EP3456984B1 - Ventil zum schalten eines fluidstroms - Google Patents

Ventil zum schalten eines fluidstroms Download PDF

Info

Publication number
EP3456984B1
EP3456984B1 EP18194426.5A EP18194426A EP3456984B1 EP 3456984 B1 EP3456984 B1 EP 3456984B1 EP 18194426 A EP18194426 A EP 18194426A EP 3456984 B1 EP3456984 B1 EP 3456984B1
Authority
EP
European Patent Office
Prior art keywords
valve
control
units
flow
flow direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18194426.5A
Other languages
English (en)
French (fr)
Other versions
EP3456984A1 (de
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
A&K Mueller GmbH and Co KG
Original Assignee
A&K Mueller GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by A&K Mueller GmbH and Co KG filed Critical A&K Mueller GmbH and Co KG
Publication of EP3456984A1 publication Critical patent/EP3456984A1/de
Application granted granted Critical
Publication of EP3456984B1 publication Critical patent/EP3456984B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/04Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed
    • F15B11/042Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed by means in the feed line, i.e. "meter in"
    • F15B11/0426Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed by means in the feed line, i.e. "meter in" by controlling the number of pumps or parallel valves switched on
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/405Flow control characterised by the type of flow control means or valve
    • F15B2211/40507Flow control characterised by the type of flow control means or valve with constant throttles or orifices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/405Flow control characterised by the type of flow control means or valve
    • F15B2211/40515Flow control characterised by the type of flow control means or valve with variable throttles or orifices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/405Flow control characterised by the type of flow control means or valve
    • F15B2211/40576Assemblies of multiple valves
    • F15B2211/40592Assemblies of multiple valves with multiple valves in parallel flow paths
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/41Flow control characterised by the positions of the valve element
    • F15B2211/411Flow control characterised by the positions of the valve element the positions being discrete

