure in the insulating gas and thus the extinguishing effect of the insulating gas in relation to a situation , flows in the insulating gas from the compression volume 28 into the entire heating volume 10, can be increased.
  • the pressure increase in the hot gas area 32 is correspondingly large, so that the pressure in the hot gas area 32 is greater than the pressure generated in the compression volume 28 and the overflow valve 41 assumes the first valve position in which it connects the connection openings 40 in the housing collar 39 of the separating housing 11 releases and the compression wall openings 29 in the compression wall 27 closes.
  • heated insulating gas flows through the connection openings 40 from the hot gas area 32 into the cold gas area 31 and increases the pressure in the cold gas area 31 Cold gas area 31 through the cold gas channel 33 and from the hot gas area 32 through the hot gas channel 34 to the arc and finally extinguishes the arc.
  • the interaction of the cold gas duct 33 and the hot gas duct 34 improves the extinguishing effect of the insulating gas by increasing the axial extent over which the arc is flowed with insulating gas. A dangerous overpressure arising in the compression volume 28 is reduced via the pressure relief chamber 42.
  • FIG. 13 shows a sectional view of the interrupter unit 100 for a circuit breaker not belonging to the present invention.
  • the interrupter unit 100 differs from that in FIG Figure 1 illustrated embodiment essentially only by the design and arrangement of the separating housing 11 and the shape of the nozzle channel end section 25 and the associated design of the cold gas area 31, the hot gas area 32, the cold gas channel 33 and the hot gas channel 34.
  • the separating housing 11 is funnel-shaped with a housing body 30 arranged in the heating volume 10 and a housing neck protruding into the nozzle channel end section 25.
  • the case neck differs from the case neck of the in Figure 1 separating housing 11 shown in that the end of the housing neck has the same wall thickness as the rest of the housing neck, while the end of the housing neck of the separating housing 11 shown in Figure 1 has a greater wall thickness than the rest of the housing neck.
  • the end of the housing neck is slightly bent towards the contact end 20 of the first arcing contact piece 5.
  • the housing body 30 differs from the housing body 30 of FIG Figure 1 shown separating housing 11 in that it does not have a housing collar 39, that the housing jacket 37 has several connection openings 40 to the cold gas region 31, and that the housing shoulder 38 is less steep.
  • the housing jacket 37 is connected to the compression wall 27.
  • the compression wall openings 29 in the compression wall 27 open directly into the hot gas region 32.
  • the overflow valve 41 is arranged in the hot gas region 32 in front of the compression wall openings 29.
  • the spill valve 41 is between an in Figure 2 illustrated first valve position and a second valve position is movable.
  • the overflow valve 41 closes the compression wall openings 29 in the compression wall 27; in the second valve position, the overflow valve 41 opens the compression wall openings 29, being spaced from the compression wall openings 29.
  • the valve position of the overflow valve 41 depends on the pressure difference between a pressure in the compression volume 28 and a pressure in the hot gas region 32.
  • the overflow valve 41 assumes the first valve position.
  • the overflow valve 41 assumes the second valve position.
  • connection openings 40 in the separating housing 11, which connect the hot gas area 32 to the cold gas area 31, cannot be closed.
  • insulating gas always flows from the hot gas region 32 into the cold gas region 31.
  • the overflow valve 41 closes the compression wall openings 29 in the event of high currents, so that in this case the arc is only extinguished by insulating gas from the cold gas area 31 and the hot gas area 32.
  • insulating gas is added from the compression volume 28, which enters the hot gas area 32 through the compression wall openings 29 and is directed from there by the overflow valve 41 located in front of the compression wall openings 29 mainly to connection openings 40 and flows through these connection openings 40 into the cold gas area 31 so that the insulating gas flowing out of the compression volume 28 predominantly flows into the cold gas region 31.

Landscapes

  • Circuit Breakers (AREA)

Description

Die Erfindung betrifft eine Unterbrechereinheit für einen Leistungsschalter. Die Unterbrechereinheit weist zwei elektrisch leitfähige Lichtbogenkontaktstücke auf, die entlang einer Schaltstrecke zwischen einer Ausschaltstellung, in der die Lichtbogenkontaktstücke durch die Schaltstrecke voneinander getrennt sind, und einer Einschaltstellung, in der die Lichtbogenkontaktstücke in galvanischem Kontakt miteinander stehen, relativ zueinander bewegbar sind. Ferner weist die Unterbrechereinheit eine die Schaltstrecke wenigstens teilweise umgebende Isolierstoffdüse auf.The invention relates to an interrupter unit for a circuit breaker. The interrupter unit has two electrically conductive arcing contact pieces that can be moved relative to one another along a switching path between a switched-off position in which the arcing contact pieces are separated from one another by the switching path, and a switched-on position in which the arcing contact pieces are in galvanic contact with one another. Furthermore, the interrupter unit has an insulating material nozzle that at least partially surrounds the switching path.

Insbesondere betrifft die Erfindung eine Unterbrechereinheit, wie z. B. aus der EP 0 783 173 A1 bekannt, die eine Unterbrechereinheit gemäß dem Oberbegriff des Anspruchs 1 offenbart, für einen in Form eines so genannten Selbstblasschalters ausgebildeten Leistungsschalter. Selbstblasschalter setzen bei einem Ausschaltvorgang Energie, die von einem zwischen den Lichtbogenkontaktstücken brennenden Lichtbogen freigesetzt wird, für einen Löschdruckaufbau zum Löscher: des Lichtbogens um. Dazu ist ein Lichtbogenraum, in dem der Lichtbogen brennt, mit einem Heizvolumen verbunden, in dem durch den Lichtbogen erhitztes und expandierendes Isoliergas, durch Ablation freigesetztes Isolierdüsenmaterial und thermische Strahlung aus dem Lichtbogenraum den Gasdruck erhöhen. Das Isoliergas in dem Heizvolumen wird zum Löschen des Lichtbogens verwendet. Bei kleinen Stromstärken bewirkt die im Lichtbogen umgesetzte Leistung keinen ausreichenden Druckaufbau im Heizvolumen, so dass unterstützend durch den Bewegungsablauf des Schalters komprimiertes Löschgas eingesetzt wird.In particular, the invention relates to an interrupter unit such. B. from the EP 0 783 173 A1 known, which discloses an interrupter unit according to the preamble of claim 1, for a circuit breaker designed in the form of a so-called self-blowing switch. When switching off, self-blowing switches convert the energy released by an arc burning between the arcing contact pieces to build up an extinguishing pressure to the extinguisher: the arc. For this purpose, an arc chamber in which the arc burns is connected to a heating volume in which insulating gas heated and expanding by the arc, insulating nozzle material released by ablation and thermal radiation from the arc chamber increase the gas pressure. The insulating gas in the heating volume is used to extinguish the arc. At low currents, the power converted in the arc does not cause a sufficient pressure build-up in the heating volume, so that compressed extinguishing gas is used to support the movement of the switch.

Der Erfindung liegt die Aufgabe zugrunde, eine verbesserte Unterbrechereinheit für einen Leistungsschalter anzugeben.The invention is based on the object of specifying an improved interrupter unit for a circuit breaker.

Die Aufgabe wird erfindungsgemäß durch die Merkmale des Anspruchs 1 gelöst.The object is achieved according to the invention by the features of claim 1.

Vorteilhafte Ausgestaltungen der Erfindung sind Gegenstand der Unteransprüche.Advantageous embodiments of the invention are the subject of the subclaims.

Eine erfindungsgemäße Unterbrechereinheit für einen Leistungsschalter umfasst zwei elektrisch leitfähige Lichtbogenkontaktstücke, eine Isolierstoffdüse, ein Heizvolumen, ein Trenngehäuse, einen Kaltgaskanal und einen Heißgaskanal. Die Lichtbogenkontaktstücke sind entlang einer Schaltstrecke zwischen einer Ausschaltstellung, in der die Lichtbogenkontaktstücke durch die Schaltstrecke voneinander getrennt sind, und einer Einschaltstellung, in der die Lichtbogenkontaktstücke in galvanischem Kontakt miteinander stehen, relativ zueinander bewegbar. Die Isolierstoffdüse umgibt die Schaltstrecke wenigstens teilweise. Durch die Isolierstoffdüse verläuft ein Düsenkanal, durch den die Schaltstrecke verläuft und der mit dem Heizvolumen verbunden ist. Das Trenngehäuse teilt das Heizvolumen in einen Kaltgas- und einen Heißgasbereich und weist wenigstens eine den Kaltgasbereich mit dem Heißgasbereich verbindende Verbindungsöffnung auf. Der Kaltgaskanal verläuft durch einen Düsenkanalendabschnitt des Düsenkanals und ist mit dem Kaltgasbereich des Heizvolumens verbunden. Der Heißgaskanal verläuft durch den Düsenkanalendabschnitt des Düsenkanals und ist mit dem Heißgasbereich des Heizvolumens verbunden.An interrupter unit according to the invention for a circuit breaker comprises two electrically conductive arcing contact pieces, an insulating material nozzle, a heating volume, a separating housing, a cold gas duct and a hot gas duct. The arcing contact pieces can be moved relative to one another along a switching path between a switched-off position in which the arcing contact pieces are separated from one another by the switching path, and a switched-on position in which the arcing contact pieces are in galvanic contact with one another. The insulating material nozzle at least partially surrounds the switching path. A nozzle channel runs through the insulating material nozzle, through which the switching path runs and which is connected to the heating volume. The separating housing divides the heating volume into a cold gas area and a hot gas area and has at least one connection opening connecting the cold gas area to the hot gas area. The cold gas duct runs through a nozzle duct end section of the nozzle duct and is connected to the cold gas region of the heating volume. The hot gas channel runs through the nozzle channel end section of the nozzle channel and is connected to the hot gas area of the heating volume.

