EP3449041B1 - Method for the electrochemical conversion of organic compounds contained in residual materials or arising as residual materials - Google Patents

Method for the electrochemical conversion of organic compounds contained in residual materials or arising as residual materials Download PDF

Info

Publication number
EP3449041B1
EP3449041B1 EP17720746.1A EP17720746A EP3449041B1 EP 3449041 B1 EP3449041 B1 EP 3449041B1 EP 17720746 A EP17720746 A EP 17720746A EP 3449041 B1 EP3449041 B1 EP 3449041B1
Authority
EP
European Patent Office
Prior art keywords
electrolyte solution
electrodes
organic compounds
electrode
alkaline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17720746.1A
Other languages
German (de)
French (fr)
Other versions
EP3449041A1 (en
Inventor
Michael Schelch
Wolfgang Staber
Robert Hermann
Wolfgang Wesner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pro Aqua Diamantelektroden Produktion GmbH and Co KG
Original Assignee
Pro Aqua Diamantelektroden Produktion GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pro Aqua Diamantelektroden Produktion GmbH and Co KG filed Critical Pro Aqua Diamantelektroden Produktion GmbH and Co KG
Publication of EP3449041A1 publication Critical patent/EP3449041A1/en
Application granted granted Critical
Publication of EP3449041B1 publication Critical patent/EP3449041B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/23Oxidation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/036Bipolar electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/042Electrodes formed of a single material
    • C25B11/043Carbon, e.g. diamond or graphene
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/25Reduction
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • C25B9/73Assemblies comprising two or more cells of the filter-press type
    • C25B9/75Assemblies comprising two or more cells of the filter-press type having bipolar electrodes

