EP3466915B1 - Procédé de purification d'acétone - Google Patents
Procédé de purification d'acétone Download PDFInfo
- Publication number
- EP3466915B1 EP3466915B1 EP17195139.5A EP17195139A EP3466915B1 EP 3466915 B1 EP3466915 B1 EP 3466915B1 EP 17195139 A EP17195139 A EP 17195139A EP 3466915 B1 EP3466915 B1 EP 3466915B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- stream
- acetone
- methanol
- ppm
- purified
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 title claims description 260
- 238000000034 method Methods 0.000 title claims description 55
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 177
- 238000000926 separation method Methods 0.000 claims description 62
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 claims description 53
- 238000010926 purge Methods 0.000 claims description 40
- 229930185605 Bisphenol Natural products 0.000 claims description 36
- 238000004519 manufacturing process Methods 0.000 claims description 25
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 claims description 13
- 238000010992 reflux Methods 0.000 claims description 12
- KSSNXJHPEFVKHY-UHFFFAOYSA-N phenol;hydrate Chemical compound O.OC1=CC=CC=C1 KSSNXJHPEFVKHY-UHFFFAOYSA-N 0.000 claims description 9
- 239000002351 wastewater Substances 0.000 claims description 8
- 239000000178 monomer Substances 0.000 claims description 6
- 238000011144 upstream manufacturing Methods 0.000 claims description 2
- 238000004821 distillation Methods 0.000 description 16
- 239000003054 catalyst Substances 0.000 description 12
- 239000000203 mixture Substances 0.000 description 12
- 230000000694 effects Effects 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 7
- 238000004088 simulation Methods 0.000 description 7
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 6
- 150000002989 phenols Chemical class 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- 239000012074 organic phase Substances 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 238000000746 purification Methods 0.000 description 5
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 4
- 238000005755 formation reaction Methods 0.000 description 4
- 239000003456 ion exchange resin Substances 0.000 description 4
- 229920003303 ion-exchange polymer Polymers 0.000 description 4
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 239000008346 aqueous phase Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000002425 crystallisation Methods 0.000 description 3
- 230000008025 crystallization Effects 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 239000000155 melt Substances 0.000 description 3
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 2
- SYBYTAAJFKOIEJ-UHFFFAOYSA-N 3-Methylbutan-2-one Chemical compound CC(C)C(C)=O SYBYTAAJFKOIEJ-UHFFFAOYSA-N 0.000 description 2
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 2
- YNQLUTRBYVCPMQ-UHFFFAOYSA-N Ethylbenzene Chemical compound CCC1=CC=CC=C1 YNQLUTRBYVCPMQ-UHFFFAOYSA-N 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- -1 carbonate compound Chemical class 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000009849 deactivation Effects 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000000895 extractive distillation Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- NIQQIJXGUZVEBB-UHFFFAOYSA-N methanol;propan-2-one Chemical compound OC.CC(C)=O NIQQIJXGUZVEBB-UHFFFAOYSA-N 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 125000004642 (C1-C12) alkoxy group Chemical group 0.000 description 1
- 125000004400 (C1-C12) alkyl group Chemical group 0.000 description 1
- QQZOPKMRPOGIEB-UHFFFAOYSA-N 2-Oxohexane Chemical compound CCCCC(C)=O QQZOPKMRPOGIEB-UHFFFAOYSA-N 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 241000183024 Populus tremula Species 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 238000010533 azeotropic distillation Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 125000005587 carbonate group Chemical group 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 238000010543 cumene process Methods 0.000 description 1
- ROORDVPLFPIABK-UHFFFAOYSA-N diphenyl carbonate Chemical compound C=1C=CC=CC=1OC(=O)OC1=CC=CC=C1 ROORDVPLFPIABK-UHFFFAOYSA-N 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- CATSNJVOTSVZJV-UHFFFAOYSA-N heptan-2-one Chemical compound CCCCCC(C)=O CATSNJVOTSVZJV-UHFFFAOYSA-N 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- XNLICIUVMPYHGG-UHFFFAOYSA-N pentan-2-one Chemical compound CCCC(C)=O XNLICIUVMPYHGG-UHFFFAOYSA-N 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920006216 polyvinyl aromatic Polymers 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- OVARTBFNCCXQKS-UHFFFAOYSA-N propan-2-one;hydrate Chemical compound O.CC(C)=O OVARTBFNCCXQKS-UHFFFAOYSA-N 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000011514 reflex Effects 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C45/00—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
- C07C45/78—Separation; Purification; Stabilisation; Use of additives
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C45/00—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
- C07C45/78—Separation; Purification; Stabilisation; Use of additives
- C07C45/81—Separation; Purification; Stabilisation; Use of additives by change in the physical state, e.g. crystallisation
- C07C45/82—Separation; Purification; Stabilisation; Use of additives by change in the physical state, e.g. crystallisation by distillation
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C49/00—Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
- C07C49/04—Saturated compounds containing keto groups bound to acyclic carbon atoms
- C07C49/08—Acetone
Definitions
- Bisphenol A is commercially produced by the condensation reaction of acetone and two equivalents of phenol in the presence of a catalyst such as an ion-exchange resin.