Die Unterbrechereinheit eignet sich besonders vorteilhaft für einen in Form eines Selbstblasschalters ausgebildeten Leistungsschalter. Das Heizvolumen dient dabei als Reservoir zur Speicherung von Isoliergas, das bei einem Ausschaltvorgang zur Löschung eines zwischen den Lichtbogenkontaktstücken brennenden Lichtbogens verwendet wird. Unter einem Ausschaltvorgang wird dabei eine Bewegung der Lichtbogenkontaktstücke von der Einschaltstellung in die Ausschaltstellung verstanden. Der Heißgaskanal ermöglicht die Leitung von Isoliergas zwischen dem Lichtbogenraum, in welchem der Lichtbogen in dem Düsenkanal brennt, und dem Heizvolumen. Beim Ausschaltvorgang wird durch den Lichtbogen erhitztes und expandierendes Isoliergas in das Heizvolumen geleitet und der Druck in dem Heizvolumen erhöht. Wie oben bereits ausgeführt wurde, bewirkt bei kleinen Stromstärken die im Lichtbogen umgesetzte Leistung jedoch keinen ausreichenden Druckaufbau im Heizvolumen, so dass unterstützend komprimiertes zusätzliches Isoliergas in das Heizvolumen geleitet wird. Je größer das Heizvolumen ist, umso geringer ist dabei die Druckerhöhung im Heizvolumen durch das zusätzliche Isoliergas. Die Aufteilung des Heizvolumens in einen Kaltgasbereich und einen Heißgasbereich ermöglicht, dass zusätzliches Isoliergas nur oder überwiegend in einen dieser Bereiche geleitet wird und so durch das gegenüber dem gesamten Heizvolumen kleinere Volumen dieses Bereichs in diesem Bereich eine größere Druckerhöhung durch das zusätzliche Isoliergas erreicht wird als in dem Fall, dass das zusätzliche Isoliergas sich gleichmäßig auf das gesamte Heizvolumen verteilt. Dadurch wird die Löschwirkung des zusätzlichen Isoliergases vorteilhaft erhöht.The interrupter unit is particularly advantageously suitable for a power switch in the form of a self-blowing switch. The heating volume serves as a reservoir for storing insulating gas, which is used to extinguish an arc burning between the arcing contact pieces during a switch-off process. A switch-off process is understood to mean a movement of the arcing contact pieces from the switch-on position into the switch-off position. The hot gas duct enables insulating gas to be conducted between the arc chamber, in which the arc burns in the nozzle duct, and the heating volume. During the switch-off process, insulating gas is heated and expanded by the arc passed into the heating volume and the pressure in the heating volume increases. As already stated above, with small currents the power converted in the arc does not cause a sufficient pressure build-up in the heating volume, so that additional compressed insulating gas is passed into the heating volume. The larger the heating volume, the lower the pressure increase in the heating volume due to the additional insulating gas. The division of the heating volume into a cold gas area and a hot gas area makes it possible that additional insulating gas is only or predominantly directed into one of these areas and thus, due to the smaller volume of this area compared to the entire heating volume, a greater pressure increase is achieved by the additional insulating gas in this area than in in the event that the additional insulating gas is evenly distributed over the entire heating volume. This advantageously increases the extinguishing effect of the additional insulating gas.

Eine Ausgestaltung der Erfindung sieht vor, dass ein erstes Lichtbogenkontaktstück ein Kontaktende mit einer Kontaktöffnung aufweist, in die das zweite Lichtbogenkontaktstück in der Einschaltstellung eingefahren ist, und dass der Heißgaskanal das Kontaktende des ersten Lichtbogenkontaktstücks umgibt, während der Kaltgaskanal den Heißgaskanal umgibt. Dadurch, dass der Heißgaskanal das Kontaktende des ersten Lichtbogenkontaktstücks umgibt und der Kaltgaskanal den Heißgaskanal umgibt, wird der Heißgaskanal bei einer Trennung der Lichtbogenkontaktstücke eher freigegeben als der Kaltgasbereich. Somit wird über den Heißgaskanal Druck im Heizvolumen zu einem Zeitpunkt aufgebaut, zu dem der Kaltgaskanal noch nicht freigegeben wird. Durch die verzögerte Freigabe des Kaltgaskanals wird erreicht, dass zu diesem Zeitpunkt die Druckdifferenz zwischen dem Lichtbogenraum und dem Heizvolumen geringer ist, wodurch auch nur wenig Heißgas über den Kaltgaskanal ins Heizvolumen gelangt. Wenn der Lichtbogen an Intensität verliert und eine Rückströmung von Isoliergas aus dem Heizvolumen zum Lichtbogen einsetzt, tritt sowohl über den Kaltgas- als auch über den Heißgaskanal Isoliergas aus dem Heizvolumen aus. Hierbei ist zu beachten, dass im Inneren des Heizvolumens ein Temperaturgradient herrscht, wodurch die Kaltgasströmung aus dem Kaltgasbereich gespeist wird, während die Heißgasströmung aus dem Heißgasbereich gespeist wird. Durch das gemeinsame Wirken beider Kanäle wird der Lichtbogen über eine größere axiale Ausdehnung beströmt, und es entsteht ein ausgeprägter dielektrisch verfestigter Bereich, der zu einer erfolgreichen Löschung beiträgt.One embodiment of the invention provides that a first arcing contact piece has a contact end with a contact opening into which the second arcing contact piece is retracted in the switched-on position, and that the hot gas duct surrounds the contact end of the first arcing contact piece, while the cold gas duct surrounds the hot gas duct. Because the hot gas duct surrounds the contact end of the first arcing contact piece and the cold gas duct surrounds the hot gas duct, the hot gas duct is released sooner than the cold gas area when the arcing contact pieces are separated. Thus, pressure is built up in the heating volume via the hot gas duct at a point in time at which the cold gas duct is not yet released. The delayed release of the cold gas duct ensures that at this point in time the pressure difference between the arc chamber and the heating volume is lower, so that only a little hot gas reaches the heating volume via the cold gas duct. When the arc loses intensity and a return flow of insulating gas from the heating volume to the arc begins, insulating gas escapes both via the cold gas and the hot gas duct the heating volume. It should be noted here that there is a temperature gradient inside the heating volume, as a result of which the cold gas flow is fed from the cold gas area, while the hot gas flow is fed from the hot gas area. The joint action of both channels means that the arc flows over a greater axial extent, and a pronounced dielectrically strengthened area is created, which contributes to successful extinguishing.

Eine Ausgestaltung der Erfindung sieht eine den Kaltgaskanal und den Heißgaskanal voneinander trennende Kanaltrennwand vor, die beispielsweise im Wesentlichen als ein Hohlzylinder ausgeführt ist. Eine den Kaltgaskanal und den Heißgaskanal voneinander trennende Kanaltrennwand begrenzt gleichzeitig den Kaltgaskanal und den Heißgaskanal und ermöglicht daher eine bauteilsparende Ausbildung von Kaltgas- und Heißgaskanal.One embodiment of the invention provides a duct partition which separates the cold gas duct and the hot gas duct from one another and which is designed, for example, essentially as a hollow cylinder. A duct partition wall separating the cold gas duct and the hot gas duct from one another simultaneously delimits the cold gas duct and the hot gas duct and therefore enables the cold gas duct and the hot gas duct to be constructed in a component-saving manner.

Vorzugsweise ragt die Kanaltrennwand in den Düsenkanalendabschnitt hinein und der Kaltgaskanal ist von einer Außenoberfläche der Kanaltrennwand und einer den Düsenkanalendabschnitt berandenden Innenoberfläche der Isolierstoffdüse berandet. Diese Ausgestaltung der Erfindung sieht also vor, dass der Kaltgaskanal einen äußeren Bereich des Düsenkanalendabschnitts bildet und der Heißgasbereich einen inneren Bereich des Düsenkanalendabschnitts bildet. Dies realisiert die oben bereits beschriebene vorteilhafte Anordnung des Kaltgaskanals um den Heißgaskanal herum.The duct partition wall preferably protrudes into the nozzle duct end section and the cold gas duct is bordered by an outer surface of the duct partition wall and an inner surface of the insulating material nozzle which borders the nozzle duct end section. This embodiment of the invention therefore provides that the cold gas duct forms an outer area of the nozzle duct end section and the hot gas area forms an inner area of the nozzle duct end section. This realizes the advantageous arrangement of the cold gas duct already described above around the hot gas duct.