Definitions

  • the invention relates to a method for the electrochemical conversion of organic compounds contained in residues or occurring as residues.
  • Black liquor incineration covers a considerable part of the energy required for cellulose production. It is also known to produce biogas from black liquor in biogas plants, the main components of which are methane and carbon dioxide.
  • biomass is "inoculated” and fermented.
  • a mixture of microorganisms that originate from animal stomachs is used as a vaccine (inoculum).
  • the fermentation takes several days and takes place under anaerobic conditions, i.e. with the exclusion of oxygen.
  • the fermentation produces short-chain fatty acids ("volatile fatty acids") which are electrolyzed in a second stage of the process, with hydrocarbons and hydrogen being produced during the electrolysis.
  • a method for the electrochemical cleavage of lignin in which an aqueous solution or a suspension of the lignin is electrolyzed in an electrolysis cell.
  • the electrolysis cell has, for example, a diamond electrode as the anode, and platinum, nickel or molybdenum can be used as the cathode material.
  • the aqueous solution or suspension has a pH value of at most 11, the method preferably being carried out in an acidic solution with a pH value of ⁇ 3.
  • liquid hydroxybenzaldehyde derivatives and / or phenol derivatives are formed, which can be removed from the reaction product by distillation or extraction.
  • the derivatives formed by the electrochemical cleavage include in particular guaiacol, vanillin and acetovanillon.
  • the invention is therefore based on the object of supplying organic compounds contained in residues or occurring as residues in industrial production or recycling processes in an environmentally friendly manner to alternative recycling with high efficiency and high yield.
  • the object set is achieved according to the invention by a Process for the electrochemical conversion of organic compounds contained in residues or occurring as residues, where the residues are or will be dissolved, suspended or emulsified in an electrolyte solution and the electrolyte solution is or is made alkaline, wherein the electrolyte solution is continuously introduced and discharged in at least one single-chamber electrolysis cell designed as a flow cell, which has an electrode package made up of at least two contact electrodes connected to a voltage source, whereby it flows through the electrode package, wherein a gaseous fuel is formed in the electrolytic cell by setting one or more process parameters from at least one of the organic compounds, which fuel is discharged from the electrolytic cell and derived, and wherein at least one compound for the formation of potassium ions and / or sodium ions is added to the electrolyte solution before it is introduced into the electrolysis cell until the ion concentration is at least 0.1 mol / l.
  • the main combustible constituent or constituents of the gaseous fuel are preferably one or more from the group consisting of hydrogen and gaseous hydrocarbons, in particular ethane, propane, butane, ethene, propene and butene.
  • the hydroxide ions of the alkaline electrolyte solutions polarize functional groups of the organic compounds they contain, as a result of which, for example, carboxylic acid anions are formed from carboxylic acids. Both the polarized compounds and any strongly polar anions formed can advantageously be converted electrochemically particularly easily.
  • the hydroxide ions also react with insoluble organic compounds to form soluble organic compounds. For example, water-insoluble fats contained in residues or occurring as residues are split into water-soluble salts of fatty acids and water-soluble alcohols (saponification) through the reaction with hydroxide ions.
  • the organic compounds dissolved in this way in the electrolyte solution can also be converted electrochemically into a gaseous fuel.
  • the gaseous fuel formed can advantageously be used as a secondary raw material, in particular the gaseous fuel or main components of the fuel can be converted into a synthesis gas, which is ideally suited for the production of other industrially usable organic compounds, via steam reforming.
  • synthesis gas can be used to produce methanol or for Fischer-Tropsch syntheses.
  • electrical energy and heat can be obtained from the gaseous fuel formed in a block-type thermal power station.
  • chemicals can be recovered from the electrolyzed alkaline solution from which the fuel was obtained.
  • the maximum ion concentration of the electrolyte solution is determined for the respective ions by the saturation concentration of the ions.
  • the electrolytic cell is used for the electrolysis of an alkaline electrolyte solution which contains potassium ions and / or sodium ions.
  • potassium ions and / or sodium ions are particularly suitable because of their high solubility in water and are advantageously not involved in the electrochemical conversion, since their standard electrode potential is lower than that of hydrogen.
  • potassium and sodium ions form water-soluble organic salts and thus electrochemically convertible compounds with the organic compounds.
  • Potassium ions are also particularly suitable because the hydrate shell that forms around them in aqueous solution is particularly small. Potassium ions therefore have a particularly low hydrodynamic resistance and are accordingly particularly easy to move in aqueous solutions, so that the electrical conductivity of an electrolyte solution containing potassium ions is particularly high.
  • the electrolyte solution is continuously fed in and out of an electrolysis cell, the electrode package of which has at least one further, in particular a bipolar electrode between the contact electrodes.
  • the fuel yield is increased by providing additional electrodes.
  • the electrolysis cell has at least one diamond electrode, in particular a diamond particle electrode, between the contact electrodes.
  • Diamond electrodes, especially diamond particle electrodes are characterized by their chemical stability and their high oxygen overvoltage, which can minimize the oxygen formation that occurs during the electrochemical oxidation of organic compounds, so that the fuel yield is further increased.
  • the electrolysis cell can be used as contact electrodes and as any further electrode (s) provided for directly contactable diamond electrodes, in particular diamond particle electrodes, platinum-coated titanium electrodes, mixed oxide electrodes, in particular Ir / Ru-coated titanium electrodes, or electrodes made of glassy carbon, graphite or carbon.
  • the process parameter (s) that is or are set in the method according to the invention is or are at least one of the following parameters: the residence time of the electrolyte solution in the electrolytic cell, the temperature of the electrolyte solution, the pH value of the electrolyte solution, the Ion concentration of the electrolyte solution, the current strength and / or the voltage of the voltage source.
  • the residence time of the electrolyte solution in the electrolytic cell is or are at least one of the following parameters: the residence time of the electrolyte solution in the electrolytic cell, the temperature of the electrolyte solution, the pH value of the electrolyte solution, the Ion concentration of the electrolyte solution, the current strength and / or the voltage of the voltage source.
  • the alkaline electrolyte solution has a pH of at least 8, in particular of at least 10, or is adjusted to such a pH.
  • the concentration of hydroxide ions present at this pH value contributes to a rapid and effective polarization of organic compounds contained in the residues, for example carboxylic acids, which, as described above, promotes the electrochemical conversion of these compounds into a gaseous fuel.
  • the hydroxide ions convert water-insoluble organic compounds present in the electrolyte solution into water-soluble organic compounds, for example in soaps. As already explained, these can also be converted electrochemically into a gaseous fuel.
  • a process is preferred in which a lignin-containing black liquor obtained in the sulfate process in the pulp industry is used as the residue.
  • electrolysis cell is used as the residue to form a gaseous fuel from waste liquors which are obtained during the alkaline hydrolysis of animal carcasses.
  • alkaline wastewater containing fats which occurs in particular during sanitation and disinfection, is used as residual material.
  • dissolved and / or finely suspended organic substances are used as residues in an alkali treatment.
  • FIG. 1 shows a schematic side view of an embodiment according to the invention of a device for the electrochemical conversion of organic compounds, described in more detail.
  • liquid medium includes liquids, suspensions and emulsions.
  • the device for electrochemical conversion has at least one single-chamber electrolysis cell designed as a flow cell 2.
  • Fig. 1 shows a device with a single flow cell 2 and with a closed container 1.
  • The, for example, cuboid or cylindrical container 1 has a container bottom 1a, a preferably removable container lid 1b and a container wall 1c.
  • a liquid feed line 3a opens into the container wall 1c, via which liquid media can be introduced into the interior of the container 1.
  • a liquid discharge line 3b opens into the container wall 1c in the area of the lower half of the container 1.
  • a gas line 4 opens into the container cover 1b just below the latter. The gas line 4 can also be connected to the container cover 1b.
  • the flow cell 2 has a multi-part housing 5 (not shown) in which an electrode package 6 is arranged.
  • a feed line 7a and a return line 7b run between the container 1 and the flow cell 2, the feed line 7a just above the container bottom 1a and the return line 7b above the feed line 7a and in the embodiment shown in the area of the upper half of the container 1 into the container wall 1c joins.
  • the inlet line 7a and the return line 7b are arranged in such a way that the medium entering the flow cell 2 flows through the electrode package 6 and is then returned to the container 1 via the return line 7b.
  • a pump 8 is provided in the area of the inlet line 7a, by means of which the liquid medium can be transported into the flow cell 2.
  • a heat exchanger via which the liquid medium flowing through the feed line 7a is heated or cooled, can be positioned between the pump 8 and the container 1.
  • All lines 3a, 3b, 4, 7a, 7b are liquid-tight and gas-tight to the container 1 or to the housing 5 of the flow cell 2 via flange connections (not shown), the housing 5 and the container 1 themselves, with the exception of the respective Connection points that are liquid- and gas-tight.
  • the electrode package 6 of the flow cell 2 is inserted into the housing 5 in such a way that it is secured against displacement.
  • the electrode package 6 has a respective contact electrode 6a on the edge, to which an in Fig. 1 A spacer, not shown, made of an electrically insulating material, preferably made of plastic, connects, which separates the respective contact electrode 6a from a bipolar diamond particle electrode 6b.
  • a plurality of bipolar diamond particle electrodes 6b which are also separated from one another by thin, electrically insulating spacers, are preferably provided, four in the exemplary embodiment shown.
  • a single bipolar diamond particle electrode 6b, two spacers and the two contact electrodes 6a are provided.
  • a larger number of bipolar diamond particle electrodes can be provided between the two contact electrodes 6a and there can also be further contact electrodes, the diamond particle electrodes 6b being separated from each other and from the contact electrodes by a separate spacer. All electrodes and spacers are preferably designed to be essentially rectangular.
  • the electrode package 6 is held together from the outside, for example, by retaining clips (not shown).
  • the electrolysis cell has only two contact electrodes.
  • at least one further electrode which is either contacted and supplied with voltage, is provided between the contact electrodes mentioned, or a bipolar electrode.
  • Directly contactable diamond electrodes in particular diamond particle electrodes, also platinum-coated titanium electrodes, mixed oxide electrodes such as Ir / Ru-coated titanium electrodes, and also electrodes made of glassy carbon, graphite or carbon can be used as contact electrodes 6a or further electrodes.
  • the contact electrodes 6a can be plate-shaped or designed as a grid which is coated with the electrode material.
  • one to three titanium rods which are for example welded on, are provided per contact electrode 6a.
  • the diamond particle electrodes 6b are preferably according to FIG WO2004 / 005585 A1 built and manufactured according to the process described there. They therefore consist of doped diamond particles that are embedded in a plastic carrier layer in a single layer and without mutual contact.
  • the diamond particles are, in particular, industrial diamonds (single crystals) which are produced in a high pressure / high temperature process, preferably with boron, or else with nitrogen, phosphorus, arsenic, antimony, niobium, lithium, sulfur or oxygen.
  • the diamond particles have grain sizes from 100 ⁇ m to 2 mm, in particular from 160 ⁇ m to 350 ⁇ m.
  • the particles within an electrode are essentially the same size or particles of a grain size range.
  • the carrier layer consists of one or more polymers, in particular of polytetrafluoroethylene, polyvinylidene fluoride, perfluoroalkoxylalkane, fluorinated ethylpropylene, ethylene-tetrafluoroethylene, polyether ketone, polyethylene, polypropylene, Polyvinyl chloride or polyphenylene sulfide.
  • the particles are partially exposed on both sides of the carrier layer.
  • the diamond particle electrodes 6b used are distinguished by their chemical stability and by their high oxygen overvoltage, by means of which the oxygen formation that occurs in competition during the electrochemical oxidation of organic compounds can be minimized.
  • the electrode package 6 is supplied with electrical direct voltage in such a way that the current density on the surface of the electrodes 6a, 6b is 10 mA / cm 2 to 2000 mA / cm 2 , in particular 100 mA / cm 2 to 800 mA / cm 2 , amounts.
  • the device is used for the electrochemical conversion of organic compounds dissolved, suspended or emulsified in an alkaline electrolyte solution (organic electrosynthesis).
  • An alkaline electrolyte solution is understood to be one that has a pH greater than 7.
  • the alkaline electrolyte solution preferably has a pH of at least 8, in particular at least 10.
  • Organic compounds whose molecules have at least one double or triple bond between a carbon atom and a heteroatom are therefore particularly readily electrochemically convertible.
  • the molecules are preferably split at a multiple bond or a polar atomic bond.
  • the material recycling or processing of residual materials arising in industrial processes which contain at least one electrochemically convertible biogenic organic compound, preferably several of these compounds, is in the foreground.
  • the molecules of these biogenic organic compounds usually contain at least one heteroatom, in particular a nitrogen, an oxygen or a sulfur atom, and thus a polar atomic bond. Most often the molecules contain at least one oxygen atom.
  • the molecules of biogenic organic compounds also have at least one double bond between a carbon atom and a heteroatom, wherein the molecules can also have several different heteroatoms.
  • the device can also be used to electrochemically convert residues that contain non-biogenic organic compounds, for example hydrolyzable plastics such as polyesters, polyamides, polyurethanes or polycarbonates.
  • hydrolyzable plastics such as polyesters, polyamides, polyurethanes or polycarbonates.
  • the residues and thus the organic compounds can therefore already be dissolved and / or suspended and / or emulsified in an alkaline electrolyte solution, for example in the case of black liquors or soap solutions.
  • the residues are introduced into an alkaline electrolyte solution, the ion concentration of which is at least 0.1 mol / l, or corresponding compounds are added to the residues to form such a solution.
  • At least one compound for the formation of potassium ions and / or sodium ions is added to the electrolyte solution before it is introduced into the electrolysis cell until the ion concentration is at least 0.1 mol / l.
  • the maximum ion concentration for the respective ions is determined by the saturation concentration of the ions in the electrolyte solution.
  • the pH value of the electrolyte solution is ⁇ 7 (neutral or acidic electrolyte solution)
  • bases preferably an aqueous potassium hydroxide solution or an aqueous sodium hydroxide solution, are added to increase the pH value.
  • the hydroxide ions of the alkaline electrolyte solutions polarize functional groups of the organic compounds they contain, as a result of which, for example, carboxylic acid anions are formed from carboxylic acids. Since the anions formed are strongly polar, they can advantageously be converted electrochemically particularly easily. Furthermore, the hydroxide ions react with insoluble organic compounds to form soluble organic compounds. For example, water-insoluble fats, i. Fatty acid esters, split into water-soluble salts of fatty acids and water-soluble alcohols (saponification) through the reaction with hydroxide ions. The organic salts dissolved in this way are then converted electrochemically.
  • the cations contained in the electrolyte solution are preferably ions of the alkali metals, in particular potassium ions and / or sodium ions. These ions are particularly suitable because of their high solubility in water and are advantageously not involved in the electrochemical conversion, since their standard electrode potential is lower than that of hydrogen. Furthermore, potassium and sodium ions form highly water-soluble organic salts and thus electrochemically convertible compounds with the organic compounds. Potassium ions are also particularly suitable because the hydrate shell that forms around them in aqueous solution is smaller than that that forms to form sodium ions. Potassium ions therefore have a particularly low hydrodynamic resistance and are accordingly particularly mobile in aqueous solutions, so that the electrical conductivity of an electrolyte solution containing potassium ions is particularly high.
  • the electrolyte solution that is already suitable or adjusted with regard to the pH value and the ion concentration is pumped into the container 1 via the liquid supply line 3a and from there into the flow cell 2 by means of the pump 8 via the supply line 7a.
  • Viscous electrolyte solutions are preferably heated, in particular to a temperature of up to 60.degree. C., before being introduced into the flow cell 2 via the already mentioned heat exchanger arranged between the pump 8 and the container 1.
  • any electrolyte solution can be heated to a temperature below its boiling point. Temperatures in the range from 70 ° C. to 90 ° C. are particularly preferred.
  • the electrochemical conversion is carried out, in particular, under the pressure conditions present or established in the device, but can also take place under a pressure that is higher than the ambient pressure, which is preferably up to 10 bar, in particular 4 bar.
  • the supply and discharge of the electrolyte solution to and from the container 1 is regulated in such a way that the level of the liquid medium in the container 1 does not reach the gas line 4 and the electrode package 6 of the flow cell 2 is continuously flushed during operation .
  • the reactions taking place in the flow cell 2 are influenced by the process parameters.
  • process parameters include, in particular, the residence time of the electrolyte solution in the flow cell 2, the temperature and / or the pH value and / or the ion concentration of the electrolyte solution and the current strength and voltage of the voltage source 9.
  • process parameters are selected or set in advance in such a way that that the organic compounds present in each case in the electrolyte solution are converted into a gaseous fuel via redox reactions at the electrodes 6a, 6b of the electrode package 6. In the course of this conversion, the molecules of the organic compounds contained in the electrolyte solution are therefore fragmented and defunctionalized.
  • an electrochemical conversion of the organic compounds into a gaseous fuel can be brought about particularly comfortably, with particularly high fuel yields being achieved by fine-tuning these parameters.
  • gaseous fuel denotes a gas mixture suitable as a fuel, the main combustible components of which are hydrogen and gaseous hydrocarbons, in particular ethane, propane, butane, ethene, propene and butene.
  • Hydrogen sulfide or ammonia can be formed as combustible gaseous secondary constituents.
  • gaseous organic compounds the molecules of which contain heteroatoms, in particular oxygen, can be formed as further secondary constituents. These include, for example, aldehydes, alcohols, esters, ketones or carbon dioxide.
  • the gaseous fuel formed is discharged from the flow cell 2 via the return line 7b and transported back into the container 1, leaves the electrolyte solution there, collects in a gas space 10 located above the level of the electrolyte solution in the container 1 and is transported away via the gas line 4, in particular sucked off. Any secondary constituents of the fuel condensing in the gas line 4 can be separated from the main combustible constituents in a simple manner.
  • the gaseous fuel that is formed can be used thermally in a block-type thermal power station so that electrical energy and / or heat is obtained.
  • the components of the fuel can be isolated by means of a suitable separating device.
  • constituents of the fuel can be converted into a synthesis gas via steam reforming, with a synthesis gas being understood in the context of the present invention to be a gas mixture suitable for the synthesis of further organic compounds, which mainly consists of carbon monoxide and hydrogen.
  • Further organic compounds can be produced from the synthesis gas formed in a manner known per se.
  • synthesis gas can be used for Fischer-Tropsch synthesis can be used.
  • Another possible use of the synthesis gas is, for example, its conversion to methanol.
  • the oxygen which occurs most frequently as a hetero atom in biogenic organic compounds, is largely converted into carbon dioxide or into another organic compound which is gaseous under the prevailing temperatures and is transported away via the gas line 4 together with the gaseous fuel.
  • Sulfur atoms are oxidized to sulfate, for example, and nitrogen atoms are converted into nitrites, nitrates, ammonia or nitrogen molecules in particular.
  • These sulfur and nitrogen compounds either remain in the electrolyzed solution or also leave it together with the gaseous fuel via gas line 4.
  • the electrolyzed solution also contains inorganic secondary constituents of the residual materials, such as calcium carbonate, silicon compounds, metal salts, metal oxides, sulfates and / or nitrates . Chemicals, especially alkalis, can be recovered from this remaining alkaline electrolyzed solution.
  • Another chemical reaction taking place in the flow cell 2 can be, for example, Kolbe electrolysis, in which carboxylic acids or salts of the carboxylic acids are converted to alkanes and carbon dioxide. Furthermore, for example, an electrochemical oxidation can take place in which hydroxyl radicals are involved.
  • the gas line 4 is connected directly to the flow cell 2 or to the return line 7b.
  • the electrolyte solution can also enter and drain directly from the flow cell 2, so that no container 1 is provided. Since the amount of incoming electrolyte solution provided for the conversion can fluctuate, the container 1 is preferably provided, via which these fluctuations can be compensated, so that the flow cell 2 is continuously and particularly reliably washed around by the electrolyte solution.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Description

