EP3465848B1 - Over-voltage protection system for a single or multi-phase current supply grid - Google Patents

Over-voltage protection system for a single or multi-phase current supply grid Download PDF

Info

Publication number
EP3465848B1
EP3465848B1 EP17725236.8A EP17725236A EP3465848B1 EP 3465848 B1 EP3465848 B1 EP 3465848B1 EP 17725236 A EP17725236 A EP 17725236A EP 3465848 B1 EP3465848 B1 EP 3465848B1
Authority
EP
European Patent Office
Prior art keywords
spark gaps
ignition
voltage
spark
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17725236.8A
Other languages
German (de)
French (fr)
Other versions
EP3465848A1 (en
Inventor
Uwe Strangfeld
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dehn SE and Co KG
Original Assignee
Dehn and Soehne GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=58765836&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP3465848(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Dehn and Soehne GmbH and Co KG filed Critical Dehn and Soehne GmbH and Co KG
Publication of EP3465848A1 publication Critical patent/EP3465848A1/en
Application granted granted Critical
Publication of EP3465848B1 publication Critical patent/EP3465848B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T2/00Spark gaps comprising auxiliary triggering means
    • H01T2/02Spark gaps comprising auxiliary triggering means comprising a trigger electrode or an auxiliary spark gap
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T15/00Circuits specially adapted for spark gaps, e.g. ignition circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T4/00Overvoltage arresters using spark gaps
    • H01T4/10Overvoltage arresters using spark gaps having a single gap or a plurality of gaps in parallel

Definitions

  • the invention relates to an overvoltage protection system for a single-phase or multi-phase power supply network, consisting of at least two spark gaps connected in parallel and each triggered, the spark gaps having two main electrodes and an ignition electrode which is connected to one of the main electrodes via a control, according to the preamble of the claim 1.
  • an overvoltage protection element is arranged in each line branch of the power supply network, with the individual overvoltage protection elements having a first and a second electrode and a spark gap acting between the two electrodes. All of the aforementioned overvoltage protection elements are arranged in a common housing.
  • the individual overvoltage protection elements are coupled to one another in such a way that when one overvoltage protection element is fired, all the other overvoltage protection elements are fired at the same time.
  • the electrodes of the individual overvoltage protection elements are arranged relative to one another such that when the spark gap of one overvoltage protection element is ignited by the plasma then present, the breakdown spark gap of the other overvoltage protection elements also ignites.
  • the individual electrodes are located coaxially with one another.
  • a central ignition aid is provided to which all overvoltage protection elements are connected.
  • the central ignition aid is realized by a central ignition electrode and a central ignition circuit connected to the ignition electrode.
  • the auxiliary electrodes are connected to one another directly or indirectly, so that a voltage supplied causes a second, parallel-connected spark gap to respond.
  • a voltage supplied causes a second, parallel-connected spark gap to respond.
  • the arresters themselves are either untriggered or have an inductance in the discharge branch that generates an impulse for the arrester connected in parallel.
  • the corresponding inductance designed as a coil, must be designed to withstand surge currents.
  • the maximum sizes, the material loading capacities and the special requirement profiles restrict the surge current and lightning current loading capacities of spark gaps.
  • the discharge capacity can be increased by connecting spark gaps in parallel.
  • a first spark gap is ignited when an overvoltage exceeds a specific response value.
  • the response value is set via a control in the auxiliary ignition circuit and is based on an ignition voltage specified by the distance between an ignition electrode and the main electrode. When ignited, an arc forms in the relevant spark gap. In this case, the activation via the ignition electrode is de-energized.
  • a spark gap connected in parallel is only ignited when the voltage of the total arc of the primary spark gap considered first reaches the set response voltage of the second spark gap.
  • a sufficiently high voltage of the overall arc can be achieved by various measures.
  • either special spark gaps with a very high arc voltage are used or a voltage must be generated by an inductance in the arrester branch, which is added to the arc voltage of the spark gap and thus achieves the total voltage required to ignite the second spark gap.
  • the object of the invention to specify a further developed overvoltage protection system for single-phase or multi-phase power supply networks, which consists of at least two spark gaps connected in parallel, each triggered, the spark gaps having two main electrodes and one ignition electrode.
  • the spark gap(s) connected in parallel should only be ignited if necessary at high loads. This is intended to effectively prevent undesired aging of the spark gaps that would otherwise have to be ignited at the same time.
  • a targeted switching on of another of the spark gaps connected in parallel is achieved in that the ignition electrodes of the spark gaps are connected via a voltage-dependent switching element.
  • the additional spark gap only ignites when the response value from the series connection of the voltage-dependent switching element and the ignition gap of the ignition electrode of the additional spark gap is reached.
  • a gas discharge arrester or a thyristor can be used as the voltage-dependent switching element.
  • the response of the other spark gaps connected in parallel can be set and specified over a wide range by the parameters of the gas discharge arresters or thyristors to be used in each case
  • the ignition electrodes of the spark gaps connected in parallel via the aforementioned voltage-dependent switching element, the ignition electrodes are effectively decoupled and the response voltage is adjusted, so that, as already explained, spark gaps connected in parallel are only ignited when necessary at high loads, i.e. high pulse currents.
  • wear and tear on the spark gaps used in the overvoltage protection system can be reduced overall.
  • At least one triggered spark gap is designed for operation in multi-phase networks for each phase, with the ignition electrodes of each spark gap of each phase being connected to one another via a voltage-dependent switching element in such a way that re-ignition of the spark gaps caused by phase shift can be avoided.
  • a triggered spark gap is provided for each phase and the ignition electrodes of the spark gaps are connected to each other via a voltage-dependent switching element.
  • a parallel connection of three triggered spark gaps, each with ignition electrodes connected to one another via a voltage-dependent switching element, can be used for each phase.
  • the spark gaps have two opposing main electrodes and an ignition or trigger electrode.
  • the spark gap FS1 is then ignited when an applied overvoltage exceeds a specific response value.
  • This response value is set via control A and ignition voltage U2. In this case, an arc forms in the spark gap FS1.
  • the voltage of the total arc of the ignited spark gap FS1 is made up of partial voltages U1 and U2.
  • the voltage-dependent switching element C e.g. a gas discharge arrester and the ignition gap U4 of the spark gap FS2
  • the exemplary use of a gas discharge arrester as switching element C with a corresponding response voltage can therefore set the ignition level of the parallel spark gap FS2 within a wide range.
  • the spark gaps FS2 connected in parallel are switched on only as a function of the load.
  • a high-energy lightning impulse current causes an arc with high arc voltage in the spark gap FS1. This in turn causes a high partial arc voltage U2. Only when this exceeds a certain value is the parallel spark gap FS2 ignited via the switching element C. The high-energy lightning impulse current is thus divided between the parallel-connected FS1 and FS2. This basic principle explained above can be extended to further parallel circuits of additional spark gaps.
  • the aim is not to operate the spark gaps in parallel, but separately on the individual phases.
  • the switching elements C decouple the trigger or ignition potentials of the spark gaps FS1, FS2 and FS3.
  • Arc quenching is only successful if the switching gaps in question are able to withstand the returning voltage without re-igniting. At the moment the current passes through zero, the power supply for the arc is interrupted, but the spark gap, especially the arc combustion chamber, is still filled with hot, highly conductive plasma.
  • the spark gaps would re-ignite due to the low response voltage U2L1, U2L2 or U2L3 and the phase shift in the three-phase system.
  • connection of the ignition electrodes of the spark gaps FS1 to FS3 via the voltage-dependent switching elements C reduces the otherwise occurring re-ignition or the risk of re-ignition.
  • the quasi-controlled coupling of the ignition or trigger potentials according to the invention makes it possible to reduce the necessary maximum lightning impulse current strength of the individual spark gaps FS1 to FS3 used, since a large total lightning impulse current is divided evenly among the individual spark gaps in both the single-phase and multi-phase systems. As a result, more cost-effective spark gaps can be used.
  • a parallel connection of three spark gaps FS1 to FS3 with a correspondingly executed coupling via a voltage-dependent switching element can also be used as a group in three-phase networks.
  • each with ignition electrodes (group G1) connected via a voltage-dependent switching element, is connected to L1.
  • Group G2 is connected to L2 and group G3 to L3.
  • the overvoltage protection system according to the invention offers the following advantages compared to the prior art.
  • the separation of the ignition and trigger potentials via a voltage-dependent switching element in a three-phase system prevents one of the spark gaps from re-igniting, which actually has already extinguished its arc had.
  • arcs burn in the corresponding arc chambers.
  • the temporal shift in the phases means that two of the spark gaps are always directly live and the necessary potentials are therefore present, which leads to re-ignition without the teaching according to the invention.
  • the decoupling of the ignition electrodes of the spark gaps via voltage-dependent switching elements ensures that a spark gap only responds when an overvoltage to be discharged actually occurs at it. Unnecessary ignition of spark gaps with the resulting electrode erosion or contamination of the insulation gaps is avoided, so that the service life of the spark gaps used as surge arresters is increased overall.
  • spark gaps have the highest performance when they can be operated and optimized individually, it is advantageous to spatially separate the relevant spark gaps in a parallel connection and to dimension the spark gaps depending on the planned use. For example, high arc voltage is beneficial for high performance in mains spark gaps.
  • spark gaps that are used between N and PE of a network have an extremely low arc voltage. Spark gaps with these inherently different properties can be combined, with such a pre-assembled overvoltage protection system being delivered and being able to be switched on site according to the local feed-in conditions.
  • the manufacturer of the corresponding overvoltage protection systems supplies instructions on how to wire the feed terminals if, for example, a three-phase, two-phase or one-phase network is available. All current paths are supplied by appropriately bridging the terminals.
  • the phases of the surge protection system which is normally arranged directly behind the feed terminals, connected in parallel.
  • the controlled coupling of the ignition or trigger potentials according to the invention makes it possible to reduce the aforementioned maximum lightning current resistance of the individual spark gaps, with a large total lightning impulse current being able to be distributed evenly among the individual spark gaps.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Emergency Protection Circuit Devices (AREA)