Definitions

  • the present invention relates to a valve for switching a fluid flow with a valve inlet and a valve outlet, through which the fluid flow can flow axially along a main flow direction.
  • Valves are used to switch fluid flows, which can be liquids and gases.
  • the fluid flow enters the valve via a valve inlet.
  • the valve In a closed switching position, the valve is impermeable and blocks the fluid flow. The fluid cannot escape from the valve again. In an open switching position, however, the fluid flow is released. The valve makes this possible Fluid flow exits the valve again through valve outlets. In this way, the fluid flow can be switched by changing the switching position of the valve, ie it can be released or blocked by the valve.
  • Valves that are used along a fluid line, such as a pipeline, have a valve inlet and a valve outlet through which they are connected to the fluid line.
  • the valve inlet and the valve outlet can be arranged relative to one another in such a way that the fluid flow flows through the valve axially along a main flow direction.
  • a valve according to the preamble of claim 1 is off US 4,019,533 A known.
  • the object of the present invention is therefore to provide a compact valve with which different quantities of fluid can be switched.
  • each valve unit can release or block a subset of the fluid flow. If all valve units assume an open switching position, the valve is fully opened and the fluid flow can be released as a whole. If all valve units assume a closed switching position, the valve is closed and the fluid flow can be blocked as a whole. If some valve units assume a closed switching position and the remaining valve units assume an open switching position, only subsets of the fluid flow are blocked while others are released.
  • the valve as a whole can assume an intermediate switching position between the closed and open switching positions. Depending on the number of valve units, there can be a different number of intermediate switching positions of the valve. With two valve units, for example, there can be four switching positions, two of which are intermediate switching positions.
  • the number of intermediate switching positions can also depend on the control of the valve units.
  • the individual valve units can be connected in parallel or individually. With parallel control, interconnected valve units can be operated simultaneously and thereby switch a subset of the fluid flow, which results from the individual subsets that can be switched by the interconnected valve units. If the valve units are controlled individually, each valve unit can be operated separately. The largest number of intermediate switching positions of the valve can be achieved through individual control. Individual or all of the above controls of the valve units can also be combined with one another.
  • the valve units can be arranged in such a way that a symmetrically constructed valve results, in particular a rotationally symmetrical valve.
  • a symmetrical valve can simplify valve installation.
  • the valve units can also be arranged in such a way that an asymmetrical valve results.
  • An asymmetrical valve can be used The installation space available for installing the valve can be better utilized.
  • valve inlet and the valve outlet are arranged coaxially to one another.
  • valve inlet and valve outlet Through a coaxial arrangement of the valve inlet and valve outlet, the valve can be easily integrated into a straight section of a fluid line without resulting in a lateral offset of the flow in front of and behind the valve.
  • valve units are arranged such that the flow direction of the valve units runs transversely to the main flow direction. In this way, the valve units can be arranged radially to the main flow direction. By arranging the valve units radially, the valve can be kept compact in a structurally advantageous manner transversely to the main flow direction.
  • valve chamber is arranged between the valve inlet and the valve outlet, in which the valve units are at least partially arranged.
  • a valve chamber can enable the valve units to be arranged between the valve inlet and the valve outlet in a simple manner in terms of manufacturing technology. By partially arranging the valve units in the valve chamber The valve units can also be accessible from outside the valve chamber. One or more of the valve units can be exchanged in a simple manner.
  • the valve chamber has a flow direction reversal compared to the main flow direction.
  • the flow direction reversal enables the valve units to be arranged along a flow direction that deviates from the main flow direction. A more efficient and compact design of the valve can be achieved in this way.
  • the valve units preferably each have a valve seat and a closing element which interacts with the valve seat for switching the subsets of the fluid flow.
  • the closing element that interacts with the valve seat can block or release the subset of the fluid flow that can be switched by the valve unit in a structurally simple manner.
  • the closing element for switching the partial quantity is actuated by a pilot valve. In this way, the subsets of the fluid flow can be switched using little energy.
  • a further embodiment of the invention provides that the valve seats of the valve units are fluidly connected to the valve outlet on the downstream side. The portions of the fluid flow released by the valve units can be directed to the valve outlet via the outflow side of the valve seat.
  • valve seats of the valve units are preferably each fluidly connected to the valve outlet via an angular outlet.
  • an angular outlet By means of an angular outlet, a flow connection between the valve seat and the valve outlet can be established in a simple manner in terms of production technology. Especially in one of the main flow directions If the flow direction of the valve units deviates, the subset of the fluid flow can be easily redirected along the main flow direction through an angular outlet.
  • valve units have different flow cross sections. Differently sized subsets of the fluid flow can be switched by the valve units due to different flow cross sections.
  • the intermediate switching positions of the valve can differ from each other due to different flow cross sections of the valve units.
  • the flow cross sections can be specified in particular by the diameter of the valve seats.
  • valve inlet and the valve outlet and preferably the valve seats are integrally formed on a common valve body.
  • a one-piece molding onto the common valve body can reduce the number of components and the production time in a constructively advantageous manner.
  • the valve body is designed in the manner of a tube, the tube ends of which are formed by the valve inlet and the valve outlet, the valve units each having an actuating device which is arranged on the tube jacket.
  • the valve body By designing the valve body in the manner of a tube, the tube ends of which are formed by the valve inlet and the valve outlet, the valve can be integrated in a simple and compact manner as a component in a fluid line, in particular in a pipe or a pipeline.
  • the actuating device can actuate the valve unit and thus change the switching positions of the valve unit.
  • the arrangement of the actuating device on the tubular jacket of the valve body can enable a compact design that is flat in the radial direction.
  • the actuating devices particularly preferably have coils that extend parallel to the valve body.
  • the valve units can be switched by energizing the coils.
  • energizing a coil can move the valve unit into an open switching position and de-energizing the coil can lead to the valve unit closing.
  • the energization of the coil transfers the valve unit into a closed switching position.
  • a one-time energization of the coil could cause bistable switching between the closed and open switching positions.
  • the coils can be parts of pilot control valves, which act as actuators of the valve units.
  • the valve units are designed as servo valves that can be actuated by their own medium. By designing them as servo valves that can be actuated by their own medium, the valve units can be switched with little energy expenditure.
  • a further embodiment of the invention provides that at least one valve unit is equipped with a quantity regulator.
  • the amount of the subset of the fluid stream flowing through the valve unit can be regulated in a simple manner using a volume regulator.
  • the quantity regulator for independent quantity control of a fluid flow comprises at least two mutually movable control elements delimiting a control gap, the gap width of the control gap being adjustable in a pressure-dependent manner via a relative movement of the control elements and the control elements being designed as dimensionally stable inflow bodies.
  • the quantity control with control elements designed as dimensionally stable inflow bodies is less susceptible to influences of the fluid and in particular changes in the temperature of the fluid.
  • Dimensionally stable inflow bodies are characterized by an inelastic, solid shape. They can be produced, for example, by an injection molding process, by plastic molding or by machining. The dimensionally stable inflow bodies therefore retain their shapes under the pressure of the fluid flow on the inflow side through the quantity regulator.
  • the gap width of the control gap can be adjusted by a relative movement, but not by a temperature-dependent deformation of the control elements.
  • the dimensionally stable inflow bodies advantageously consist of temperature-resistant material, such as hard plastic, metal, thermoset, ceramic or glass. Temperature changes in the fluid cannot affect dimensionally stable inflow bodies made of temperature-resistant material. Any influence on the quantity control caused by changing temperatures of the fluid can be easily counteracted.
  • dimensionally stable inflow bodies made of metal, ceramic or glass can be resistant to a chemically reactive fluid.
  • a flow regulator with control elements made of metal, ceramic or glass can be used to control chemically reactive fluids.
  • control elements are relatively movable in the direction of a flow direction.
  • Control elements that are relatively movable in the direction of flow can be moved in a particularly simple manner for independent quantity control by the pressure of the fluid flow on the inflow side through the quantity regulator become.
  • At least one first control element has a varying cross-section with a cross-sectional profile running along the direction of flow, in particular in the manner of a pyramid, a cone, a truncated pyramid, a truncated cone and/or a wedge.
  • the gap width of the control gap can be changed during the relative movement of the control elements.
  • the gap width can be predetermined by the cross-sectional shape along the flow direction.
  • the gap width can be changed on one side or on several sides of the first control element.
  • a cross-sectional course in the manner of a pyramid, a cone, a truncated pyramid or a truncated cone can change the gap width of the control gap on several sides of the first control element and in particular over the entire circumference.
  • a cross-sectional course in the manner of a wedge, in which at least one side of the cross-section runs essentially parallel to the direction of flow, can change the gap width of the control gap on one side or on several sides of the first control element.
  • the cross-sectional course can in particular be the course of the cross-section of the material of the first control element.
  • Complementary cross-sections, in which material recesses of the first control element run according to the types mentioned can also be cross-sectional courses.
  • several cross-sectional courses, in particular of the types described can be combined into one cross-sectional course.
  • the cross-sectional course has step-shaped, in particular different, cross-sectional jumps.
  • the gap width can be adjusted in a structurally simple manner to suit several pressure ranges. Different cross-sectional jumps can cause the relative changes in the Make the gap width different for adjacent pressure areas.
  • a further embodiment provides that the cross-sectional course is essentially continuous, in particular curved. Due to a substantially continuous cross-sectional progression, the gap width of the control gap can be adjusted substantially continuously during a relative movement of the control elements. Cross-sectional jumps, which lead to an abrupt change in the cross-section, are not present when the cross-section is essentially continuous.
  • the quantity control can particularly well compensate for the pressure dependence of the quantity of fluid flow through the quantity regulator by constantly adjusting the gap width.
  • a curved cross-sectional shape can enable the gap width to be changed differently in individual pressure areas. The curved cross-sectional shape can additionally or alternatively enable a continuous transition when adjusting the gap width of the control gap between different pressure ranges.
  • first control element is fixed and a second control element is movable.
  • a relative movement of the two control elements can take place in a structurally simple manner with a fixed first control element and a movable second control element.
  • Guided storage for the first control element can be omitted. The number of moving components can be reduced.
  • control elements can be moved towards one another by the pressure of the fluid flow, in particular against a restoring force.
  • the pressure of the fluid flow can move the control elements towards one another in a particularly simple manner.
  • the gap width can be reduced by the pressure of the fluid flow to regulate the amount of fluid flow passing through the flow regulator.
  • a restoring force directed against the pressure of the fluid flow can move the control elements away from one another when the pressure decreases.
  • a restoring element exerts a restoring force for moving the control elements into their starting positions on at least one control element, in particular in the case of control elements moving towards one another.
  • the restoring element can move the control elements into their starting positions, which they assume without pressure from the fluid on the inflow side, by means of the restoring force, in particular directed against the direction of flow.
  • the restoring force can be of different strength, in particular depending on the relative movement of the two control elements. As the relative movement of the control elements towards one another increases, the restoring force can increase and compensate for the pressure of the fluid.
  • the restoring element can be particularly advantageously designed as a spring.
  • a spring can store energy applied by the inflow-side pressure of the fluid for the relative movement of the control elements and, when the pressure of the fluid flow decreases, can retrieve this energy, at least in part, in order to move the control elements in the direction of their initial positions.
  • a control element is designed as a control diaphragm, in particular as an annular control diaphragm, with a through-hole.
  • the control gap can be limited in a structurally simple manner through the passage recess of a control diaphragm.
  • an annular control diaphragm can represent an advantageous embodiment in terms of production technology.
  • the control aperture can preferably be designed in the manner of a second control element. Nevertheless, the control aperture can also be designed in the manner of a first control element.
  • a peg-shaped control element enters the passage recess to adjust the gap width of the control gap a.
  • the peg-shaped control element can be longer along the fluid flow through the quantity regulator than it is wide across the fluid flow.
  • the base area of the peg-shaped control element can be polygonal, in particular rectangular or square, or round, in particular circular or oval.
  • the shape of the base surface of the peg-shaped control element can be adapted to the shape of the passage recess in the control panel.
  • the peg-shaped control element can preferably be designed in the manner of a first control element. Nevertheless, the peg-shaped control element can also be designed in the manner of a second control element.
  • control orifice is mounted floating along the direction of flow.
  • a floating control orifice can have play in the radial direction. The play can prevent mechanical tensioning of the control panel.
  • a further embodiment provides that one of the control elements includes a bypass.
  • a bypass can lead part of the fluid flow through the quantity regulator past the control gap. With a closed control gap with a gap width equal to zero, part of the fluid flow can still pass through the quantity regulator via the bypass.
  • control elements are arranged in a control housing and a control element is fixed relative to the control housing.
  • the quantity regulator can be easily installed as a unit.
  • a control element that is fixed relative to the control housing can be arranged in the control housing in a simple manner in terms of production technology. The number of moving parts can be reduced.
  • the fixed control element can be formed in one piece with the control housing be.
  • an inner wall of the control housing guides the movement of a control element. Guiding the movement of a control element can prevent the control element from being misunderstood. By guiding through the inner wall of the control housing, a guide element can be saved in a cost-saving manner.