Die Erfindung betrifft ein Verfahren zur elektrochemischen Konvertierung von in Reststoffen enthaltenen oder als Reststoffe anfallenden organischen Verbindungen.The invention relates to a method for the electrochemical conversion of organic compounds contained in residues or occurring as residues.

Es ist üblich bei Industrieprozessen anfallende Reststoffe, wie beispielsweise die bei der Herstellung von Zellulose als Nebenprodukt anfallende ligninhaltige Schwarzlauge, zu verbrennen. Durch die Schwarzlaugenverbrennung wird ein erheblicher Teil des Energiebedarfs für die Zelluloseherstellung gedeckt. Ferner ist es bekannt, aus Schwarzlaugen in Biogasanlagen Biogas zu erzeugen, dessen Hauptkomponenten Methan und Kohlenstoffdioxid sind.It is customary to incinerate residues that arise in industrial processes, such as the lignin-containing black liquor that is a by-product of the production of cellulose. Black liquor incineration covers a considerable part of the energy required for cellulose production. It is also known to produce biogas from black liquor in biogas plants, the main components of which are methane and carbon dioxide.

Aus der US 2011/0111475 A1 ist ein zweistufiges Verfahren zur Herstellung von Brennstoffen bekannt. In der ersten Stufe des Verfahrens wird Biomasse "angeimpft" und fermentiert. Als Impfstoff (Inokulum) wird ein Gemisch von Mikroorganismen, welche aus Tiermägen stammen, eingesetzt. Die Fermentation erstreckt sich über mehrere Tage und erfolgt unter anaeroben Bedingungen, also unter Sauerstoffausschluss. Durch die Fermentation werden kurzkettige Fettsäuren ("flüchtige Fettsäuren") gebildet, welche in einer zweiten Stufe des Verfahrens elektrolysiert werden, wobei bei der Elektrolyse Kohlenwasserstoffe und Wasserstoff entstehen.From the US 2011/0111475 A1 a two-step process for the production of fuels is known. In the first stage of the process, biomass is "inoculated" and fermented. A mixture of microorganisms that originate from animal stomachs is used as a vaccine (inoculum). The fermentation takes several days and takes place under anaerobic conditions, i.e. with the exclusion of oxygen. The fermentation produces short-chain fatty acids ("volatile fatty acids") which are electrolyzed in a second stage of the process, with hydrocarbons and hydrogen being produced during the electrolysis.

Aus der EP 2 276 877 B1 ist ein Verfahren zur elektrochemischen Spaltung von Lignin bekannt, bei welchem eine wässrige Lösung oder eine Suspension des Lignins in einer Elektrolysezelle elektrolysiert wird. Die Elektrolysezelle weist als Anode beispielsweise eine Diamantelektrode auf, als Kathodenmaterial kann beispielsweise Platin, Nickel oder Molybdän verwendet werden. Die wässrige Lösung bzw. Suspension weist einen pH-Wert von höchstens 11 auf, wobei das Verfahren vorzugsweise in einer sauren Lösung mit einem pH-Wert ≤ 3 durchgeführt wird. Bei der elektrochemischen Spaltung des Lignins werden flüssige Hydroxybenzaldehydderivate und/oder Phenolderivate gebildet, welche dem Reaktionsprodukt über eine Destillation oder eine Extraktion entzogen werden können. Zu den durch die elektrochemische Spaltung gebildeten Derivaten gehören insbesondere Guajakol, Vanillin und Acetovanillon.From the EP 2 276 877 B1 a method for the electrochemical cleavage of lignin is known in which an aqueous solution or a suspension of the lignin is electrolyzed in an electrolysis cell. The electrolysis cell has, for example, a diamond electrode as the anode, and platinum, nickel or molybdenum can be used as the cathode material. The aqueous solution or suspension has a pH value of at most 11, the method preferably being carried out in an acidic solution with a pH value of ≤ 3. During the electrochemical cleavage of the lignin, liquid hydroxybenzaldehyde derivatives and / or phenol derivatives are formed, which can be removed from the reaction product by distillation or extraction. The derivatives formed by the electrochemical cleavage include in particular guaiacol, vanillin and acetovanillon.

Eine Rückgewinnung oder eine zielgerichtete Aufarbeitung von in Reststoffen enthaltenen bzw. als solche anfallenden organischen Verbindungen ist mit den bekannten Verfahren nicht vorgesehen.A recovery or targeted processing of organic compounds contained in residues or occurring as such is not provided with the known processes.

Der Erfindung liegt daher die Aufgabe zugrunde, bei industriellen Produktions- oder Verwertungsprozessen in Reststoffen enthaltene oder als Reststoffe anfallende organische Verbindungen auf Umwelt schonende Weise einer alternativen Verwertung mit hohem Wirkungsgrad und hoher Ausbeute zuzuführen.The invention is therefore based on the object of supplying organic compounds contained in residues or occurring as residues in industrial production or recycling processes in an environmentally friendly manner to alternative recycling with high efficiency and high yield.

Die gestellte Aufgabe wird erfindungsgemäß gelöst durch ein
Verfahren zur elektrochemischen Konvertierung von in Reststoffen enthaltenen oder als Reststoffe anfallenden organischen Verbindungen,
wobei die Reststoffe in einer Elektrolytlösung gelöst, suspendiert oder emulgiert sind oder werden und die Elektrolytlösung alkalisch ist oder alkalisch eingestellt wird,
wobei die Elektrolytlösung in zumindest einer einkammrigen als Durchflusszelle konzipierten Elektrolysezelle, welche ein Elektrodenpaket aus zumindest zwei an eine Spannungsquelle angeschlossenen Kontaktelektroden aufweist, kontinuierlich ein- und ausgeleitet wird, wobei sie das Elektrodenpaket durchströmt,
wobei in der Elektrolysezelle durch Einstellen von einem oder mehreren Prozessparameter(n) aus zumindest einer der organischen Verbindungen ein gasförmiger Brennstoff gebildet wird, welcher aus der Elektrolysezelle ausgetragen und abgeleitet wird, und
wobei der Elektrolytlösung vor dem Einbringen in die Elektrolysezelle zumindest eine Verbindung zur Bildung von Kaliumionen und/oder Natriumionen zugesetzt wird bis die Ionenkonzentration mindestens 0,1 mol/l beträgt.
The object set is achieved according to the invention by a
Process for the electrochemical conversion of organic compounds contained in residues or occurring as residues,
where the residues are or will be dissolved, suspended or emulsified in an electrolyte solution and the electrolyte solution is or is made alkaline,
wherein the electrolyte solution is continuously introduced and discharged in at least one single-chamber electrolysis cell designed as a flow cell, which has an electrode package made up of at least two contact electrodes connected to a voltage source, whereby it flows through the electrode package,
wherein a gaseous fuel is formed in the electrolytic cell by setting one or more process parameters from at least one of the organic compounds, which fuel is discharged from the electrolytic cell and derived, and
wherein at least one compound for the formation of potassium ions and / or sodium ions is added to the electrolyte solution before it is introduced into the electrolysis cell until the ion concentration is at least 0.1 mol / l.

Vorzugsweise wird bzw. werden als brennbarer Hauptbestandteil bzw. als brennbare Hauptbestandteile des gasförmigen Brennstoffes einer bzw. mehrere aus der Gruppe Wasserstoff und gasförmige Kohlenwasserstoffe, insbesondere Ethan, Propan, Butan, Ethen, Propen und Buten gebildet.The main combustible constituent or constituents of the gaseous fuel are preferably one or more from the group consisting of hydrogen and gaseous hydrocarbons, in particular ethane, propane, butane, ethene, propene and butene.