Eine weitere Ausgestaltung der Erfindung sieht vor, dass die Kanaltrennwand Teil des Trenngehäuses ist. Vorzugsweise bildet die Kanaltrennwand dabei einen der Schaltstrecke zugewandten Gehäuseendabschnitt des Trenngehäuses. Ferner ist das Trenngehäuse beispielsweise trichterartig ausgebildet, wobei die Kanaltrennwand einen in den Düsenkanalendabschnitt hineinragenden Gehäusehals bildet, an den sich ein Gehäuserumpf anschließt, der im Heizvolumen angeordnet ist und einen größeren Innendurchmesser als der Gehäusehals aufweist. Die Ausführung der Kanaltrennwand als Teil des Trenngehäuses ermöglicht eine einstückige Ausführung des Trenngehäuses und der Kanaltrennwand und vereinfacht dadurch die Herstellung und Montage des Trenngehäuses und der Kanaltrennwand. Die Ausbildung der Kanaltrennwand als ein der Schaltstrecke zugewandter Gehäuseendabschnitt des Trenngehäuses berücksichtigt, dass entlang der Schaltstrecke kein ausreichender Bauraum zur Aufnahme des Trenngehäuses zur Verfügung steht, da sich in diesem Bereich der Unterbrechereinheit die Lichtbogenkontaktstücke relativ zueinander bewegen. Die trichterartige Ausbildung des Trenngehäuses ermöglicht eine geeignete Aufteilung des Heizvolumens in einen Kaltgasbereich und einen Heißgasbereich und die Ausbildung des Kaltgaskanals und des Heißgaskanals durch das Trenngehäuse.Another embodiment of the invention provides that the duct partition wall is part of the partition housing. The duct partition wall preferably forms a housing end section of the partition housing facing the switching path. Furthermore, the separating housing is designed, for example, like a funnel, the channel separating wall forming a housing neck which protrudes into the nozzle channel end section and is followed by a housing body which is arranged in the heating volume and has a larger inner diameter than the housing neck. Execution the duct partition wall as part of the partition housing enables the partition housing and the duct partition wall to be designed in one piece and thereby simplifies the manufacture and assembly of the partition housing and the duct partition wall. The design of the duct partition wall as a housing end section of the separating housing facing the switching path takes into account that there is insufficient space available along the switching path to accommodate the separating housing, since the arcing contact pieces move relative to one another in this area of the interrupter unit. The funnel-like design of the separating housing enables a suitable division of the heating volume into a cold gas area and a hot gas area and the formation of the cold gas channel and the hot gas channel through the separating housing.

Eine weitere Ausgestaltung der Erfindung sieht vor, dass sich der Düsenkanal zu dem Düsenkanalendabschnitt weitet. Diese Ausgestaltung der Erfindung ermöglicht bzw. vereinfacht die Anordnung des Kaltgaskanals und des Heißgaskanals in dem Düsenkanalendabschnitt.Another embodiment of the invention provides that the nozzle channel widens to the nozzle channel end section. This embodiment of the invention enables or simplifies the arrangement of the cold gas duct and the hot gas duct in the nozzle duct end section.

Die Erfindung sieht ein Kompressionsvolumen vor, das durch eine Kompressionswand vom Heizvolumen getrennt ist. Die Kompressionswand ist an ein Lichtbogenkontaktstück gekoppelt, so dass sie das Kompressionsvolumen bei einer relativen Bewegung der Lichtbogenkontaktstücke von der Einschaltstellung in die Ausschaltstellung verkleinert. Ferner weist die Kompressionswand wenigstens eine Kompressionswandöffnung auf, die durch ein Überströmventil verschlossen ist, wenn der Druck im Heizvolumen größer als der Druck im Kompressionsvolumen ist. Diese Ausgestaltung der Erfindung ermöglicht vorteilhaft, den Druckaufbau im Heizvolumen bei einem Ausschaltvorgang durch Zuführung komprimierten Isoliergases aus dem Kompressionsvolumen in das Heizvolumen zu unterstützen, wenn die Stromstärke zu klein ist, um eine ausreichende Druckerhöhung im Heizvolumen zu bewirken. Bei großen Stromstärken, die einen zur Löschung des Lichtbogens ausreichenden Druck im Heizvolumen bewirken, wird das Kompressionsvolumen durch das Überströmventil vorteilhaft verschlossen, so dass kein Isoliergas druckmindernd aus dem Heizvolumen in das Kompressionsvolumen entweicht.The invention provides a compression volume which is separated from the heating volume by a compression wall. The compression wall is coupled to an arcing contact piece so that it reduces the compression volume in the event of a relative movement of the arcing contact pieces from the switched-on position to the switched-off position. Furthermore, the compression wall has at least one compression wall opening which is closed by an overflow valve when the pressure in the heating volume is greater than the pressure in the compression volume. This embodiment of the invention advantageously enables the pressure build-up in the heating volume to be supported during a switch-off process by supplying compressed insulating gas from the compression volume into the heating volume when the current is too small to cause a sufficient pressure increase in the heating volume. In the case of large currents that cause sufficient pressure in the heating volume to extinguish the arc, the compression volume becomes advantageously closed by the overflow valve, so that no insulating gas escapes from the heating volume into the compression volume, reducing the pressure.

Die Erfindung sieht weiter dass das Überströmventil wenigstens eine Verbindungsöffnung zwischen dem Kaltgasbereich und dem Heißgasbereich des Heizvolumens verschließt, wenn der Druck im Heizvolumen kleiner als der Druck im Kompressionsvolumen ist. Diese Weitergestaltung der Erfindung nutzt das Überströmventil nicht nur zum Verschließen des Kompressionsvolumens bei großen Drücken im Heizvolumen, sondern auch zum zumindest teilweisen Verschließen des Heißgasbereiches bei kleinen Drücken im Heißgasbereich. Dadurch wird bei kleinen Drücken im Heißgasbereich vorteilhaft komprimiertes Isoliergas aus dem Kompressionsvolumen nur oder zumindest überwiegend in den Kaltgasbereich geleitet, so dass das komprimierte Isoliergas aus dem Kompressionsvolumen im Kaltgasbereich eine größere Druckerhöhung erzeugt als es der Fall wäre, wenn das komprimierte Isoliergas aus dem Kompressionsvolumen gleichmäßig auf das gesamte Heizvolumen verteilt würde.The invention further provides that the overflow valve closes at least one connection opening between the cold gas area and the hot gas area of the heating volume when the pressure in the heating volume is less than the pressure in the compression volume. This further development of the invention uses the overflow valve not only to close the compression volume at high pressures in the heating volume, but also to at least partially close the hot gas area at low pressures in the hot gas area. As a result, at low pressures in the hot gas area, compressed insulating gas is advantageously passed from the compression volume only or at least predominantly into the cold gas area, so that the compressed insulating gas from the compression volume in the cold gas area generates a greater pressure increase than would be the case if the compressed insulating gas from the compression volume were uniform would be distributed over the entire heating volume.

Eine weitere Ausgestaltung der Erfindung sieht vor, dass der Kaltgaskanal weiter in den Düsenkanal hineinragt als der Heißgaskanal. Auch diese Ausgestaltung der Erfindung bewirkt, dass der Heißgaskanal bei einer Trennung der Lichtbogenkontaktstücke eher freigegeben wird als der Kaltgasbereich mit den oben bereits genannten Vorteilen.Another embodiment of the invention provides that the cold gas channel protrudes further into the nozzle channel than the hot gas channel. This embodiment of the invention also has the effect that the hot gas duct is released sooner when the arcing contact pieces are separated than the cold gas area with the advantages already mentioned above.

Ein erfindungsgemäßer Leistungsschalter weist eine erfindungsgemäße Unterbrechereinheit mit den oben bereits genannten Vorteilen auf.A circuit breaker according to the invention has an interrupter unit according to the invention with the advantages already mentioned above.

Die oben beschriebenen Eigenschaften, Merkmale und Vorteile dieser Erfindung sowie die Art und Weise, wie diese erreicht werden, werden klarer und deutlicher verständlich im Zusammenhang mit der folgenden Beschreibung von Ausführungsbeispielen, die im Zusammenhang mit den Zeichnungen näher erläutert werden. Dabei zeigen:

FIG 1
eine perspektivische Schnittdarstellung eines ersten Ausführungsbeispiels einer Unterbrechereinheit, und
FIG 2
eine Schnittdarstellung einer zweiten Unterbrechereinheit, die nicht zur vorliegenden Erfindung gehört.
The properties, features and advantages of this invention described above and the manner in which they are achieved will become more clearly and more clearly understood in connection with the following description of exemplary embodiments, which are explained in more detail in connection with the drawings. Show:
FIG 1
a perspective sectional view of a first embodiment of an interrupter unit, and
FIG 2
a sectional view of a second interrupter unit not belonging to the present invention.

Einander entsprechende Teile sind in den Figuren mit den gleichen Bezugszeichen versehen.Corresponding parts are provided with the same reference symbols in the figures.