  • valve 1 according to the invention will be discussed below, before quantity regulators 100 according to the invention are then described.
  • FIG 1 a schematic circuit diagram of a valve 1 is shown.
  • a fluid flow F enters the valve chamber 6 along a main flow direction H via a valve inlet 2.
  • the fluid flow F is divided in the valve chamber 6 and is directed to two valve units 4, 5 connected in parallel. Both valve units 4, 5 have two switching positions, one closed and one open.
  • the valve 1 can also have further valve units and/or a different arrangement of the valve units 4, 5.
  • Each valve unit 4, 5 does not switch the entire fluid flow F, but only a subset F1, F2 of the fluid flow F. Depending on the switching positions and the nominal widths of the valve units 4, 5, the flow results from the valve chamber 6 on the downstream side via a valve outlet 3 amount of fluid emerging.
  • both valve units 4, 5 When the valve 1 is open, in which both valve units 4, 5 release the subsets F1, F2 in their open switching positions, both subsets F1, F2 exit the valve outlet 3 together along the main flow direction H. If both valve units 4, 5 assume their closed switching positions, they block both subsets F1, F2. The valve 1 is closed and no fluid comes out of the valve outlet 3. In the remaining combinations of the switching positions of the valve units 4, 5, the valve 1 is partially open and assumes an intermediate switching position. Either the subset F1 or the subset F2 emerges from the valve outlet 3.
  • the schematic diagram of the valve 1 in Fig. 2 differs from that in Fig. 1 circuit shown by a quantity regulator in the valve units 4, 5. In the respective open switching position of the valve units 4, 5, this quantity regulator regulates the quantity of fluid flowing through the valve units 4, 5. The subsets F1, F2 are thereby limited.
  • the quantity regulator shown is a non-adjustable quantity regulator, which forms a predetermined narrow point of the flow cross section along the flow direction of the fluid through the valve unit 4, 5. Otherwise, this corresponds to Fig. 2
  • Valve 1 shown corresponds to valve 1 in terms of its components and their properties Fig. 1 .
  • the Fig. 3 shows another schematic circuit diagram of a valve 1, which has an adjustable quantity regulator 100 in the valve units 4, 5.
  • the adjustable flow regulator 100 makes it possible to adjust the narrow point along the flow direction of the fluid. This adjustability makes it possible to compensate for influences on the quantities of fluid flowing through the valve units 4, 5, such as changing pressures of the fluid flow F.
  • the adjustable quantity regulator 100 is preferably a quantity regulator 100 for independent quantity control of the fluid flow. The design of this quantity regulator 100 will be discussed separately below.
  • FIGS. 4 and 5 show schematic sections along the main flow direction H through a valve body 7 or a valve 1 with differently designed valve bodies 7.
  • the fluid flow F enters the valve 1 via the valve inlet 2 and can leave the valve again through the valve outlet 3.
  • the fluid flow F flows through the valve 1 axially along the main flow direction H.
  • the valve inlet 2 and the valve outlet 3 are arranged parallel to one another and lie coaxially on the main flow direction H.
  • the valve chamber 6 is located between the valve inlet 2 and the valve outlet 3.
  • the valve units 4, 5 are at least partially arranged in it.
  • the valve chamber 6 includes the valve seats 4.1, 5.1, the outlets 4.3, 5.3 and the quantity regulators 100 of the valve units 4, 5.
  • the valve chamber 6 is delimited transversely to the main flow direction by the valve body 7.
  • the fluid flow F flowing into the valve chamber 6 along the main flow direction H is changed in the valve chamber 6 by a flow direction reversal deflected in such a way that the flow runs transversely to the main flow direction H.
  • the flow direction reversal occurs essentially at right angles to the main flow direction H.
  • the fluid flow F flows against a part of the valve housing 7 that is oriented transversely to the main flow direction H and is deflected by it to the valve units 4, 5.
  • a flow direction through the valve units 4, 5 arranged in this way is achieved transversely to the main flow direction H.
  • the flow direction is essentially changed by 180°.
  • the flow direction on the outflow side of the valve units 4, 5 is opposite to the flow direction on the upflow side.
  • the flow directions through the valve units 4, 5 run opposite to one another.
  • the flow directions through the valve units 4, 5 are directed radially inwards.
  • the valve units 4, 5 include, in addition to the valve seats 4.1, 5.1, closing elements of 4.2, 5.2 that interact with them.
  • the closing elements 4.2, 5.2 are arranged outside the valve chamber 6 and close it in the radial direction, as in Fig. 5 shown. Likewise, the closing elements 4.2, 5.2 can be arranged in the valve chamber 6.
  • the closing element 4.2, 5.2 closes the valve seat 4.1, 5.1.
  • the closing element 4.2, 5.2 comprises a preferably elastic part, which rests on the valve seat 4.1, 5.1 in the closed switching position, and an inelastic part, which supports the closing element 4.2, 5.2.
  • the subset F1, F2 cannot flow through the valve seat 4.1, 5.1 in this closed switching position.
  • the valve unit 4, 5 When the valve unit 4, 5 is actuated, it lifts Closing element 4.2, 5.2 from the valve seat 4.1, 5.1.
  • the subset F1, F2 of the fluid flow F can flow through the valve 1 via the valve seat 4.1, 5.1 which is flow-connected to the valve outlet 3 on the downstream side.
  • the connection between the valve seat 4.1, 5.1 and the valve outlet 3 is established by an angular outlet 4.3, 5.3.
  • the angular outlet 4.3, 5.3 deflects the flow direction of the subset F1, F2 of the fluid flow F passing through the valve unit 4, 5 so that it emerges from the outlet 3 along the main flow direction H.
  • the outlets 4.3, 5.3 are designed so that they run parallel on the valve outlet side.
  • the subsets F1, F2 of the fluid stream F flowing through the valve units 4, 5 are brought together in parallel flow. Turbulence in the fluid flow F, which would arise when subsets F1, F2 flow toward one another, is thus avoided in a structurally simple manner.
  • the cross sections of the outlets 4.3 and 5.3 differ. The same pressure is achieved in both outlets 4.3, 5.3 with different subsets F1, F2.
  • valve units 4, 5 In the case of identical valve units 4, 5, the two subsets F1, F2 of the fluid flow F do not differ from one another.
  • the partially open switching positions of the valve units 4, 5 lead to identical controls of the fluid flow F.
  • the flow cross sections of the valve units 4, 5 differ from one another.
  • a different flow cross section, even with otherwise identical valve units 4, 5, is achieved by a different cross section of the valve seat 4.1, 5.1.
  • quantity regulators 100 arranged in the valve units 4, 5 can lead to different flow cross sections of the valve units 4, 5. Particularly in the case of independently regulating quantity regulators 100, quantity regulators 100 can have different control behavior be used. Such quantity regulators 100 will be discussed in more detail below.
  • valve unit 2 the valve outlet 3 and the valve seats 4.1, 5.1 are each integrally formed on a common valve body 7.
  • the quantity regulators 100 are also partially integrally formed on the valve body 7.
  • control elements 101 and control housing 104 are designed in one piece as parts of the valve body 7.
  • valve bodies 7 shown are designed in the manner of a tube, the ends of which are formed by the valve inlet 2 and the valve outlet 3.
  • Valve body 7 shown is designed as a T-shaped injection molded body asymmetrically along the main flow direction H.
  • the valve inlet 2 merges directly into the valve chamber 6, while the connection between the valve chamber 6 and the valve outlet 3 is formed by a comparatively long piece of pipe.
  • the valve body 7 Transverse to the main flow direction, the valve body 7 has flange-like connections.
  • the parts of the valve units 4, 5 that are not arranged in the valve chamber 6 can be connected to the valve body 7 via these connections.
  • valve 1 shown is essentially symmetrical along the main flow direction H.
  • a pipe section of essentially the same length extends between the valve inlet 2 and the valve chamber 6 and between the valve chamber 6 and the valve outlet 3.
  • the valve units 4, 5 are arranged on the valve body 7 by means of flange-like connections.
  • the closing elements 4.2, 5.2 are arranged between the valve body 7 and the housings of the valve units 4, 5, which are formed in one piece with the housings of the actuating devices 4.4, 5.4.
  • the locking elements 4.2, 5.2 also serve as a seal for these connection points to the outside of the chamber.
  • the closing elements 4.2, 5.2 and the housings of the valve units 4, 5 enclose in Fig. 5 Control rooms 4.6, 5.6 of the valve units 4, 5 outside the valve chamber 6.
  • Actuating devices 4.4, 5.4 of the valve units 4, 5 are arranged on the tube jacket of the valve body 7 in the exemplary embodiment Fig. 5 Actuating devices 4.4, 5.4 of the valve units 4, 5 are arranged.
  • the actuating devices 4.4, 5.4 have coils 4.5, 5.5 extending parallel to the valve body 7 and parallel to the main flow direction H. Due to the alignment of the coils 4.5, 5.5 parallel to the valve body 7, the actuating devices 4.4, 5.4 can rest flat on the valve body 7 compared to coils protruding from the valve body 7. This results in a small radial dimension of the valve 1.
  • the closing element 4.2, 5.2 of the valve unit 4, 5 is actuated by means of the coils 4.5, 5.5.
  • Valve units 4, 5 shown are designed in the manner of self-medium-operated servo valves with a pilot valve as an actuating device 4.4, 5.4. By utilizing the applied fluid pressure, they can be operated with little effort and energy saving.
  • a pilot control valve (not shown) of the respective valve unit 4, 5 opens or closes.
  • the pilot control valve When the pilot control valve is open, the fluid in the control chamber 4.6, 5.6 can be discharged via a relief channel 4.7, 5.7 in the direction of the valve outlet 3 become.
  • the relief channel 4.7, 5.7 extends as a closable connection between the pilot control valve and the valve outlet 3 through the valve body 7.
  • a quantity regulator 100 is shown, which is flowed against from the flow direction S by a fluid stream F and in particular a subset F1, F2 of the fluid stream F.
  • the quantity regulator 100 comprises 2 control elements 101, 102 which can be moved relative to one another and which limit a control gap 103. Through a relative movement of the control elements 101, 102, the gap width W of the control gap 103 extending between the control elements 101, 102 is adjusted depending on the pressure of the fluid flow F on the inflow side.
  • Both control elements 101, 102 are designed as dimensionally stable inflow bodies, the shape of which is not changed by the inflowing fluid.
  • the dimensionally stable inflow bodies are made of temperature-resistant materials, such as hard plastic, metal, thermoset, ceramic, thermoplastic or glass.
  • the control elements 101, 102 can be moved relative to one another along the flow direction S.
  • the first control element 101 has a varying cross section with a cross section 105 running along the flow direction S in the manner of a pyramid.
  • the cross-sectional course 105 includes an angle ⁇ transverse to the flow direction S. Preferably this angle ⁇ is in an angular range between 0 and 180°.
  • the distance between the two control elements can be changed transversely to the flow direction S between a maximum distance A max and a minimum distance A 0 .
  • the minimum distance A 0 preferably corresponds to a value of 0 mm.
  • the first control element 101 is fixed and its position is not changed by the fluid flow F flowing along the flow direction S. It is arranged on another element with a cuboid cross-section.
  • the second control element 102 is arranged to be movable relative to the first control element 101. Due to the pressure of a fluid flow F on the inflow side, its position changes along the flow direction S. The control elements 101, 102 can be moved towards one another due to the pressure of the fluid flow F.
  • a restoring element 107 extends between the two control elements 101, 102 and exerts a restoring force between them.
  • the restoring element 107 acts on the control element 102 with a restoring force, which is directed in the direction of the starting position of the control element 102. If the pressure of the fluid flow F moving the control element 102 drops, the restoring force of the restoring element 107 moves the control element 102 away from the control element 101.
  • the starting position of the control element 102 is in the Figures 6 and 7 shown. If the pressure of the fluid flow F is not sufficient to move the control element 102 against the restoring force of the restoring element 107, the control element 102 assumes or remains in its initial position.
  • the second control element 102 is designed as a control diaphragm with a through hole 102.1.
  • the peg-shaped first control element 101 enters this through hole 102.1 to adjust the gap width W of the control gap.
  • Both control elements 101, 102 are arranged coaxially to one another.
  • the relative movement of the control orifice 102 along the flow direction S leads to a deeper entry of the pin-shaped control element 101 into the through hole 102.1.
  • the gap width W is thereby reduced.
  • the control orifice 102 is mounted floating along the flow direction S. This storage means that the control panel 102 can be prevented from tilting. Since tilting would prevent movement of the control panel 102 and thus also the quantity control, the floating bearing improves the reliability of the quantity regulator 100.
  • a quantity regulator 100 is shown, the control element 101 of which includes a bypass 106.
  • the bypass 106 Through the bypass 106, part of the fluid flow F flows through the quantity regulator 100, even with a closed control gap 103.
  • the bypass 106 forms a direct, in particular straight connection between the inflow side and the outflow side of the quantity regulator 100.
  • the control elements 101, 102 are arranged in a control housing 104.
  • the control housing 104 can be a part of the valve body 107 or an independent component.
  • the control element 101 is fixed relative to the control housing 104. It can also be integrally formed on the control housing 104.
  • the inner wall 104.1 of the control housing 104 guides the movement of the control element 102.
  • a projection 104.2 of the control housing 104 acts as a one-sided stop of the control element 102 against the flow direction S.
  • the projection 104.2 determines the starting position of the control unit 102 shown in the figure.
  • the wall thickness of the control housing 104 is greater on the upstream side than on the downstream side.
  • a projection 101.1 of the control element 101 supports the restoring element 107 along the flow direction S.
  • the restoring element 107 is designed as a spiral spring, which is arranged between the projection 101.1 and the control element 102.
  • the control element 101 has a cross-sectional shape 105 in the manner of a cone.
  • the control aperture 102 is annular.
  • the injection molded flow regulator 100 in Fig. 9 Essentially corresponds to the 100 in. flow regulator Fig. 8 .
  • the control element 101 has a substantially pistol-spherical cross-sectional profile 105.
  • a quantity regulator 100 is shown with a further cross-sectional profile 105 of the control element 101.
  • the cross-sectional course 105 is designed in the manner of a step-shaped truncated cone. It has step-shaped cross-sectional jumps 105.1.
  • the cross-sectional jumps 105.1 differ each other. They are at different distances from each other along the flow direction S. They also differ in their jump height, the difference in cross-section in front of and behind the cross-section jump 105.1.
  • the Fig. 11 shows another cross-sectional profile 105.
  • the control element 101 has a comparatively complicated and essentially wedge-shaped cross-sectional profile 105.
  • the cross-sectional course 105 runs continuously, without cross-sectional jumps 105.1. Areas of the control element 101 with different cross-sections are connected to one another by the curved cross-sectional profile 105.
  • the gap width W of the control gap 103 can be adjusted essentially continuously during a relative movement of the control elements 101, 102.
  • the control elements 101 can also have other cross-sectional profiles 105. So are the cross-sectional courses 105 in Fig. 4
  • the quantity regulator 100 shown is wedge-shaped. The distance between the control elements 101, 102 and thus the gap width W of the control gap 103 only changes on one side of the control element 101 when the control elements 101, 102 move relative to each other.
  • control elements 101 of the quantity regulator 100 in Fig. 5 have cross-sectional shapes 105 in the manner of truncated cones. These are followed by additional, even more cylindrical cross-sectional profiles 105 in the lower region of the truncated cone-shaped cross-sectional profiles 105.
  • control element 102 can alternatively or additionally have a varying cross section with a cross section 105 running along the flow direction S. It would also be conceivable for the peg-shaped control element 101 to be movable while the control aperture 102 is fixed.
  • the valve 1 described above allows a compact design of a valve with which different quantities of fluid can be switched.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Multiple-Way Valves (AREA)