Mit dem erfindungsgemäßen Verfahren ist es möglich, als Reststoffe anfallende oder in Reststoffen enthaltene organische Verbindungen elektrochemisch in einen gasförmigen Brennstoff zu konvertieren.With the method according to the invention it is possible to electrochemically convert organic compounds occurring as residues or contained in residues into a gaseous fuel.

Die Hydroxidionen der alkalischen Elektrolytlösungen polarisieren funktionelle Gruppen der in ihr enthaltenen organischen Verbindungen, wodurch sich beispielsweise aus Carbonsäuren Carbonsäureanionen bilden. Sowohl die polarisierten Verbindungen als auch die etwaigen gebildeten stark polaren Anionen können vorteilhafterweise besonders leicht elektrochemisch konvertiert werden. Idealerweise reagieren die Hydroxidionen auch mit unlöslichen organischen Verbindungen zu löslichen organischen Verbindungen. Beispielsweise werden in Reststoffe enthaltene oder als Reststoffe anfallende wasserunlösliche Fette durch die Reaktion mit Hydroxidionen in wasserlösliche Salze der Fettsäuren und wasserlösliche Alkohole gespalten (Verseifung). Die auf diese Weise in der Elektrolytlösung gelösten organischen Verbindungen können ebenfalls elektrochemisch in einen gasförmigen Brennstoff konvertiert werden.The hydroxide ions of the alkaline electrolyte solutions polarize functional groups of the organic compounds they contain, as a result of which, for example, carboxylic acid anions are formed from carboxylic acids. Both the polarized compounds and any strongly polar anions formed can advantageously be converted electrochemically particularly easily. Ideally, the hydroxide ions also react with insoluble organic compounds to form soluble organic compounds. For example, water-insoluble fats contained in residues or occurring as residues are split into water-soluble salts of fatty acids and water-soluble alcohols (saponification) through the reaction with hydroxide ions. The organic compounds dissolved in this way in the electrolyte solution can also be converted electrochemically into a gaseous fuel.

Der gebildete gasförmige Brennstoff kann vorteilhafter Weise als Sekundärrohstoff eingesetzt werden, insbesondere kann der gasförmige Brennstoff bzw. können Hauptbestandteile des Brennstoffes über eine Dampfreformierung in ein Synthesegas, welches sich ideal zur Herstellung weiterer industriell einsetzbarer organischer Verbindungen eignet, umgewandelt werden. So kann Synthesegas beispielsweise zur Herstellung von Methanol oder für Fischer-Tropsch-Synthesen eingesetzt werden. Ferner kann aus dem gebildeten gasförmigen Brennstoff in einem Blockheizkraftwerk elektrische Energie und Wärme gewonnen werden. Zusätzlich können aus der elektrolysierten alkalischen Lösung, aus welcher der Brennstoff gewonnen wurde, Chemikalien zurückgewonnen werden.The gaseous fuel formed can advantageously be used as a secondary raw material, in particular the gaseous fuel or main components of the fuel can be converted into a synthesis gas, which is ideally suited for the production of other industrially usable organic compounds, via steam reforming. For example, synthesis gas can be used to produce methanol or for Fischer-Tropsch syntheses. Furthermore, electrical energy and heat can be obtained from the gaseous fuel formed in a block-type thermal power station. In addition, chemicals can be recovered from the electrolyzed alkaline solution from which the fuel was obtained.

Die maximale Ionenkonzentration der Elektrolytlösung ist für die jeweiligen Ionen durch die Sättigungskonzentration der Ionen festgelegt.The maximum ion concentration of the electrolyte solution is determined for the respective ions by the saturation concentration of the ions.

Die Elektrolysezelle wird zur Elektrolyse einer alkalischen Elektrolytlösung, welche Kaliumionen und/oder Natriumionen, enthält, verwendet. Diese Ionen sind wegen ihrer hohen Wasserlöslichkeit besonders geeignet und sind vorteilhafterweise an der elektrochemischen Konversion nicht beteiligt, da ihr Standardelektrodenpotential geringer ist als jenes von Wasserstoff. Ferner bilden Kalium- und Natriumionen mit den organischen Verbindungen wasserlösliche organische Salze und somit elektrochemisch konvertierbare Verbindungen. Kaliumionen sind ferner deshalb besonders geeignet, weil sich die um sie in wässriger Lösung ausbildende Hydrathülle besonders klein ist. Kaliumionen weisen daher einen besonders geringen hydrodynamischen Widerstand auf und sind dementsprechend in wässrigen Lösungen besonders gut beweglich, sodass auch die elektrische Leitfähigkeit einer Kaliumionen enthaltenden Elektrolytlösung besonders hoch ist.The electrolytic cell is used for the electrolysis of an alkaline electrolyte solution which contains potassium ions and / or sodium ions. These ions are particularly suitable because of their high solubility in water and are advantageously not involved in the electrochemical conversion, since their standard electrode potential is lower than that of hydrogen. Furthermore, potassium and sodium ions form water-soluble organic salts and thus electrochemically convertible compounds with the organic compounds. Potassium ions are also particularly suitable because the hydrate shell that forms around them in aqueous solution is particularly small. Potassium ions therefore have a particularly low hydrodynamic resistance and are accordingly particularly easy to move in aqueous solutions, so that the electrical conductivity of an electrolyte solution containing potassium ions is particularly high.

Bei einer bevorzugten Ausführungsform der Erfindung wird die Elektrolytlösung in einer Elektrolysezelle, deren Elektrodenpaket zwischen den Kontaktelektroden zumindest eine weitere, insbesondere eine bipolare Elektrode aufweist, kontinuierlich ein- und aus dieser ausgeleitet. Durch das Vorsehen weiterer Elektroden, wird die Brennstoffausbeute erhöht.In a preferred embodiment of the invention, the electrolyte solution is continuously fed in and out of an electrolysis cell, the electrode package of which has at least one further, in particular a bipolar electrode between the contact electrodes. The fuel yield is increased by providing additional electrodes.

Besonders bevorzugt ist es, wenn die Elektrolysezelle zwischen den Kontaktelektroden zumindest eine Diamantelektrode, insbesondere eine Diamantpartikelelektrode, aufweist. Diamantelektroden, insbesondere Diamantpartikelelektroden, zeichnen sich durch ihre chemische Stabilität sowie durch ihre hohe Sauerstoffüberspannung aus, durch welche die bei der elektrochemischen Oxidation von organischen Verbindungen konkurrierend auftretende Sauerstoffbildung minimiert werden kann, sodass die Brennstoffausbeute weiter gesteigert wird.It is particularly preferred if the electrolysis cell has at least one diamond electrode, in particular a diamond particle electrode, between the contact electrodes. Diamond electrodes, especially diamond particle electrodes, are characterized by their chemical stability and their high oxygen overvoltage, which can minimize the oxygen formation that occurs during the electrochemical oxidation of organic compounds, so that the fuel yield is further increased.

Erfindungsgemäß kann die Elektrolysezelle als Kontaktelektroden und als etwaige vorgesehene weitere Elektrode(n) direkt kontaktierbare Diamantelektroden, insbesondere Diamantpartikelelektroden, platinbeschichtete Titanelektroden, Mischoxidelektroden, insbesondere Ir/Ru-beschichtete Titanelektroden, oder Elektroden aus Glaskohlenstoff, Grafit oder aus Kohle enthalten.According to the invention, the electrolysis cell can be used as contact electrodes and as any further electrode (s) provided for directly contactable diamond electrodes, in particular diamond particle electrodes, platinum-coated titanium electrodes, mixed oxide electrodes, in particular Ir / Ru-coated titanium electrodes, or electrodes made of glassy carbon, graphite or carbon.

Der bzw. die Prozessparameter, welcher bzw. welche beim erfindungsgemäßen Verfahren eingestellt wird bzw. werden, ist bzw. sind zumindest einer der folgenden Parameter: die Verweilzeit der Elektrolytlösung in der Elektrolysezelle, die Temperatur der Elektrolytlösung, der pH-Wert der Elektrolytlösung, die Ionenkonzentration der Elektrolytlösung, die Stromstärke und/oder die Spannung der Spannungsquelle. Insbesondere kann durch Einstellen der Stromstärke und der Spannung der Spannungsquelle eine elektrochemische Konversion der organischen Verbindungen in einen gasförmigen Brennstoff besonders komfortabel herbeigeführt werden, wobei durch eine Feinabstimmung dieser Parameter besonders hohe Brennstoffausbeuten erzielt werden können.The process parameter (s) that is or are set in the method according to the invention is or are at least one of the following parameters: the residence time of the electrolyte solution in the electrolytic cell, the temperature of the electrolyte solution, the pH value of the electrolyte solution, the Ion concentration of the electrolyte solution, the current strength and / or the voltage of the voltage source. In particular, by adjusting the current intensity and the voltage of the voltage source, an electrochemical conversion of the organic compounds into a gaseous fuel can be brought about particularly comfortably, with particularly high fuel yields being achieved by fine-tuning these parameters.