Description

Die Erfindung betrifft ein Überspannungsschutzsystem für ein ein- oder mehrphasiges Stromversorgungsnetz, bestehend aus mindestens zwei parallel geschalteten, jeweils getriggerten Funkenstrecken, wobei die Funkenstrecken zwei Hauptelektroden und eine Zündelektrode aufweisen, welche über eine Ansteuerung mit einer der Hauptelektroden in Verbindung steht, gemäß Oberbegriff des Anspruchs 1.The invention relates to an overvoltage protection system for a single-phase or multi-phase power supply network, consisting of at least two spark gaps connected in parallel and each triggered, the spark gaps having two main electrodes and an ignition electrode which is connected to one of the main electrodes via a control, according to the preamble of the claim 1.

Aus der EP 1 461 852 B1 ist ein mehrphasiges Überspannungsschutzsystem für ein mehrphasiges Stromversorgungsnetz mit mindestens zwei Überspannungsschutzelementen vorbekannt. In jedem Leitungszweig des Stromversorgungsnetzes ist gemäß dieser Lösung ein Überspannungsschutzelement angeordnet, wobei die einzelnen Überspannungsschutzelemente eine erste und eine zweite Elektrode sowie eine zwischen den beiden Elektroden wirksame Funkenstrecke aufweisen. Alle vorgenannten Überspannungsschutzelemente sind in einem gemeinsamen Gehäuse angeordnet.From the EP 1 461 852 B1 a multiphase overvoltage protection system for a multiphase power supply system with at least two overvoltage protection elements is already known. According to this solution, an overvoltage protection element is arranged in each line branch of the power supply network, with the individual overvoltage protection elements having a first and a second electrode and a spark gap acting between the two electrodes. All of the aforementioned overvoltage protection elements are arranged in a common housing.

