EP3452773B1 - Method and apparatus for monitoring a heat exchanger - Google Patents

Method and apparatus for monitoring a heat exchanger Download PDF

Info

Publication number
EP3452773B1
EP3452773B1 EP17731060.4A EP17731060A EP3452773B1 EP 3452773 B1 EP3452773 B1 EP 3452773B1 EP 17731060 A EP17731060 A EP 17731060A EP 3452773 B1 EP3452773 B1 EP 3452773B1
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
determined
cooling work
during
reference operating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17731060.4A
Other languages
German (de)
French (fr)
Other versions
EP3452773A1 (en
Inventor
Jens-Werner Kipp
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP3452773A1 publication Critical patent/EP3452773A1/en
Application granted granted Critical
Publication of EP3452773B1 publication Critical patent/EP3452773B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28GCLEANING OF INTERNAL OR EXTERNAL SURFACES OF HEAT-EXCHANGE OR HEAT-TRANSFER CONDUITS, e.g. WATER TUBES OR BOILERS
    • F28G15/00Details
    • F28G15/003Control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/56Boiler cleaning control devices, e.g. for ascertaining proper duration of boiler blow-down
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2200/00Prediction; Simulation; Testing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/08Fluid driving means, e.g. pumps, fans

Definitions

  • the object of the present invention is to provide a method for determining a degree of pollution and / or a deterioration in the efficiency of a heat exchanger as a result of pollution.
  • the determination of the pollution or the change in efficiency should take place automatically with technical means during normal operation.
  • a further object of the invention is to specify a device for carrying out the method.
  • the invention provides that the determination of the cooling work is carried out in the learning mode and / or in the measuring mode after the heat exchanger is in a quasi-static or stationary operating state.
  • the cooling work of the electric motor is determined after a reaction time of the heat exchanger with a constant power consumption of the electric motor, with a constant temperature of the medium to be cooled before and after the energy conversion and with a constant coolant temperature.
  • the response time can be determined in different ways. For example, empirical values from the past can be used to conservatively estimate the response time. A value determined in this way for the reaction time of the heat exchanger can then be stored in a data memory and used before the method according to the invention is carried out.
  • the parameters of the system relevant to determining the steady operating state in particular the power consumption of the electric motor, the temperature of the medium to be cooled before and after the energy conversion and the coolant temperature are detected by sensors.
  • the stationary operating state can then be derived from the parameters recorded in this way of the heat exchanger can be determined.
  • the determination of the cooling work in the learning mode or in the measuring mode then follows.
  • any other energy sources can be monitored with regard to their power balance.
  • the energy consumption can, for example, be made available to the evaluation unit in a processed form.
  • the energy consumption of a gas burner provided for temperature control of a fluid can be recorded and compared with reference to the reference operating situation and the working operating situation.
  • the other process parameters are recorded in the same way as the process variables described above.
  • FIG. 1 shows a heat exchanger 1, to which a medium to be cooled is supplied via a first fluid channel 2 and a coolant is supplied via a coolant circuit 3.
  • the coolant circuit 3 is assigned a coolant pump 4 which is operated by an electric motor 5 responsible for cooling.
  • the coolant pumped around in the coolant circuit 3 has a coolant temperature T k .
  • the medium to be cooled which is guided via the fluid channel 2, is fed to the heat exchanger 1 at an inlet temperature T i and is removed at an outlet temperature T o .
  • the electric motor 5 the effective power P M and the cooling power P K are determined.
  • the active power PM in particular the motor current i, the voltage u and the phase are determined.
  • a difference between a value of the cooling work J B in the measuring mode and a value of the cooling work J R in the learning mode is used to deduce a change in an efficiency of the heat exchanger.
  • the values for the cooling work J B in measuring mode and for the cooling work J R in learning mode are determined after the heat exchanger 1 is in a quasi-static or steady state after a reaction time, which is characterized in that the electric motor 5 has a constant power consumption that the temperatures T i , T o of the medium to be cooled are constant before and after the energy conversion and that the coolant temperature T k is constant.
  • a point in time is determined at which cleaning the heat exchanger 1 and returning it to the cleaned reference operating state is more economical than continuing to operate the uncleaned heat exchanger 1.
  • the downtime or the production stop can be taken into account which is associated with a shutdown of the heat exchanger.
  • the costs for carrying out the cleaning in terms of personnel and material can also be taken into account or offset.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Überwachung eines Verschmutzungsgrads eines Wärmetauschers sowie eine Vorrichtung zur Durchführung des Verfahrens.The invention relates to a method for monitoring the degree of contamination of a heat exchanger and to a device for carrying out the method.

Wärmetauscher werden in großer Stückzahl im industriellen Umfeld eingesetzt und in vielen Fällen quasi unterbrechungsfrei über eine lange Zeit betrieben. Während des Betriebs verschmutzen die Wärmetauscher. Beispielsweise wird mit einem zu kühlenden Medium, insbesondere Luft, Schmutz in den Wärmetauscher eingebracht. Der Schmutz setzt sich an den Grenzflächen des Wärmetauschers fest. Er reduziert beziehungsweise behindert die Strömung des Mediums im Wärmetauscher und beeinflusst den Wärmeübergangswiderstand beziehungsweise die Effizienz des Wärmeübergangs zwischen einem Kühlmedium und dem zu kühlenden Medium negativ. Letztlich steigt hierdurch der Energiebedarf zum Betrieb des Wärmetauschers. Eine regelmäßige Reinigung des Wärmetauschers ist heute in der Regel nicht vorgesehen. Die Unternehmen beziehungsweise Betreiber des Wärmetauschers können weder Aussagen zum Verschmutzungsgrad des Wärmetauschers, zu der Wirkungsgradverschlechterung infolge der Verschmutzung oder zu dem Zeitpunkt der nächsten planmäßigen oder außerplanmäßigen Reinigung machen.Heat exchangers are used in large numbers in an industrial environment and in many cases are operated almost without interruption over a long period of time. The heat exchangers get dirty during operation. For example, a medium to be cooled, in particular air, is used to introduce dirt into the heat exchanger. The dirt sticks to the interfaces of the heat exchanger. It reduces or hampers the flow of the medium in the heat exchanger and has a negative effect on the heat transfer resistance or the efficiency of the heat transfer between a cooling medium and the medium to be cooled. Ultimately, this increases the energy required to operate the heat exchanger. Regular cleaning of the heat exchanger is generally not planned today. The companies or operators of the heat exchanger cannot make any statements about the degree of soiling of the heat exchanger, the deterioration in efficiency as a result of the pollution or the time of the next scheduled or unscheduled cleaning.