Bei einer bevorzugten Variante der Erfindung weist die alkalische Elektrolytlösung einen pH-Wert von mindestens 8, insbesondere von mindestens 10, auf oder wird auf einen solchen pH-Wert eingestellt. Die bei diesem pH-Wert vorliegende Konzentration an Hydroxidionen trägt zu einer schnellen und effektiven Polarisation von in den Reststoffen enthaltenen organischen Verbindungen, beispielsweise von Carbonsäuren, bei, was, wie eingangs beschrieben, die elektrochemische Konversion dieser Verbindungen in einen gasförmigen Brennstoff begünstigt. Ferner setzen die Hydroxidionen in der Elektrolytlösung vorliegende wasserunlösliche organische Verbindungen in wasserlösliche organische Verbindungen um, beispielsweise in Seifen. Diese können wie bereits erläutert ebenfalls elektrochemisch in einen gasförmigen Brennstoff konvertiert werden.In a preferred variant of the invention, the alkaline electrolyte solution has a pH of at least 8, in particular of at least 10, or is adjusted to such a pH. The concentration of hydroxide ions present at this pH value contributes to a rapid and effective polarization of organic compounds contained in the residues, for example carboxylic acids, which, as described above, promotes the electrochemical conversion of these compounds into a gaseous fuel. Furthermore, the hydroxide ions convert water-insoluble organic compounds present in the electrolyte solution into water-soluble organic compounds, for example in soaps. As already explained, these can also be converted electrochemically into a gaseous fuel.

Bevorzugt ist ein Verfahren, bei welchem als Reststoff eine beim Sulfatverfahren der Zellstoffindustrie anfallende ligninhaltige Schwarzlauge verwendet wird.A process is preferred in which a lignin-containing black liquor obtained in the sulfate process in the pulp industry is used as the residue.

Ebenfalls bevorzugt ist ein Verfahren, bei welchem als Reststoff eine Verwendung der Elektrolysezelle zur Bildung eines gasförmigen Brennstoffes aus Ablaugen, welche bei der alkalischen Hydrolyse von Tierkadavern anfallen, verwendet werden.Also preferred is a method in which the electrolysis cell is used as the residue to form a gaseous fuel from waste liquors which are obtained during the alkaline hydrolysis of animal carcasses.

Gemäß einer weiteren bevorzugten Verfahrensvariante werden als Reststoffe Fette enthaltende alkalische Abwässer, welche insbesondere bei der Hygienisierung und Desinfektion anfallen, verwendet.According to a further preferred variant of the method, alkaline wastewater containing fats, which occurs in particular during sanitation and disinfection, is used as residual material.

Gemäß einer weiteren bevorzugten Verfahrensvariante werden als Reststoffe bei einer Alkalibehandlung gelösten und/oder fein suspendierten organischen Stoffen verwendet.According to a further preferred variant of the method, dissolved and / or finely suspended organic substances are used as residues in an alkali treatment.

Des Weiteren ist auch eine Verfahrensvariante vorteilhaft, bei welcher als Reststoffe Lösungen von Natrium- oder Kaliumsalzen von Fettsäuren verwendet werden.Furthermore, a process variant is also advantageous in which solutions of sodium or potassium salts of fatty acids are used as residues.

Weitere Merkmale, Vorteile und Einzelheiten der Erfindung werden nun anhand der einzigen Figur, Fig. 1, welche eine schematische Seitenansicht einer erfindungsgemäßen Ausführungsform einer Vorrichtung zur elektrochemischen Konvertierung organischer Verbindungen zeigt, näher beschrieben.Further features, advantages and details of the invention are now based on the single figure, Fig. 1 , which shows a schematic side view of an embodiment according to the invention of a device for the electrochemical conversion of organic compounds, described in more detail.

Die in der nachfolgenden Beschreibung verwendeten Begriffe wie "oben", "unten", "unterhalb" und dergleichen beziehen sich auf die Darstellung wie sie in Fig.1 gezeigt ist. Der Begriff "flüssiges Medium" umfasst im Rahmen der gegenständlichen Erfindung Flüssigkeiten, Suspensionen sowie Emulsionen.The terms used in the following description, such as "above", "below", "below" and the like relate to the representation as shown in FIG Fig.1 is shown. In the context of the present invention, the term "liquid medium" includes liquids, suspensions and emulsions.

Die Vorrichtung zur elektrochemischen Konvertierung weist zumindest eine einkammrige und als Durchflusszelle 2 konzipierte Elektrolysezelle auf. Fig. 1 zeigt eine Vorrichtung mit einer einzigen Durchflusszelle 2 sowie mit einem geschlossenen Behälter 1. Der beispielsweise quaderförmige oder zylindrische Behälter 1 weist einen Behälterboden 1a, einen vorzugsweise abnehmbaren Behälterdeckel 1b und eine Behälterwand 1c auf. Im Bereich der oberen Hälfte des Behälters 1 mündet in die Behälterwand 1c eine Flüssigkeitszuleitung 3a, über welche flüssige Medien ins Innere des Behälters 1 eingeleitet werden können. Unterhalb der Flüssigkeitszuleitung 3a mündet im Bereich der unteren Hälfte des Behälters 1 in die Behälterwand 1c eine Flüssigkeitsableitung 3b. Im oberen Bereich des Behälters 1 mündet knapp unterhalb des Behälterdeckels 1b eine Gasleitung 4 in diesen ein. Die Gasleitung 4 kann auch am Behälterdeckel 1b angeschlossen sein.The device for electrochemical conversion has at least one single-chamber electrolysis cell designed as a flow cell 2. Fig. 1 shows a device with a single flow cell 2 and with a closed container 1. The, for example, cuboid or cylindrical container 1 has a container bottom 1a, a preferably removable container lid 1b and a container wall 1c. In the area of the upper half of the container 1, a liquid feed line 3a opens into the container wall 1c, via which liquid media can be introduced into the interior of the container 1. Below the liquid feed line 3a, a liquid discharge line 3b opens into the container wall 1c in the area of the lower half of the container 1. In the upper region of the container 1, a gas line 4 opens into the container cover 1b just below the latter. The gas line 4 can also be connected to the container cover 1b.

Die Durchflusszelle 2 weist ein in nicht dargestellter Weise mehrteiliges Gehäuse 5 auf, in welchem ein Elektrodenpaket 6 angeordnet ist. Zwischen dem Behälter 1 und der Durchflusszelle 2 verläuft eine Zulaufleitung 7a und eine Rücklaufleitung 7b, wobei die Zulaufleitung 7a knapp oberhalb des Behälterbodens 1a und die Rücklaufleitung 7b oberhalb der Zulaufleitung 7a sowie beim gezeigten Ausführungsbeispiel im Bereich der oberen Hälfte des Behälters 1 in die Behälterwand 1c einmündet. Gegenüber der Durchflusszelle 2 sind die Zulaufleitung 7a und die Rücklaufleitung 7b derart angeordnet, dass das in die Durchflusszelle 2 eintretende Medium das Elektrodenpaket 6 durchströmt und anschließend über die Rücklaufleitung 7b in den Behälter 1 zurückgeleitet wird. Beim gezeigten Ausführungsbeispiel ist im Bereich der Zulaufleitung 7a eine Pumpe 8 vorgesehen, mittels welcher das flüssige Medium in die Durchflusszelle 2 transportiert werden kann. Zwischen der Pumpe 8 und dem Behälter 1 kann ein Wärmetauscher positioniert sein, über welchen das die Zulaufleitung 7a durchströmende flüssige Medium erwärmt oder gekühlt wird.The flow cell 2 has a multi-part housing 5 (not shown) in which an electrode package 6 is arranged. A feed line 7a and a return line 7b run between the container 1 and the flow cell 2, the feed line 7a just above the container bottom 1a and the return line 7b above the feed line 7a and in the embodiment shown in the area of the upper half of the container 1 into the container wall 1c joins. Opposite the flow cell 2, the inlet line 7a and the return line 7b are arranged in such a way that the medium entering the flow cell 2 flows through the electrode package 6 and is then returned to the container 1 via the return line 7b. In the embodiment shown, a pump 8 is provided in the area of the inlet line 7a, by means of which the liquid medium can be transported into the flow cell 2. A heat exchanger, via which the liquid medium flowing through the feed line 7a is heated or cooled, can be positioned between the pump 8 and the container 1.

Sämtliche Leitungen 3a, 3b, 4, 7a, 7b sind über nicht gezeigte Flanschverbindungen flüssigkeits- und gasdicht an den Behälter 1 bzw. an das Gehäuse 5 der Durchflusszelle 2 angeschlossen, wobei auch das Gehäuse 5 und der Behälter 1 selbst, mit Ausnahme der jeweiligen Anschlussstellen, flüssigkeits- und gasdicht sind.All lines 3a, 3b, 4, 7a, 7b are liquid-tight and gas-tight to the container 1 or to the housing 5 of the flow cell 2 via flange connections (not shown), the housing 5 and the container 1 themselves, with the exception of the respective Connection points that are liquid- and gas-tight.