Die einzelnen Überspannungsschutzelemente sind derart miteinander gekoppelt, dass beim Zünden eines Überspannungsschutzelements alle anderen Überspannungsschutzelemente gleichzeitig gezündet werden. Diesbezüglich sind die Elektroden der einzelnen Überspannungsschutzelemente so zueinander angeordnet, dass beim Zünden der Funkenstrecke eines Überspannungsschutzelements durch das dann vorhandene Plasma die Durchschlag-Funkenstrecke der anderen Überspannungsschutzelemente ebenfalls zündet. Die einzelnen Elektroden sind koaxial zueinander befindlich.The individual overvoltage protection elements are coupled to one another in such a way that when one overvoltage protection element is fired, all the other overvoltage protection elements are fired at the same time. In this regard, the electrodes of the individual overvoltage protection elements are arranged relative to one another such that when the spark gap of one overvoltage protection element is ignited by the plasma then present, the breakdown spark gap of the other overvoltage protection elements also ignites. The individual electrodes are located coaxially with one another.

Weiterhin ist eine zentrale Zündhilfe vorgesehen, mit der alle Überspannungsschutzelemente verbunden sind.Furthermore, a central ignition aid is provided to which all overvoltage protection elements are connected.

Die zentrale Zündhilfe ist durch eine zentrale Zündelektrode und eine mit der Zündelektrode verbundene, zentrale Zündschaltung realisiert.The central ignition aid is realized by a central ignition electrode and a central ignition circuit connected to the ignition electrode.

Mit der vorbekannten Lösung soll der notwendige Schutzpegel zwischen allen Leitungszweigen sichergestellt sein und eine einfache konstruktive Lösung geschaffen werden.With the previously known solution, the necessary protection level between all line branches should be ensured and a simple constructive solution should be created.

Durch den Aufbau aller Funkenstrecken in einem gemeinsamen Gehäuse werden grundsätzlich alle Funkenstrecken gezündet, und zwar auch dann, wenn an parallelen Phasen an sich keine Überspannung auftritt. Die Leistungsfähigkeit der einzelnen Schutzpfade ist daher stark abgesenkt. Die Zündung aller Funkenstrecken erfolgt zudem relativ langsam, da das Lichtbogenplasma in der gemeinsamen Kapselung diese vollständig füllen muss, bevor die entsprechenden Pfade der Funkenstrecken ansprechen. Bei einer sogenannten 3+1-Verschaltung kann daher kein niedriger Schutzpegel sichergestellt werden.Due to the construction of all spark gaps in a common housing, all spark gaps are ignited, even if no overvoltage occurs on parallel phases. The performance of the individual protection paths is therefore greatly reduced. In addition, the ignition of all spark gaps takes place relatively slowly, since the arc plasma in the common encapsulation has to fill it completely before the corresponding paths of the spark gaps respond. With a so-called 3+1 connection, therefore, a low protection level cannot be ensured.

Aus der DE 404 870 ist eine Anordnung von Funkenstrecken, dort als Luftleerspannungssicherungen bezeichnet, vorbekannt, wobei die Funkenstrecken Hilfselektroden aufweisen.From the DE 404 870 an arrangement of spark gaps, referred to there as air no-load fuses, is already known, the spark gaps having auxiliary electrodes.

Die Hilfselektroden sind direkt oder indirekt miteinander verbunden, so dass eine zugeführte Spannung eine zweite, parallel geschaltete Funkenstrecke zum Ansprechen bringt. Auch dort gilt es, die parallele Ableiteranordnung gleichzeitig zu zünden.The auxiliary electrodes are connected to one another directly or indirectly, so that a voltage supplied causes a second, parallel-connected spark gap to respond. Here, too, it is important to fire the parallel arrester arrangement at the same time.

Die Ableiter selbst sind entweder ungetriggert ausgeführt oder besitzen im Ableitzweig eine Induktivität, die einen Impuls für den parallel geschalteten Ableiter generiert. Die entsprechende Induktivität, ausgebildet als Spule, muss entsprechend stoßstromfest ausgeführt werden.The arresters themselves are either untriggered or have an inductance in the discharge branch that generates an impulse for the arrester connected in parallel. The corresponding inductance, designed as a coil, must be designed to withstand surge currents.

Hierdurch ergibt sich der Nachteil der festen Potentialanbindung der Hilfselektroden sowie die notwendige Stoßstromfestigkeit der eingesetzten Spulen bzw. Induktivitäten. Diese Induktivitäten erhöhen darüber hinaus den Spannungsabfall über dem Ableiter. Bei entsprechender direkter Potentialanbindung zünden die Ableiter gemäß DE 404 870 grundsätzlich gleichzeitig, und zwar unabhängig von der Höhe der jeweils anliegenden Überspannung.This results in the disadvantage of the fixed potential connection of the auxiliary electrodes and the necessary surge current resistance of the coils or inductances used. These inductances also increase the voltage drop across the arrester. With appropriate direct The arresters fire according to the potential connection DE 404 870 basically at the same time, regardless of the magnitude of the current overvoltage.

Grundsätzlich beschränken die maximalen Baugrößen, die Materialbelastbarkeiten sowie die speziellen Anforderungsprofile die Stoßstrom- und Blitzstrombelastbarkeiten von Funkenstrecken. Insofern lässt sich durch die Parallelschaltung von Funkenstrecken das Ableitvermögen erhöhen.In principle, the maximum sizes, the material loading capacities and the special requirement profiles restrict the surge current and lightning current loading capacities of spark gaps. In this respect, the discharge capacity can be increased by connecting spark gaps in parallel.

Werden getriggerte Funkenstrecken parallel geschalten, wird eine erste Funkenstrecke gezündet, wenn eine Überspannung einen bestimmten Ansprechwert überschreitet. Der Ansprechwert wird über eine Ansteuerung im Zündhilfskreis und bezogen auf eine durch den Abstand einer Zündelektrode zur Hauptelektrode vorgegebenen Zündspannung eingestellt. Bei Zündung bildet sich in der betreffenden Funkenstrecke ein Lichtbogen aus. Die Ansteuerung über die Zündelektrode wird in diesem Fall stromlos.If triggered spark gaps are connected in parallel, a first spark gap is ignited when an overvoltage exceeds a specific response value. The response value is set via a control in the auxiliary ignition circuit and is based on an ignition voltage specified by the distance between an ignition electrode and the main electrode. When ignited, an arc forms in the relevant spark gap. In this case, the activation via the ignition electrode is de-energized.