- Bisphenol A is a high production volume compound with a world-wide estimated annual production of over 2 million tons. The demand for this compound is primarily due to its use as a monomer in the production of many high commodity materials such as epoxy resins and polycarbonates.
- Acetone one of the precursors to bisphenol A, can be formed using the cumene process by reacting benzene and propylene. This reaction disadvantageously forms a methanol by-product that can result in a deactivation of the catalyst system used in the formation of bisphenol. This deactivation requires that the catalyst system be either regenerated or even completely replaced, resulting in production stoppages and additional expenditure in maintaining bisphenol A production facilities.
- Disclosed herein is a method of purifying acetone.
- a method of purifying acetone comprises directing a feed stream comprising greater than or equal to 97 wt% of acetone and 100 to 1,000 ppm of methanol to a separation column, both based on a total weight of the feed stream; separating the feed stream in the separation column that is operating at a pressure greater than or equal to 1 bar into an overhead stream and a purified acetone stream comprising less than or equal to 50 ppm of methanol based on a total weight of the purified acetone stream; and directing at least 80 wt% of the overhead stream into the separation column as a reconstituted stream and purging 1 to 20 wt% of the overhead stream as a purge stream.
- Example 1 in order to obtain purified acetone having a low methanol concentration of only 25 ppm of methanol, more than 25 wt% of the feed stream entering distillation column has to be removed in the overhead stream.
- a methanol concentration of 25 ppm or less in the purified acetone stream of a feed stream having a flow rate of 4,000 kilograms per hour (kg/hr) entering the distillation column, more than 25 wt% of the feed stream, or in the case of Example 1, more than 1,000 kg/hr is removed in the overhead stream.
- This high flow rate of the overhead stream results in significant losses of the acetone in the overhead stream.
- all of the overhead stream becomes the purge stream that is either discarded or purified by some other means.
- a method of purifying acetone was developed, where it was surprisingly discovered that by directing at least 80 wt% of the overhead stream back into the separation column, a purified acetone stream could be formed comprising less than or equal to 50 ppm of methanol while achieving a significant reduction in the acetone being lost in a purge stream.
- the method of purifying acetone comprises directing a feed stream comprising acetone and methanol to a separation column; separating the feed stream in the separation column that is operating at a pressure greater than or equal to 1 bar into an overhead stream and a purified acetone stream; and directing at least 80 wt% of the overhead stream into the separation column as a reconstituted stream and purging 1 to 20 wt% of the overhead stream as a purge stream.
- separation of the methanol from the acetone could be further enhanced by increasing the pressure in the separation column as increasing the pressure of the separation column shifts the azeotrope to a lower acetone mass fraction and enhances the relative volatility between the components on the right of the azeotropic composition, facilitating a more efficient separation at higher mass fractions. It was found, for example, that at pressure of greater than or equal to 3 bars, or 3 to 15 bars that good separation of the two components can occur at high mass fractions of acetone of greater than 0.6, or 0.6 to 0.98, or 0.7 to 0.95, or 0.75 to 0.95.