Verfahren zur Überwachung von Wärmetauschern in Bezug auf ihren Verschmutzungsgrad und zur Durchführen des Verfahrens ausgebildete Vorrichtungen sind beispielsweise aus der DE 10 2014 204 718 A1 , US 2016/047609 A1 , US 5 226 285 A und US 2010/273118 A1 bekannt Die US 2010/273118 A1 zeigt ein Verfahren gemäß dem Oberbegriff des Anspruchs 1.Methods for monitoring heat exchangers with regard to their degree of contamination and devices designed for carrying out the method are, for example, from DE 10 2014 204 718 A1 , US 2016/047609 A1 , U.S. 5,226,285 A and US 2010/273118 A1 known The US 2010/273118 A1 shows a method according to the preamble of claim 1.

Aufgabe der vorliegenden Erfindung ist es insofern, ein Verfahren zur Bestimmung eines Verschmutzungsgrads und/oder einer Wirkungsgradverschlechterung eines Wärmetauschers infolge einer Verschmutzung anzugeben. Die Bestimmung der Verschmutzung beziehungsweise der Wirkungsgradänderung soll mit technischen Mitteln automatisiert während des normalen Betriebs erfolgen. Ferner ist es Aufgabe der Erfindung, eine Vorrichtung zur Durchführung des Verfahrens anzugeben.The object of the present invention is to provide a method for determining a degree of pollution and / or a deterioration in the efficiency of a heat exchanger as a result of pollution. The determination of the pollution or the change in efficiency should take place automatically with technical means during normal operation. A further object of the invention is to specify a device for carrying out the method.

Zur Lösung der Aufgabe weist das erfindungsgemäße Verfahren die Merkmale des unabhängigen Patentanspruchs 1 auf.To achieve the object, the method according to the invention has the features of independent claim 1.

Nach der Erfindung ist vorgesehen, dass während eines Lernbetriebs in einem gereinigten Referenzbetriebszustand des Wärmetauschers für einen oder bevorzugt für mehrere Referenzbetriebssituationen die Kühlarbeit eines für die Kühlung zuständigen Elektromotors bestimmt wird. Nach dem Abschluss des Lernbetriebs wird in einem Messbetrieb des erfindungsgemäßen Verfahrens in einer zu der Referenzbetriebssituation korrespondierenden Arbeitsbetriebssituation die Kühlarbeit des gleichen Elektromotors bestimmt. Nach Durchführung des Lernbetriebs und des Messbetriebs wird in Kenntnis der unterschiedlichen Kühlarbeit im Messbetrieb und im Kühlbetrieb auf eine Änderung eines Wirkungsgrads des Wärmetauschers geschlossen. Insbesondere kann in Kenntnis einer Verschlechterung des Wirkungsgrads bestimmt werden, wie viel mehr Energie aufgrund der Verschmutzung des Wärmetauschers für dessen Betrieb aufgebracht werden muss. In Kenntnis einer durchschnittlichen Dauer einer Reinigung des Wärmetauschers und typischer Kosten für die Reinigung des Wärmetauschers kann dann bestimmt werden, ob der Fortbetrieb des verschmutzten Wärmetauschers wirtschaftlich weniger vorteilhaft ist als die Durchführung einer Reinigung des Wärmetauschers. Neben der Kosten der Reinigung können hierbei insbesondere die Ausfallzeiten des Wärmetauschers und der mit dem Stillsetzen des Wärmetauschers verbundene Produktionsausfall berücksichtigt werden.According to the invention it is provided that during a learning operation in a cleaned reference operating state of the heat exchanger for one or preferably for several reference operating situations, the cooling work of an electric motor responsible for cooling is determined. After the end of the learning mode, the cooling work of the same electric motor is determined in a measuring mode of the method according to the invention in a working operating situation corresponding to the reference operating situation. After the learning operation and the measuring operation have been carried out, knowing the different cooling work in the measuring operation and in the cooling operation, a change in the efficiency of the heat exchanger is concluded. In particular, knowing a deterioration in the efficiency can determine how much more energy has to be applied for its operation due to the pollution of the heat exchanger. Knowing an average duration of cleaning the heat exchanger and typical costs for cleaning the heat exchanger, it can then be determined whether the continued operation of the soiled heat exchanger is economically less advantageous than carrying out a cleaning of the heat exchanger. In addition to the cleaning costs, the downtimes of the heat exchanger and the loss of production associated with the shutdown of the heat exchanger can be taken into account.

Es kann insbesondere vorgesehen sein, dass der Lernbetrieb einmalig durchgeführt wird, während der Messbetrieb wiederkehrend durchgeführt wird. Beispielsweise wird der Lernbetrieb einmalig nach Durchführung einer Reinigung oder bei der Inbetriebnahme des Wärmetauschers durchgeführt. Der Messbetrieb wird beispielsweise periodisch in gleichen oder variablen Betriebszeitintervallen durchgeführt.In particular, it can be provided that the learning mode is carried out once, while the measuring mode is carried out repeatedly. For example, the learning mode is carried out once after cleaning or when the heat exchanger is put into operation. The measuring operation is carried out periodically, for example, at the same or variable operating time intervals.

Nach einer Weiterbildung der Erfindung wird die Kühlarbeit für den Elektromotor in dem Lernbetrieb und in dem Messbetrieb bestimmt, indem die Wirkleistung beziehungsweise der Motorstrom des Elektromotors bestimmt werden. Die Wirkleistung beziehungsweise der Motorstrom des Elektromotors kann vergleichsweise einfach erfasst und zur Bestimmung einer elektrischen Leistungsaufnahme des Elektromotors herangezogen werden. Aus der Leistungsaufnahme ergibt sich über die Zeit die von dem Elektromotor in einem Erfassungszeitintervall aufgenommene Kühlarbeit. Das Erfassungszeitintervall kann dabei im Lernbetrieb und im Messbetrieb gleich groß gewählt werden oder unterschiedlich bemessen sein.According to a further development of the invention, the cooling work for the electric motor in the learning mode and in the measuring mode is determined by determining the real power or the motor current of the electric motor. The real power or the motor current of the electric motor can be recorded comparatively easily and used to determine an electrical power consumption of the electric motor. The cooling work absorbed by the electric motor in a detection time interval results from the power consumption over time. The acquisition time interval can be selected to be the same size in learning mode and in measuring mode or it can be dimensioned differently.