Das Elektrodenpaket 6 der Durchflusszelle 2 ist derart in das Gehäuse 5 eingesetzt, dass es gegen Verschieben gesichert ist. Bei der dargestellten Ausführung weist das Elektrodenpaket 6 randseitig jeweils eine Kontaktelektrode 6a auf, an welche jeweils ein in Fig. 1 nicht gezeigter Abstandshalter aus einem elektrisch isolierenden Material, vorzugsweise aus Kunststoff, anschließt, welcher die jeweilige Kontaktelektrode 6a von einer bipolaren Diamantpartikelelektrode 6b trennt. Vorzugsweise sind mehrere, im gezeigten Ausführungsbeispiel vier, bipolare Diamantpartikelelektroden 6b vorgesehen, die voneinander ebenfalls durch dünne, elektrisch isolierende Abstandhalter getrennt sind. In der einfachsten Ausführung des Elektrodenpaketes 6 sind eine einzige bipolare Diamantpartikelelektrode 6b, zwei Abstandshalter und die beiden Kontaktelektroden 6a vorgesehen. Bei weiteren Ausführungsvarianten kann eine größere Anzahl von bipolaren Diamantpartikelelektroden zwischen den beiden Kontaktelektroden 6a vorgesehen sein und es können auch noch weitere Kontaktelektroden vorhanden sein, wobei die Diamantpartikelelektroden 6b voneinander und von den Kontaktelektroden jeweils durch einen separaten Abstandshalter getrennt sind. Sämtliche Elektroden und Abstandshalter sind vorzugsweise im Wesentlichen rechteckig ausgeführt. Das Elektrodenpaket 6 wird beispielsweise durch nicht gezeigte Halteklammern von außen zusammengehalten.The electrode package 6 of the flow cell 2 is inserted into the housing 5 in such a way that it is secured against displacement. In the embodiment shown, the electrode package 6 has a respective contact electrode 6a on the edge, to which an in Fig. 1 A spacer, not shown, made of an electrically insulating material, preferably made of plastic, connects, which separates the respective contact electrode 6a from a bipolar diamond particle electrode 6b. A plurality of bipolar diamond particle electrodes 6b, which are also separated from one another by thin, electrically insulating spacers, are preferably provided, four in the exemplary embodiment shown. In the simplest embodiment of the electrode package 6, a single bipolar diamond particle electrode 6b, two spacers and the two contact electrodes 6a are provided. In further design variants, a larger number of bipolar diamond particle electrodes can be provided between the two contact electrodes 6a and there can also be further contact electrodes, the diamond particle electrodes 6b being separated from each other and from the contact electrodes by a separate spacer. All electrodes and spacers are preferably designed to be essentially rectangular. The electrode package 6 is held together from the outside, for example, by retaining clips (not shown).

In der einfachsten, nicht dargestellten Ausführung weist die Elektrolysezelle lediglich zwei Kontaktelektroden auf. Bei einer weiteren Ausführung ist zumindest eine weitere, entweder kontaktierte und mit Spannung versorgte weitere Elektrode zwischen den erwähnten Kontaktelektroden vorgesehen oder eine bipolare Elektrode.In the simplest version, not shown, the electrolysis cell has only two contact electrodes. In a further embodiment, at least one further electrode, which is either contacted and supplied with voltage, is provided between the contact electrodes mentioned, or a bipolar electrode.

Als Kontaktelektroden 6a bzw. als weitere Elektroden können beispielsweise direkt kontaktierbare Diamantelektroden, insbesondere Diamantpartikelelektroden, ferner platinbeschichtete Titanelektroden, Mischoxidelektroden, wie beispielsweise Ir/Ru-beschichtete Titanelektroden, sowie ferner Elektroden aus Glaskohlenstoff, Grafit oder aus Kohle eingesetzt werden. Die Kontaktelektroden 6a können plattenförmig oder als Gitter ausgeführt sein, welches mit dem Elektrodenmaterial beschichtet ist. Zur Kontaktierung der vorgesehenen Kontaktelektroden 6a sind pro Kontaktelektrode 6a ein bis drei Titanstäbe, welche beispielsweise angeschweißt sind, vorgesehen.Directly contactable diamond electrodes, in particular diamond particle electrodes, also platinum-coated titanium electrodes, mixed oxide electrodes such as Ir / Ru-coated titanium electrodes, and also electrodes made of glassy carbon, graphite or carbon can be used as contact electrodes 6a or further electrodes. The contact electrodes 6a can be plate-shaped or designed as a grid which is coated with the electrode material. For contacting the provided contact electrodes 6a, one to three titanium rods, which are for example welded on, are provided per contact electrode 6a.

Die Diamantpartikelelektroden 6b sind vorzugsweise gemäß der WO2004/005585 A1 aufgebaut und nach dem dort beschriebenen Verfahren hergestellt. Sie bestehen daher aus dotierten Diamantpartikeln, die einlagig und ohne gegenseitigen Kontakt zueinander in eine Kunststoff-Trägerschicht eingebettet sind. Die Diamantpartikel sind insbesondere in einem Hochdruck-/Hochtemperaturverfahren hergestellte, vorzugsweise mit Bor, oder auch mit Stickstoff, Phosphor, Arsen, Antimon, Niob, Lithium, Schwefel oder Sauerstoff dotierte Industriediamanten (Einkristalle). Ferner weisen die Diamantpartikel Korngrößen von 100 µm bis 2 mm, insbesondere von 160 µm bis 350 µm, auf. Die Partikel innerhalb einer Elektrode sind im Wesentlichen gleich groß oder Partikel eines Korngrößenbereiches. Die Trägerschicht besteht aus einem oder mehreren Polymeren, insbesondere aus Polytetrafluorethylen, Polyvinylidenfluorid, Perfluoralkoxylalkan, fluoriertem Ethylpropylen, Ethylen-Tetrafluorethylen, Polyetherketon, Polyethylen, Polypropylen, Polyvinylchlorid oder Polyphenylensulfid. Zu beiden Seiten der Trägerschicht sind die Partikel teilweise freigelegt.The diamond particle electrodes 6b are preferably according to FIG WO2004 / 005585 A1 built and manufactured according to the process described there. They therefore consist of doped diamond particles that are embedded in a plastic carrier layer in a single layer and without mutual contact. The diamond particles are, in particular, industrial diamonds (single crystals) which are produced in a high pressure / high temperature process, preferably with boron, or else with nitrogen, phosphorus, arsenic, antimony, niobium, lithium, sulfur or oxygen. Furthermore, the diamond particles have grain sizes from 100 μm to 2 mm, in particular from 160 μm to 350 μm. The particles within an electrode are essentially the same size or particles of a grain size range. The carrier layer consists of one or more polymers, in particular of polytetrafluoroethylene, polyvinylidene fluoride, perfluoroalkoxylalkane, fluorinated ethylpropylene, ethylene-tetrafluoroethylene, polyether ketone, polyethylene, polypropylene, Polyvinyl chloride or polyphenylene sulfide. The particles are partially exposed on both sides of the carrier layer.

Die eingesetzten Diamantpartikelelektroden 6b zeichnen sich durch ihre chemische Stabilität sowie durch ihre hohe Sauerstoffüberspannung aus, durch welche die bei der elektrochemischen Oxidation von organischen Verbindungen konkurrierend auftretende Sauerstoffbildung minimiert werden kann.The diamond particle electrodes 6b used are distinguished by their chemical stability and by their high oxygen overvoltage, by means of which the oxygen formation that occurs in competition during the electrochemical oxidation of organic compounds can be minimized.

Mittels einer Spannungsquelle 9 wird das Elektrodenpaket 6 derart mit elektrischer Gleichspannung versorgt, dass die Stromdichte an der Oberfläche der Elektroden 6a, 6b 10 mA/cm2 bis 2000 mA/cm2, insbesondere 100 mA/cm2 bis 800 mA/cm2, beträgt.By means of a voltage source 9, the electrode package 6 is supplied with electrical direct voltage in such a way that the current density on the surface of the electrodes 6a, 6b is 10 mA / cm 2 to 2000 mA / cm 2 , in particular 100 mA / cm 2 to 800 mA / cm 2 , amounts.

Wie im Nachfolgenden genauer erläutert wird, wird die Vorrichtung zur elektrochemischen Konvertierung von in einer alkalischen Elektrolytlösung gelösten, suspendierten oder emulgierten organischen Verbindungen eingesetzt (organische Elektrosynthese). Unter einer alkalischen Elektrolytlösung wird dabei eine solche verstanden, welche einen pH-Wert größer 7 aufweist. Bevorzugter Weise weist die alkalische Elektrolytlösung einen pH-Wert von mindestens 8, insbesondere von mindestens 10, auf.As will be explained in more detail below, the device is used for the electrochemical conversion of organic compounds dissolved, suspended or emulsified in an alkaline electrolyte solution (organic electrosynthesis). An alkaline electrolyte solution is understood to be one that has a pH greater than 7. The alkaline electrolyte solution preferably has a pH of at least 8, in particular at least 10.

Elektrochemisch konvertierbar sind jene organische Verbindungen, deren Moleküle

  • zumindest eine Doppel- oder eine Dreifachbindung enthalten
    und/oder
  • ein π-Elektronensystem aufweisen
    und/oder
  • zumindest ein Heteroatom und damit zumindest eine polare Atombindung enthalten.
Those organic compounds and their molecules are electrochemically convertible
  • contain at least one double or one triple bond
    and or
  • have a π-electron system
    and or
  • contain at least one heteroatom and thus at least one polar atomic bond.

Besonders gut elektrochemisch konvertierbar sind daher organische Verbindungen, deren Moleküle über zumindest eine Doppel- oder Dreifachbindung zwischen einem Kohlenstoffatom und einem Heteroatom verfügen. Bei der elektrochemischen Konvertierung werden die Moleküle vorzugsweise an einer Mehrfachbindung oder einer polaren Atombindung gespalten.Organic compounds whose molecules have at least one double or triple bond between a carbon atom and a heteroatom are therefore particularly readily electrochemically convertible. In the electrochemical conversion, the molecules are preferably split at a multiple bond or a polar atomic bond.

Bei der gegenständlichen Erfindung steht insbesondere die stoffliche Verwertung bzw. die Aufbereitung von in Industrieprozessen anfallenden Reststoffen, welche zumindest eine elektrochemisch konvertierbare biogene organische Verbindung, vorzugsweise mehrere dieser Verbindungen, enthalten, im Vordergrund. Die Moleküle dieser biogenen organischen Verbindungen enthalten üblicherweise zumindest ein Heteroatom, insbesondere ein Stickstoff-, ein Sauerstoff- oder ein Schwefelatom, und damit eine polare Atombindung. Am häufigsten enthalten die Moleküle zumindest ein Sauerstoffatom. Insbesondere weisen die Moleküle biogener organischer Verbindungen ferner zumindest eine Doppelbindung zwischen einem Kohlenstoffatom und einem Heteroatom auf, wobei die Moleküle auch mehrere unterschiedliche Heteroatome aufweisen können.In the present invention, the material recycling or processing of residual materials arising in industrial processes which contain at least one electrochemically convertible biogenic organic compound, preferably several of these compounds, is in the foreground. The molecules of these biogenic organic compounds usually contain at least one heteroatom, in particular a nitrogen, an oxygen or a sulfur atom, and thus a polar atomic bond. Most often the molecules contain at least one oxygen atom. In particular, the molecules of biogenic organic compounds also have at least one double bond between a carbon atom and a heteroatom, wherein the molecules can also have several different heteroatoms.