- FIG. 1 is an illustration of an embodiment of a method of purifying an acetone stream.
- feed stream 2 and reconstituted stream 24 are combined in junction 6 to form combined stream 8 that is directed to separation column 10. It is noted that while feed stream 2 and reconstituted stream 24 are illustrated as being combined prior to addition to separation column 10, they can likewise be added as separate streams.
- junction 6 include T-joints, Y-joints, and static mixers.
- the feed stream can comprise greater than or equal to 97 wt%, or 97 to 99.99 wt%, or 98 to 99.5 wt% of acetone based on the total weight of the feed stream.
- the feed stream can comprise 100 to 5,000 ppm, or 100 to 500 ppm, or 200 to 300 ppm of methanol based on the total weight of the feed stream.
- the feed stream can comprise less than or equal to 5 wt%, or 0 to 1 wt%, or 0 to 0.9 wt% of water based on the total weight of the feed stream.
- the separation column can be a distillation column.
- the column can operate at a reflux ratio of 1 to 100, or 10 to 55, or 10 to 35, or 1 to 20.
- the column can comprise 6 to 80 stages, or 25 to 45 stages or packing equivalent to said number of stages.
- At least two streams can exit the separation column including purified acetone stream 12 and overhead stream 14.
- the purified acetone stream can comprise 1 to 40 ppm, or 5 to 25 ppm of methanol based on the total weight of the purified acetone stream.
- Overhead stream 14 is split into reconstituted stream 24 and purge stream 22 in splitter 16.
- splitter 16 include a T-joint and a Y-joint, optionally with a valve to control the respective flow rates.
- At least 80 wt%, or 90 to 97 wt%, or 80 to 99 wt% of the overhead stream is directed back into the separation column as reconstituted stream 24.
- At least 1 wt%, or 1 to 20 wt%, or 3 to 10 wt% of the overhead stream is purged from the system as purge stream 22.
- a purge stream having a flow rate of 65 kg/hr and comprising 98 wt% or more of acetone can result in a loss of more than 63 kg/hr of acetone. It was discovered that this acetone could be recovered by directing the purge stream to a phenol water separation (PWS) unit.
- PWS phenol water separation
- the phenol water separation unit can comprise a series of separation units including an extraction column that utilizes an organic phase and an aqueous phase to extract the phenol and acetone into the organic phase.
- the organic phase can comprise an organic solvent, for example, at least one of methyl isobutyl ketone, butanone, pentanone, hexanone, heptanone, methyl acetate, ethyl acetate, butyl acetate, methyl isopropyl ketone, benzene, toluene, ethyl benzene, and xylene.
- the organic phase can then be treated in a series of distillation columns to separate the acetone and phenol.
- the aqueous phase can be directed to a stripper column where the acetone can be stripped out and sent to one or more distillation columns for further separation and the methanol can be purged with the waste water.
- the acetone in the phenol water separation unit, at least a portion of the acetone can be separated into the organic phase and can return back to extraction column along with any recovered solvent. At least a portion of the acetone can be separated into the raffinate phase (aqueous phase) and can be sent to a stripper column where the acetone can be stripped out along with some water. Most of the methanol can be removed with the bottoms of the stripper column and can be directed towards a waste water recovery section. The stripped out acetone water mixture can be directed to an acetone column where acetone product can be recovered. A small portion of the total methanol can remain with the acetone product out of the phenol water separation unit and can be recycled back to a high pressure distillation column along with a fresh acetone feed.
- FIG. 2 An example of integration of the purge stream with a PWS unit is illustrated in FIG. 2 .
- purge stream 22 and PWS feed stream 28 are directed to PWS unit 30.
- Acetone can be recovered from one or both of vent stream 38 and recovered acetone stream 32. At least a portion of one or both of vent stream 38 and recovered acetone stream 32 can be directed to bisphenol production facility 40. At least a portion of one or both of vent stream 38 and recovered acetone stream 32, for example, 95 to 100 wt%, or 100 wt% of each stream independently, can be directed to separation column 10.