Nach einer vorteilhaften Weiterbildung sieht die Erfindung vor, dass die Bestimmung der Kühlarbeit in dem Lernbetrieb und/oder in dem Messbetrieb durchgeführt wird, nachdem der Wärmetauscher in einem quasistatischen beziehungsweise stationären Betriebszustand ist. Zu diesem Zweck erfolgt die Bestimmung der Kühlarbeit des Elektromotors nach einer Reaktionszeit des Wärmetauschers bei einer konstanten Leistungsaufnahme des Elektromotors, bei konstanter Temperatur des zu kühlenden Mediums vor und nach der Energiewandlung und bei einer konstanten Kühlmitteltemperatur. Die Bestimmung der Reaktionszeit kann dabei auf unterschiedlicher Weise erfolgen. Beispielsweise können Erfahrungswerte der Vergangenheit genutzt werden, um die Reaktionszeit konservativ abzuschätzen. Ein so ermittelter Wert für die Reaktionszeit des Wärmetauschers kann dann in einem Datenspeicher abgelegt und vor der Durchführung des erfindungsgemäßen Verfahrens herangezogen werden. Ebenso ist vorgesehen, dass die zur Bestimmung des stationären Betriebszustands relevanten Kenngrößen des Systems, insbesondere die Leistungsaufnahme des Elektromotors, die Temperatur des zu kühlenden Mediums vor und nach der Energiewandlung und die Kühlmitteltemperatur sensorisch erfasst werden. Aus den so erfassten Kenngrößen kann dann der stationäre Betriebszustand des Wärmetauschers ermittelt werden. Die Bestimmung der Kühlarbeit in dem Lernbetrieb beziehungsweise in dem Messbetrieb schließt sich dann an.According to an advantageous development, the invention provides that the determination of the cooling work is carried out in the learning mode and / or in the measuring mode after the heat exchanger is in a quasi-static or stationary operating state. For this purpose, the cooling work of the electric motor is determined after a reaction time of the heat exchanger with a constant power consumption of the electric motor, with a constant temperature of the medium to be cooled before and after the energy conversion and with a constant coolant temperature. The response time can be determined in different ways. For example, empirical values from the past can be used to conservatively estimate the response time. A value determined in this way for the reaction time of the heat exchanger can then be stored in a data memory and used before the method according to the invention is carried out. It is also provided that the parameters of the system relevant to determining the steady operating state, in particular the power consumption of the electric motor, the temperature of the medium to be cooled before and after the energy conversion and the coolant temperature are detected by sensors. The stationary operating state can then be derived from the parameters recorded in this way of the heat exchanger can be determined. The determination of the cooling work in the learning mode or in the measuring mode then follows.

In dem Lernbetrieb wird bei gereinigtem Wärmetauscher die Kühlarbeit bevorzugt für eine Mehrzahl von Referenzbetriebssituationen ermittelt. Es besteht insofern die Möglichkeit, die während des Messbetriebs in einer ausgewählten Arbeitsbetriebssituation bestimmte Kühlarbeit des Elektromotors zu vergleichen mit dem Wert der Kühlarbeit in einer oder mehreren korrespondierenden Referenzbetriebssituationen. Beispielsweise kann eine Arbeitsbetriebssituation einer Referenzbetriebssituation gleichen, etwa in Bezug auf die Temperatur, den Druck und den Volumenstrom des zu kühlenden Mediums. Beispielsweise kann vorgesehen sein, dass für eine Arbeitssituation, zu der keine exakte gleiche Referenzbetriebssituation im Datenspeicher dokumentiert ist, mithilfe einer Interpolation der für wenigstens zwei in dem Datenspeicher abgelegten Referenzbetriebssituationen bestimmten Werte der Kühlarbeit die Änderung des Wirkungsgrads des Wärmetauschers zu ermitteln. Die wenigstens zwei für die Interpolation betrachteten Referenzbetriebssituationen können in gleicher oder unterschiedlicher Gewichtung Eingang in die Bestimmung des Wirkungsgrads des Wärmetauschers finden.In the learning mode, with the heat exchanger cleaned, the cooling work is preferably determined for a plurality of reference operating situations. In this respect, there is the possibility of comparing the cooling work of the electric motor determined during the measurement operation in a selected working operating situation with the value of the cooling work in one or more corresponding reference operating situations. For example, a working operating situation can resemble a reference operating situation, for example with regard to the temperature, the pressure and the volume flow of the medium to be cooled. For example, it can be provided that for a work situation for which no exact identical reference operating situation is documented in the data memory, the change in the efficiency of the heat exchanger is determined using an interpolation of the cooling work values determined for at least two reference operating situations stored in the data memory. The at least two reference operating situations considered for the interpolation can be included in the determination of the efficiency of the heat exchanger with the same or different weightings.

Eine zur Lösung der Aufgabe ausgebildete Vorrichtung weist die Merkmale des unabhängigen Patentanspruchs 10 auf.A device designed to achieve the object has the features of independent claim 10.

Die Vorrichtung umfasst insbesondere eine Zentralmesseinrichtung und eine Mehrzahl von Wärmetauschern, wobei eine Mehrzahl von den Wärmetauschern zugeordneten Sensoren an die Zentralmesseinrichtung angeschlossen sind und wobei die einem einzelnen Wärmetauscher zugeordneten Sensoren mit einer Recheneinheit der Zentralmesseinrichtung und einem Datenspeicher der Zentralmesseinrichtung derart zusammenwirken, dass für jeden einzelnen Wärmetauscher getrennt eine infolge der Verschmutzung auftretende Wirkungsgradänderung durch Vergleich der im Messbetrieb bestimmten Kühlarbeit eines Elektromotors des betrachteten Wärmetauschers und einem in dem Datenspeicher abgelegten Wert der Kühlarbeit des gleichen Wärmetauschers in einem gereinigtem Referenzbetriebszustand verglichen wird. Die Zentralmesseinrichtung kann dabei insbesondere ortsfern zu wenigstens einzelnen Wärmetauschern vorgesehen sein. Ein Zeitpunkt zur Durchführung einer Reinigung kann für jeden betrachtenden Wärmetauscher individuell bestimmt werden.In particular, the device comprises a central measuring device and a plurality of heat exchangers, a plurality of sensors assigned to the heat exchangers being connected to the central measuring device and the sensors assigned to a single heat exchanger interacting with a computing unit of the central measuring device and a data memory of the central measuring device in such a way that for each individual Heat exchanger, a change in efficiency that occurs as a result of the pollution is compared by comparing the cooling work of an electric motor of the heat exchanger in question, determined in the measurement mode, and a value of the cooling work of the same heat exchanger stored in the data memory in a cleaned reference operating state. The central measuring device can in particular be provided remotely from at least individual heat exchangers. A point in time for carrying out cleaning can be determined individually for each heat exchanger under consideration.