Figur 1 zeigt eine perspektivische Schnittdarstellung eines ersten Ausführungsbeispiels einer Unterbrechereinheit 100 für einen Leistungsschalter. Figure 1 shows a perspective sectional illustration of a first embodiment of an interrupter unit 100 for a circuit breaker.

Die Unterbrechereinheit 100 weist eine im Wesentlichen rotationssymmetrische Struktur auf, welche sich um eine Längsachse 1 erstreckt. Die Unterbrechereinheit 100 weist ein erstes Lichtbogenkontaktstück 5 und ein zweites Lichtbogenkontaktstück 6 auf. Dem ersten Lichtbogenkontaktstück 5 ist ein erstes Nennstromkontaktstück 3 zugeordnet. Dem zweiten Lichtbogenkontaktstück 6 ist ein zweites Nennstromkontaktstück 4 zugeordnet. Die Nennstromkontaktstücke 3, 4 sowie die Lichtbogenkontaktstücke 5, 6 sind jeweils rotationssymmetrisch zu der Längsachse 1 ausgeformt und koaxial zu der Längsachse 1 angeordnet.The interrupter unit 100 has an essentially rotationally symmetrical structure which extends around a longitudinal axis 1. The interrupter unit 100 has a first arcing contact piece 5 and a second arcing contact piece 6. A first rated current contact piece 3 is assigned to the first arcing contact piece 5. A second rated current contact piece 4 is assigned to the second arcing contact piece 6. The rated current contact pieces 3, 4 and the arcing contact pieces 5, 6 are each formed rotationally symmetrical to the longitudinal axis 1 and are arranged coaxially to the longitudinal axis 1.

Das erste Lichtbogenkontaktstück 5 ist rohrartig ausgebildet und weist ein dem zweiten Lichtbogenkontaktstück 6 zugewandtes Kontaktende 20 mit einer tulpenförmigen Kontaktöffnung 21 sowie eine einen Endabschnitt umgebende Schutzhülle 9 aus einem elektrisch isolierenden Material auf. Das zweite Lichtbogenkontaktstück 6 ist bolzenförmig ausgeführt, um unter galvanischem Kontakt in die Kontaktöffnung 21 des ersten Lichtbogenkontaktstückes 5 einfahrbar zu sein. Das zweite Nennstromkontaktstück 4 weist eine Vielzahl von Kontaktfingern 22 auf, welche elastisch verformbar sind und zu einer Kontaktierung mit dem ersten Nennstromkontaktstück 3 auf eine Mantelfläche 23 des ersten Nennstromkontaktstückes 3 auffahrbar sind. Das erste Nennstromkontaktstück 3 sowie das erste Lichtbogenkontaktstück 5 sind zueinandergehörig und weisen unabhängig von einem Schaltzustand der Unterbrechereinheit 100 stets dasselbe elektrische Potential auf. Das zweite Nennstromkontaktstück 4 und das zweite Lichtbogenkontaktstück 6 sind ebenfalls zueinandergehörig und weisen unabhängig von dem Schaltzustand der Unterbrechereinheit 100 stets dasselbe elektrische Potential auf.The first arcing contact piece 5 is tubular and has a contact end 20 facing the second arcing contact piece 6 with a tulip-shaped contact opening 21 and a protective sleeve 9 made of an electrically insulating material surrounding an end section. The second arcing contact piece 6 is designed in the shape of a bolt so that it can be moved into the contact opening 21 of the first arcing contact piece 5 with galvanic contact. The second rated current contact piece 4 has a multiplicity of contact fingers 22 which are elastically deformable and can be moved onto a lateral surface 23 of the first rated current contact piece 3 to make contact with the first rated current contact piece 3. The first rated current contact piece 3 and the first arcing contact piece 5 belong to one another and always have the same electrical potential regardless of a switching state of the interrupter unit 100. The second rated current contact piece 4 and the second arcing contact piece 6 also belong to one another and always have the same electrical potential regardless of the switching state of the interrupter unit 100.

Die Nennstromkontaktstücke 3, 4 und die Lichtbogenkontaktstücke 5, 6 sind entlang der Längsachse 1 relativ zueinander zwischen einer in Figur 1 dargestellten Ausschaltstellung und einer Einschaltstellung bewegbar. In der Ausschaltstellung sind die beiden Lichtbogenkontaktstücke 5, 6 durch eine Schaltstrecke 2 voneinander getrennt. Entsprechend sind in der Ausschaltstellung die beiden Nennstromkontaktstücke 3, 4 voneinander getrennt. In der Einschaltstellung ist das zweite Lichtbogenkontaktstück 6 in die Kontaktöffnung 21 des ersten Lichtbogenkontaktstücks 5 eingefahren und die Kontaktfinger 22 des zweiten Nennstromkontaktstücks 4 liegen an der Mantelfläche 23 des ersten Nennstromkontaktstückes 3 an. Dabei kontaktieren bei einem Einschaltvorgang die Lichtbogenkontaktstücke 5, 6 einander zeitlich vor den Nennstromkontaktstücken 3, 4. Bei einem Ausschaltvorgang trennen sich zunächst die Nennstromkontaktstücke 3, 4 und zeitlich darauf folgend die Lichtbogenkontaktstücke 5, 6.The rated current contact pieces 3, 4 and the arcing contact pieces 5, 6 are along the longitudinal axis 1 relative to one another between a in Figure 1 shown switch-off position and a switch-on position movable. In the switched-off position, the two arcing contact pieces 5, 6 are separated from one another by a switching path 2. Accordingly, the two rated current contact pieces 3, 4 are separated from one another in the switched-off position. In the switched-on position, the second arcing contact piece 6 is inserted into the contact opening 21 of the first arcing contact piece 5 and the contact fingers 22 of the second nominal current contact piece 4 rest on the lateral surface 23 of the first nominal current contact piece 3. During a switch-on process, the arcing contact pieces 5, 6 contact each other before the rated current contact pieces 3, 4. During a switching-off process, the rated current contact pieces 3, 4 separate first and then the arcing contact pieces 5, 6.

Bei einer Kontaktierung und bei einer Trennung der Lichtbogenkontaktstücke 5, 6 entsteht jeweils ein Lichtbogen zwischen den Lichtbogenkontaktstücken 5, 6. Um den Lichtbogen zu lenken und zu leiten, ist eine Isolierstoffdüse 7 vorgesehen. Die Isolierstoffdüse 7 weist einen Düsenkanal 8 auf. Der Düsenkanal 8 ist rotationssymmetrisch ausgebildet und weist eine Kanalengstelle 24 auf, deren Durchmesser zu einem Durchmesser des zweiten Lichtbogenkontaktstücks 6 korrespondiert. Die Isolierstoffdüse 7 umgibt die Schaltstrecke 2 zumindest teilweise und ist koaxial zur Längsachse 1 ausgerichtet. Der Düsenkanal 8 weitet sich zu einem Düsenkanalendabschnitt 25 hin, in den das erste Lichtbogenkontaktstück 5 hineinragt.When the arcing contact pieces 5, 6 are contacted and separated, an arc is created between the arcing contact pieces 5, 6. An insulating material nozzle 7 is provided in order to direct and conduct the arc. The insulating material nozzle 7 has a nozzle channel 8. The nozzle channel 8 is designed to be rotationally symmetrical and has a channel constriction 24, the diameter of which corresponds to a diameter of the second arcing contact piece 6. The insulating material nozzle 7 at least partially surrounds the switching path 2 and is aligned coaxially to the longitudinal axis 1. The nozzle channel 8 widens towards a nozzle channel end section 25 into which the first arcing contact piece 5 projects.

Die Isolierstoffdüse 7 weist außenmantelseitig einen umlaufenden Düsenkragen 26 auf, der ringförmig um das erste Lichtbogenkontaktstück 5 herum verläuft und in einer gegengleichen Ausnehmung an dem ersten Nennstromkontaktstück 3 gelagert ist.The insulating material nozzle 7 has a circumferential nozzle collar 26 on the outer jacket side, which runs in a ring around the first arcing contact piece 5 and is mounted in an opposite recess on the first rated current contact piece 3.

An den Düsenkanalendabschnitt 25 schließt sich ein Heizvolumen 10 an, das einen Abschnitt des ersten Lichtbogenkontaktstücks 5 umgibt. Radial bezüglich der Längsachse 1 erstreckt sich das Heizvolumen 10 zwischen einer Außenoberfläche des ersten Lichtbogenkontaktstücks 5 und einer Innenoberfläche des ersten Nennstromkontaktstücks 3. Axial bezüglich der Längsachse 1 erstreckt sich das Heizvolumen 10 zwischen einem von dem zweiten Lichtbogenkontaktstück 6 abgewandten Ende der Isolierstoffdüse 7 und einer Kompressionswand 27, die das Heizvolumen 10 von einem Kompressionsvolumen 28 trennt.A heating volume 10, which surrounds a section of the first arcing contact piece 5, connects to the nozzle channel end section 25. The heating volume 10 extends radially with respect to the longitudinal axis 1 between an outer surface of the first arcing contact piece 5 and an inner surface of the first rated current contact piece 3. The heating volume 10 extends axially with respect to the longitudinal axis 1 between an end of the insulating material nozzle 7 facing away from the second arcing contact piece 6 and a compression wall 27, which separates the heating volume 10 from a compression volume 28.