- Vent stream 38 and recovered acetone stream 32 can each independently comprise 90 to 100 wt%, or 95 to 99.5 wt% of acetone based on the total weight of the respective streams.
- Waste water stream 34 can be removed from PWS unit 30 and can comprise greater than or equal to 90 wt%, or 93 to 99 wt% of the total methanol that was introduced to PWS unit 30.
- Phenol stream 36 can be removed from PWS unit.
- Phenol stream 36 can be directed to bisphenol production facility 40.
- Phenol stream 36 can be directed to a carbonate compound production facility, for example, to form diphenyl carbonate.
- the purified acetone stream can be directed to a bisphenol production facility.
- the purified acetone stream can be in direct fluid communication with a reactor in a bisphenol production facility for immediate use.
- the purified acetone stream can be in fluid communication with a storage unit, stored for an amount of time, optionally transported, and then the stored purified acetone can be directed to a reactor in a bisphenol production facility.
- the purified acetone stream can be added directly to the bisphenol production facility such that the purified acetone stream is not further purified in a purification step intervening the separation column 10 and the bisphenol production facility.
- the concentration of the purified acetone stream exiting the separation column can be the same (i.e., within 1 wt%) of the purified acetone stream entering the bisphenol production facility.
- the bisphenol production facility can be a bisphenol A production facility.
- the purified acetone stream can be combined with a monomer feed stream comprising a phenolic compound such as phenol and reacted to form a bisphenol.
- FIG. 2 illustrates an embodiment of such a method, where purified acetone stream 12 and phenolic feed stream 42 are directed to bisphenol production facility 40 that produces bisphenol stream 44.
- the bisphenol reaction can comprise reacting the acetone and a phenolic compound in the presence of a catalyst system comprising an ion-exchange resin with an attached promotor.
- the bisphenol reaction of the acetone and phenolic compound can occur in a stoichiometric amount or in a molar excess of the phenolic compound.
- the molar ratio of the phenolic compound to the acetone can be 20:1 to 2:1.
- the bisphenol reaction can occur at a temperature of 40 to 150°C, or 55 to 100°C with, for example, 1 to 40 wt% catalyst based on the weight of the phenolic compound and the acetone.
- the bisphenol reaction can occur at a weight hourly space velocity (WHSV) of 0.2 to 30 inverse hours (hr -1 ), or 0.5 to 20 hr -1 .
- WHSV weight hourly space velocity
- the catalyst system for the bisphenol reaction can comprise and ion-exchange resin comprising a sulfonated copolymer product of a monovinyl aromatic monomer and a polyvinyl aromatic monomer, for example, having less than 2 wt% crosslinking, and 0.1 to 1.0 millimoles (mmol), or 0.4 to 0.6 mmol of sulfone bridges per gram of dry catalyst.
- dry catalyst can refer to a catalyst with a water content of less than or equal to 1 wt%, or less than or equal to 0.1 wt% of water based on the total weight of the catalyst.
- the catalyst system can comprise an ion-exchange resin comprising a plurality of sulfonic acid sites; and 5 to 35 mole percent (mol%) of an attached promoter molecule based on the total moles of the sulfonic acid sites in the catalyst system; and wherein the attached promoter molecule can comprise at least two thiol groups per attached promoter molecule.
- a bulk promoter can be present in the bisphenol reaction.
- the product mixture can be post-treated to purify the bisphenol.
- the post-treatment can comprise crystallization of bisphenol to form crystals comprising a crystallized bisphenol and/or a crystallized bisphenol adduct.
- the crystallization can comprise a vacuum cooling step.
- the crystallization can be facilitated by adding water, for example, in an amount of less than or equal to 3 wt%, or 0.1 to 3 wt% based on the total weight of the product mixture.
- the crystals can be optionally separated, for example, by filtration and melted in a melting unit. If the melt comprises sulfur, then a base (such as sodium hydroxide and potassium hydroxide) can be added to the melt to form a melt stream with a reduced sulfur content.