Nach einer Weiterbildung der Erfindung kann vorgesehen sein, dass für jeden einzelnen Wärmetauscher ein dezentrales Steuermodul vorgesehen ist. Die den einzelnen Wärmetauschern zugeordneten Sensoren sind dann bevorzugt mit dem dezentralen Steuermodul verbunden. Das dezentrale Steuermodul ist über eine Datenleitung, insbesondere einem Datenbus mit der Zentralmesseinrichtung verbunden. Insofern können die mithilfe der Sensoren ermittelten Kenngrößen von dem dezentralen Steuermodul gesammelt beziehungsweise aggregiert und validiert werden. Ebenso können die während des Lernbetriebs für den einzelnen Wärmetauscher ermittelten Werte für die Kühlarbeit in einem Datenspeicher des dezentralen Steuermoduls abgelegt sein. Beispielsweise kann vorgesehen sein, dass die Bestimmung der Wirkungsgradänderung für alle angeschlossenen Wärmetauscher in der Zentralmesseinrichtung erfolgt. Auch beim Vorsehen der dezentralen Steuermodule kann der Datenspeicher für die während des Lernbetriebs ermittelte Kühlarbeit des Elektromotors der Zentralmesseinrichtung zugeordnet sein.According to a development of the invention, it can be provided that a decentralized control module is provided for each individual heat exchanger. The sensors assigned to the individual heat exchangers are then preferably connected to the decentralized control module. The decentralized control module is connected to the central measuring device via a data line, in particular a data bus. In this respect, the parameters determined using the sensors can be used by the decentralized control module can be collected or aggregated and validated. The values for the cooling work determined during the learning mode for the individual heat exchanger can also be stored in a data memory of the decentralized control module. For example, it can be provided that the change in efficiency is determined for all connected heat exchangers in the central measuring device. Even if the decentralized control modules are provided, the data memory for the cooling work of the electric motor determined during the learning mode can be assigned to the central measuring device.

Nach der Erfindung kann vorgesehen sein, dass das Prinzip der Überwachung der Energie wandelnden Prozesse weit gefasst wird. Es kann beispielsweise die Leistungsaufnahme eines Elektromotors überwacht werden, welcher einen Propeller antreibt zur Bereitstellung eines Luftstroms. Beispielsweise kann eine zum Umwälzen eines Gases oder einer Flüssigkeit vorgesehene Elektropumpe überwacht werden. Das umgewälzte Medium kann zum Heizen beziehungsweise Kühlen eines dem Wärmetauscher zugeführten Nutzvolumenstroms vorgesehen sein. Das erfindungsgemäße Verfahren lässt sich insofern auf Lamellenwärmetauscher anwenden, bei denen die steigende Motorleistung des Lüfters bewertet wird. Ebenso lässt es sich bei Rohrbündel-, Platten-, Gegenstrom-, Gleichstrom- und Kreuzstromwärmetauschern anwenden, bei denen ein flüssiges Medium von einer elektrisch angetriebenen Pumpe bewegt wird. Auch wird die elektrische Arbeit der Pumpe im Zusammenhang mit der verrichteten Energiewandlung ausgewertet.According to the invention it can be provided that the principle of monitoring the energy-converting processes is broadly defined. For example, the power consumption of an electric motor can be monitored, which drives a propeller to provide an air flow. For example, an electric pump provided for circulating a gas or a liquid can be monitored. The circulated medium can be provided for heating or cooling a useful volume flow supplied to the heat exchanger. The method according to the invention can be applied to lamellar heat exchangers in which the increasing engine power of the fan is evaluated. It can also be used with tube bundle, plate, counterflow, cocurrent and crossflow heat exchangers in which a liquid medium is moved by an electrically driven pump. The electrical work of the pump in connection with the energy conversion performed is also evaluated.

Es kann ferner vorgesehen sein, dass das Prinzip der dem erfindungsgemäßen Verfahren zugrundeliegenden Überwachung der Energie wandelnden Prozesse über die Überwachung von Elektromotoren hinaus ausgedehnt wird. Insbesondere können beliebige andere Energiequellen hinsichtlich ihrer Leistungsbilanz überwacht werden. Der Energieverbrauch kann der Auswerteeinheit beispielsweise aufbereitet zur Verfügung gestellt werden. Beispielsweise kann der Energieverbrauch bei einem zum Temperieren eines Fluids vorgesehenen Gasbrenner erfasst und in Bezug auf die Referenzbetriebssituation und die Arbeitsbetriebssituation verglichen werden. Die Erfassung der anderen Prozessparameter erfolgt analog zu den zuvor beschriebenen Prozessgrößen.It can further be provided that the principle of the monitoring of the energy-converting processes on which the method according to the invention is based is extended beyond the monitoring of electric motors. In particular, any other energy sources can be monitored with regard to their power balance. The energy consumption can, for example, be made available to the evaluation unit in a processed form. For example, the energy consumption of a gas burner provided for temperature control of a fluid can be recorded and compared with reference to the reference operating situation and the working operating situation. The other process parameters are recorded in the same way as the process variables described above.

Aus den weiteren Unteransprüchen und der nachfolgenden Beschreibung sind weitere Vorteile, Merkmale und Einzelheiten der Erfindung zu entnehmen. Dort erwähnte Merkmale können jeweils einzeln für sich oder auch in beliebiger Kombination erfindungswesentlich sein. Erfindungsgemäß beschriebene Merkmale und Details der Vorrichtung gelten selbstverständlich auch im Zusammenhang mit dem erfindungsgemäßen Verfahren und umgekehrt. So kann auf die Offenbarung zu den einzelnen Erfindungsaspekten stets wechselseitig Bezug genommen werden. Die Zeichnungen dienen lediglich beispielhaft der Klarstellung der Erfindung und haben keinen einschränkenden Charakter.Further advantages, features and details of the invention can be derived from the further subclaims and the following description. Features mentioned there can each be essential to the invention individually or in any combination. Features and details of the device described according to the invention naturally also apply in connection with the method according to the invention and vice versa. In this way, mutual reference can always be made to the disclosure of the individual aspects of the invention. The drawings serve only by way of example to clarify the invention and are not of a restrictive nature.