Description

  • Die vorliegende Erfindung betrifft ein Ventil zum Schalten eines Fluidstroms mit einem Ventileinlass und einem Ventilauslass, die von dem Fluidstrom entlang einer Hauptströmungsrichtung axial durchströmbar angeordnet sind.
  • Ventile werden zum Schalten von Fluidströmen verwendet, wobei es sich um Flüssigkeiten und Gase handeln kann. Der Fluidstrom tritt hierzu über einen Ventileinlass in das Ventil ein. In einer geschlossenen Schaltstellung ist das Ventil undurchlässig und blockiert den Fluidstrom. Das Fluid kann nicht wieder aus dem Ventil austreten. In einer geöffneten Schaltstellung wir der Fluidstrom hingegen freigegeben. Das Ventil ermöglicht es dem Fluidstrom durch Ventilauslässe wieder aus dem Ventil auszutreten. Auf diese Weise kann der Fluidstrom durch eine Änderung der Schaltstellung des Ventils geschaltet werden, d. h. er kann von dem Ventil freigegeben oder blockiert werden.
  • Ventile die entlang einer Fluidleitung wie etwa einer Rohrleitung eingesetzt werden, weisen einen Ventileinlass und einen Ventilauslass auf, über welche sie an die Fluidleitung angeschlossen werden. In einer kompakten Bauart können der Ventileinlass und der Ventilauslass derart zueinander angeordnet sein, dass der Fluidstrom das Ventil axial entlang einer Hauptströmungsrichtung durchströmt.
  • Als nachteilig bei solchen axial durchströmbaren Ventilen hat es sich erwiesen, dass durch einen Betätigung des Ventils nur der gesamte Fluidstrom schaltbar ist, er also als Ganzes entweder freigegeben oder blockiert werden kann. Dies hat sich vor allem für solche Anwendungen als nachteilig erwiesen, bei denen verschiedene Mengen eines Fluidstroms geschaltet werden sollen.
  • Ein Ventil gemäß dem Oberbegriff von Anspruch 1 ist aus US 4 019 533 A bekannt.
  • Die Aufgabe der vorliegenden Erfindung liegt daher darin, ein kompaktbauendes Ventil anzugeben, mit welchem sich unterschiedliche Fluidmengen schalten lassen.
  • Diese Aufgabe wird bei einem Ventil der eingangs genannten Art durch die Merkmale von Anspruch 1 gelöst.
  • Durch die separat betätigbaren Ventileinheiten kann jede Ventileinheit eine Teilmenge des Fluidstroms freigeben oder blockieren. Wenn sämtliche Ventileinheiten eine geöffnete Schaltstellung einnehmen, ist das Ventil vollständig geöffnet und der Fluidstrom kann als Ganzes freigegeben werden. Nehmen sämtliche Ventileinheiten eine geschlossene Schaltstellung ein, ist das Ventil geschlossen und der Fluidstrom kann als Ganzes blockiert werden. Wenn einige Ventileinheiten eine geschlossene Schaltstellung und die übrigen Ventileinheiten eine geöffnete Schaltstellung einnehmen, werden nur Teilmengen des Fluidstroms blockiert, während andere freigegeben werden. Das Ventil als Ganzes kann dabei eine Zwischenschaltstellung zwischen der geschlossenen und der geöffneten Schaltstellung einnehmen. Abhängig von der Anzahl der Ventileinheiten kann sich eine unterschiedliche Anzahl von Zwischenschaltstellungen des Ventils ergeben. Bei zwei Ventileinheiten können sich beispielsweise vier Schaltstellungen ergeben, wovon zwei Zwischenschaltstellungen sind.
  • Die Anzahl der Zwischenschaltstellungen kann auch von der Ansteuerung der Ventileinheiten abhängen. So können die einzelnen Ventileinheiten parallel oder einzeln geschaltet werden. Bei einer parallelen Ansteuerung können zusammengeschaltete Ventileinheiten gleichzeitig betätig werden und dabei eine Teilmenge des Fluidstroms schalten, welcher sich aus den einzelnen von den zusammengeschalteten Ventileinheiten schaltbaren Teilmengen ergibt. Bei einer einzelnen Ansteuerung der Ventileinheiten kann jede Ventileinheit separat betätigt werden. Durch die einzelne Ansteuerung kann die größte Anzahl an Zwischenschaltstellungen des Ventils erreicht werden. Einzelne oder alle voranstehenden Ansteuerungen der Ventileinheiten können auch miteinander kombiniert werden.
  • Die Ventileinheiten können derart angeordnet sein, dass sich ein symmetrisch aufgebautes Ventil ergibt, insbesondere ein drehsymmetrisches Ventil. Ein symmetrisches Ventil kann einen Einbau des Ventils vereinfachen. Die Ventileinheiten können auch derart angeordnet sein, dass sich ein asymmetrisches Ventil ergibt. Durch ein asymmetrisches Ventil kann ein zum Einbau des Ventils zur Verfügung stehender Bauraum besser ausnutzbar sein.
  • Erfindungsgemäß sind der Ventileinlass und der Ventilauslass koaxial zueinander angeordnet.
  • Durch eine koaxiale Anordnung von Ventileinlass und Ventilauslass kann das Ventil auf einfache Weise in einem geraden Abschnitt einer Fluidleitung einbindbar sein, ohne dass sich ein seitlicher Versatz der Strömung vor und hinter dem Ventil ergibt.
  • In einer konstruktiven Ausgestaltung der Erfindung sind die Ventileinheiten derart angeordnet, dass die Strömungsrichtung der Ventileinheiten quer zur Hauptströmungsrichtung verläuft. Auf diese Weise können die Ventileinheiten radial zu der Hauptströmungsrichtung angeordnet werden. Durch eine radiale Anordnung der Ventileinheiten kann das Ventil quer zu der Hauptströmungsrichtung auf konstruktiv vorteilhafte Weise kompakt gehalten werden.
  • Weiter vorteilhaft ist es, wenn die Strömungsrichtungen zweier Ventileinheiten entgegengesetzt verlaufen. Durch einen entgegengesetzten Verlauf der Strömungsrichtung zweier Ventileinheiten kann eine symmetrische und damit materialschonende Belastung des Ventils bei geöffneten Ventileinheiten erreicht werden.
  • Es hat sich als konstruktiv vorteilhaft erwiesen, wenn zwischen dem Ventileinlass und dem Ventilauslass eine Ventilkammer angeordnet ist, in welcher die Ventileinheiten zumindest teilweise angeordnet sind. Eine Ventilkammer kann auf fertigungstechnisch einfache Weise eine Anordnung der Ventileinheiten zwischen dem Ventileinlass und dem Ventilauslass ermöglichen. Durch eine teilweise Anordnung der Ventileinheiten in der Ventilkammer können die Ventileinheiten auch von ventilkammeraußen zugänglich sein. Ein Austausch einer oder mehrere der Ventileinheiten kann so auf einfache Weise erfolgen.
  • In einer Weiterbildung der Erfindung weist die Ventilkammer eine Strömungsrichtungsumkehr gegenüber der Hauptströmungsrichtung auf. Die Strömungsrichtungsumkehr ermöglicht, dass die Ventileinheiten entlang einer von der Hauptströmungsrichtung abweichenden Strömungsrichtung angeordnet werden können. Eine effizientere und kompaktere Bauform des Ventils kann auf diese Weise erzielt werden.
  • Bevorzugt weisen die Ventileinheiten jeweils einen Ventilsitz und ein mit dem Ventilsitz zusammenwirkendes Schließelement zum Schalten der Teilmengen des Fluidstroms auf. Das mit dem Ventilsitz zusammenwirkende Schließelement kann die von der Ventileinheit schaltbare Teilmenge des Fluidstroms konstruktiv einfach blockieren oder freigeben. Vorteilhafter Weise wird das Schließelement zum Schalten der Teilmenge von einem Vorschaltventil betätigt. Auf diese Weise kann das Schalten der Teilmengen des Fluidstroms mit geringem Energieeinsatz erfolgen.
  • Eine weitere Ausgestaltung der Erfindung sieht vor, dass die Ventilsitze der Ventileinheiten abströmseitig mit dem Ventilauslass strömungsverbunden sind. Die von den Ventileinheiten freigegebenen Teilmengen des Fluidstroms können über die Abströmseite des Ventilsitzes zu dem Ventilauslass geleitet werden.
  • Bevorzugt sind die Ventilsitze der Ventileinheiten jeweils über einen winkelförmigen Auslauf mit dem Ventilauslass strömungsverbunden. Durch einen winkelförmigen Auslauf kann auf fertigungstechnisch einfache Weise eine Strömungsverbindung zwischen dem Ventilsitz und dem Ventilauslass herstellbar sein. Insbesondere bei einer von der Hauptströmungsrichtung abweichenden Strömungsrichtung der Ventileinheiten, kann die Teilmenge des Fluidstroms durch einen winkelförmigen Auslauf auf einfache Weise entlang der Hauptströmungsrichtung umgeleitet werden.
  • In Weiterbildung der Erfindung weisen die Ventileinheiten unterschiedliche Strömungsquerschnitte auf. Durch unterschiedliche Strömungsquerschnitte können unterschiedlich große Teilmengen des Fluidstroms von den Ventileinheiten schaltbar sein. Die Zwischenschaltstellungen des Ventils können sich durch unterschiedliche Strömungsquerschnitte der Ventileinheiten voneinander unterscheiden. Die Strömungsquerschnitte können insbesondere durch die Durchmesser der Ventilsitze vorgegeben werden.
  • Gemäß der Erfindung sind der Ventileinlass und der Ventilauslass und bevorzugt die Ventilsitze an einem gemeinsamen Ventilkörper einstückig angeformt. Eine einstückige Anformung an den gemeinsamen Ventilkörper kann auf konstruktiv vorteilhafter Weise die Anzahl der Bauteile und die Produktionszeit reduzieren.
  • Erfindungsgemäß ist der Ventilkörper nach Art eines Rohres ausgebildet, dessen Rohrenden von dem Ventileinlass und dem Ventilauslass gebildet werden, wobei die Ventileinheiten jeweils eine Betätigungseinrichtung aufweisen, die an dem Rohrmantel angeordnet sind. Durch die Ausbildung des Ventilkörpers nach Art eines Rohres, dessen Rohrenden von dem Ventileinlass und dem Ventilauslass gebildet werden, kann das Ventil auf einfache und kompakte Weise als Komponente in eine Fluidleitung, insbesondere in einer Rohrleitung oder einer Pipeline, integriert werden. Die Betätigungseinrichtung kann die Ventileinheit betätigen und so die Schaltstellungen der Ventileinheit ändern. Die Anordnung der Betätigungseinrichtung an dem Rohrmantel des Ventilkörpers kann eine kompakte und in radialer Richtung flache Bauform ermöglichen.
  • Besonders bevorzugt weisen die Betätigungseinrichtungen Spulen auf, die sich parallel zum Ventilkörper erstrecken. Durch eine Bestromung der Spulen können die Ventileinheiten geschaltet werden. Bevorzugt kann eine Bestromung einer Spule die Ventileinheit in eine geöffnete Schaltstellung überführen und ein Stromlosschalten der Spule zu einem Schließen der Ventileinheit führen. Es wäre jedoch auch denkbar, dass die Bestromung der Spule die Ventileinheit in eine geschlossene Schaltstellung überführt. Ebenso könnte eine einmalige Bestromung der Spule ein bistabiles Schalten zwischen geschlossener und geöffneter Schaltstellung bewirken. In einer besonders bevorzugten Ausgestaltung können die Spulen Teile von Vorsteuerventilen sein, welche als Betätigungseinrichtungen der Ventileinheiten wirken.
  • Erfindungsgemäß sind die Ventileinheiten als eigenmediumbetätigbare Servoventile ausgebildet. Durch Ausbildung als eigenmediumbetätigbare Servoventile können die Ventileinheiten mit geringem Energieaufwand geschaltet werden.
  • Eine weitere Ausgestaltung der Erfindung sieht vor, dass zumindest eine Ventileinheit mit einem Mengenregler ausgestattet ist. Durch einen Mengenregler kann die Menge der durch die Ventileinheit strömenden Teilmenge des Fluidstroms auf einfache Weise geregelt werden.
  • Auf mögliche Ausgestaltungen eines solchen Mengenreglers wird nachfolgend noch näher eingegangen werden.
  • Bevorzugt umfasst der Mengenregler zur selbstständigen Mengenregelung eines Fluidstroms mindestens zwei gegeneinander bewegbare, einen Regelspalt begrenzende Regelelemente, wobei die Spaltweite des Regelspalts über eine Relativbewegung der Regelelemente druckabhängig einstellbar ist und die Regelelemente als formstabile Anströmkörper ausgebildet sind. Im Gegensatz zu bekannten Mengenreglern, welche zur Mengenregelung elastisch verformbare Regelelemente verwenden, ist die Mengenregelung mit als formstabile Anströmkörper ausgebildeten Regelelementen gegenüber Einflüssen des Fluids und insbesondere Änderungen der Temperatur des Fluid, weniger anfällig.