- the melted stream can be filtered, further purified, and then solidified, for example, in a flaking unit.
- the produced bisphenol can have the formula (3) wherein R a and R b are each independently a halogen, C 1-12 alkoxy, or C 1-12 alkyl; and p and q are each independently integers of 0 to 4.
- the bisphenol can comprise bisphenol A.
- the bisphenol produced then can be used to manufacture a polycarbonate having repeating structural carbonate units of formula (1) in which the R 1 group is derived from the bisphenol.
- Example 1 Separation without a recycle stream
- a simulation using ASPEN software was performed where an acetone feed stream comprising acetone and 250 ppm of methanol was added to a distillation column.
- the flow rate of the acetone feed stream was 4,000 kilograms per hour (kg/hr) and the distillate to feed weight ratio was 0.25.
- the column had 20 stages, a reflux ratio of 20, and operated at a pressure of 1 bar.
- the amount of overhead stream withdrawn from the top of the column was varied and the concentration of the methanol in the purified acetone stream was determined. The results are illustrated in FIG. 3 .
- FIG. 3 illustrates that in order to achieve a methanol concentration of 25 ppm or less in the purified acetone stream, more than 25 wt% of the feed stream entering distillation column has to be removed in the overhead stream.
- a methanol concentration of 25 ppm or less in the purified acetone stream of the 4,000 kg/hr entering the distillation column, more than 25% of the feed stream, or in this case, more than 1,000 kg/hr is removed in the overhead stream as a purge stream that requires a separate purification process.
- the concentration of methanol in the purge stream was 905 ppm.
- Example 2 Separation with a recycle stream
- Example 2 A separation simulation was performed in accordance with Example 1, except that 95 wt% of the overhead stream was redirected back into the distillation column according to FIG. 1 and with 30 number of stages using a reflux ratio of 35.
- the mass flow and components of the streams are shown in Table 2.
- Table 2 shows that by redirecting 95 wt% of the overhead stream 14 back into the distillation column as reconstituted stream 24, that the amount of overhead stream purged from the system was reduced from 1,000 kg/hr to only 65.6 kg/hr while achieving a low concentration of methanol in the acetone stream of 32 ppm.
- Example 2 The simulation of Example 2 was performed by varying the mass fraction of the overhead stream that was reconstituted by redirection back into the distillation column from 0.90 to 0.98. The reflux ratio and the amount of acetone in the purge stream in kg/hr was determined and the results are presented in FIG. 4 .
- FIG. 4 shows that increasing the amount of the overhead stream 14 that is recycled back to the column as reconstituted stream 24 results in a beneficial decrease in the acetone lost in the purge stream 22.
- the reflux ratio begins to increase at a fast rate and can result in an undesirable increase in both capital costs and operating costs.
- Example 3 The simulation of Example 3 was performed, except that the pressure in the column was 5 bars and the number of stages was 40.
- Experimentally generated high pressure vapor-liquid equilibrium data (VLE data) was used for ASPEN simulations, from the article " Wilsak, R. A.; Campbell, S. W.; Thodos, G. Fluid Phase Equilib., 1986, 28, 13 Vapor-liquid equilibrium measurements for the methanol-acetone system at 372.8, 397.7 and 422.6 K".
- the reflux ratio and the amount of acetone in the purge stream in kg/hr was determined and the results are presented in FIG. 5.
- FIG. 5 shows that at a 95 wt% reconstitution rate, the concentration of the methanol in the purified acetone stream was 30 ppm and that that reflux ratio was surprisingly reduced from 35 to only 22.4, resulting in a significant savings in operating costs.
- Example 4 The simulation of Example 4 was performed, except that the pressure in the column was 15 bars.
- the reflux ratio and the amount of acetone in the purge stream in kg/hr was determined and the results are presented in FIG. 6.
- FIG. 6 shows that at a 95 wt% reconstitution rate, the concentration of the methanol in the purified acetone stream was 30 ppm and that that reflex ratio was further reduced to only 9.5, resulting in further savings in operating costs.