Anhand der beigefügten Zeichnungen wird die Erfindung nachfolgend näher erläutert. Dabei zeigen:

Figur 1
eine Prinzipdarstellung für einen Wärmetauscher, an dem das erfindungsgemäße Verfahren durchgeführt wird und
Figur 2
eine erfindungsgemäße Vorrichtung mit einer Zentralmesseinrichtung und einer Mehrzahl von Wärmetauschern.
The invention is explained in more detail below with reference to the accompanying drawings. Show:
Figure 1
a schematic diagram for a heat exchanger on which the method according to the invention is carried out and
Figure 2
a device according to the invention with a central measuring device and a plurality of heat exchangers.

Figur 1 zeigt einen Wärmetauscher 1, dem über einen ersten Fluidkanal 2 ein zu kühlendes Medium und über einen Kühlmittelkreislauf 3 ein Kühlmittel zugeführt wird. Dem Kühlmittelkreislauf 3 ist eine Kühlmittelpumpe 4 zugeordnet, welche von einem für die Kühlung zuständigen Elektromotor 5 betrieben wird. Das in dem Kühlmittelkreislauf 3 umgepumpte Kühlmittel hat eine Kühlmitteltemperatur Tk. Das zu kühlende Medium, welches über den Fluidkanal 2 geführt wird, wird dem Wärmetauscher 1 mit einer Eingangstemperatur Ti zugeführt und bei einer Ausgangtemperatur To abgeführt. In Bezug auf den Elektromotor 5 werden die Wirkleistung PM und die Kühlleistung PK bestimmt. Zur Bestimmung der Wirkleistung PM werden insbesondere der Motorstrom i, die Spannung u und die Phase ermittelt. Figure 1 shows a heat exchanger 1, to which a medium to be cooled is supplied via a first fluid channel 2 and a coolant is supplied via a coolant circuit 3. The coolant circuit 3 is assigned a coolant pump 4 which is operated by an electric motor 5 responsible for cooling. The coolant pumped around in the coolant circuit 3 has a coolant temperature T k . The medium to be cooled, which is guided via the fluid channel 2, is fed to the heat exchanger 1 at an inlet temperature T i and is removed at an outlet temperature T o . With respect to the electric motor 5, the effective power P M and the cooling power P K are determined. To determine the active power PM, in particular the motor current i, the voltage u and the phase are determined.

Erfindungsgemäß ist es vorgesehen, dass zunächst in einem Lernbetrieb in einem gereinigten Referenzbetriebszustand des Wärmetauschers 1 für wenigstens eine und bevorzugt für eine Mehrzahl von Referenzbetriebssituationen die Kühlarbeit JR des für die Kühlung zuständigen Elektromotors 5 bestimmt und die so ermittelten Werte in einem Datenspeicher abgelegt werden. Ferner wird zu einem späteren Zeitpunkt in einem Messbetrieb des Wärmetauschers 1 eine Kühlarbeit JB des Elektromotors in einer Arbeitsbetriebssituation bestimmt, welche sich dadurch kennzeichnet, dass der Wärmetauscher einen anderen, insbesondere höheren Verschmutzungsgrad aufweist als im Lernbetrieb. Die Arbeitsbetriebssituation korrespondiert insbesondere zu wenigstens einer Referenzbetriebssituation. Nach Durchführung des Lernbetriebs und des Messbetriebs wird aus einer Differenz zwischen einem Wert der Kühlarbeit JB im Messbetrieb und einem Wert der Kühlarbeit JR im Lernbetrieb auf eine Änderung eines Wirkungsgrads des Wärmetauschers geschlossen. Insbesondere werden die Werte für die Kühlarbeit JB im Messbetrieb und für die Kühlarbeit JR im Lernbetrieb bestimmt, nachdem sich der Wärmetauscher 1 nach einer Reaktionszeit in einem quasistatischen beziehungsweise stationären Betriebszustand befindet, welcher dadurch gekennzeichnet ist, dass der Elektromotor 5 eine konstante Leistungsaufnahme aufweist, dass die Temperaturen Ti, To des zu kühlenden Mediums vor und nach der Energiewandlung konstant sind und dass die Kühlmitteltemperatur Tk konstant ist.According to the invention, it is provided that the cooling work J R of the electric motor 5 responsible for cooling is initially determined in a learning mode in a cleaned reference operating state of the heat exchanger 1 for at least one and preferably for a plurality of reference operating situations and the values thus determined are stored in a data memory. Furthermore, at a later date in a measurement operation of the heat exchanger 1 determines a cooling work J B of the electric motor in a working operating situation, which is characterized in that the heat exchanger has a different, in particular higher degree of pollution than in the learning mode. The working operating situation corresponds in particular to at least one reference operating situation. After the learning mode and the measuring mode have been carried out, a difference between a value of the cooling work J B in the measuring mode and a value of the cooling work J R in the learning mode is used to deduce a change in an efficiency of the heat exchanger. In particular, the values for the cooling work J B in measuring mode and for the cooling work J R in learning mode are determined after the heat exchanger 1 is in a quasi-static or steady state after a reaction time, which is characterized in that the electric motor 5 has a constant power consumption that the temperatures T i , T o of the medium to be cooled are constant before and after the energy conversion and that the coolant temperature T k is constant.

Anhand der Änderung des Wirkungsgrads des Wärmetauschers 1 wird ein Zeitpunkt bestimmt, an dem eine Reinigung des Wärmetauschers 1 und ein Zurückversetzen desselben in den gereinigten Referenzbetriebszustand wirtschaftlicher ist als ein Fortbetrieb des ungereinigten Wärmetauschers 1. Hierbei kann neben den Energiekosten insbesondere die Ausfallzeit beziehungsweise der Produktionsstopp berücksichtigt werden, welcher mit einem Stillsetzen des Wärmetauschers verbunden ist. Ebenso können die Kosten für die Durchführung der Reinigung in Bezug auf Personal und Material berücksichtigt beziehungsweise gegengerechnet werden.On the basis of the change in the efficiency of the heat exchanger 1, a point in time is determined at which cleaning the heat exchanger 1 and returning it to the cleaned reference operating state is more economical than continuing to operate the uncleaned heat exchanger 1. In addition to the energy costs, in particular the downtime or the production stop can be taken into account which is associated with a shutdown of the heat exchanger. The costs for carrying out the cleaning in terms of personnel and material can also be taken into account or offset.