  • Formstabile Anströmkörper zeichnen sich durch eine unelastische, feste Form aus. Sie können beispielsweise in einem Spritzgussverfahren, durch plastisches Formen oder durch spanende Bearbeitung hergestellt werden. Unter dem anströmseitigen Druck des Fluidstroms durch den Mengenregler behalten die formstabilen Anströmkörper daher ihre Formen bei. Die Einstellung der Spaltweite des Regelspalts kann durch eine Relativbewegung nicht aber eine temperaturabhängige Verformung der Regelelemente erfolgen.
  • In vorteilhafter Weise bestehen die formstabilen Anströmkörper aus temperaturbeständigem Material, wie beispielsweise Hartkunststoff, Metall, Duroplast, Keramik oder Glas. Auf formstabile Anströmkörper aus temperaturbeständigem Material können sich Temperaturänderungen des Fluids nicht auswirken. Eine Beeinflussung der Mengenregelung durch sich verändernde Temperaturen des Fluids kann auf einfache Weise entgegengewirkt werden. Insbesondere formstabile Anströmkörper aus Metall, Keramik oder Glas können beständig gegen ein chemisch reaktives Fluid sein. Ein Mengenregler mit Regelelementen aus Metall, Keramik oder Glas kann zur Regelung chemisch reaktiver Fluide eingesetzt werden.
  • Gemäß einer konstruktiven Ausgestaltung wird vorgeschlagen, dass die Regelelemente in Richtung einer Strömungsrichtung relativ bewegbar sind. In Richtung der Strömungsrichtung relativ bewegbare Regelelemente können auf besonders einfache Weise zur selbstständigen Mengenregelung durch den anströmseitigen Druck des Fluidstroms durch den Mengenregler bewegt werden.
  • Weiter vorteilhaft ist es, wenn mindestens ein erstes Regelelement einen variierenden Querschnitt mit einem entlang der Strömungsrichtung verlaufenden Querschnittsverlauf aufweist, insbesondere nach Art einer Pyramide, eines Kegels, eines Pyramidenstumpfs, eines Kegelstumpfs und/oder eines Keils. Durch einen variierenden Querschnitt mindestens des ersten Regelelements kann die Spaltweite des Regelspalts bei der Relativbewegung der Regelelemente geändert werden. Die Spaltweite kann von dem Querschnittsverlauf entlang der Strömungsrichtung vorgegeben sein. Die Änderung der Spaltweite kann auf einer Seite oder auf mehreren Seiten des ersten Regelelements erfolgen. Ein Querschnittsverlauf nach Art einer Pyramide, eines Kegels, eines Pyramidenstumpfs oder eines Kegelstumpfs kann die Spaltweite des Regelspalts auf mehreren Seiten des ersten Regelelements und insbesondere ganzumfänglich ändern. Ein Querschnittsverlauf nach Art eines Keils, bei welchem mindestens eine Seite des Querschnitts im Wesentlichen parallel zur Strömungsrichtung verläuft, kann die Spaltweite des Regelspalts auf einer Seite oder auf mehreren Seiten des ersten Regelelements ändern. Der Querschnittsverlauf kann insbesondere der Verlauf des Querschnitts des Materials des ersten Regelelements sein. Auch komplementäre Querschnitte, bei denen Materialausnehmungen des ersten Regelelements nach den genannten Arten verlaufen, können Querschnittsverläufe sein. Ebenfalls können mehreren Querschnittsverläufe, insbesondere der beschriebenen Arten, zu einem Querschnittsverlauf kombiniert werden.
  • In einer Weiterbildung der Erfindung weist der Querschnittsverlauf stufenförmige, insbesondere unterschiedliche Querschnittssprünge auf. Durch stufenförmige Querschnittssprünge kann die Einstellung der Spaltweite auf konstruktiv einfache Weise an mehrere Druckbereiche angepasst erfolgen. Unterschiedliche Querschnittssprünge können die relativen Änderungen der Spaltweite für angrenzende Druckbereiche voneinander abweichend vornehmen.
  • Eine weitere Ausgestaltung sieht vor, dass der Querschnittsverlauf im Wesentlichen stetig, insbesondere geschwungen verläuft. Durch einen im Wesentlichen stetigen Querschnittsverlauf kann die Spaltweite des Regelspalts bei einer Relativbewegung der Regelelemente im Wesentlichen stetig eingestellt werden. Querschnittssprünge, welche zu einer abrupten Änderung des Querschnitts führen, sind bei einem im Wesentlichen stetigen Querschnittsverlauf nicht vorhanden. Die Mengenregelung kann durch ein stetiges Einstellen der Spaltweite die Druckabhängigkeit der Menge des Fluidstroms durch den Mengenregler besonders gut ausgleichen. Ein geschwungener Querschnittsverlauf kann eine unterschiedliche Änderung der Spaltweite in einzelne Druckbereiche ermöglichen. Der geschwungene Querschnittsverlauf kann zusätzlich oder alternativ einen stetigen Übergang bei der Einstellung der Spaltweite des Regelspalts zwischen unterschiedlichen Druckbereichen ermöglichen.
  • Weiter vorteilhaft ist es, wenn das erste Regelelement feststeht und ein zweites Regelelement bewegbar ist. Eine Relativbewegung der beiden Regelelemente kann bei einem feststehenden ersten Regelelement und einem bewegbaren zweiten Regelelement auf konstruktiv einfache Weise erfolgen. Eine geführte Lagerung für das erste Regelelement kann entfallen. Die Anzahl der beweglichen Komponenten kann reduziert werden.
  • Gemäß einem Ausführungsbeispiel der Erfindung sind die Regelelemente durch den Druck des Fluidstroms, insbesondere entgegen einer Rückstellkraft, aufeinander zubewegbar. Der Druck des Fluidstroms kann auf konstruktiv besonders einfache Art die Regelelemente aufeinander zubewegen. Die Spaltweite kann durch den Druck des Fluidstroms zur Regelung der Menge des durch den Mengenregler tretenden Fluidstroms verringert werden. Eine entgegen dem Druck des Fluidstroms gerichtete Rückstellkraft kann bei einer Druckabnahme die Regelelemente voneinander wegbewegen.
  • Vorzugsweise übt ein Rückstellelement eine Rückstellkraft zum Bewegen der Regelelemente in ihre Ausgangsstellungen auf mindestens ein Regelelement aus, insbesondere bei sich aufeinander zubewegenden Regelelementen. Das Rückstellelement kann durch die, insbesondere entgegen der Strömungsrichtung gerichtete, Rückstellkraft die Regelelemente in ihre Ausgangsstellungen, welche sie ohne anströmseitigen Druck des Fluids einnehmen, bewegen. Die Rückstellkraft kann insbesondere abhängig von der relativen Bewegung der beiden Regelelemente unterschiedlich stark sein. Bei einer zunehmen Relativbewegung der Regelelemente aufeinander zu, kann die Rückstellkraft ansteigen und dem Druck des Fluids ausgleichen. Besonders vorteilhaft kann das Rückstellelement als Feder ausgebildet sein. Eine Feder kann vom anströmseitigen Druck des Fluids zur Relativbewegung der Regelelemente aufgebrachte Energie speichern und bei einer Abnahme des Drucks des Fluidstroms diese Energie, zumindest teilweise, abrufen um die Regelelemente in Richtung ihrer Ausgangsstellungen zu bewegen.
  • In einer Weiterbildung der Erfindung ist ein Regelelement als Regelblende, insbesondere als ringförmige Regelblende, mit einer Durchgangsausnehmung ausgebildet. Durch die Durchgangsausnehmung einer Regelblende kann in konstruktiv einfacher Weise der Regelspalt begrenzt werden. Insbesondere eine ringförmige Regelblende kann eine fertigungstechnisch vorteilhafte Ausgestaltung darstellen. Bevorzugt kann die Regelblende nach Art eines zweiten Regelelements ausgebildet sein. Gleichwohl kann die Regelblende auch nach Art eines ersten Regelelements ausgebildet sein.
  • Bei einer bevorzugten Ausgestaltung der Erfindung tritt ein zapfenförmiges Regelelement zur Einstellung der Spaltweite des Regelspalts in die Durchgangsausnehmung ein. Das zapfenförmige Regelelement kann entlang des Fluidstroms durch den Mengenregler länger, als quer zum Fluidstrom breit sein. Die Grundfläche des zapfenförmigen Regelelements kann mehreckig, insbesondere rechteckig oder quadratisch, oder rund, insbesondere kreisförmig oder oval, sein. Vorteilhafter Weise kann die Form der Grundfläche des zapfenförmigen Regelelements an die Form der Durchgangsausnehmung der Regelblende angepasst sein. Bevorzugt kann das zapfenförmige Regelelement nach Art eines ersten Regelelements ausgebildet sein. Gleichwohl kann das zapfenförmige Regelelement auch nach Art eines zweiten Regelelements ausgebildet sein.
  • Ferner kann es vorteilhaft sein, wenn die Regelblende entlang der Strömungsrichtung schwimmend gelagert ist. Eine schwimmend gelagerte Regelblende kann in radialer Richtung ein Spiel aufweisen. Durch das Spiel kann ein mechanisches Verspannen der Regelblende verhindert werden.
  • Eine weitere Ausgestaltung sieht vor, dass eines der Regelelemente einen Bypass umfasst. Einen Bypass kann einen Teil des Fluidstroms durch den Mengenregler an dem Regelspalt vorbei führen. Bei einem geschlossenen Regelspalt mit einer Spaltweite gleich Null, kann über den Bypass noch ein Teil des Fluidstroms durch den Mengenregler treten.
  • Weiter vorteilhaft ist es, wenn die Regelelemente in einem Regelgehäuse angeordnet sind und ein Regelelement gegenüber dem Regelgehäuse feststeht. Durch eine Anordnung der Regelelemente in einem Regelgehäuse kann der Mengenregler auf einfache Weise als eine Einheit verbaut werden. Ein gegenüber dem Regelgehäuse feststehendes Regelelement kann auf fertigungstechnisch einfache Art in dem Regelgehäuse angeordnet werden. Die Anzahl beweglicher Teile kann reduziert werden. Vorteilhafter Weise kann das feststehende Regelelement einstückig mit dem Regelgehäuse ausgebildet sein.
  • In einer vorteilhaften Weiterbildung kann es konstruktiv vorgesehen sein, dass eine Innenwandung des Regelgehäuses die Bewegung eines Regelelements führt. Eine Führung der Bewegung eines Regelelements kann ein verkannten des Regelelements verhindern. Durch eine Führung durch die Innenwandung des Regelgehäuses kann kostensparend ein Führungselement eingespart werden.
  • Weitere Einzelheiten und Vorteile eines erfindungsgemäßen Ventils sowie eines Mengenreglers sollen nachfolgend anhand der in den Figuren schematisch dargestellten Ausführungsbeispiele exemplarisch erläutert werden. Darin zeigen:
  • Fig. 1
    ein Schaltbild eines Ventils;
    Fig. 2
    ein Schaltbild eines Ventils mit Mengenreglern;
    Fig. 3
    ein Schaltbild eines Ventils mit einstellbaren Mengenreglern;
    Fig. 4
    einen Schnitt entlang der Hauptströmungsrichtung durch einen Ventilkörper;
    Fig. 5
    einen Schnitt entlang der Hauptströmungsrichtung durch ein Ventil mit einem unterschiedlichen Ventilkörper;
    Fig. 6, 7
    einen Mengenregler;
    Fig. 8-10
    weitere Ausführungsformen eines Mengenregler mit unterschiedlichen Querschnittsverläufen.
  • Zunächst wird im Folgenden auf ein erfindungsgemäßes Ventil 1 eingegangen werden, bevor dann erfindungsgemäße Mengenregler 100 beschrieben werden.
  • In Figur 1 ist ein schematisches Schaltbild eines Ventils 1 gezeigt. Über einen Ventileinlass 2 tritt ein Fluidstrom F entlang einer Hauptströmungsrichtung H in die Ventilkammer 6 ein. In der Ventilkammer 6 teilt sich der Fluidstrom F auf und wird zu zwei parallelgeschalteten Ventileinheiten 4, 5 geleitet. Beide Ventileinheiten 4, 5 weisen zwei Schaltstellungen auf, eine geschlossene und eine geöffnete. Wenngleich nicht dargestellt, kann das Ventil 1 auch weitere Ventileinheiten und/oder eine andere Anordnung der Ventileinheiten 4, 5 aufweisen.