Eine parallel geschaltete Funkenstrecke wird erst dann gezündet, wenn die Spannung des Gesamtlichtbogens der zunächst betrachteten primären Funkenstrecke die eingestellte Ansprechspannung der zweiten Funkenstrecke erreicht.A spark gap connected in parallel is only ignited when the voltage of the total arc of the primary spark gap considered first reaches the set response voltage of the second spark gap.

Eine ausreichend hohe Spannung des Gesamtlichtbogens kann durch verschiedene Maßnahmen erreicht werden. Diesbezüglich kommen entweder spezielle Funkenstrecken mit sehr hoher Bogenspannung zum Einsatz oder es muss durch eine Induktivität im Ableiterzweig eine Spannung erzeugt werden, die sich zur Bogenspannung der Funkenstrecke addiert und somit die notwendige Gesamtspannung zum Zünden der zweiten Funkenstrecke erreicht.A sufficiently high voltage of the overall arc can be achieved by various measures. In this regard, either special spark gaps with a very high arc voltage are used or a voltage must be generated by an inductance in the arrester branch, which is added to the arc voltage of the spark gap and thus achieves the total voltage required to ignite the second spark gap.

Wird wie im eingangs geschilderten Stand der Technik eine Verbindung zwischen den Zünd- und Hilfselektroden vorgenommen, ist es möglich, beide Funkenstrecken auch ohne Verwendung spezieller Funkenstrecken mit hoher Bogenspannung zu zünden. Wird eine erste Funkenstrecke wie geschildert gezündet, zündet auch die zweite, parallel geschaltete Funkenstrecke sofort durch. Aufgrund der Verbindung der beiden Zünd- und Hilfselektroden muss die Ansteuerung der zweiten Funkenstrecke nicht separat aktiviert werden. Unabhängig von der Impulsstromstärke zünden alle parallel geschalteten Funkenstrecken gleichzeitig, so dass auch eine Alterung beider Funkenstrecken eintritt.If, as in the prior art described at the outset, a connection is made between the ignition and auxiliary electrodes, it is possible to ignite both spark gaps with a high arc voltage without using special spark gaps. If a first spark gap is ignited as described, the second, connected in parallel, will also ignite Spark gap through immediately. Due to the connection of the two ignition and auxiliary electrodes, the activation of the second spark gap does not have to be activated separately. Irrespective of the pulse current intensity, all spark gaps connected in parallel ignite simultaneously, so that both spark gaps also age.

Aus dem Vorgenannten ist es daher Aufgabe der Erfindung, ein weiterententwickeltes Überspannungsschutzsystem für ein- oder mehrphasige Stromversorgungsnetze anzugeben, welches aus mindestens zwei parallel geschalteten, jeweils getriggerten Funkenstrecken besteht, wobei die Funkenstrecken zwei Hauptelektroden und eine Zündelektrode aufweisen. Gemäß der Aufgabenstellung der Erfindung soll eine Zündung der parallel geschalteten Funkenstrecke(n) nur im Bedarfsfall bei hohen Belastungen erfolgen. Damit soll eine unerwünschte Alterung der ansonsten zwangsweise mitgezündeten Funkenstrecken wirksam verhindert werden.From the above, it is therefore the object of the invention to specify a further developed overvoltage protection system for single-phase or multi-phase power supply networks, which consists of at least two spark gaps connected in parallel, each triggered, the spark gaps having two main electrodes and one ignition electrode. According to the object of the invention, the spark gap(s) connected in parallel should only be ignited if necessary at high loads. This is intended to effectively prevent undesired aging of the spark gaps that would otherwise have to be ignited at the same time.

Die Lösung der Aufgabe der Erfindung erfolgt mit der Merkmalskombination des Patentanspruchs 1, 3 bzw. 4.The object of the invention is achieved with the combination of features of patent claims 1, 3 and 4.

Erfindungsgemäß wird ein gezieltes, bedarfsweises Zuschalten einer weiteren der parallel geschalteten Funkenstrecken dadurch erreicht, dass die Zündelektroden der Funkenstrecken über ein spannungsabhängiges Schaltelement verbunden sind.According to the invention, a targeted switching on of another of the spark gaps connected in parallel is achieved in that the ignition electrodes of the spark gaps are connected via a voltage-dependent switching element.

Hierdurch zündet die weitere Funkenstrecke nur dann, wenn der Ansprechwert aus der Reihenschaltung aus spannungsabhängigem Schaltelement und der Zündstrecke der Zündelektrode der weiteren Funkenstrecke erreicht ist.As a result, the additional spark gap only ignites when the response value from the series connection of the voltage-dependent switching element and the ignition gap of the ignition electrode of the additional spark gap is reached.

Als spannungsabhängiges Schaltelement kann insbesondere ein Gasentladungsableiter oder ein Thyristor eingesetzt werden.In particular, a gas discharge arrester or a thyristor can be used as the voltage-dependent switching element.

Durch die Parameter der jeweils einzusetzenden Gasentladungsableiter oder Thyristoren, ist das Ansprechen der weiteren, parallel geschalteten Funkenstrecke in einem weiten Bereich einstell- und vorgebbar Durch die Verbindung der Zündelektroden der parallel geschalteten Funkenstrecken über das erwähnte spannungsabhängige Schaltelement findet quasi eine Entkopplung der Zündelektroden und eine Einstellung der Ansprechspannung statt, so dass, wie bereits dargelegt, parallel geschaltete Funkenstrecke nur im Bedarfsfall bei hohen Belastungen, d.h. hohen Impulsströmen gezündet werden. Dadurch kann der Verschleiß der Funkenstrecken, die im Überspannungsschutzsystem eingesetzt werden, insgesamt reduziert werden.The response of the other spark gaps connected in parallel can be set and specified over a wide range by the parameters of the gas discharge arresters or thyristors to be used in each case By connecting the ignition electrodes of the spark gaps connected in parallel via the aforementioned voltage-dependent switching element, the ignition electrodes are effectively decoupled and the response voltage is adjusted, so that, as already explained, spark gaps connected in parallel are only ignited when necessary at high loads, i.e. high pulse currents. As a result, wear and tear on the spark gaps used in the overvoltage protection system can be reduced overall.