- Example 6 Integration of acetone purification unit with a PWS unit
- Table 3 shows that 73 kg/hr of acetone are recovered in recovered acetone stream 32 and 79 kg/hr of acetone are recovered in vent stream 38. Table 3 also shows that waste water stream 34 contains about 95 wt% of the total methanol added to the PWS unit and less than 0.5 wt% of the total acetone added to the PWS unit. As the recovered acetone stream 32 and vent stream 38 contain less than 780 ppm of methanol (which is about 5 wt% of the total methanol), at least a portion of one or both of these streams can be sent to a bisphenol A reactor and the remaining portion can be recycled back to separation column 10.
- compositions, methods, and articles can alternatively comprise, consist of, or consist essentially of, any appropriate materials, steps, or components herein disclosed.
- the compositions, methods, and articles can additionally, or alternatively, be formulated so as to be devoid, or substantially free, of any materials (or species), steps, or components, that are otherwise not necessary to the achievement of the function or objectives of the compositions, methods, and articles.
- test standards are the most recent standard in effect as of the filing date of this application, or, if priority is claimed, the filing date of the earliest priority application in which the test standard appears.
- endpoints of all ranges directed to the same component or property are inclusive of the endpoints, are independently combinable, and include all intermediate points and ranges. For example, ranges of "up to 25 wt%, or 5 to 20 wt%” is inclusive of the endpoints and all intermediate values of the ranges of "5 to 25 wt%,” such as 10 to 23 wt%, etc. Unless otherwise mentioned, all weight percent values of a component in a stream are based on the total weight of the respective stream.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Claims (15)
- Procédé de purification d'acétone, comprenant :le guidage d'un flux d'alimentation comprenant une quantité supérieure ou égale à 97 % en poids d'acétone et de 100 à 1 000 ppm de méthanol vers une colonne de séparation, tous deux sur la base d'un poids total du flux d'alimentation ;la séparation du flux d'alimentation dans la colonne de séparation qui fonctionne à une pression supérieure ou égale à 1 bar dans un flux de produit de tête de distillation et un flux d'acétone purifié comprenant une quantité inférieure ou égale à 50 ppm de méthanol sur la base d'un poids total du flux d'acétone purifié ; etle guidage d'au moins 80 % en poids du flux de produit de tête de distillation dans la colonne de séparation en tant que flux reconstitué et la purge de 1 à 20 % en poids du flux de produit de tête de distillation en tant que flux de purge.
- Procédé selon la revendication 1, comprenant en outre le guidage du flux de purge et d'un flux d'alimentation vers une unité de séparation phénol-eau et la séparation d'un flux d'eaux usées, un flux de phénol et un flux d'acétone récupéré.
- Procédé selon l'une quelconque des revendications précédentes, dans lequel le flux d'alimentation comprend 97 à 99,5 % en poids, ou 98 à 99,5 % en poids d'acétone sur la base du poids total du flux d'alimentation.
- Procédé selon l'une quelconque des revendications précédentes, dans lequel le flux d'alimentation comprend 100 à 500 ppm, ou 200 à 300 ppm de méthanol sur la base du poids total du flux d'alimentation.
- Procédé selon l'une quelconque des revendications précédentes, dans lequel la pression est de 3 à 20 bars, ou de 5 à 20 bars.
- Procédé selon l'une quelconque des revendications précédentes, dans lequel la pression est de 5 à 15 bars.
- Procédé selon l'une quelconque des revendications précédentes, dans lequel le flux d'acétone purifié comprend 1 à 40 ppm, ou 5 à 25 ppm de méthanol sur la base du poids total du flux d'acétone purifié.
- Procédé selon l'une quelconque des revendications précédentes, dans lequel le guidage du flux de produit de tête de distillation comprend le guidage de 90 à 97 % en poids du flux de produit de tête de distillation dans la colonne de séparation.
- Procédé selon l'une quelconque des revendications précédentes, dans lequel la purge comprend la purge de 3 à 10 % en poids du flux de produit de tête de distillation en tant que flux de purge.
- Procédé selon l'une quelconque des revendications précédentes, dans lequel la colonne fonctionne à un rapport de reflux inférieur ou égal à 35, ou 1 à 20.