Eine erfindungsgemäße Vorrichtung zur Durchführung des Verfahrens nach Figur 2 sieht eine Zentralmesseinrichtung 6 und eine Mehrzahl von Wärmetauschern 1.1, 1.2, 1.3, 1.4 vor. Jedem Wärmetauscher 1.1, 1.2, 1.3, 1.4 ist ein dezentrales Steuermodul 7.1, 7.2, 7.3, 7.4 zugeordnet. Das dezentrale Steuermodul 7.1, 7.2, 7.3, 7.4 jedes einzelnen Wärmetauschers 1.1, 1.2, 1.3, 1.4 wirkt mit einer Anzahl von nicht dargestellten Sensoren zusammen, welche insbesondere dazu dienen, den Motorstrom i für den Elektromotor, die Kühlmitteltemperatur Tk, die Temperatur Ti des zu kühlenden Mediums vor der Energiewandlung und die Temperatur To des zu kühlenden Mediums nach der Energiewandlung zu bestimmen. Jeweils ist das dezentrale Steuermodul 7.1, 7.2, 7.3, 7.4 über einen Datenbus 8 mit der Zentralmesseinrichtung 5 verbunden. Die mithilfe der Sensoren bestimmten Messwerte werden in den dezentralen Steuermodul 7.1, 7.2, 7.3, 7.4 verarbeitet, beispielsweise digitalisiert und gefiltert, zwischengespeichert oder dergleichen und zur Bestimmung der Änderungen des Wirkungsgrads über den Datenbus 8 an die Zentralmesseinrichtung 6 übertragen. Die Zentralmesseinrichtung 6 bestimmt mithilfe einer nicht dargestellten Recheneinheit die Kühlarbeit JB in den momentanen Arbeitsbetriebszustand und vergleicht diese mit in einem Datenspeicher der Zentralmesseinrichtung 6 abgelegten Werten für die Kühlarbeit JR des Elektromotors 5 in dem gereinigten Referenzbetriebszustand des Wärmetauschers 1.A device according to the invention for performing the method according to Figure 2 provides a central measuring device 6 and a plurality of heat exchangers 1.1, 1.2, 1.3, 1.4. A decentralized control module 7.1, 7.2, 7.3, 7.4 is assigned to each heat exchanger 1.1, 1.2, 1.3, 1.4. The decentralized control module 7.1, 7.2, 7.3, 7.4 of each individual heat exchanger 1.1, 1.2, 1.3, 1.4 interacts with a number of sensors, not shown, which serve in particular to measure the motor current i for the electric motor, the coolant temperature T k , the temperature T i of the medium to be cooled before the energy conversion and the temperature T o of the medium to be cooled after the energy conversion. In each case, the decentralized control module 7.1, 7.2, 7.3, 7.4 is connected to the central measuring device 5 via a data bus 8. The measured values determined using the sensors are processed in the decentralized control module 7.1, 7.2, 7.3, 7.4, for example digitized and filtered, buffered or the like and transmitted to the central measuring device 6 via the data bus 8 to determine the changes in efficiency. The central measuring device 6 uses a computing unit (not shown) to determine the cooling work J B in the current operating state and compares this with values for the cooling work J R of the electric motor 5 stored in a data memory of the central measuring device 6 in the cleaned reference operating state of the heat exchanger 1.

Nach einer alternativen, nicht dargestellten Ausführungsform der Erfindung kann auf die dezentrale Steuermodule 7.1, 7.2, 7.3, 7.4 verzichtet werden. Ebenso kann statt des Datenbusses 8 eine beliebige andere geeignete datentechnische Kopplung zwischen den Wärmetauschern 1.1, 1.2, 1.3, 1.4 und der Zentralmesseinrichtung 6 geschaffen werden.According to an alternative, not shown embodiment of the invention, the decentralized control modules 7.1, 7.2, 7.3, 7.4 can be dispensed with. Likewise, instead of the data bus 8, any other suitable data link between the heat exchangers 1.1, 1.2, 1.3, 1.4 and the central measuring device 6 can be created.

Nach dem vorliegenden Ausführungsbeispiel der Erfindung wird ein Volumenstrom V des zu kühlenden Mediums durch den Fluidkanal 2 des Wärmetauschers 1 zur Anwendung des Messprinzips konstant oder jedenfalls näherungsweise konstant bleiben. Der Volumenstrom des zu kühlenden Mediums durch den Fluidkanal 2 wird bevorzugt nicht erfasst. Ebenso wird ein konstanter Druck des zu kühlenden Mediums nicht erfasst.According to the present exemplary embodiment of the invention, a volume flow V of the medium to be cooled through the fluid channel 2 of the heat exchanger 1 will remain constant or at least approximately constant in order to apply the measuring principle. The volume flow of the medium to be cooled through the fluid channel 2 is preferably not recorded. A constant pressure of the medium to be cooled is also not recorded.

Nach einem alternativen Beispiel der Erfindung können der Volumenstrom und ein Druck des zu kühlenden Mediums variieren. Es ist dann vorgesehen, die Größen zu erfassen und bei der Bestimmung der Kühlarbeit JR, JB zu berücksichtigen.According to an alternative example of the invention, the volume flow and a pressure of the medium to be cooled can vary. It is then provided that the variables are recorded and taken into account when determining the cooling work J R , J B.

Die Figuren 3 und 4 zeigen alternative Ausführungsformen, bei denen Fluidkanäle 2 eines Wärmetauschers 1 in einem Flüssigkeitsbad 10 vorgesehen sind und von dem zu kühlenden Medium durchströmt werden. In Figur 3 ist der Wärmetauscher 1 als Rohrbündelwärmetauscher ausgeführt. Figur 4 zeigt einen Plattenwärmetauscher. Die in dem Flüssigkeitsbad 10 vorgesehene Flüssigkeit wird über eine Betriebseinheit 9 temperiert. Beispielsweise kann als Teil der Betriebseinheit 9 ein Gasbrenner vorgesehen sein, welcher hinsichtlich seiner Verbrauchsdaten überwacht wird zur Auswertung einer Energiebilanz des Wärmetauschers in der Referenzbetriebssituation und der Arbeitsbetriebssituation sowie zur Bestimmung des Verschmutzungsgrads.The Figures 3 and 4 show alternative embodiments in which fluid channels 2 of a heat exchanger 1 are provided in a liquid bath 10 and through which the medium to be cooled flows. In Figure 3 the heat exchanger 1 is designed as a tube bundle heat exchanger. Figure 4 shows a plate heat exchanger. The liquid provided in the liquid bath 10 is tempered via an operating unit 9. For example, a gas burner can be provided as part of the operating unit 9, which is monitored with regard to its consumption data to evaluate an energy balance of the heat exchanger in the reference operating situation and the working operating situation and to determine the degree of pollution.