In Weiterbildung der Erfindung ist für einen Betrieb in mehrphasigen Netzen für jede Phase mindestens eine getriggerte Funkenstrecke ausgebildet, wobei die Zündelektroden jeder Funkenstrecke jeder Phase untereinander über ein spannungsabhängiges Schaltelement verbunden sind, derart, dass phasenverschiebungsbedingte Wiederzündungen der Funkenstrecken vermieden werden können.In a further development of the invention, at least one triggered spark gap is designed for operation in multi-phase networks for each phase, with the ignition electrodes of each spark gap of each phase being connected to one another via a voltage-dependent switching element in such a way that re-ignition of the spark gaps caused by phase shift can be avoided.

Bei einem dreiphasigen Netz ist für jede Phase eine getriggerte Funkenstrecke vorgesehen und es sind die Zündelektroden der Funkenstrecken untereinander über je ein spannungsabhängiges Schaltelement verbunden.In a three-phase network, a triggered spark gap is provided for each phase and the ignition electrodes of the spark gaps are connected to each other via a voltage-dependent switching element.

Zur wahlweisen Erhöhung des Gesamtableitvermögens ist für jede Phase eine Parallelschaltung von drei getriggerten Funkenstrecken mit jeweils untereinander über je ein spannungsabhängiges Schaltelement verbundenen Zündelektroden einsetzbar.To optionally increase the total discharge capacity, a parallel connection of three triggered spark gaps, each with ignition electrodes connected to one another via a voltage-dependent switching element, can be used for each phase.

Die Erfindung sollnachstehend anhand von Ausführungsbeispielen sowie von Figuren näher erläutert werden.The invention will be explained in more detail below using exemplary embodiments and figures.

Hierbei zeigen:

Fig. 1
ein Prinzipschaltbild der Parallelschaltung von zwei Funkenstrecken FS1 und FS2 mit Zündelektroden, welche durch ein Steuerelement C, z.B. einen Gasentladungsableiter oder einen Thyristor, verbunden sind;
Fig. 2
eine Darstellung einer Lösung eines Überspannungsschutzsystems für den Einsatz im Drehstromnetz, ebenfalls unter Nutzung der Verbindung der Zündelektroden der Funkenstrecken über spannungsabhängige Schaltelemente C, und
Fig. 3
ein Prinzipschaltbild der Anordnung von Funkenstrecken gemäß Fig. 2 als gruppenweise Parallelschaltung, wobei jede Gruppe mit einer der Phasen L1, L2 oder L3 verbunden ist.
Here show:
1
a basic circuit diagram of the parallel connection of two spark gaps FS1 and FS2 with ignition electrodes, which are connected by a control element C, for example a gas discharge tube or a thyristor;
2
a representation of a solution for an overvoltage protection system for use in a three-phase network, also using the connection of the ignition electrodes of the spark gaps via voltage-dependent switching elements C, and
3
a schematic diagram of the arrangement of spark gaps according to 2 as a parallel connection in groups, each group being connected to one of the phases L1, L2 or L3.

Gemäß der Darstellung nach Fig. 1 wird zunächst von zwei parallel geschalteten Funkenstrecke FS1 und FS2 ausgegangen.According to the illustration 1 it is initially assumed that two spark gaps FS1 and FS2 are connected in parallel.

Die Funkenstrecken weisen zwei gegenüberliegende Hauptelektroden sowie eine Zünd- bzw. Triggerelektrode auf.The spark gaps have two opposing main electrodes and an ignition or trigger electrode.

Die Funkenstrecke FS1 wird dann gezündet, wenn eine anliegende Überspannung einen bestimmten Ansprechwert überschreitet.The spark gap FS1 is then ignited when an applied overvoltage exceeds a specific response value.

Dieser Ansprechwert wird über die Ansteuerung A und die Zündspannung U2 eingestellt. In diesem Fall bildet sich in der Funkenstrecke FS1 ein Lichtbogen aus.This response value is set via control A and ignition voltage U2. In this case, an arc forms in the spark gap FS1.

Die Spannung des Gesamtlichtbogens der durchgezündeten Funkenstrecke FS1 setzt sich aus Teilspannungen U1 und U2 zusammen.The voltage of the total arc of the ignited spark gap FS1 is made up of partial voltages U1 and U2.

Die Funkenstrecke FS2 mit dort vorgesehener Ansteuerung B zündet erst dann durch, wenn die Spannung U2 an der ersten Funkenstrecke FS1 so hoch ist, dass der Ansprechwert der Reihenschaltung aus dem spannungsabhängigen Schaltelement C, z.B. einem Gasentladungsableiter und der Zündstrecke U4 der Funkenstrecke FS2, die z.B. als Gleitstrecke ausgebildet sein kann, erreicht wurde.The spark gap FS2 with control B provided there only ignites when the voltage U2 at the first spark gap FS1 is so high that the response value of the series connection of the voltage-dependent switching element C, e.g. a gas discharge arrester and the ignition gap U4 of the spark gap FS2, which e.g. can be designed as a slide, has been reached.

Durch den beispielhaften Einsatz eines Gasentladungsableiters als Schaltelement C mit entsprechender Ansprechspannung lässt sich daher der Zündpegel der parallelen Funkenstrecke FS2 in weitem Rahmen einstellen.The exemplary use of a gas discharge arrester as switching element C with a corresponding response voltage can therefore set the ignition level of the parallel spark gap FS2 within a wide range.