- Procédé selon l'une quelconque des revendications précédentes, comprenant en outre la combinaison du flux d'alimentation et du flux reconstitué en amont de la colonne de séparation pour former un flux combiné et le guidage du flux combiné vers la colonne de séparation.
- Procédé selon l'une quelconque des revendications précédentes, comprenant en outre l'ajout du flux d'acétone purifié et d'un flux d'alimentation de monomère comprenant du phénol à une installation de production de bisphénol et la formation d'un flux de bisphénol dans l'installation de production de bisphénol.
- Procédé selon la revendication 12, comprenant en outre l'ajout direct du flux d'acétone purifié de sorte qu'il ne soit pas soumis à une purification supplémentaire avant l'ajout.
- Procédé selon la revendication 13, comprenant en outre le guidage d'au moins une partie du flux d'acétone récupéré vers la colonne de séparation.
- Procédé selon l'une quelconque des revendications 13 à 14, comprenant en outre le guidage d'au moins une partie du flux d'acétone récupéré vers l'installation de production de bisphénol selon l'une quelconque des revendications 11 à 12.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17195139.5A EP3466915B1 (fr) | 2017-10-06 | 2017-10-06 | Procédé de purification d'acétone |
PCT/EP2018/076895 WO2019068752A1 (fr) | 2017-10-06 | 2018-10-03 | Procédé de purification d'acétone |
US16/652,544 US10745337B2 (en) | 2017-10-06 | 2018-10-03 | Method of purifying acetone |
CN201880064717.9A CN111164066B (zh) | 2017-10-06 | 2018-10-03 | 纯化丙酮的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17195139.5A EP3466915B1 (fr) | 2017-10-06 | 2017-10-06 | Procédé de purification d'acétone |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3466915A1 EP3466915A1 (fr) | 2019-04-10 |
EP3466915B1 true EP3466915B1 (fr) | 2019-11-27 |
Family
ID=60037450
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17195139.5A Active EP3466915B1 (fr) | 2017-10-06 | 2017-10-06 | Procédé de purification d'acétone |
Country Status (4)
Country | Link |
---|---|
US (1) | US10745337B2 (fr) |
EP (1) | EP3466915B1 (fr) |
CN (1) | CN111164066B (fr) |
WO (1) | WO2019068752A1 (fr) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113444045A (zh) * | 2021-07-08 | 2021-09-28 | 江西汇和化工有限公司 | 一种顺式乙内酰脲的纯化方法 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2179991A (en) * | 1937-01-09 | 1939-11-14 | Eastman Kodak Co | Process for the separation of methanol and acetone mixtures |
US2751337A (en) * | 1949-02-01 | 1956-06-19 | Stanolind Oil & Gas Co | Process for separation of acetone and methanol from complex mixtures |
US2581789A (en) * | 1949-04-11 | 1952-01-08 | Nat Distillers Prod Corp | Azeotropic distillation of methanol and acetone with hexane |
US4584063A (en) * | 1982-06-28 | 1986-04-22 | Lloyd Berg | Separation of acetone from methanol by extractive distillation |
JPH09278703A (ja) | 1996-04-17 | 1997-10-28 | Mitsubishi Chem Corp | アセトンの精製方法 |
US6340777B1 (en) * | 1999-10-22 | 2002-01-22 | General Electric Company | Method for purifying acetone |
US6303826B1 (en) * | 2000-01-19 | 2001-10-16 | Sunoco, Inc. (R&M) | Method for purification of acetone |
CN100582069C (zh) * | 2003-11-13 | 2010-01-20 | 三菱化学株式会社 | 制备双酚a的方法 |
US8143456B2 (en) * | 2007-08-29 | 2012-03-27 | Dow Global Technologies Llc | Method of reducing methanol in recycle streams in bisphenol-A production process |
RU2400469C2 (ru) * | 2008-12-09 | 2010-09-27 | Общество с ограниченной ответственностью "Новые технологии" | Способ очистки ацетона-сырца |
KR101431121B1 (ko) * | 2011-08-17 | 2014-08-18 | 주식회사 엘지화학 | 아세톤의 정제방법 |
CN104119202B (zh) * | 2014-07-29 | 2016-01-13 | 河北工业大学 | 一种变压精馏分离甲醇-丙酮共沸物的节能工艺 |
KR101959467B1 (ko) * | 2015-07-02 | 2019-07-02 | 주식회사 엘지화학 | 증류 장치 |
EP3210963B1 (fr) * | 2016-02-25 | 2019-03-27 | SABIC Global Technologies B.V. | Procédé de récupération d'acétone et installation de récupération de celui-ci |
EP3546440B1 (fr) * | 2016-11-28 | 2021-06-02 | LG Chem, Ltd. | Unité d'élimination de méthanol et d'acétone et système la comportant pour préparer du phénol et du bisphénol a |
-
2017
- 2017-10-06 EP EP17195139.5A patent/EP3466915B1/fr active Active
-
2018
- 2018-10-03 WO PCT/EP2018/076895 patent/WO2019068752A1/fr active Application Filing
- 2018-10-03 US US16/652,544 patent/US10745337B2/en active Active
- 2018-10-03 CN CN201880064717.9A patent/CN111164066B/zh active Active
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
US20200231526A1 (en) | 2020-07-23 |
EP3466915A1 (fr) | 2019-04-10 |
WO2019068752A1 (fr) | 2019-04-11 |