  • In Fig. 1 sind beide Ventileinheiten 4, 5 in ihren geöffneten Schaltstellungen dargestellt. Die Ventileinheiten 4, 5 sind separat durch nicht dargestellte Betätigungseinrichtungen 4.4, 5.4 betätigbar, so dass sie unabhängig voneinander ihre Schaltstellung wechseln können. Für das dargestellte Ventil 1 ergeben sich somit insgesamt vier Schaltstellungen:
    • Schaltstellung 1: Beide Ventileinheiten 4, 5 sind geöffnet. Das Ventil 1 ist vollständig geöffnet.
    • Schaltstellung 2: Die Ventileinheit 4 ist geöffnet und die Ventileinheit 5 geschlossen. Das Ventil 1 befindet sich in einer teilweise geöffneten Zwischenschaltstellung.
    • Schaltstellung 3: Die Ventileinheit 4 ist geschlossen und die Ventileinheit 5 geöffnet. Das Ventil 1 befindet sich in einer teilweise geöffneten Zwischenschaltstellung.
    • Schaltstellung 4: Beide Ventileinheiten 4, 5 sind geschlossen. Das Ventil 1 ist vollständig geschlossen.
  • Jede Ventileinheit 4, 5 schaltet für sich gesehen nicht den gesamten Fluidstrom F, sondern nur eine Teilmenge F1, F2 des Fluidstroms F. Abhängig von den Schaltstellungen und den Nennweiten der Ventileinheiten 4, 5 ergibt sich die abströmseitig über einen Ventilauslass 3 aus der Ventilkammer 6 austretende Fluidmenge.
  • Bei einem geöffneten Ventil 1, bei welchem beide Ventileinheiten 4, 5 in ihren geöffneten Schaltstellungen die Teilmengen F1, F2 freigeben, treten beide Teilmengen F1, F2 gemeinsam entlang der Hauptströmungsrichtung H aus dem Ventilauslass 3 aus. Nehmen beide Ventileinheiten 4, 5 ihre geschlossenen Schaltstellungen ein, blockieren sie beide Teilmengen F1, F2. Das Ventil 1 ist geschlossen und kein Fluid tritt aus dem Ventilauslass 3 aus. In den übrigen Kombinationen der Schaltstellungen der Ventileinheiten 4, 5 ist das Ventil 1 teilweise geöffnet und nimmt eine Zwischenschaltstellung ein. Aus dem Ventilauslass 3 tritt dabei entweder die Teilmenge F1 oder die Teilmenge F2 aus.
  • Das schematische Schaltbild des Ventils 1 in Fig. 2 unterscheidet sich von der in Fig. 1 dargestellten Schaltung durch jeweils einen Mengenregler in den Ventileinheiten 4, 5. In der jeweiligen geöffneten Schaltstellung der Ventileinheiten 4, 5 regelt dieser Mengenregler die Menge des durch die Ventileinheiten 4, 5 strömenden Fluids. Die Teilmengen F1, F2 werden hierdurch beschränkt. Bei dem in Fig. 2 dargestellten Mengenregler handelt es sich um einen nicht einstellbaren Mengenregler, welcher eine vorgegebene Engstelle des Strömungsquerschnitts entlang der Strömungsrichtung des Fluids durch die Ventileinheit 4, 5 bildet. Im Übrigen entspricht das in Fig. 2 dargestellte Ventil 1 hinsichtlich seiner Komponenten und deren Eigenschaften dem Ventil 1 der Fig. 1.
  • Die Fig. 3 zeigt ein weiteres schematisches Schaltbild eines Ventils 1, welches einen einstellbaren Mengenregler 100 in den Ventileinheiten 4, 5 aufweist. Der einstellbare Mengenregler 100 ermöglicht es, die Engstelle entlang der Strömungsrichtung des Fluids einzustellen. Diese Einstellbarkeit erlaubt es, Einflüsse auf die durch die Ventileinheiten 4, 5 strömenden Fluidmengen auszugleichen, wie beispielsweise verändernde Drücke des Fluidstroms F. Bei dem einstellbaren Mengenregler 100 handelt es sich dabei bevorzugt um einen Mengenregler 100 zur selbstständigen Mengenregelung des Fluidstroms. Auf die Ausgestaltung dieser Mengenregler 100 wird nachfolgend noch gesondert eingegangen werden.
  • Die Figuren 4 und 5 zeigen schematische Schnitte entlang der Hauptströmungsrichtung H durch einen Ventilkörper 7 bzw. ein Ventil 1 mit unterschiedlich ausgebildeten Ventilkörpern 7.
  • Der Fluidstrom F tritt über den Ventileinlass 2 in das Ventil 1 ein und kann das Ventil durch den Ventilauslass 3 wieder verlassen. Der Fluidstrom F durchströmt das Ventil 1 axial entlang der Hauptströmungsrichtung H. Der Ventileinlass 2 und der Ventilauslass 3 sind parallel zueinander angeordnet und liegen koaxial auf der Hauptströmungsrichtung H.
  • Zwischen dem Ventileinlass 2 und dem Ventilauslass 3 befindet sich die Ventilkammer 6. In ihr sind die Ventileinheiten 4, 5 zumindest teilweise angeordnet. In den dargestellten Beispielen umfasst die Ventilkammer 6 die Ventilsitze 4.1, 5.1, die Auslässe 4.3, 5.3 sowie die Mengenregler 100 der Ventileinheiten 4, 5. Die Ventilkammer 6 wird quer zu der Hauptströmungsrichtung durch den Ventilkörper 7 begrenzt.
  • Der entlang der Hauptströmungsrichtung H in die Ventilkammer 6 einströmende Fluidstrom F wird in der Ventilkammer 6 durch eine Strömungsrichtungsumkehr derart abgelenkt, dass die Strömung quer zu Hauptströmungsrichtung H verläuft. Die Strömungsrichtungsumkehr erfolgt dabei im Wesentlichen rechtwinklig zu Hauptströmungsrichtung H. Der Fluidstrom F strömt gegen eine quer zur Hauptströmungsrichtung H ausgerichteten Teil des Ventilgehäuses 7 und wird von diesem zu den Ventileinheiten 4, 5 umgelenkt.
  • Durch eine weitere Strömungsrichtungsumkehr in der Ventilkammer 6 wird eine Strömungsrichtung durch die derart angeordneten Ventileinheiten 4, 5 quer zur Hauptströmungsrichtung H erreicht. Hierzu wird bei der Strömungsrichtungsumkehr die Strömungsrichtung im Wesentlichen um 180° geändert. Die Strömungsrichtung auf der Abströmseite der Ventileinheiten 4, 5 verläuft entgegengesetzt zu der anströmseitigen Strömungsrichtung. Die Strömungsrichtungen durch die Ventileinheiten 4, 5 verlaufen dabei entgegengesetzt zueinander. Die Strömungsrichtungen durch die Ventileinheiten 4, 5 sind hierbei radial nach innen gerichtet.
  • Zum Schalten der Teilmengen F1, F2 des Fluidstroms F umfassen die Ventileinheiten 4, 5 neben den Ventilsitzen 4.1, 5.1 mit ihnen zusammenwirkende Schließelement der 4.2, 5.2. Die Schließelemente 4.2, 5.2 sind außerhalb der Ventilkammer 6 angeordnet und schließen diese in radialer Richtung ab, wie in Fig. 5 dargestellt. Ebenso können die Schließelemente 4.2, 5.2 in der Ventilkammer 6 angeordnet sein.
  • In der geschlossenen Schaltstellung der Ventileinheit 4, 5 verschließt das Schließelement 4.2, 5.2 den Ventilsitz 4.1, 5.1. Das Schließelement 4.2, 5.2 umfasst einen vorzugsweise elastischen Teil, welcher in der geschlossenen Schaltstellung auf dem Ventilsitz 4.1, 5.1 aufliegt, und einen unelastischen Teil, welche das Schließelements 4.2, 5.2 stützt. Die Teilmenge F1, F2 kann in dieser geschlossenen Schaltstellung nicht durch den Ventilsitz 4.1, 5.1 hindurchströmen. Bei der Betätigung der Ventileinheit 4, 5 hebt sich das Schließelement 4.2, 5.2 von dem Ventilsitz 4.1, 5.1 ab. Die Teilmenge F1, F2 des Fluidstroms F kann über den abströmseitig mit dem Ventilauslass 3 strömungsverbundenen Ventilsitz 4.1, 5.1 durch das Ventil 1 hindurchströmen.
  • Die Verbindung zwischen dem Ventilsitz 4.1, 5.1 und dem Ventilauslass 3 wird durch einen winkelförmigen Auslass 4.3, 5.3 hergestellt. Der winkelförmige Auslass 4.3, 5.3 lenkt die Strömungsrichtung der durch die Ventileinheit 4, 5 hindurchtretenden Teilmenge F1, F2 des Fluidstroms F so ab, dass sie entlang der Hauptströmungsrichtung H aus dem Auslass 3 austritt. Die Auslässe 4.3, 5.3 sind dabei so ausgebildet, dass sie ventilauslassseitig parallel verlaufen. Die durch die Ventileinheiten 4, 5 hindurchströmenden Teilmengen F1, F2 des Fluidstroms F werden dabei parallelströmend zusammengeführt. Verwirbelungen des Fluidstroms F, welche bei aufeinander zuströmenden Teilmengen F1, F2 entstehen würden, werden so auf konstruktiv einfache Weise vermieden. In Fig. 4 unterscheiden sich die Querschnitte der Auslässe 4.3 und 5.3. So wird bei unterschiedlichen Teilmengen F1, F2 in beiden Auslässen 4.3, 5.3 der gleiche Druck erzielt.
  • Im Falle identischer Ventileinheiten 4, 5 unterscheiden sich die beiden Teilmengen F1, F2 des Fluidstroms F nicht voneinander. Die teilweise geöffneten Schaltstellungen der Ventileinheiten 4, 5 führen dabei zu identischen Regelungen des Fluidstroms F. Um die Zwischenschaltstellungen voneinander unterschiedlich auszugestalten, unterscheiden sich die Strömungsquerschnitte der Ventileinheiten 4, 5 voneinander. Ein unterschiedlicher Strömungsquerschnitt auch bei ansonsten gleichen Ventileinheiten 4, 5 wird durch einen unterschiedlichen Querschnitt des Ventilsitzes 4.1, 5.1 erreicht. Zusätzlich oder alternativ können in den Ventileinheiten 4, 5 angeordnete Mengenregler 100 zu unterschiedlichen Strömungsquerschnitten der Ventileinheiten 4, 5 führen. Insbesondere bei selbständig regelnden Mengenreglern 100 können Mengenregler 100 mit unterschiedlichem Regelverhalten verwendet werden. Auf derartige Mengenregler 100 wird unten stehend näher eingegangen.
  • In den Figuren 4 und 5 sind die Ventileinheit 2, der Ventilauslass 3 und die Ventilsitze 4.1, 5.1 jeweils an einem gemeinsamen Ventilkörper 7 einstückig angeformt. Ebenfalls sind die Mengenregler 100 teilweise einstückig an dem Ventilkörper 7 angeformt. Hierbei sind insbesondere Regelelemente 101 und Regelgehäuse 104 einteilig als Teile des Ventilkörpers 7 ausgebildet.
  • Die gezeigten Ventilkörper 7 sind nach Art eines Rohres ausgebildet, deren Enden von dem Ventileinlass 2 und dem Ventilauslass 3 gebildet werden.
  • Der in Fig. 4 gezeigte Ventilkörper 7 ist als ein T-förmiger Spritzgusskörper entlang der Hauptströmungsrichtung H asymmetrisch ausgebildet. Der Ventileinlass 2 geht direkt in die Ventilkammer 6 über, während die Verbindung zwischen der Ventilkammer 6 und dem Ventilauslass 3 durch ein vergleichsweise langes Rohrstück gebildet wird. Quer zu der Hauptströmungsrichtung, weist der Ventilkörper 7 flanschartige Anschlüsse auf. Über diese Anschlüsse können die nicht in der Ventilkammer 6 angeordneten Teile der Ventileinheiten 4, 5 mit dem Ventilkörper 7 verbunden werden.
  • Demgegenüber ist der kreuzförmige, gefräste Ventilkörper 7 des in Fig. 5 gezeigten Ventils 1 entlang der Hauptströmungsrichtung H im Wesentlichen symmetrisch. Zwischen dem Ventileinlass 2 und der Ventilkammer 6 sowie zwischen der Ventilkammer 6 und dem Ventilauslass 3 erstreckt sich eine im Wesentlichen gleichlanges Rohrstück. Mittels flanschartiger Anschlüsse sind die Ventileinheiten 4, 5 an dem Ventilkörper 7 angeordnet. Die Schließelemente 4.2, 5.2 sind dabei zwischen dem Ventilkörper 7 und den Gehäusen der Ventileinheiten 4, 5, welche einstückig mit dem Gehäusen der Betätigungseinrichtungen 4.4, 5.4 ausgebildet sind, angeordnet. Die Schließelemente 4.2, 5.2 dienen zugleich als Dichtung dieser Anschlussstellen nach kammeraußen. Die Schließelemente 4.2, 5.2 und die Gehäuse der Ventileinheiten 4, 5 umschließen in Fig. 5 Steuerräume 4.6, 5.6 der Ventileinheiten 4, 5 außerhalb der Ventilkammer 6.
  • An dem Rohrmantel des Ventilkörpers 7 sind im Ausführungsbeispiel der Fig. 5 Betätigungseinrichtungen 4.4, 5.4 der Ventileinheiten 4, 5 angeordnet. Die Betätigungseinrichtungen 4.4, 5.4 weisen sich parallel zum Ventilkörper 7 und parallel zur Hauptströmungsrichtung H erstreckende Spulen 4.5, 5.5 auf. Durch die zum Ventilkörper 7 parallele Ausrichtung der Spulen 4.5, 5.5 können die Betätigungseinrichtungen 4.4, 5.4, im Vergleich zu vom Ventilkörper 7 abstehenden Spulen, flach an dem Ventilkörper 7 anliegen. Auf diese Weise ergibt sich eine kleine radiale Abmessung des Ventils 1. Mittels der Spulen 4.5, 5.5 wird das Schließelement 4.2, 5.2 der Ventileinheit 4, 5 betätigt.