Durch Einsatz des Schaltelements C werden die parallel geschalteten Funkenstrecke FS2 lediglich belastungsabhängig zugeschalten.By using the switching element C, the spark gaps FS2 connected in parallel are switched on only as a function of the load.

Ein energiereicher Blitzstoßstrom bewirkt einen Lichtbogen mit hoher Lichtbogenspannung in der Funkenstrecke FS1. Dies wiederum bewirkt eine hohe Lichtbogenteilspannung U2. Erst dann, wenn diese einen bestimmten Wert übersteigt, wird über das Schaltelement C die parallele Funkenstrecke FS2 gezündet. Damit teilt sich der energiereiche Blitzstoßstrom auf die parallel geschalteten FS1 und FS2 auf. Dieses vorstehend erläuterte Grundprinzip ist auf weitere Parallelschaltungen zusätzlicher Funkenstrecken erweiterbar.A high-energy lightning impulse current causes an arc with high arc voltage in the spark gap FS1. This in turn causes a high partial arc voltage U2. Only when this exceeds a certain value is the parallel spark gap FS2 ignited via the switching element C. The high-energy lightning impulse current is thus divided between the parallel-connected FS1 and FS2. This basic principle explained above can be extended to further parallel circuits of additional spark gaps.

Bei der Prinzipdarstellung nach Fig. 2 wird von einer Anordnung mehrerer Funkenstrecken FS1 bis FS3 für ein Drehstromnetz ausgegangen.In the schematic diagram 2 an arrangement of several spark gaps FS1 to FS3 for a three-phase network is assumed.

Ziel ist es, die Funkenstrecken nicht parallel zu betreiben, sondern getrennt an den einzelnen Phasen.The aim is not to operate the spark gaps in parallel, but separately on the individual phases.

Auch bei dem Ausführungsbeispiel nach Fig. 2 erfolgt durch die Schaltelemente C eine Entkopplung der Trigger- bzw. Zündpotentiale der Funkenstrecken FS1, FS2 und FS3.Also in the embodiment according to 2 the switching elements C decouple the trigger or ignition potentials of the spark gaps FS1, FS2 and FS3.

Ohne die erfindungsgemäße Entkopplung der Triggerpotentiale durch das spannungsabhängige Schaltelement würden mit hoher Wahrscheinlichkeit alle Funkenstrecken im Falle eines Überspannungsereignisses gezündet.Without the inventive decoupling of the trigger potentials by the voltage-dependent switching element, all spark gaps would be ignited in the event of an overvoltage event with a high degree of probability.

Eine Lichtbogenlöschung ist nur dann erfolgreich vollzogen, wenn die betreffenden Schaltstrecken der wiederkehrenden Spannung ohne Wiederzündung standzuhalten vermögen. Im Augenblick des Stromnulldurchgangs ist die Leistungszufuhr für den Lichtbogen zwar unterbrochen, allerdings ist die Funkenstrecke, insbesondere der Lichtbogenbrennraum, noch immer mit heißem, hochleitfähigem Plasma gefüllt.Arc quenching is only successful if the switching gaps in question are able to withstand the returning voltage without re-igniting. At the moment the current passes through zero, the power supply for the arc is interrupted, but the spark gap, especially the arc combustion chamber, is still filled with hot, highly conductive plasma.

Würde man die Zünd- bzw. Triggerpotentiale nicht entkoppeln, käme es aufgrund der niedrigen Ansprechspannung U2L1, U2L2 oder U2L3 und der im Drehstromnetz vorhandenen Phasenverschiebung zu Wiederzündungen der jeweiligen Funkenstrecken.If the ignition or trigger potentials were not decoupled, the spark gaps would re-ignite due to the low response voltage U2L1, U2L2 or U2L3 and the phase shift in the three-phase system.

Durch die in der Figur gezeigte Verbindung der Zündelektroden der Funkenstrecken FS1 bis FS3 über die spannungsabhängigen Schaltelemente C wird das ansonsten auftretende Wiederzünden bzw. die Gefahr eines Wiederzündens reduziert.The connection of the ignition electrodes of the spark gaps FS1 to FS3 via the voltage-dependent switching elements C, as shown in the figure, reduces the otherwise occurring re-ignition or the risk of re-ignition.

Die erfindungsgemäße quasi gesteuerte Kopplung der Zünd- oder Triggerpotentiale schafft die Möglichkeit, die notwendige maximale Blitzstoßstromfestigkeit der eingesetzten einzelnen Funkenstrecken FS1 bis FS3 zu reduzieren, da ein großer Gesamtblitzstoßstrom sich sowohl im Einphasen- als auch Mehrphasensystem gleichmäßig auf die einzelnen Funkenstrecken aufteilt. Hierdurch können kostengünstigere Funkenstrecken zur Anwendung kommen.The quasi-controlled coupling of the ignition or trigger potentials according to the invention makes it possible to reduce the necessary maximum lightning impulse current strength of the individual spark gaps FS1 to FS3 used, since a large total lightning impulse current is divided evenly among the individual spark gaps in both the single-phase and multi-phase systems. As a result, more cost-effective spark gaps can be used.

Neben der Möglichkeit, ein mehrpolig ausgeführtes Überspannungsschutzsystem einpolig zu betreiben, damit die parallel geschalteten Funkenstrecken sehr hohe Blitzstoßströme ableiten können, kann, wie in der Fig. 3 dargestellt, auch eine Parallelschaltung von drei Funkenstrecken FS1 bis FS3 mit entsprechend ausgeführter Kopplung über ein spannungsabhängiges Schaltelement als Gruppe zum Einsatz in dreiphasigen Netzen kommen.In addition to the possibility of operating a multi-pole overvoltage protection system with one pole, so that the spark gaps connected in parallel can dissipate very high lightning impulse currents, as shown in 3 shown, a parallel connection of three spark gaps FS1 to FS3 with a correspondingly executed coupling via a voltage-dependent switching element can also be used as a group in three-phase networks.