Die Kompressionswand 27 ist mit dem ersten Lichtbogenkontaktstück 5 verbunden und bewegt sich bei einem Ausschaltvorgang mit dem ersten Lichtbogenkontaktstück 5 von dem zweiten Lichtbogenkontaktstück 6 weg, wobei sie das Kompressionsvolumen 28 bei der Bewegung verkleinert und Isoliergas in dem Kompressionsvolumen 28 komprimiert. Die Kompressionswand 27 weist mehrere Kompressionswandöffnungen 29 zu dem Heizvolumen 10 auf.The compression wall 27 is connected to the first arcing contact piece 5 and, when the first arcing contact piece 5 is switched off, moves away from the second arcing contact piece 6, reducing the compression volume 28 during the movement and compressing insulating gas in the compression volume 28. The compression wall 27 has a plurality of compression wall openings 29 to the heating volume 10.

Ein Trenngehäuse 11 unterteilt das Heizvolumen 10 in einen Kaltgasbereich 31 und einen Heißgasbereich 32. Ferner unterteilt das Trenngehäuse 11 den Düsenkanalendabschnitt 25 in einen mit dem Kaltgasbereich 31 verbundenen Kaltgaskanal 33 und einen mit dem Heißgasbereich 32 verbundenen Heißgaskanal 34. Das Trenngehäuse 11 ist im Wesentlichen rotationssymmetrisch um die Längsachse 1 ausgebildet und umgibt einen das Kontaktende 20 aufweisenden Endabschnitt des ersten Lichtbogenkontaktstücks 5.A separating housing 11 divides the heating volume 10 into a cold gas area 31 and a hot gas area 32. Furthermore, the separating housing 11 divides the nozzle channel end section 25 into a cold gas channel 33 connected to the cold gas area 31 and a hot gas channel 34 connected to the hot gas area 32. The separating housing 11 is essentially rotationally symmetrical formed around the longitudinal axis 1 and surrounds a End section of the first arcing contact piece 5 having contact end 20.

Das Trenngehäuse 11 ist trichterartig mit einem in dem Heizvolumen 10 angeordneten Gehäuserumpf 30 und einem in den Düsenkanalendabschnitt 25 hineinragenden Gehäusehals ausgebildet.The separating housing 11 is funnel-shaped with a housing body 30 arranged in the heating volume 10 and a housing neck protruding into the nozzle channel end section 25.

Der Gehäusehals weist eine hohlzylindrische Kanaltrennwand 35 zwischen dem Kaltgaskanal 33 und dem Heißgaskanal 34 und eine schaltstreckenseitige Gehäuseöffnung 36 des Trenngehäuses 11 auf. Der Kaltgaskanal 33 wird von einer Außenoberfläche der Kanaltrennwand 35 und einer den Düsenkanalendabschnitt 25 berandenden Innenoberfläche der Isolierstoffdüse 7 berandet. Der Heißgaskanal 34 wird von einer Innenoberfläche der Kanaltrennwand 35 und einer Außenoberfläche des ersten Lichtbogenkontaktstücks 5 berandet.The housing neck has a hollow cylindrical channel partition 35 between the cold gas channel 33 and the hot gas channel 34 and a housing opening 36 of the separating housing 11 on the switching path side. The cold gas duct 33 is bordered by an outer surface of the duct partition 35 and an inner surface of the insulating material nozzle 7 which borders the nozzle duct end section 25. The hot gas channel 34 is bordered by an inner surface of the channel partition 35 and an outer surface of the first arcing contact piece 5.

Der Gehäuserumpf 30 des Trenngehäuses 11 wird durch einen Gehäusemantel 37, eine Gehäuseschulter 38 und einen Gehäusekragen 39 gebildet. Der Gehäusemantel 37 ist als ein Hohlzylinder ausgebildet, dessen Zylinderachse die Längsachse 1 ist und der einen größeren Innendurchmesser als die Kanaltrennwand 35 aufweist. Die Gehäuseschulter 38 verbindet den Gehäusemantel 37 mit der Kanaltrennwand 35. Der Gehäusekragen 39 bildet ein von der Schaltstrecke 2 abgewandtes und dem Kompressionsvolumen 28 zugewandtes Ende des Trenngehäuses 11. Der Gehäusekragen 39 steht von dem Gehäuserumpf 30 nach innen ab und erstreckt sich von dem Gehäuserumpf 30 bis zu dem ersten Lichtbogenkontaktstück 5, das durch den Gehäusekragen 39 geführt ist. Der Gehäusekragen 39 verläuft parallel zu der Kompressionswand 27 und ist von der Kompressionswand 27 beabstandet. Der Gehäusekragen 39 weist mehrere Verbindungsöffnungen 40 auf, die den Kompressionswandöffnungen 29 in der Kompressionswand 27 gegenüber liegen. Der von dem Trenngehäuse 11 umgebene Bereich des Heizvolumens 10 bildet den Heißgasbereich 32 des Heizvolumens 10, der übrige Bereich des Heizvolumens 10 bildet den Kaltgasbereich 31.The housing body 30 of the separating housing 11 is formed by a housing jacket 37, a housing shoulder 38 and a housing collar 39. The housing jacket 37 is designed as a hollow cylinder, the cylinder axis of which is the longitudinal axis 1 and which has a larger inner diameter than the duct partition wall 35. The housing shoulder 38 connects the housing jacket 37 to the duct partition 35. The housing collar 39 forms an end of the partition housing 11 facing away from the switching path 2 and facing the compression volume 28. The housing collar 39 projects inward from the housing body 30 and extends from the housing body 30 up to the first arcing contact piece 5, which is guided through the housing collar 39. The housing collar 39 runs parallel to the compression wall 27 and is spaced apart from the compression wall 27. The housing collar 39 has a plurality of connection openings 40 which lie opposite the compression wall openings 29 in the compression wall 27. The area of the heating volume 10 surrounded by the separating housing 11 forms the hot gas area 32 of the heating volume 10, the remaining area of the heating volume 10 forms the cold gas area 31.

Zwischen den Kompressionswandöffnungen 29 in der Kompressionswand 27 und den Verbindungsöffnungen 40 in dem Gehäusekragen 39 ist ein Überströmventil 41 angeordnet, das ringförmig um das erste Lichtbogenkontaktstück 5 herum verläuft. Das Überströmventil 41 ist zwischen einer in Figur 1 dargestellten ersten Ventilstellung und einer zweiten Ventilstellung bewegbar. In der ersten Ventilstellung verschließt das Überströmventil 41 die Kompressionswandöffnungen 29 in der Kompressionswand 27, in der zweiten Ventilstellung verschließt das Überströmventil 41 die Verbindungsöffnungen 40 in dem Gehäusekragen 39. Die Ventilstellung des Überströmventils 41 hängt von der Druckdifferenz zwischen dem Druck in dem Kompressionsvolumen 28 und dem Druck in dem Heizvolumen 10 im Bereich des Überströmventils 41 ab. Wenn der Druck in dem Kompressionsvolumen 28 kleiner als dieser Druck in dem Heizvolumen 10 ist, nimmt das Überströmventil 41 die erste Ventilstellung ein. Wenn der Druck in dem Kompressionsvolumen 28 größer als dieser Druck in dem Heizvolumen 10 ist, nimmt das Überströmventil 41 die zweite Ventilstellung ein.Between the compression wall openings 29 in the compression wall 27 and the connection openings 40 in the housing collar 39, an overflow valve 41 is arranged, which runs annularly around the first arcing contact piece 5. The spill valve 41 is between an in Figure 1 illustrated first valve position and a second valve position movable. In the first valve position the overflow valve 41 closes the compression wall openings 29 in the compression wall 27, in the second valve position the overflow valve 41 closes the connection openings 40 in the housing collar 39. The valve position of the overflow valve 41 depends on the pressure difference between the pressure in the compression volume 28 and the Pressure in the heating volume 10 in the area of the overflow valve 41. When the pressure in the compression volume 28 is less than this pressure in the heating volume 10, the overflow valve 41 assumes the first valve position. If the pressure in the compression volume 28 is greater than this pressure in the heating volume 10, the overflow valve 41 assumes the second valve position.