  • Die in Fig. 5 gezeigten Ventileinheiten 4, 5 sind dabei nach Art eigenmediumbetätigter Servoventile mit einem Vorsteuerventil als Betätigungseinrichtung 4.4, 5.4 ausgebildet. Unter Ausnutzung des anliegenden Fluiddrucks lassen sie sich mit geringem Kraftaufwand und energiesparend betätigen. Abhängig von der Bestromung der Spulen 4.5, 5.5 öffnet oder schließt sich ein nicht näher dargestelltes Vorsteuerventil der jeweiligen Ventileinheit 4, 5. Bei geöffnetem Vorsteuerventil kann das in dem Steuerraum 4.6, 5.6 befindliche Fluid über einen Entlastungskanal 4.7, 5.7 in Richtung des Ventilauslasses 3 abgeleitet werden. Der Entlastungskanal 4.7, 5.7 erstreckt sich hierzu als eine verschließbare Verbindung zwischen dem Vorsteuerventil und dem Ventilauslass 3 durch den Ventilkörper 7. Bei geöffnetem Vorsteuerventil nimmt der Druck im Steuerraum 4.6, 5.6 ab. Durch den anströmseitigen Druck des Fluidstroms F auf das Schließelement 4.2, 5.2 wird selbiges von dem Ventilsitz 4.1, 5.1 abgehoben. Die Teilmenge F1, F2 wird freigegeben. Durch eine erneute Betätigung der Betätigungsvorrichtung 4.4, 5.4 schließt das Vorsteuerventil den Entlastungskanal 4.7, 5.7. Über ein nicht dargestellten Steuerkanal strömt Fluid von der Anströmseite des Schließelements 4.2, 5.2 in den Steuerraum 4.6, 5.6. Da dieses nicht mehr über den Entlastungskanal 4.7, 5.7 abfließen kann, erhöht sich der Druck in dem Steuerraum 4.6, 5.6. Das Schließelement 4.2, 5.2 wird durch den sich aufbauenden Druck auf den Ventilsitz 4.1, 5.1 gepresst. Der Ventilsitz 4.1, 5.1 wird verschlossen und die Teilmenge F1, F2 des Fluidstrom F blockiert.
  • Im Folgenden soll nun auf Ausführungsformen des Mengenreglers 100, wie er bereits in den Figuren 4 und 5 im Ventil gezeigt ist, eingegangen werden.
  • In Fig. 6 und Fig. 7 ist ein Mengenregler 100 dargestellt, welcher aus der Strömungsrichtung S durch einen Fluidstrom F und insbesondere einer Teilmenge F1, F2 des Fluidstrom F angeströmt wird. Der Mengenregler 100 umfasst dabei 2 gegeneinander bewegbare Regelelemente 101, 102 welche einen Regelspalt 103 begrenzen. Durch eine Relativbewegung der Regelelemente 101, 102 wird die Spaltweite W des sich zwischen den Regelelementen 101, 102 erstreckenden Regelspalts 103 in Abhängigkeit des anströmseitigen Drucks des Fluidstrom F eingestellt. Beide Regelelemente 101, 102 sind als formstabile Anströmkörper ausgebildet, welche in ihrer Form durch das anströmende Fluid nicht verändert werden. Die formstabilen Anströmkörper bestehen aus temperaturbeständigen Materialien, wie beispielsweise Hartkunststoff, Metall, Duroplast, Keramik, Thermoplast oder Glas.
  • Die Regelelemente 101, 102 sind entlang der Strömungsrichtung S relativ zueinander bewegbar. Das erste Regelelement 101 weist einen variierenden Querschnitt mit entlang der Strömungsrichtung S verlaufenden Querschnittsverlauf 105 nach Art einer Pyramide auf. Der Querschnittsverlauf 105 schließt dabei einen Winkel α quer zu Strömungsrichtung S ein. Vorzugsweise liegt dieser Winkel α in einem Winkelbereich zwischen 0 und 180°.
  • Durch die Relativbewegung der beiden Regelelemente 101, 102 kann der Abstand zwischen den beiden Regelelementen quer zur Strömungsrichtung S zwischen einem maximalen Abstand Amax und einem minimalen Abstand A0 verändert werden. Der minimale Abstand A0 entspricht dabei vorzugsweise einem Wert von 0 mm.
  • Das erste Regelelement 101 steht fest und wird durch den entlang der Strömungsrichtung S strömenden Fluidstrom F in seiner Position nicht verändert. Es ist an einem weiteren Element mit quaderförmigen Querschnittsverlauf angeordnet. Das zweite Regelelement 102 ist hingegen relativ zu dem ersten Regelelement 101 bewegbar angeordnet. Durch den Druck eines anströmseitigen Fluidstroms F ändert sich seine Position entlang der Strömungsrichtung S. Die Regelelemente 101, 102 sind durch den Druck des Fluidstroms F aufeinander zu bewegbar.
  • Ein Rückstellelement 107, vorzugsweise eine Feder, erstreckt sich zwischen den beiden Regelelementen 101, 102 und übt eine Rückstellkraft zwischen diesen aus. Bei einer Bewegung des Regelelements 102 in Richtung des Regelelements 101 bewegt sich das Regelelement 102 entgegen der Rückstellkraft des Rückstellelements 107. Das Rückstellelement 107 wirkt eine Rückstellkraft auf das Regelelement 102 aus, welche in Richtung der Ausgangsstellung des Regelelements 102 gerichtet ist. Sinkt der das Regelelement 102 bewegende Druck des Fluidstroms F ab, bewegt die Rückstellkraft das Rückstellelements 107 das Regelelements 102 von dem Regelelement 101 weg. Die Ausgangsstellung des Regelelements 102 ist in den Figuren 6 und 7 gezeigt. Reicht der Druck des Fluidstroms F nicht aus, um das Regelelement 102 entgegen der Rückstellkraft des Rückstellelements 107 zu bewegen, nimmt das Regelelement 102 seine Ausgangsstellung ein bzw. verbliebt in dieser.
  • Das zweite Regelelement 102 ist in den gezeigten Ausführungsbeispielen als Regelblende mit einer Durchgangsbohrung 102.1 ausgebildet. In diese Durchgangsbohrung 102.1 tritt das zapfenförmige erste Regelelement 101 zur Einstellung der Spaltweite W des Steuerspalts ein. Beide Regelelemente 101, 102 sind koaxial zueinander angeordnet. Die relative Bewegung der Regelblende 102 entlang der Strömungsrichtung S führt zu einem tieferen Eintreten des zapfenförmigen Regelelements 101 in die Durchgangsbohrung 102.1. Die Spaltweite W wird dabei verkleinert. Die Regelblende 102 ist dabei schwimmend entlang der Strömungsrichtung S gelagert. Durch diese Lagerung kann ein Verkanten der Regelblende 102 vermieden werden. Da ein Verkanten einer Bewegung der Regelblende 102 entgegen stünde und somit auch der Mengenregelung, wird durch die schwimmende Lagerung die Zuverlässigkeit des Mengenreglers 100 verbessert.
  • In den Figuren 8 bis 11 sind weitere Ausführungsbeispiele eines Mengenreglers 100 gezeigt. Die wesentlichen Funktionen dieser Mengenregler 100 entsprechen denen des voran beschriebenen Mengenreglers und dessen Komponenten mit den gleichen Bezugszeichen. Im Folgenden wird daher nur auf die Unterschiede dieser Mengenregler gegenüber den Mengenreglern in den voran beschriebenen Figuren eingegangen.
  • In Fig. 8 ist ein Mengenregler 100 gezeigt, dessen Regelelement 101 einen Bypass 106 umfasst. Durch den Bypass 106 strömt ein Teil des Fluidstroms F selbst bei einem geschlossenen Regelspalt 103 durch den Mengenregler 100. Der Bypass 106 bildet eine direkte, insbesondere geradlinige Verbindung zwischen der Anströmseite und der Abströmseite des Mengenreglers 100.
  • Die Regelelemente 101, 102 sind in einem Regelgehäuse 104 angeordnet. Bei dem Regelgehäuse 104 kann es sich um einen Teil des Ventilkörpers 107 handeln oder um eine eigenständige Komponente. Das Regelelement 101 steht gegenüber dem Regelgehäuse 104 fest. Es kann zudem einteilig an dem Regelgehäuse 104 angeformt sein. Die Innenwandung 104.1 des Regelgehäuses 104 führt die Bewegung des Regelelements 102.
  • Ein Vorsprung 104.2 des Regelgehäuses 104 wirkt als einseitiger Anschlag des Regelelements 102 entgegen der Strömungsrichtung S. Der Vorsprung 104.2 legt die in der Figur gezeigte Ausgangsstellung der Regeleinheit 102 fest. Die Wanddicke des Regelgehäuses 104 ist anströmseitig größer als abströmseitig.
  • Ein Vorsprung 101.1 des Regelelements 101 stützt das Rückstellelement 107 entlang der Strömungsrichtung S ab. Das Rückstellelement 107 ist als eine Spiralfeder ausgebildet, welche zwischen dem Vorsprung 101.1 und dem Regelelement 102 angeordnet ist.
  • Das Regelelement 101 weist einen Querschnittsverlauf 105 nach Art eines Kegels auf. In einer komplementären Geometrie, ist die Regelblende 102 ringförmig ausgebildet.
  • Der spritzgegossene Mengenregler 100 in Fig. 9 entspricht in Wesentlichen dem Mengenregler 100 in Fig. 8. Im Unterschied hierzu weist das Regelelement 101 einen im Wesentlichen pistolenkugelförmigen Querschnittsverlauf 105 auf.
  • In Fig. 10 ist ein Mengenregler 100 mit einem weiteren Querschnittsverlauf 105 des Regelelements 101 dargestellt. Der Querschnittsverlauf 105 ist nach Art eines stufenförmigen Kegelstumpfs ausgebildet. Er weist stufenförmige Querschnittssprünge 105.1 auf. Die Querschnittssprünge 105.1 unterscheiden sich voneinander. Sie weisen entlang der Strömungsrichtung S einen unterschiedlichen Abstand voneinander auf. In ihrer Sprunghöhe, dem Unterschied des Querschnitts vor und hinter dem Querschnittssprung 105.1, unterscheiden sie sich ebenfalls.
  • Die Fig. 11 zeigt noch einen weiteren Querschnittsverlauf 105. Das Regelelement 101 weist einen vergleichsweise komplizierten und in Wesentlichen keilförmigen Querschnittsverlauf 105 auf. Der Querschnittsverlauf 105 verläuft stetig, ohne Querschnittssprünge 105.1. Bereiche des Regelelements 101 unterschiedlichen Querschnitts werden durch den geschwungen Querschnittsverlauf 105 miteinander verbunden. Die Spaltweite W des Regelspalts 103 ist bei einer Relativbewegung der Regelelemente 101, 102 im Wesentlichen stetig einstellbar.
  • Die Regelelemente 101 können auch andere Querschnittsverläufe 105 aufweisen. So sind die Querschnittsverläufe 105 der in Fig. 4 dargestellten Mengenregler 100 keilförmig. Der Abstand zwischen den Regelelementen 101, 102 und damit die Spaltweite W des Regelspalts 103 ändert sich bei einer Relativbewegung der Regelelementen 101, 102 nur auf einer Seite des Regelelements 101.
  • Die Regelelemente 101 der Mengenregler 100 in Fig. 5 weisen Querschnittsverläufe 105 nach Art von Kegelstümpfen auf. Bei diesen schließen sich in dem unteren Bereich der kegelstumpfförmigen Querschnittsverläufe 105 zusätzliche noch zylinderförmigere Querschnittsverläufe 105 an.
  • Das Regelelement 102 kann, wenngleich nicht dargestellt, alternativ oder zusätzlich einen variierenden Querschnitt mit einem entlang der Strömungsrichtung S verlaufenden Querschnittsverlauf 105 aufweisen. Es wäre auch denkbar, dass das zapfenförmige Regelelement 101 bewegbar ist, während die Regelblende 102 feststeht.
  • Das vorstehend beschriebene Ventil 1 erlaubt eine kompakte Bauform eines Ventils, mit welchem sich unterschiedliche Fluidmengen schalten lassen.
  • Bezugszeichen:
  • 1
    Ventil
    2
    Ventileinlass
    3
    Ventilauslass
    4
    Ventileinheit
    4.1
    Ventilsitz
    4.2
    Schließelement
    4.3
    Auslauf
    4.4
    Betätigungseinrichtung
    4.5
    Spule
    4.6
    Steuerraum
    4.7
    Entlastungskanal
    5
    Ventileinheit
    5.1
    Ventilsitz
    5.2
    Schließelement
    5.3
    Auslauf
    5.4
    Betätigungseinrichtung
    5.5
    Spule
    5.6
    Steuerraum
    5.7
    Entlastungskanal
    6
    Ventilkammer
    7
    Ventilkörper
    100
    Mengenregler
    101
    Regelelement
    101.1
    Vorsprung
    102
    Regelelement
    102.1
    Durchgangsausnehmung
    103
    Regelspalt
    104
    Regelgehäuse
    104.1
    Innenwandung
    104.2
    Vorsprung
    105
    Querschnittsverlauf
    105.1
    Querschnittssprung
    106
    Bypass
    107
    Rückstellelement
    Amax
    Abstand
    A0
    Abstand
    F
    Fluidstrom
    F1
    Teilmenge
    F2
    Teilmenge
    H
    Hauptströmungsrichtung
    S
    Strömungsrichtung
    W
    Spaltweite
    α
    Winkel