Mit der Vorrichtung können auch Reststoffe, die nicht biogene organische Verbindungen, beispielsweise hydrolysierbare Kunststoffe, wie Polyester, Polyamide, Polyurethane oder Polycarbonate, enthalten, elektrochemisch konvertiert werden.The device can also be used to electrochemically convert residues that contain non-biogenic organic compounds, for example hydrolyzable plastics such as polyesters, polyamides, polyurethanes or polycarbonates.

Im Rahmen der gegenständlichen Erfindung werden insbesondere die nachfolgend aufgezählten Reststoffe verwertet bzw. aufbereitet:

  • beim Sulfatverfahren der Zellstoffindustrie anfallende ligninhaltige Schwarzlaugen;
  • Ablaugen, welche bei der alkalischen Hydrolyse von Tierkadavern anfallen;
  • Fette enthaltende alkalische Abwässer, welche insbesondere bei der Hygienisierung und Desinfektion, beispielsweise bei der Reinigung von Schlachthäusern, anfallen;
  • durch Alkalibehandlung gelöste oder fein suspendierte organische Stoffe;
  • Lösungen der Natrium- oder Kaliumsalze der Fettsäuren (Seifenlösungen).
In the context of the present invention, in particular the residues listed below are recycled or processed:
  • lignin-containing black liquors resulting from the sulphate process of the pulp industry;
  • Waste liquors which are obtained from the alkaline hydrolysis of animal carcasses;
  • Alkaline wastewater containing fats, which occurs in particular during sanitation and disinfection, for example when cleaning slaughterhouses;
  • organic substances dissolved or finely suspended by alkali treatment;
  • Solutions of sodium or potassium salts of fatty acids (soap solutions).

Die Reststoffe und damit die organischen Verbindungen können daher bereits in einer alkalischen Elektrolytlösung gelöst und/oder suspendiert und/oder emulgiert sein, z.B. bei Schwarzlaugen oder bei Seifenlösungen.The residues and thus the organic compounds can therefore already be dissolved and / or suspended and / or emulsified in an alkaline electrolyte solution, for example in the case of black liquors or soap solutions.

Die Reststoffe werden in eine alkalische Elektrolytlösung eingebracht, deren Ionenkonzentration mindestens 0,1 mol/l beträgt oder es werden den Reststoffen entsprechende Verbindungen zur Bildung einer solchen zugesetzt.The residues are introduced into an alkaline electrolyte solution, the ion concentration of which is at least 0.1 mol / l, or corresponding compounds are added to the residues to form such a solution.

Erfindungsgemäß wird der Elektrolytlösung vor dem Einbringen in die Elektrolysezelle zumindest eine Verbindung zur Bildung von Kaliumionen und/oder Natriumionen zugesetzt bis die Ionenkonzentration mindestens 0,lmol/l beträgt. Die maximale Ionenkonzentration ist für die jeweiligen Ionen durch die Sättigungskonzentrationen der Ionen in der Elektrolytlösung festgelegt.According to the invention, at least one compound for the formation of potassium ions and / or sodium ions is added to the electrolyte solution before it is introduced into the electrolysis cell until the ion concentration is at least 0.1 mol / l. The maximum ion concentration for the respective ions is determined by the saturation concentration of the ions in the electrolyte solution.

Ist der pH-Wert der Elektrolytlösung ≤ 7 (neutrale oder saure Elektrolytlösung) werden Basen, vorzugsweise eine wässrige Kaliumhydroxidlösung oder eine wässrige Natriumhydroxidlösung, zur Erhöhung des pH-Wertes zugegeben.If the pH value of the electrolyte solution is ≤ 7 (neutral or acidic electrolyte solution), bases, preferably an aqueous potassium hydroxide solution or an aqueous sodium hydroxide solution, are added to increase the pH value.

Die Hydroxidionen der alkalischen Elektrolytlösungen polarisieren funktionelle Gruppen der in ihr enthaltenen organischen Verbindungen, wodurch sich beispielsweise aus Carbonsäuren Carbonsäureanionen bilden. Da die gebildeten Anionen stark polar sind, können sie vorteilhafterweise besonders leicht elektrochemisch konvertiert werden. Ferner reagieren die Hydroxidionen mit unlöslichen organischen Verbindungen zu löslichen organischen Verbindungen. Beispielsweise werden wasserunlösliche Fette, d.h. Fettsäureester, durch die Reaktion mit Hydroxidionen in wasserlösliche Salze der Fettsäuren und wasserlösliche Alkohole gespalten (Verseifung). Die derart gelösten organischen Salze werden nachfolgend elektrochemisch konvertiert.The hydroxide ions of the alkaline electrolyte solutions polarize functional groups of the organic compounds they contain, as a result of which, for example, carboxylic acid anions are formed from carboxylic acids. Since the anions formed are strongly polar, they can advantageously be converted electrochemically particularly easily. Furthermore, the hydroxide ions react with insoluble organic compounds to form soluble organic compounds. For example, water-insoluble fats, i. Fatty acid esters, split into water-soluble salts of fatty acids and water-soluble alcohols (saponification) through the reaction with hydroxide ions. The organic salts dissolved in this way are then converted electrochemically.

Die in der Elektrolytlösung enthaltenen Kationen sind vorzugsweise Ionen der Alkalimetalle, insbesondere Kaliumionen und/oder Natriumionen. Diese Ionen sind wegen ihrer hohen Wasserlöslichkeit besonders geeignet und sind vorteilhafterweise an der elektrochemischen Konversion nicht beteiligt, da ihr Standardelektrodenpotential geringer ist als jenes von Wasserstoff. Ferner bilden Kalium- und Natriumionen mit den organischen Verbindungen gut wasserlösliche organische Salze und somit elektrochemisch konvertierbare Verbindungen. Kaliumionen sind ferner deshalb besonders geeignet, weil sich die um sie in wässriger Lösung ausbildende Hydrathülle kleiner ist als jene, die sich um Natriumionen bildet. Kaliumionen weisen daher einen besonders geringen hydrodynamischen Widerstand auf und sind dementsprechend in wässrigen Lösungen besonders beweglich, sodass auch die elektrische Leitfähigkeit einer Kaliumionen enthaltenden Elektrolytlösung besonders hoch ist.The cations contained in the electrolyte solution are preferably ions of the alkali metals, in particular potassium ions and / or sodium ions. These ions are particularly suitable because of their high solubility in water and are advantageously not involved in the electrochemical conversion, since their standard electrode potential is lower than that of hydrogen. Furthermore, potassium and sodium ions form highly water-soluble organic salts and thus electrochemically convertible compounds with the organic compounds. Potassium ions are also particularly suitable because the hydrate shell that forms around them in aqueous solution is smaller than that that forms to form sodium ions. Potassium ions therefore have a particularly low hydrodynamic resistance and are accordingly particularly mobile in aqueous solutions, so that the electrical conductivity of an electrolyte solution containing potassium ions is particularly high.

Die hinsichtlich des pH-Wertes und der Ionenkonzentration bereits passende bzw. eingestellte Elektrolytlösung wird über die Flüssigkeitszuleitung 3a in den Behälter 1 und von diesem mittels der Pumpe 8 über die Zulaufleitung 7a in die Durchflusszelle 2 gepumpt. Zähflüssige Elektrolytlösungen werden vorzugsweise vor dem Einleiten in die Durchflusszelle 2 über den bereits erwähnten zwischen der Pumpe 8 und dem Behälter 1 angeordneten Wärmetauscher erwärmt, insbesondere auf eine Temperatur von bis zu 60 °C. Grundsätzlich kann jede Elektrolytlösung auf eine Temperatur, die unterhalb ihres Siedepunktes liegt, erwärmt werden. Besonders bevorzugt sind Temperaturen im Bereich von 70°C bis 90°C. Die elektrochemische Konversion wird insbesondere bei dem in der Vorrichtung vorliegenden bzw. sich einstellenden Druckverhältnissen durchgeführt, kann jedoch auch unter einem gegenüber dem Umgebungsdruck erhöhten Druck erfolgen, welcher vorzugsweise bis zu 10 bar, insbesondere ≤ 4 bar, beträgt.The electrolyte solution that is already suitable or adjusted with regard to the pH value and the ion concentration is pumped into the container 1 via the liquid supply line 3a and from there into the flow cell 2 by means of the pump 8 via the supply line 7a. Viscous electrolyte solutions are preferably heated, in particular to a temperature of up to 60.degree. C., before being introduced into the flow cell 2 via the already mentioned heat exchanger arranged between the pump 8 and the container 1. In principle, any electrolyte solution can be heated to a temperature below its boiling point. Temperatures in the range from 70 ° C. to 90 ° C. are particularly preferred. The electrochemical conversion is carried out, in particular, under the pressure conditions present or established in the device, but can also take place under a pressure that is higher than the ambient pressure, which is preferably up to 10 bar, in particular 4 bar.