Dem Kompressionsvolumen 28 ist eine Druckablasskammer 42 nachgeordnet, die ein Überdruckventil 43 zu dem Kompressionsvolumen 28 aufweist. Wenn der Druck in dem Kompressionsvolumen 28 einen Druckschwellenwert überschreitet, öffnet das Überdruckventil 43, so dass Isoliergas aus dem Kompressionsvolumen 28 in die Druckablasskammer 42 und durch Kammeröffnungen 45 der Druckablasskammer 42 aus der Druckablasskammer 42 strömen kann. Das Überdruckventil 43 dieses Ausführungsbeispiels ist federbelastet ausgeführt, so dass der Druckschwellenwert durch eine Vorspannung einer Feder 44 bestimmt wird.The compression volume 28 is followed by a pressure relief chamber 42 which has a pressure relief valve 43 for the compression volume 28. If the pressure in the compression volume 28 exceeds a pressure threshold value, the pressure relief valve 43 opens so that insulating gas can flow from the compression volume 28 into the pressure release chamber 42 and through chamber openings 45 of the pressure release chamber 42 from the pressure release chamber 42. The pressure relief valve 43 of this exemplary embodiment is designed to be spring-loaded, so that the pressure threshold value is determined by a preload of a spring 44.

Im Betrieb der Unterbrechereinheit 100 ist die Unterbrechereinheit 100 mit einem Isoliergas, beispielsweise mit Schwefelhexafluorid, Stickstoff oder einem anderen geeigneten Gas befüllt. Isoliergas befindet sich insbesondere in dem Düsenkanal 8, dem Heizvolumen 10 und dem Kompressionsvolumen 28. Bei einem Ausschaltvorgang, bei dem die Lichtbogenkontaktstücke 5, 6 voneinander getrennt werden, kommt es zu einem Brennen eines Lichtbogens zwischen den beiden Lichtbogenkontaktstücken 5, 6. Der Lichtbogen erhitzt in seiner Umgebung befindliches Isoliergas, welches daraufhin expandiert und vornehmlich durch den Heißgaskanal 34 in den Heißgasbereich 32 des Heizvolumens 10 strömt, da der Heißgaskanal 34 bei der Trennung der Lichtbogenkontaktstücke 5, 6 vor dem Kaltgaskanal 33 freigegeben wird. Das in den Heißgasbereich 32 strömende Isoliergas erhöht den Druck in dem Heißgasbereich 32. Gleichzeitig wird bei der Trennung der Lichtbogenkontaktstücke 5, 6 durch die Bewegung der Kompressionswand 27 das Isoliergas in dem Kompressionsvolumen 28 komprimiert und der Druck in dem Kompressionsvolumen 28 erhöht.When the interrupter unit 100 is in operation, the interrupter unit 100 is filled with an insulating gas, for example with sulfur hexafluoride, nitrogen or another suitable gas. Insulating gas is located in particular in the nozzle channel 8, the heating volume 10 and the compression volume 28. During a disconnection process in which the arcing contact pieces 5, 6 are separated from one another, an arc burns between the two arcing contact pieces 5, 6. The arc heats insulating gas in its surroundings, which then expands and mainly through the hot gas duct 34 into the The hot gas region 32 of the heating volume 10 flows because the hot gas duct 34 is released upstream of the cold gas duct 33 when the arcing contact pieces 5, 6 are separated. The insulating gas flowing into the hot gas area 32 increases the pressure in the hot gas area 32. At the same time, when the arcing contact pieces 5, 6 are separated, the movement of the compression wall 27 compresses the insulating gas in the compression volume 28 and increases the pressure in the compression volume 28.

Die Druckerhöhung in dem Heißgasbereich 32 ist von der Stromstärke abhängig. Bei kleinen Stromstärken ist die Druckerhöhung in dem Heißgasbereich 32 relativ gering, so dass der in dem Kompressionsvolumen 28 erzeugte Druck größer als der Druck in dem Heißgasbereich 32 wird und das Überströmventil 41 die zweite Ventilstellung einnimmt, in der es die Verbindungsöffnungen 40 in dem Gehäusekragen 39 des Trenngehäuses 11 verschließt. Dadurch wird der Kaltgasbereich 31 von dem Heißgasbereich 32 getrennt und über die Kompressionswandöffnungen 29 in der Kompressionswand 27 mit dem Kompressionsvolumen 28 verbunden, so dass Isoliergas aus dem Kompressionsvolumen 28 in den Kaltgasbereich 31 strömt. Das Isoliergas strömt nach der Freigabe des Kaltgaskanals 33 aus dem Kaltgasbereich 31 durch den Kaltgaskanal 33 zu dem Lichtbogen und löscht schließlich den Lichtbogen. Da der Heißgasbereich 32 dabei durch das Überströmventil 41 verschlossen ist, ist der dem aus dem Kompressionsvolumen 28 strömenden Isoliergas zur Verfügung stehende Raum des Heizvolumens 10 auf den Kaltgasbereich 31 reduziert, wodurch vorteilhaft der Druck in dem Isoliergas und damit die Löschwirkung des Isoliergases gegenüber einer Situation, in der Isoliergas aus dem Kompressionsvolumen 28 in das gesamte Heizvolumen 10 strömt, erhöht werden.The pressure increase in the hot gas area 32 is dependent on the current strength. With small currents, the pressure increase in the hot gas area 32 is relatively small, so that the pressure generated in the compression volume 28 is greater than the pressure in the hot gas area 32 and the overflow valve 41 assumes the second valve position in which it connects the connection openings 40 in the housing collar 39 of the separating housing 11 closes. As a result, the cold gas area 31 is separated from the hot gas area 32 and connected to the compression volume 28 via the compression wall openings 29 in the compression wall 27, so that insulating gas flows from the compression volume 28 into the cold gas area 31. After the cold gas duct 33 has been released, the insulating gas flows from the cold gas region 31 through the cold gas duct 33 to the arc and finally extinguishes the arc. Since the hot gas area 32 is closed by the overflow valve 41, the space of the heating volume 10 available for the insulating gas flowing out of the compression volume 28 is reduced to the cold gas area 31, which advantageously reduces the pressure in the insulating gas and thus the extinguishing effect of the insulating gas in relation to a situation , flows in the insulating gas from the compression volume 28 into the entire heating volume 10, can be increased.

Bei großen Stromstärken ist die Druckerhöhung in dem Heißgasbereich 32 entsprechend groß, so dass der Druck in dem Heißgasbereich 32 größer als der in dem Kompressionsvolumen 28 erzeugte Druck ist und das Überströmventil 41 die erste Ventilstellung einnimmt, in der es die Verbindungsöffnungen 40 in dem Gehäusekragen 39 des Trenngehäuses 11 freigibt und die Kompressionswandöffnungen 29 in der Kompressionswand 27 verschließt. Dadurch strömt erhitztes Isoliergas durch die Verbindungsöffnungen 40 aus dem Heißgasbereich 32 in den Kaltgasbereich 31 und erhöht den Druck in dem Kaltgasbereich 31. Wenn der Lichtbogen an Intensität verliert und die Rückströmung von Isoliergas aus dem Heizvolumen 10 zu dem Lichtbogen einsetzt, strömt Isoliergas sowohl aus dem Kaltgasbereich 31 durch den Kaltgaskanal 33 als auch aus dem Heißgasbereich 32 durch den Heißgaskanal 34 zu dem Lichtbogen und löscht schließlich den Lichtbogen. Dabei verbessert das Zusammenwirken des Kaltgaskanals 33 und des Heißgaskanals 34 die Löschwirkung des Isoliergases durch die Vergrößerung der axialen Ausdehnung, über die der Lichtbogen mit Isoliergas beströmt wird. Ein in dem Kompressionsvolumen 28 entstehender gefährlicher Überdruck wird über die Druckablasskammer 42 abgebaut.With high currents, the pressure increase in the hot gas area 32 is correspondingly large, so that the pressure in the hot gas area 32 is greater than the pressure generated in the compression volume 28 and the overflow valve 41 assumes the first valve position in which it connects the connection openings 40 in the housing collar 39 of the separating housing 11 releases and the compression wall openings 29 in the compression wall 27 closes. As a result, heated insulating gas flows through the connection openings 40 from the hot gas area 32 into the cold gas area 31 and increases the pressure in the cold gas area 31 Cold gas area 31 through the cold gas channel 33 and from the hot gas area 32 through the hot gas channel 34 to the arc and finally extinguishes the arc. The interaction of the cold gas duct 33 and the hot gas duct 34 improves the extinguishing effect of the insulating gas by increasing the axial extent over which the arc is flowed with insulating gas. A dangerous overpressure arising in the compression volume 28 is reduced via the pressure relief chamber 42.

Figur 2 zeigt eine Schnittdarstellung Unterbrechereinheit 100 für einen Leistungsschalter, die nicht zur vorliegenden Erfindung gehört Die Unterbrechereinheit 100 unterscheidet sich von dem in Figur 1 dargestellten Ausführungsbeispiel im Wesentlichen nur durch die Ausgestaltung und Anordnung des Trenngehäuses 11 und die Form des Düsenkanalendabschnitts 25 sowie der damit einhergehenden Ausgestaltung des Kaltgasbereiches 31, des Heißgasbereiches 32, des Kaltgaskanals 33 und des Heißgaskanals 34. Figure 2 FIG. 13 shows a sectional view of the interrupter unit 100 for a circuit breaker not belonging to the present invention. The interrupter unit 100 differs from that in FIG Figure 1 illustrated embodiment essentially only by the design and arrangement of the separating housing 11 and the shape of the nozzle channel end section 25 and the associated design of the cold gas area 31, the hot gas area 32, the cold gas channel 33 and the hot gas channel 34.