Claims (12)

  1. Ventil zum Schalten eines Fluidstroms (F) mit einem Ventileinlass (2) und einem Ventilauslass (3), die an einem gemeinsamen Ventilkörper (7) einstückig angeformt und von dem Fluidstrom (F) entlang einer Hauptströmungsrichtung (H) axial durchströmbar und koaxial zueinander angeordnet sind, wobei zwischen dem Ventileinlass (2) und dem Ventilauslass (3) mindestens zwei separat betätigbare, als eigenmediumbetätigbare Servoventile ausgebildete Ventileinheiten (4, 5) zum Schalten von Teilmengen (F1, F2) des Fluidstroms (F) angeordnet sind, wobei der Ventilkörper (7) nach Art eines Rohres ausgebildet ist, dessen Rohrenden von dem Ventileinlass (2) und dem Ventilauslass (3) gebildet werden, wobei die Ventileinheiten (4, 5) jeweils eine Betätigungseinrichtung (4.4, 5.4) aufweisen, die an dem Rohrmantel des Ventilkörpers (7) angeordnet ist, dadurch gekennzeichnet, dass die Betätigungseinrichtungen (4.4, 5.4) Spulen (4.5, 5.5) aufweisen, die sich parallel zur Hauptströmungsrichtung (H) erstrecken.
  2. Ventil nach Anspruch 1, dadurch gekennzeichnet, dass die Ventileinheiten (4, 5) derart angeordnet sind, dass die Strömungsrichtung der Ventileinheiten (4, 5) quer zur Hauptströmungsrichtung (H) verläuft.
  3. Ventil nach Anspruch 2, dadurch gekennzeichnet, dass die Strömungsrichtungen zweier Ventileinheiten (4, 5) entgegengesetzt verlaufen.
  4. Ventil nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass zwischen dem Ventileinlass (2) und dem Ventilauslass (3) eine Ventilkammer (6) angeordnet ist, in welcher die Ventileinheiten (4, 5) zumindest teilweise angeordnet sind.
  5. Ventil nach Anspruch 4, dadurch gekennzeichnet, dass die Ventilkammer (6) eine Strömungsrichtungsumkehr gegenüber der Hauptströmungsrichtung (H) aufweist.
  6. Ventil nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Ventileinheiten (4, 5) jeweils einen Ventilsitz (4.1, 5.1) und ein mit dem Ventilsitz (4.1, 5.1) zusammenwirkendes Schließelement (4.2, 5.2) zum Schalten der Teilmengen (F1, F2) des Fluidstroms (F) aufweisen.
  7. Ventil nach Anspruch 6, dadurch gekennzeichnet, dass die Ventilsitze (4.1, 5.1) der Ventileinheiten (4, 5) abströmseitig mit dem Ventilauslass (3) strömungsverbunden sind.
  8. Ventil nach Anspruch 7, dadurch gekennzeichnet, dass die Ventilsitze (4.1, 5.1) der Ventileinheiten (4, 5) jeweils über einen winkelförmigen Auslauf (4.3, 5.3) mit dem Ventilauslass (3) strömungsverbunden sind.
  9. Ventil nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Ventileinheiten (4, 5) unterschiedliche Strömungsquerschnitte aufweisen.
  10. Ventil nach einem der vorangehenden Ansprüche, gekennzeichnet, dass die Ventilsitze (4.1, 5.1) an dem gemeinsamen Ventilkörper (7) einstückig angeformt sind.
  11. Ventil nach Anspruch 1, dadurch gekennzeichnet, dass sich die Spulen (4.5, 5.5) parallel zum Ventilkörper (7) erstrecken.
  12. Ventil nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass zumindest eine Ventileinheit (4, 5) mit einem Mengenregler (10) ausgestattet ist.
EP18194426.5A 2017-09-19 2018-09-14 Ventil zum schalten eines fluidstroms Active EP3456984B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102017121704.5A DE102017121704A1 (de) 2017-09-19 2017-09-19 Ventil zum Schalten eines Fluidstroms

Publications (2)

Publication Number Publication Date
EP3456984A1 EP3456984A1 (de) 2019-03-20
EP3456984B1 true EP3456984B1 (de) 2023-11-08

Family

ID=63579276

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18194426.5A Active EP3456984B1 (de) 2017-09-19 2018-09-14 Ventil zum schalten eines fluidstroms

Country Status (3)

Country Link
EP (1) EP3456984B1 (de)
DE (1) DE102017121704A1 (de)
DK (1) DK3456984T3 (de)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4019533A (en) * 1975-07-17 1977-04-26 Digital Dynamics, Inc. Digital valve assembly

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4244396A (en) * 1971-08-09 1981-01-13 Powell Industries, Inc. Digital fluid flow control system
US4170245A (en) * 1978-03-03 1979-10-09 Fmc Corporation Digital control valve

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4019533A (en) * 1975-07-17 1977-04-26 Digital Dynamics, Inc. Digital valve assembly

Also Published As

Publication number Publication date
DE102017121704A1 (de) 2019-03-21
DK3456984T3 (da) 2024-01-08
EP3456984A1 (de) 2019-03-20

Similar Documents

Publication Publication Date Title
EP2740980B1 (de) Stetig verstellbares hydraulisches Einbauventil
DE60104168T2 (de) Elektromagnetisches Druckregelventil
EP3187760A1 (de) Ventilkäfig zum aufnehmen eines ventilglieds und verfahren zum betätigen eines stellventils mit einem ventilkäfig und einem ventilglied
DE102013100717B3 (de) Elektromagnetisches Fluidventil
EP3001080A1 (de) Druckreduzierventil mit gesonderten radialbohrungen für unterschiedliche fluidströmungspfade
EP2348376B1 (de) Stromregelventil mit Dämpfungskammer
EP2558758B1 (de) Stromregelventil
EP2516229B1 (de) Magnetventil sowie fahrerassistenzeinrichtung mit einem derartigen magnetventil
WO2007104394A1 (de) Ludv-ventilanordnung
CH632326A5 (de) Stroemungsregelventil.
DE102014017801B4 (de) Druckbegrenzungsventil
EP3042087B1 (de) Ventilbaukomponenten
DE4025488C2 (de) Rückschlagventil
EP2880315B1 (de) Ventil, insbesondere vorgesteuertes proportional-wegesitzventil
EP2880316B1 (de) Ventil, insbesondere vorgesteuertes proportional-wegesitzventil
EP2420712B1 (de) Stellgerät zur Steuerung eines Fluidstroms
EP3456984B1 (de) Ventil zum schalten eines fluidstroms
EP0630452B1 (de) Proportional-wegeventil
DE102007006872A1 (de) Kugelsitzventil mit konturiertem Steuerstößel
EP1090240A1 (de) Druckbegrenzungsventil
DE10046416A1 (de) Ventilausbildung für Steuerventile
EP3457011A1 (de) Mengenregler
DE10230343A1 (de) Heizkörperventil
DE3346182C2 (de)
EP1452744B1 (de) Hydraulische Steueranordnung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190920

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20211109

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230602

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230922

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018013599

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20240103

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20231108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231108

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231108

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240308

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231108

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240208

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240308