Gemäß der Darstellung nach Fig. 3 liegt eine Gruppe mit drei parallel geschalteten Funkenstrecken mit jeweils über ein spannungsabhängiges Schaltelement verbundenen Zündelektroden (Gruppe G1) an L1. Die Gruppe G2 liegt an L2 und die Gruppe G3 an L3.According to the illustration 3 a group with three spark gaps connected in parallel, each with ignition electrodes (group G1) connected via a voltage-dependent switching element, is connected to L1. Group G2 is connected to L2 and group G3 to L3.

Das erfindungsgemäße Überspannungsschutzsystem bietet im Vergleich zum Stand der Technik zusammengefasst folgende Vorteile. Die Trennung der Zünd- und Triggerpotentiale über ein spannungsabhängiges Schaltelement in einem Dreiphasensystem vermeidet ein Wiederzünden einer der Funkenstrecken, die eigentlich ihren Lichtbogen bereits gelöscht hatte. Grundsätzlich brennen bei gleichzeitiger Zündung aller Funkenstrecken in einem Dreiphasensystem Lichtbögen in den entsprechenden Lichtbogenkammern. Die zeitliche Verschiebung der Phasen bewirkt, dass immer zwei der Funkenstrecken direkt unter Spannung stehen und somit die notwendigen Potentiale vorhanden sind, was ohne die erfindungsgemäße Lehre zu einem Wiederzünden führt.The overvoltage protection system according to the invention offers the following advantages compared to the prior art. The separation of the ignition and trigger potentials via a voltage-dependent switching element in a three-phase system prevents one of the spark gaps from re-igniting, which actually has already extinguished its arc had. In principle, when all spark gaps are ignited simultaneously in a three-phase system, arcs burn in the corresponding arc chambers. The temporal shift in the phases means that two of the spark gaps are always directly live and the necessary potentials are therefore present, which leads to re-ignition without the teaching according to the invention.

Durch das Entkoppeln der Zündelektroden der Funkenstrecken über spannungsabhängige Schaltelemente ist sichergestellt, dass eine Funkenstrecke nur dann anspricht, wenn auch tatsächlich an ihr eine abzuleitende Überspannung auftritt. Ein unnötiges Zünden von Funkenstrecken mit sich daraus ergebendem Elektrodenabbrand bzw. Verschmutzung der Isolationsstrecken, wird vermieden, so dass sich insgesamt die Lebensdauer der eingesetzten Funkenstrecken als Überspannungsableiter erhöht.The decoupling of the ignition electrodes of the spark gaps via voltage-dependent switching elements ensures that a spark gap only responds when an overvoltage to be discharged actually occurs at it. Unnecessary ignition of spark gaps with the resulting electrode erosion or contamination of the insulation gaps is avoided, so that the service life of the spark gaps used as surge arresters is increased overall.

Da Funkenstrecken die höchste Leistungsfähigkeit dann aufweisen, wenn sie einzeln betrieben und optimiert werden können, ist es von Vorteil, in einer Parallelschaltung die entsprechenden Funkenstrecken räumlich zu trennen und die Dimensionierung der Funkenstrecken je nach geplantem Einsatz vorzunehmen. So ist beispielsweise eine hohe Lichtbogenspannung für eine hohe Leistungsfähigkeit bei Netzfunkenstrecken vorteilhaft. Funkenstrecken, die zwischen N und PE eines Netzes eingesetzt werden, weisen hingegen eine extrem kleine Lichtbogenspannung auf. Funkenstrecken mit diesen an sich unterschiedlichen Eigenschaften können kombiniert werden, wobei ein derartiges vorkonfektioniertes Überspannungsschutzsystem ausgeliefert und vor Ort entsprechend den örtlichen Einspeisegegebenheiten verschaltet werden kann. Der Hersteller der entsprechenden Überspannungsschutzsysteme liefert eine diesbezügliche Anleitung mit, wie die Einspeiseklemmen zu verdrahten sind, wenn z.B. ein Drei-Phasen-, ein Zwei-Phasen- oder ein Ein-Phasennetz vorhanden ist. Durch entsprechendes Brücken der Klemmen werden alle Strompfade versorgt.Since spark gaps have the highest performance when they can be operated and optimized individually, it is advantageous to spatially separate the relevant spark gaps in a parallel connection and to dimension the spark gaps depending on the planned use. For example, high arc voltage is beneficial for high performance in mains spark gaps. On the other hand, spark gaps that are used between N and PE of a network have an extremely low arc voltage. Spark gaps with these inherently different properties can be combined, with such a pre-assembled overvoltage protection system being delivered and being able to be switched on site according to the local feed-in conditions. The manufacturer of the corresponding overvoltage protection systems supplies instructions on how to wire the feed terminals if, for example, a three-phase, two-phase or one-phase network is available. All current paths are supplied by appropriately bridging the terminals.

Durch Brücken der Phasen durch die Monteure vor Ort in Ein- oder Zwei-Phasennetzen werden die Phasen des Überspannungsschutzsystems, welches normalerweise direkt hinter den Einspeiseklemmen angeordnet wird, parallel geschalten. Die erfindungsgemäße gesteuerte Kopplung der Zünd- bzw. Triggerpotentiale schafft die Möglichkeit, die erwähnte maximale Blitzstromfestigkeit der einzelnen Funkenstrecken zu reduzieren, wobei sich ein großer Gesamtblitzstoßstrom gleichmäßig auf die einzelnen Funkenstrecken aufteilen kann.The phases of the surge protection system, which is normally arranged directly behind the feed terminals, connected in parallel. The controlled coupling of the ignition or trigger potentials according to the invention makes it possible to reduce the aforementioned maximum lightning current resistance of the individual spark gaps, with a large total lightning impulse current being able to be distributed evenly among the individual spark gaps.