CN111164066B (zh) | 2022-08-16 |
US10745337B2 (en) | 2020-08-18 |
CN111164066A (zh) | 2020-05-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102472222B1 (ko) | 아세톤을 회수하는 방법 및 이를 회수하기 위한 플랜트 | |
KR102495410B1 (ko) | 정제된 형태의 메탄설폰산을 회수하기 위한 방법 및 시스템 | |
EP3347337B1 (fr) | Procédé de récupération de phénol à partir d'une installation de production de bpa et installation de récupération de celui-ci | |
EP0812815A2 (fr) | Procédé pour la préparation de bisphénol | |
EA010066B1 (ru) | Способ производства высокочистого дифенилкарбоната в промышленном масштабе | |
KR20110111387A (ko) | 분할 벽 증류 칼럼을 사용하는 방법 | |
TWI670259B (zh) | 用於c8芳香族混合物之分離製程 | |
EP3466915B1 (fr) | Procédé de purification d'acétone | |
US10246391B2 (en) | Method of recovering phenol from a BPA production facility and the facility for recovering the same | |
JP6732112B2 (ja) | メタノール及びアセトンの除去ユニット、並びにこれを含むフェノール及びビスフェノールaの製造システム | |
EP3390341B1 (fr) | Procédé de purification de méthacrylate de méthyle | |
US20240010588A1 (en) | Method for producing phenol | |
US20190209946A1 (en) | Method for producing a polycarbonate using a stripping device | |
US20240025830A1 (en) | Process configuration for a single phenol purification train for production of phenol and bisphenol-a in an integrated process | |
EP3466914A1 (fr) | Procédé de formation de bisphénol | |
JPS6326734B2 (fr) | ||
TH57535B (fr) | ||
TH92052A (fr) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20190510 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20190827 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: DALIPARTHI, SURYA PRAKASA RAO Inventor name: GONZALEZ VIDAL, NATHALIE Inventor name: EIJSBOUTS, PAULUS JOHANNES MARIA |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1206517 Country of ref document: AT Kind code of ref document: T Effective date: 20191215 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602017009072 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20191127 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191127 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200227 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200228 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191127 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191127 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200227 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191127 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191127 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200327 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191127 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191127 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191127 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191127 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191127 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200419 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191127 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191127 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191127 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602017009072 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191127 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191127 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1206517 Country of ref document: AT Kind code of ref document: T Effective date: 20191127 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20200828 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191127 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191127 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191127 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191127 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201006 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191127 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20201031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201031 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201031 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201006 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191127 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191127 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191127 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191127 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230529 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20230831 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20230911 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20230830 Year of fee payment: 7 |