Das Trenngehäuse 11 ist trichterartig mit einem in dem Heizvolumen 10 angeordneten Gehäuserumpf 30 und einem in den Düsenkanalendabschnitt 25 hineinragenden Gehäusehals ausgebildet.The separating housing 11 is funnel-shaped with a housing body 30 arranged in the heating volume 10 and a housing neck protruding into the nozzle channel end section 25.

Der Gehäusehals unterscheidet sich von dem Gehäusehals des in Figur 1 dargestellten Trenngehäuses 11 dadurch, dass das Ende des Gehäusehalses dieselbe Wandstärke wie der übrige Gehäusehals aufweist, während das Ende des Gehäusehalses des in Figur 1 dargestellten Trenngehäuses 11 eine größere Wandstärke als der übrige Gehäusehals aufweist. Außerdem ist das Ende des Gehäusehalses leicht zu dem Kontaktende 20 des ersten Lichtbogenkontaktstücks 5 hin umgebogen.The case neck differs from the case neck of the in Figure 1 separating housing 11 shown in that the end of the housing neck has the same wall thickness as the rest of the housing neck, while the end of the housing neck of the separating housing 11 shown in Figure 1 has a greater wall thickness than the rest of the housing neck. In addition, the end of the housing neck is slightly bent towards the contact end 20 of the first arcing contact piece 5.

Der Gehäuserumpf 30 unterscheidet sich von dem Gehäuserumpf 30 des in Figur 1 dargestellten Trenngehäuses 11 dadurch, dass er keinen Gehäusekragen 39 aufweist, dass der Gehäusemantel 37 mehrere Verbindungsöffnungen 40 zu dem Kaltgasbereich 31 aufweist, und dass die Gehäuseschulter 38 weniger steil ausgebildet ist. Der Gehäusemantel 37 ist mit der Kompressionswand 27 verbunden. Die Kompressionswandöffnungen 29 in der Kompressionswand 27 münden direkt in den Heißgasbereich 32. Das Überströmventil 41 ist in dem Heißgasbereich 32 vor den Kompressionswandöffnungen 29 angeordnet.The housing body 30 differs from the housing body 30 of FIG Figure 1 shown separating housing 11 in that it does not have a housing collar 39, that the housing jacket 37 has several connection openings 40 to the cold gas region 31, and that the housing shoulder 38 is less steep. The housing jacket 37 is connected to the compression wall 27. The compression wall openings 29 in the compression wall 27 open directly into the hot gas region 32. The overflow valve 41 is arranged in the hot gas region 32 in front of the compression wall openings 29.

Das Überströmventil 41 ist zwischen einer in Figur 2 dargestellten ersten Ventilstellung und einer zweiten Ventilstellung bewegbar ist. In der ersten Ventilstellung verschließt das Überströmventil 41 die Kompressionswandöffnungen 29 in der Kompressionswand 27, in der zweiten Ventilstellung öffnet das Überströmventil 41 die Kompressionswandöffnungen 29, wobei es von den Kompressionswandöffnungen 29 beabstandet ist. Die Ventilstellung des Überströmventils 41 hängt von der Druckdifferenz zwischen einem Druck in dem Kompressionsvolumen 28 und einem Druck in dem Heißgasbereich 32 ab. Wenn der Druck in dem Kompressionsvolumen 28 kleiner als der Druck in dem Heißgasbereich 32 ist, nimmt das Überströmventil 41 die erste Ventilstellung ein. Wenn der Druck in dem Kompressionsvolumen 28 größer als der Druck in dem Heißgasbereich 32 ist, nimmt das Überströmventil 41 die zweite Ventilstellung ein.The spill valve 41 is between an in Figure 2 illustrated first valve position and a second valve position is movable. In the first valve position, the overflow valve 41 closes the compression wall openings 29 in the compression wall 27; in the second valve position, the overflow valve 41 opens the compression wall openings 29, being spaced from the compression wall openings 29. The valve position of the overflow valve 41 depends on the pressure difference between a pressure in the compression volume 28 and a pressure in the hot gas region 32. When the pressure in the compression volume 28 is less than the pressure in the hot gas region 32, the overflow valve 41 assumes the first valve position. When the pressure in the compression volume 28 is greater than the pressure in the hot gas region 32, the overflow valve 41 assumes the second valve position.

Im Unterschied zu dem in Figur 1 dargestellten Ausführungsbeispiel sind die Verbindungsöffnungen 40 in dem Trenngehäuse 11, die den Heißgasbereich 32 mit dem Kaltgasbereich 31 verbinden, nicht verschließbar.In contrast to the in Figure 1 The illustrated embodiment are the connection openings 40 in the separating housing 11, which connect the hot gas area 32 to the cold gas area 31, cannot be closed.

Entsprechend strömt bei einem Ausschaltvorgang immer, insbesondere auch bei kleinen Stromstärken, Isoliergas von dem Heißgasbereich 32 in den Kaltgasbereich 31. Wie im Falle des in Figur 1 dargestellten Ausführungsbeispiels verschließt das Überströmventil 41 im Falle großer Stromstärken die Kompressionswandöffnungen 29, so dass der Lichtbogen in diesem Fall nur von Isoliergas aus dem Kaltgasbereich 31 und dem Heißgasbereich 32 gelöscht wird. Im Fall kleiner Stromstärken tritt Isoliergas aus dem Kompressionsvolumen 28 hinzu, das durch die Kompressionswandöffnungen 29 in den Heißgasbereich 32 eintritt und von dort durch das vor den Kompressionswandöffnungen 29 angeordnete Überströmventil 41 überwiegend zu Verbindungsöffnungen 40 gelenkt wird und durch diese Verbindungsöffnungen 40 in den Kaltgasbereich 31 strömt, so dass das aus dem Kompressionsvolumen 28 strömende Isoliergas überwiegend in den Kaltgasbereich 31 strömt.Correspondingly, during a switch-off process, in particular even with low current intensities, insulating gas always flows from the hot gas region 32 into the cold gas region 31. As in the case of FIG Figure 1 In the illustrated embodiment, the overflow valve 41 closes the compression wall openings 29 in the event of high currents, so that in this case the arc is only extinguished by insulating gas from the cold gas area 31 and the hot gas area 32. In the case of small currents, insulating gas is added from the compression volume 28, which enters the hot gas area 32 through the compression wall openings 29 and is directed from there by the overflow valve 41 located in front of the compression wall openings 29 mainly to connection openings 40 and flows through these connection openings 40 into the cold gas area 31 so that the insulating gas flowing out of the compression volume 28 predominantly flows into the cold gas region 31.

Obwohl die Erfindung im Detail durch bevorzugte Ausführungsbeispiele näher illustriert und beschrieben wurde, so ist die Erfindung nicht durch die offenbarten Beispiele eingeschränkt und andere Variationen können vom Fachmann hieraus abgeleitet werden, ohne den durch die Ansprüche definierten Schutzumfang der Erfindung zu verlassen.Although the invention has been illustrated and described in more detail by preferred exemplary embodiments, the invention is not restricted by the disclosed examples and other variations can be derived therefrom by the person skilled in the art without departing from the scope of protection of the invention as defined by the claims.

Claims (11)