Claims (4)

  1. Overvoltage protection system for a single or multi-phase power supply network, being embodied from two parallel-connected respectively triggered spark gaps (FS1; FS2), wherein the spark gaps (FS1, FS2) in each case comprise two main electrodes and an ignition electrode that is connected to one of the main electrodes via a respective actuation (A; B), characterised in that
    for a targeted switching as required of a further spark gap (FS2) of the two parallel-connected spark gaps (FS1; FS2) the ignition electrodes of the spark gaps (FS1; FS2) are connected via a voltage-dependent switching element (C) in such a manner that the further spark gap (FS2) then ignites if the response value from the series circuit of the voltage-dependent switching element (C) and the ignition gap (U4) of the ignition electrode of the further spark gap (FS2) is achieved.
  2. Overvoltage protection system according to claim 1, characterised in that the voltage-dependent switching element (C) is embodied as a gas discharge tube or thyristor.
  3. Overvoltage protection system for a three-phase power supply network having three triggered spark gaps (FS1 to FS3), wherein the spark gaps (FS1 to FS3) in each case comprise two main electrodes and an ignition electrode that are connected to one of the main electrodes via a respective actuation (A; B; D),
    characterised in that
    a triggered spark gap (FS1 to FS3) is provided for each phase and the ignition electrodes of the spark gaps (FS1 to FS3) are connected to one another via a respective voltage-dependent switching element (C) in such a manner that phase shift-induced re-ignition is avoided.
  4. Overvoltage protection system for a single or multi-phase power supply network having triggered spark gaps for each phase, wherein the spark gaps (FS1 to FS3) in each case comprise two main electrodes and an ignition electrode that is connected to one of the main electrodes via a respective actuation (A; B; D),
    characterised in that
    for at least one phase a group (G1; G2; G3) is used having a parallel circuit of three triggered spark gaps having ignition electrodes that are connected in each case to one another via a respective voltage-dependent switching element (C).
EP17725236.8A 2016-05-31 2017-05-23 Over-voltage protection system for a single or multi-phase current supply grid Active EP3465848B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016006668.7A DE102016006668B4 (en) 2016-05-31 2016-05-31 Surge protection system for a single-, three- or multi-phase power supply network
PCT/EP2017/062324 WO2017207328A1 (en) 2016-05-31 2017-05-23 Over-voltage protection system for a single or multi-phase current supply grid

Publications (2)

Publication Number Publication Date
EP3465848A1 EP3465848A1 (en) 2019-04-10
EP3465848B1 true EP3465848B1 (en) 2023-08-30

Family

ID=58765836

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17725236.8A Active EP3465848B1 (en) 2016-05-31 2017-05-23 Over-voltage protection system for a single or multi-phase current supply grid

Country Status (4)

Country Link
EP (1) EP3465848B1 (en)
CN (1) CN109196740B (en)
DE (1) DE102016006668B4 (en)
WO (1) WO2017207328A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11482394B2 (en) 2020-01-10 2022-10-25 General Electric Technology Gmbh Bidirectional gas discharge tube

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE404870C (en) 1924-02-12 1924-10-25 Aeg Arrangement of air voltage fuses with auxiliary electrodes
DE10164232A1 (en) * 2001-12-31 2003-07-17 Phoenix Contact Gmbh & Co Multipole surge protection system and method for the safe operation of a multipole surge protection system
FR2864711B1 (en) * 2003-12-30 2006-04-21 Soule Protection Surtensions OVERVOLTAGE PROTECTION DEVICE WITH SIMULTANEOUS TRIGGERED PARALLEL ECLATORS
FR2874288B1 (en) 2004-08-13 2006-10-27 Soule Prot Surtensions Sa DEVICE FOR PROTECTING AGAINST PARALLEL INFLATABLE OVERVOLTAGES
US7787230B2 (en) 2005-09-14 2010-08-31 University of Wirwatersrand, Johannesburg Spark gap protection device
DE102013225835B4 (en) * 2013-12-13 2022-10-06 Phoenix Contact Gmbh & Co. Kg series spark gap

Also Published As

Publication number Publication date
CN109196740A (en) 2019-01-11
EP3465848A1 (en) 2019-04-10
DE102016006668B4 (en) 2018-09-27
CN109196740B (en) 2020-09-22
DE102016006668A1 (en) 2017-11-30
WO2017207328A1 (en) 2017-12-07

Similar Documents

Publication Publication Date Title
EP1961096B1 (en) Overvoltage protection device for use in direct-current power supply systems, in particular for photovoltaic systems
EP2686928B1 (en) Electrical apparatus for the short-circuit protection of a three-phase load in a three-phase system
EP3061111B1 (en) Apparatus and method for switching a direct current
DE102012112480A1 (en) Encapsulated, lightning current carrying and sequence current limiting overvoltage protection device with at least one spark gap
EP3304671A1 (en) Overvoltage protection circuit
EP3178104A1 (en) Fuse for a device to be protected
EP2989700B1 (en) Circuit arrangement for surge protection in dc supply circuits
EP3465848B1 (en) Over-voltage protection system for a single or multi-phase current supply grid
DE102013225835B4 (en) series spark gap
EP2929627A1 (en) Dc voltage switch for switching a short interruption
DE1922814A1 (en) Spark gap arrangement for flashover protection
DE102020121589A1 (en) Surge protection arrangement
EP4073892B1 (en) Device for dissipating surges and use thereof
DE102004016456A1 (en) Electric power generator has electric power switch connected to parallel circuits of stator, for connecting each phase of generator to electric power network
DE2407168A1 (en) POWER SWITCHING DEVICE
BE1026431B1 (en) Spark gap with ignition circuit and spark gap arrangement
DE4101963C1 (en) Protective circuit counteracting mains interference pulses - has compensating capacitor with voltage rising at most to half max. interference voltage
WO2015078750A1 (en) Switching device and switch-off method for operating a switching device
WO2022157378A1 (en) Overvoltage protection device and use of an overvoltage protection device
DE102020112556A1 (en) Circuit arrangement for overvoltage protection with a triggerable, non-blowing spark gap
DD157138A1 (en) ENDING DEVICE FOR ARC FLASH PLASMATRONS AND LONG LIGHT BOLTS WITH RELATIVELY LARGE ELECTRODE DEFAULT

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20181112

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DEHN SE + CO KG

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210201

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DEHN SE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230426

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017015304

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230906

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231130

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231230

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231201

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240102

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830