Gleiche Bauteile und Bauteilfunktionen sind durch gleiche Bezugszeichen gekennzeichnet.The same components and component functions are identified by the same reference symbols.

BezugszeichenlisteList of reference symbols

11
WärmetauscherHeat exchanger
1.11.1
WärmetauscherHeat exchanger
1.21.2
WärmetauscherHeat exchanger
1.31.3
WärmetauscherHeat exchanger
1.41.4
WärmetauscherHeat exchanger
22
FluidkanalFluid channel
33
KühlmittelkreislaufCoolant circuit
44th
KühlmittelpumpeCoolant pump
55
ElektromotorElectric motor
66
ZentralmesseinrichtungCentral measuring device
7.17.1
dezentrales Steuermoduldecentralized control module
7.27.2
dezentrales Steuermoduldecentralized control module
7.37.3
dezentrales Steuermoduldecentralized control module
7.47.4
dezentrales Steuermoduldecentralized control module
88th
DatenbusData bus
99
BetriebseinheitOperating unit
1010
FlüssigkeitsbadLiquid bath
Tk T k
KühlmitteltemperaturCoolant temperature
Ti T i
Temperatur des zu kühlenden Mediums vor der EnergiewandlungTemperature of the medium to be cooled before the energy conversion
To T o
Temperatur des zu kühlenden Mediums nach der EnergiewandlungTemperature of the medium to be cooled after the energy conversion
ii
MotorstromMotor current
PK P K
KühlleistungCooling capacity
PM P M
Wirkleistung des ElektromotorsReal power of the electric motor
JR J R
verrichtete Arbeit des kühlenden Elektromotors in einem gereinigten Referenzbetriebszustand (Lernbetrieb) des WärmetauschersPerformed work of the cooling electric motor in a cleaned reference operating state (learning mode) of the heat exchanger
JB J B
verrichtete Arbeit des kühlenden Elektromotors in einem Arbeitsbetriebszustand (Messbetrieb)Work performed by the cooling electric motor in a working operating state (measuring operation)
VV
Volumenstrom des zu kühlenden MediumsVolume flow of the medium to be cooled

Claims (13)

  1. Method for monitoring a degree of soiling of a heat exchanger (1, 1.1, 1.2, 1.3, 1.4), comprising
    - learning operation, in which the cooling work (JR) of an electric motor (5) responsible for cooling is determined in a cleaned or new reference operating state of the heat exchanger for at least one reference operating situation and stored in a data store, and
    - measurement operation, in which the cooling work (JB) of the electric motor (5) is determined in a working operating situation corresponding to the at least one reference operating situation,
    a change in the efficiency of the heat exchanger (1, 1.1, 1.2, 1.3, 1.4) being ascertained, after the learning operation and measurement operation are carried out, from a difference between a value of the cooling work (JB) during the measurement operation and the value of the cooling work (JR) during the learning operation, characterised in that, using the change in the efficiency of the heat exchanger (1, 1.1, 1.2, 1.3, 1.4), a moment in time is determined at which cleaning the heat exchanger (1, 1.1, 1.2, 1.3, 1.4) and setting it back to the cleaned reference operating state is more economical than continuing to operate the uncleaned heat exchanger (1, 1.1, 1.2, 1.3, 1.4).
  2. Method according to claim 1, characterised in that the cooling work (JR, JB) is determined during the learning operation and/or during the measurement operation once the temperature (To) of the medium to be cooled is no longer changing after the energy conversion, after a reaction time, when there is a constant power uptake (P) of the electric motor (5), a constant temperature (Ti) of the medium to be cooled before the energy conversion, and a constant coolant temperature (Tk).
  3. Method according to either claim 1 or claim 2, characterised in that the effective power (PW) of the electric motor is measured so as to determine the cooling work (JR, JB) during the learning operation and/or during the measurement operation.
  4. Method according to any of claims 1 to 3, characterised in that the cooling work (JR, JB) is determined while a volume flow passed through the heat exchanger (1, 1.1, 1.2, 1.3, 1.4) and/or a pressure of the medium to be cooled are kept constant, and/or in that the volume flow (V) and/or pressure of the medium to be cooled are determined so as to determine the cooling work (JR, JB).
  5. Method according to any of claims 1 to 4, characterised in that a detection time interval for determining the cooling work (JR) during the learning operation and a detection time interval for determining the cooling work (JB) during the measurement operation are the same size.
  6. Method according to any of claims 1 to 5, characterised in that during the learning operation a plurality of reference operating situations are determined and the corresponding cooling work (JR) is stored in the data store separately for the plurality of reference operating situations.
  7. Method according to any of claims 1 to 6, characterised in that, for a working operating situation for which no exactly identical reference operating situation is documented in the data store, the change in the efficiency of the heat exchanger (1, 1.1, 1.2, 1.3, 1.4) is detected by interpolating the values of the cooling work (JR) which have been determined for at least two reference operating situations which are stored in the data store, the at least two reference operating situations being incorporated into the determination of the efficiency of the heat exchanger (1, 1.1, 1.2, 1.3, 1.4) with the same or different weightings.
  8. Method according to any of claims 1 to 7, characterised in that an end of the reaction time of the heat exchanger (1, 1.1, 1.2, 1.3, 1.4) is determined by measuring the power uptake (P) of the electric motor (5) and/or the temperature (Ti, To) of the medium to be cooled before and after the energy conversion and the coolant temperature (Tk) during the learning operation and/or during the measurement operation, and subsequently the cooling work (JB, JR) of the electric motor (5) is determined.
  9. Method according to any of claims 1 to 8, characterised in that parameters for determining the reaction time and/or a duration of the learning operation are stored in the data store.
  10. Device configured to carry out the method according to any of claims 1 to 9, wherein a central measurement device (6) and a plurality of heat exchangers (1, 1.1, 1.2, 1.3, 1.4) are provided, a plurality of sensors assigned to the heat exchangers (1, 1.1, 1.2, 1.3, 1.4) being connected to the central measurement device (6) and the sensors assigned to an individual heat exchanger (1, 1.1, 1.2, 1.3, 1.4) cooperating with a computing unit of the central measurement device (6) and with a data store of the central measurement device (6) in such a way that, separately for each individual heat exchanger (1, 1.1, 1.2, 1.3, 1.4), the change in efficiency is determined by comparing a value determined during measurement operation for the cooling work (JB) of an electric motor (5) of the individual heat exchanger (1, 1.1, 1.2, 1.3, 1.4) in question and a value stored in the data store for the cooling work (JR) of the same heat exchanger (1, 1.1, 1.2, 1.3, 1.4) for at least one reference operating situation, which is detected in a cleaned reference operating state.
  11. Device according to claim 10, characterised in that the central measurement device (6) is provided remotely from at least individual heat exchangers (1, 1.1, 1.2, 1.3, 1.4) and/or in that a moment in time for carrying out cleaning can be determined for each connected heat exchanger (1, 1.1, 1.2, 1.3, 1.4) individually.
  12. Device according to either claim 10 or claim 11, characterised in that a decentralised control module (7.1, 7.2, 7.3, 7.4), cooperating with the local sensors and/or the individual heat exchanger (1, 1.1, 1.2, 1.3, 1.4), is assigned to each individual heat exchanger (1, 1.1, 1.2, 1.3, 1.4), and/or in that the decentralised control module (7.1, 7.2, 7.3, 7.4) is data-linked to the central measurement device (6).
  13. Device according to any of claims 10 to 12, characterised in that the decentralised control modules (7.1, 7.2, 7.3, 7.4) are connected to the central measurement device (6) via a bus system (8).
EP17731060.4A 2016-05-03 2017-04-24 Method and apparatus for monitoring a heat exchanger Active EP3452773B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016108209.0A DE102016108209A1 (en) 2016-05-03 2016-05-03 Method and device for monitoring a heat exchanger
PCT/DE2017/100330 WO2017190729A1 (en) 2016-05-03 2017-04-24 Method and device for monitoring a heat exchanger