  1. Interrupter unit (100) for a circuit breaker, comprising
    - two electrically conductive arcing contact pieces (5, 6), which are movable relative to one another along a switching path (2) between a switch-off position, in which the arcing contact pieces (5, 6) are separated from one another by the switching path (2), and a switch-on position, in which the arcing contact pieces (5, 6) are in electrical contact with one another,
    - an insulating nozzle (7) at least partially surrounding the switching path (2) and having a nozzle channel (8), which passes through the insulating nozzle (7) and through which the switching path (2) passes,
    - a heating volume (10), which is connected to the nozzle channel (8),
    - a separating housing (11), which splits the heating volume (10) into a cold gas region (31) and a hot gas region (32) and has at least one connecting opening (40) connecting the cold gas region (31) to the hot gas region (32),
    - a cold gas channel (33), which passes through a nozzle channel end section (25) of the nozzle channel (8) and is connected to the cold gas region (31) of the heating volume (10), and
    - a hot gas channel (34), which passes through the nozzle channel end section (25) of the nozzle channel (8) and is connected to the hot gas region (32) of the heating volume (10),
    - a compression volume (28), which is separated from the heating volume (10) by a compression wall (27), wherein the compression wall (27) is coupled to an arcing contact piece (5, 6), with the result that said compression wall reduces the size of the compression volume (28) in the event of a relative movement of the arcing contact pieces (5, 6) from the switch-on position into the switch-off position, and wherein the compression wall (27) has at least one compression wall opening (29), which is closed by an overflow valve (41) when a pressure in the heating volume (10) in the region of the overflow valve (41) is higher than a pressure in the compression volume (28), characterized in that
    the overflow valve (41) closes at least one connecting opening (40) between the cold gas region (31) and the hot gas region (32) when the pressure in the heating volume (10) is lower than the pressure in the compression volume (28).
  2. Interrupter unit (100) according to Claim 1,
    characterized in that
    a first arcing contact piece (5) has a contact end (20) having a contact opening (21), into which the second arcing contact piece (6) has moved in the switch-on position, and in that the hot gas channel (34) surrounds the contact end (20) of the first arcing contact piece (5) and the cold gas channel (33) surrounds the hot gas channel (34).
  3. Interrupter unit (100) according to one of the preceding claims,
    characterized by
    a channel separating wall (35) separating the cold gas channel (33) and the hot gas channel (34) from one another.
  4. Interrupter unit (100) according to Claim 3,
    characterized in that
    the channel separating wall (35) is substantially in the form of a hollow cylinder.
  5. Interrupter unit (100) according to Claim 3 or 4,
    characterized in that
    the channel separating wall (35) protrudes into the nozzle channel end section (25), and the cold gas channel (33) is delimited by an outer surface of the channel separating wall (35) and an inner surface, delimiting the nozzle channel end section (25), of the insulating nozzle (7).
  6. Interrupter unit (100) according to one of Claims 3 to 5,
    characterized in that
    the channel separating wall (35) is part of the separating housing (11).
  7. Interrupter unit (100) according to Claim 6,
    characterized in that
    the channel separating wall (35) forms a housing end section, facing the switching path (2), of the separating housing (11).
  8. Interrupter unit (100) according to Claim 6 or 7,
    characterized in that
    the separating housing (11) is in the form of a funnel, wherein the channel separating wall (35) forms a housing neck, which protrudes into the nozzle channel end section (25) and which is adjoined by a housing body (30), which is arranged in the heating volume (10) and has a greater inner diameter than the housing neck.
  9. Interrupter unit (100) according to one of the preceding claims,
    characterized in that
    the nozzle channel (8) widens towards the nozzle channel end section (25).
  10. Interrupter unit (100) according to one of the preceding claims,
    characterized in that
    the cold gas channel (33) protrudes further into the nozzle channel (8) than the hot gas channel (34).
  11. Circuit breaker having an interrupter unit (100) according to one of the preceding claims.
EP17739931.8A 2016-08-02 2017-07-06 Interrupter unit for a circuit breaker Active EP3469618B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016214196.1A DE102016214196B4 (en) 2016-08-02 2016-08-02 Interrupter unit for a circuit breaker
PCT/EP2017/067000 WO2018024435A1 (en) 2016-08-02 2017-07-06 Interrupter unit for a circuit breaker

Publications (2)

Publication Number Publication Date
EP3469618A1 EP3469618A1 (en) 2019-04-17
EP3469618B1 true EP3469618B1 (en) 2020-08-26

Family

ID=59350900

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17739931.8A Active EP3469618B1 (en) 2016-08-02 2017-07-06 Interrupter unit for a circuit breaker

Country Status (5)

Country Link
US (1) US10685798B2 (en)
EP (1) EP3469618B1 (en)
CN (1) CN109564836B (en)
DE (1) DE102016214196B4 (en)
WO (1) WO2018024435A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10991079B2 (en) 2018-08-14 2021-04-27 Nvidia Corporation Using previously rendered scene frames to reduce pixel noise
DE102019213344A1 (en) * 2019-09-03 2021-03-04 Siemens Energy Global GmbH & Co. KG Subdivide a heating volume of a circuit breaker
CN112289628B (en) * 2020-10-20 2023-02-24 西安西电开关电气有限公司 Arc extinguish chamber with double pressure expansion chambers
WO2022178962A1 (en) * 2021-02-25 2022-09-01 Jst Power Equipment, Inc. Switchgear system having translatable and rotatable truck and associated method
EP4053873A1 (en) * 2021-03-04 2022-09-07 General Electric Technology GmbH Insulating nozzle for circuit breaker with improved inner configuration

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2910582B2 (en) * 1994-10-31 1999-06-23 日新電機株式会社 Gas circuit breaker for electric power
DE19547522C1 (en) * 1995-12-08 1997-01-16 Siemens Ag HV line circuit breaker with gas-storage space - has gas-storage space divided by partition into heating space and cold gas space
DE19627098A1 (en) * 1996-07-05 1998-01-08 Asea Brown Boveri Circuit breaker
FR2751462B1 (en) * 1996-07-22 1998-08-28 Gec Alsthom T & D Sa HIGH VOLTAGE CIRCUIT BREAKER WITH SELF-BLOWING ARC
IT1295375B1 (en) * 1997-10-21 1999-05-12 Sace Spa MEDIUM AND HIGH VOLTAGE GAS SWITCH WITH ARC EXTINGUISHING MEANS
EP1768150B1 (en) 2005-09-26 2010-02-17 ABB Technology AG High voltage circuit breaker with improved interrupting capacity
JP2008210710A (en) * 2007-02-27 2008-09-11 Mitsubishi Electric Corp Gas-blast circuit breaker for power
DE102008039813A1 (en) * 2008-08-25 2010-03-04 Siemens Aktiengesellschaft High voltage circuit breaker with one switching path
FR2937179A1 (en) * 2008-10-09 2010-04-16 Areva T & D Sa BREAKER CHAMBER FOR HIGH VOLTAGE CIRCUIT BREAKER WITH IMPROVED ARC BLOW
DE102009009451A1 (en) * 2009-02-13 2010-08-19 Siemens Aktiengesellschaft Switchgear assembly with a switching path
DE102009009452A1 (en) * 2009-02-13 2010-08-19 Siemens Aktiengesellschaft Switchgear assembly with a switching path
DE102010020979A1 (en) 2010-05-12 2011-11-17 Siemens Aktiengesellschaft Compressed gas circuit breakers
DE102011007103A1 (en) * 2011-04-11 2012-10-11 Siemens Aktiengesellschaft Electrical switching device
CN102945768B (en) * 2012-11-07 2015-04-22 中国西电电气股份有限公司 Arc-control device of breaker
CN203134627U (en) * 2013-02-05 2013-08-14 西门子公司 Isolation switch
CN204289255U (en) * 2014-10-15 2015-04-22 中国西电电气股份有限公司 A kind of for SF 6the thermal current deriving structure of gas-break switch
CN105448592B (en) * 2015-12-11 2018-09-14 平高集团有限公司 A kind of potting breaker and its moved end keep off device of air

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US20190180963A1 (en) 2019-06-13
CN109564836A (en) 2019-04-02
EP3469618A1 (en) 2019-04-17
DE102016214196A1 (en) 2018-02-08
WO2018024435A1 (en) 2018-02-08
US10685798B2 (en) 2020-06-16
DE102016214196B4 (en) 2019-11-21
CN109564836B (en) 2020-07-03

Similar Documents

Publication Publication Date Title
EP3469618B1 (en) Interrupter unit for a circuit breaker
EP2126947B1 (en) Gas blast circuit breaker with a radial flow opening
EP0177714B1 (en) Pressurized-gas circuit breaker
DE2058670A1 (en) Electrical switchgear
EP2396800B1 (en) Switchgear arrangement with a switch path
DE102010020979A1 (en) Compressed gas circuit breakers
EP1105898B1 (en) High-voltage circuit breaker with interrupter unit
EP2396798B1 (en) High-voltage power switch having a contact gap equipped with switching gas deflection elements
DE19809088C1 (en) High-voltage circuit breaker with an insulating nozzle
DE2812945C2 (en) Gas switch
DE3107525C2 (en) Pressurized gas circuit breaker
EP2044604B1 (en) Insulating nozzle, comprising a first material and a second material
EP2316122B1 (en) High-voltage power switch with a switch gap
WO2016151002A1 (en) Insulating nozzle and electrical switching device comprising the insulating nozzle
EP0744759B1 (en) H.T. circuit breaker with a fixed heating chamber
EP2997587A1 (en) Circuit breaker
EP3699944A1 (en) Electrical interrupter switch with a tubular separating element with varying wall thickness
WO2007082399A1 (en) Switching chamber for a gas-insulated high-voltage circuit breaker
EP1772882B1 (en) Compressed gas electrical breaker with arrangement for controlling the electric field
DE3321740A1 (en) Gas-blast circuit breaker
WO2015028264A2 (en) Gas-insulated high-voltage switchgear
DE202005014042U1 (en) Electrical load switch has a piston contact that moves between sleeve contacts with separating isolation
EP1218906B1 (en) High voltage circuit breaker
EP0664553B1 (en) High-voltage power circuit breaker with a heating chamber
DE102016218322B4 (en) Breaker unit for a circuit breaker and a circuit breaker with such a breaker unit

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190110

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200310

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1307171

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017006947

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG, CH

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502017006947

Country of ref document: DE

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG, DE

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201228

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201127

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201126

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201126

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017006947

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

26N No opposition filed

Effective date: 20210527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210706

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210706

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210706

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210706

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170706

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1307171

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220706

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220706

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20230801

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230726

Year of fee payment: 7

Ref country code: FR

Payment date: 20230725

Year of fee payment: 7

Ref country code: DE

Payment date: 20230726

Year of fee payment: 7

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20231222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826