Publications (2)

Publication Number Publication Date
EP3452773A1 EP3452773A1 (en) 2019-03-13
EP3452773B1 true EP3452773B1 (en) 2020-11-25

Family

ID=59077778

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17731060.4A Active EP3452773B1 (en) 2016-05-03 2017-04-24 Method and apparatus for monitoring a heat exchanger

Country Status (4)

Country Link
EP (1) EP3452773B1 (en)
DE (1) DE102016108209A1 (en)
ES (1) ES2837145T3 (en)
WO (1) WO2017190729A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110806328B (en) * 2019-11-21 2021-04-20 青岛大学 Desktop type self-supply water heat exchanger performance testing device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5226285A (en) * 1989-12-18 1993-07-13 Danhard, Inc. Self-cleaning heat exchanger fan assembly and controls
JP2002317919A (en) * 2001-04-19 2002-10-31 Kubota Corp Heat exchange apparatus
EP2128551A1 (en) * 2008-05-29 2009-12-02 Siemens Aktiengesellschaft Monitoring of heat exchangers in process control systems
JP4838870B2 (en) * 2009-04-28 2011-12-14 三菱重工業株式会社 Heat transfer tube monitoring device
DE102014204718B4 (en) * 2014-03-13 2023-06-01 Bayerische Motoren Werke Aktiengesellschaft Detection of contamination of a cooler or an air path supplying the cooler
US9625223B2 (en) * 2014-08-18 2017-04-18 Atieva, Inc. Self-cleaning fan assembly

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2017190729A1 (en) 2017-11-09
EP3452773A1 (en) 2019-03-13
DE102016108209A1 (en) 2017-11-09
ES2837145T3 (en) 2021-06-29

Similar Documents

Publication Publication Date Title
EP0895197B1 (en) Method for monitoring installations with mechanical components
DE602005002818T2 (en) Method for monitoring the operating performance of an industrial plant
EP3232282B1 (en) Diagnostic device and method for monitoring the operation of a technical plant
DE102019128177A1 (en) DEVICE AND METHOD FOR DETERMINING THE STATE
EP3308231B1 (en) Device with monitored device cooling
DE102009054829A1 (en) Method for operating machine tool, involves determining electrical energies consumed by machine and/or electric energy consumers per processing steps of machine and/or per flow of processing program from determined active electric power
DE102016015332A1 (en) A preventive maintenance management system and method for creating a maintenance plan of a machine and cell controller
WO2007033872A1 (en) Method and apparatus for monitoring an electrical heating system
DE102007042898A1 (en) Method and device for roller lubrication
AT511971A2 (en) METHOD FOR MONITORING A COOLING OR HEATING DEVICE AND MONITORING DEVICE THEREFOR
EP2128551A1 (en) Monitoring of heat exchangers in process control systems
EP3452773B1 (en) Method and apparatus for monitoring a heat exchanger
DE102012107016B4 (en) Method for operating a heater for a battery of an at least partially and / or temporarily electrically driven motor vehicle
EP2913734B1 (en) Method for operating a system having at least one heating control and/or regulation device, heating control and/or regulation device and system
DE102019101910B4 (en) Thermal offset correction device
EP2067080B1 (en) Method for operating an industrial scale installation and guidance system for same
EP1398687A2 (en) Method for monitoring the operation of a photovoltaic system
EP3486479A1 (en) Method for operation of a wind farm and wind farm
DE102019110957B4 (en) Method for operating a filling plant, filling plant and system consisting of a filling plant and a temperature control system
EP3320216B1 (en) Simulation device and simulation method
DE102021119182A1 (en) SERVO MOTOR INSTALLATION AND CONTROL METHOD
DE102014219771A1 (en) Method for determining the energy requirement of a production machine or of a production system consisting of several production machines, as well as a measuring device suitable for carrying out the method
WO2021254935A1 (en) Method for diagnosing a cross-sectional constriction of a path in a fuel cell system
DE102021205175A1 (en) Automatically adaptive monitoring method for a device in a plant
WO2010094487A1 (en) Method and device for monitoring a pasteurization installation

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20181121

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200707

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTC Intention to grant announced (deleted)
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

INTG Intention to grant announced

Effective date: 20201001

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1338821

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017008366

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20201125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210325

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210225

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210325

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210225

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017008366

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

26N No opposition filed

Effective date: 20210826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210424

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170424

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502017008366

Country of ref document: DE

Representative=s name: WICKORD BUSER PATENTANWAELTE PARTG MBB, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240426

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240501

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240517

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240417

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240430

Year of fee payment: 8

Ref country code: FR

Payment date: 20240423

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125