Während des Betriebes werden die Zu- bzw. Ableitung der Elektrolytlösung in den bzw. aus dem Behälter 1 wird derart reguliert, dass der Füllstand des flüssigen Mediums im Behälter 1 die Gasleitung 4 nicht erreicht und das Elektrodenpaket 6 der Durchflusszelle 2 im Betrieb fortlaufend umspült wird.During operation, the supply and discharge of the electrolyte solution to and from the container 1 is regulated in such a way that the level of the liquid medium in the container 1 does not reach the gas line 4 and the electrode package 6 of the flow cell 2 is continuously flushed during operation .

Die in der Durchflusszelle 2 stattfindenden Reaktionen werden von den Prozessparametern beeinflusst. Zu diesen Prozessparametern zählen insbesondere die Verweilzeit der Elektrolytlösung in der Durchflusszelle 2, die Temperatur und/oder der pH-Wert und/oder die Ionenkonzentration der Elektrolytlösung sowie die Stromstärke und die Spannung der Spannungsquelle 9. Diese Prozessparameter werden vorab derart gewählt bzw. eingestellt, dass die in der Elektrolytlösung jeweils vorliegenden organischen Verbindungen über Redoxreaktionen an den Elektroden 6a, 6b des Elektrodenpaketes 6 in einen gasförmigen Brennstoff konvertiert werden. Im Zuge dieser Konvertierung werden die Moleküle der in der Elektrolytlösung enthaltenen organischen Verbindungen daher fragmentiert und defunktionalisiert. Insbesondere kann durch Einstellen der Stromstärke und der Spannung der Spannungsquelle 9 eine elektrochemische Konversion der organischen Verbindungen in einen gasförmigen Brennstoff besonders komfortabel herbeigeführt werden, wobei durch eine Feinabstimmung dieser Parameter besonders hohe Brennstoffausbeuten erzielt werden.The reactions taking place in the flow cell 2 are influenced by the process parameters. These process parameters include, in particular, the residence time of the electrolyte solution in the flow cell 2, the temperature and / or the pH value and / or the ion concentration of the electrolyte solution and the current strength and voltage of the voltage source 9. These process parameters are selected or set in advance in such a way that that the organic compounds present in each case in the electrolyte solution are converted into a gaseous fuel via redox reactions at the electrodes 6a, 6b of the electrode package 6. In the course of this conversion, the molecules of the organic compounds contained in the electrolyte solution are therefore fragmented and defunctionalized. In particular, by adjusting the current strength and the voltage of the voltage source 9, an electrochemical conversion of the organic compounds into a gaseous fuel can be brought about particularly comfortably, with particularly high fuel yields being achieved by fine-tuning these parameters.

Gasförmiger Brennstoff bezeichnet im Rahmen der gegenständlichen Erfindung ein als Brennstoff geeignetes Gasgemisch, dessen brennbare Hauptbestandteile Wasserstoff sowie gasförmige Kohlenwasserstoffe, insbesondere Ethan, Propan, Butan, Ethen, Propen und Buten sind. Als brennbare gasförmige Nebenbestandteile können beispielsweise Schwefelwasserstoff oder Ammoniak gebildet werden. Als weitere Nebenbestandteile können bei den in der Vorrichtung vorherrschenden Temperaturen gasförmig organische Verbindungen, deren Moleküle Heteroatome, insbesondere Sauerstoff, enthalten, gebildet werden. Zu diesen zählen beispielsweise Aldehyde, Alkohole, Ester, Ketone oder Kohlendioxid.In the context of the present invention, gaseous fuel denotes a gas mixture suitable as a fuel, the main combustible components of which are hydrogen and gaseous hydrocarbons, in particular ethane, propane, butane, ethene, propene and butene. Hydrogen sulfide or ammonia, for example, can be formed as combustible gaseous secondary constituents. At the temperatures prevailing in the device, gaseous organic compounds, the molecules of which contain heteroatoms, in particular oxygen, can be formed as further secondary constituents. These include, for example, aldehydes, alcohols, esters, ketones or carbon dioxide.

Der gebildete gasförmige Brennstoff wird über die Rücklaufleitung 7b aus der Durchflusszelle 2 ausgetragen und in den Behälter 1 zurücktransportiert, verlässt dort die Elektrolytlösung, sammelt sich in einem oberhalb des Niveaus der Elektrolytlösung im Behälter 1 befindlichen Gasraum 10 und wird über die Gasleitung 4 abtransportiert, insbesondere abgesaugt. Etwaige in der Gasleitung 4 kondensierende Nebenbestandteile des Brennstoffes können von den brennbaren Hauptbestandteilen auf einfache Weise abgetrennt werden.The gaseous fuel formed is discharged from the flow cell 2 via the return line 7b and transported back into the container 1, leaves the electrolyte solution there, collects in a gas space 10 located above the level of the electrolyte solution in the container 1 and is transported away via the gas line 4, in particular sucked off. Any secondary constituents of the fuel condensing in the gas line 4 can be separated from the main combustible constituents in a simple manner.

Der gebildete gasförmige Brennstoff kann thermisch in einem Blockheizkraftwerk verwertet werden, sodass elektrische Energie und/oder Wärme gewonnen wird. Alternativ können die Bestandteile des Brennstoffes mittels einer geeigneten Trennvorrichtung isoliert werden. Anschließend können Bestandteile des Brennstoffes über eine Dampfreformierung in ein Synthesegas umgewandelt werden, wobei im Rahmen der gegenständlichen Erfindung unter einem Synthesegas ein zur Synthese weiterer organischer Verbindungen geeignetes Gasgemisch verstanden wird, welches hauptsächlich aus Kohlenmonoxid und Wasserstoff besteht. Aus dem gebildeten Synthesegas können in an sich bekannter Weise weitere organische Verbindungen hergestellt werden. Insbesondere kann Synthesegas zur Fischer-Tropsch Synthese eingesetzt werden. Eine weitere Verwendungsmöglichkeit des Synthesegases besteht beispielsweise in seiner Umsetzung zu Methanol.The gaseous fuel that is formed can be used thermally in a block-type thermal power station so that electrical energy and / or heat is obtained. Alternatively, the components of the fuel can be isolated by means of a suitable separating device. Subsequently, constituents of the fuel can be converted into a synthesis gas via steam reforming, with a synthesis gas being understood in the context of the present invention to be a gas mixture suitable for the synthesis of further organic compounds, which mainly consists of carbon monoxide and hydrogen. Further organic compounds can be produced from the synthesis gas formed in a manner known per se. In particular, synthesis gas can be used for Fischer-Tropsch synthesis can be used. Another possible use of the synthesis gas is, for example, its conversion to methanol.

Der als Heteroatom in biogenen organischen Verbindungen am häufigsten vorkommende Sauerstoff wird Großteils in Kohlendioxid oder in eine andere unter den vorherrschenden Temperaturen gasförmige organische Verbindung umgewandelt und gemeinsam mit dem gasförmigen Brennstoff über die Gasleitung 4 abtransportiert. Schwefelatome werden beispielsweise zu Sulfat oxidiert und Stickstoffatome insbesondere zu Nitriten, Nitraten, Ammoniak oder Stickstoffmolekülen umgewandelt. Diese Schwefel- und Stickstoffverbindungen verbleiben entweder in der elektrolysierten Lösung oder verlassen diese ebenfalls gemeinsam mit dem gasförmigen Brennstoff über die Gasleitung 4. Ferner enthält die elektrolysierte Lösung anorganische Nebenbestandteile der Reststoffe, wie beispielsweise Kalziumcarbonat, Siliziumverbindungen, Metallsalze, Metalloxide, Sulfate und/oder Nitrate. Aus dieser zurückbleibenden alkalischen elektrolysierten Lösung können Chemikalien, insbesondere Laugen, zurückgewonnen werden.The oxygen, which occurs most frequently as a hetero atom in biogenic organic compounds, is largely converted into carbon dioxide or into another organic compound which is gaseous under the prevailing temperatures and is transported away via the gas line 4 together with the gaseous fuel. Sulfur atoms are oxidized to sulfate, for example, and nitrogen atoms are converted into nitrites, nitrates, ammonia or nitrogen molecules in particular. These sulfur and nitrogen compounds either remain in the electrolyzed solution or also leave it together with the gaseous fuel via gas line 4. The electrolyzed solution also contains inorganic secondary constituents of the residual materials, such as calcium carbonate, silicon compounds, metal salts, metal oxides, sulfates and / or nitrates . Chemicals, especially alkalis, can be recovered from this remaining alkaline electrolyzed solution.

Die nachfolgenden Gleichungen geben die primär bei der elektrochemischen Reaktion stattfinden Prozesse in allgemeiner Form wieder, wobei A, B, C organische Moleküle bezeichnen:

        A → A·+ + e-     Gleichung (1)

        A + e- → A·-     Gleichung (2)

        B- → B· + e-     Gleichung (3)

        C+ + e- → C·     Gleichung (4)

The following equations show the processes primarily taking place in the electrochemical reaction in a general form, where A, B, C denote organic molecules:

A → A + + e - equation (1)

A + e - → A - equation (2)

B - → B + e - equation (3)

C + + e - → C equation (4)

Beim jeweiligen primären Prozess der elektrochemischen Reaktion wird meistens nur ein einziges Elektron zwischen der Elektrode und einem Molekül der organischen Verbindung transferiert, wobei aus neutralen Molekülen Radial-Ionen (Gleichung (1) und (2)), aus Anionen durch Oxidation Radikale (Gleichung (3)) und aus Kationen durch Reduktion Radikale (Gleichung (4)) gebildet werden. Dementsprechend entstehen an den Elektroden durch Elektronenaufnahme bzw. Elektronenabgabe reaktive Zwischenprodukte, die entsprechend weiter reagieren können.In the respective primary process of the electrochemical reaction, usually only a single electron is transferred between the electrode and a molecule of the organic compound, with radial ions from neutral molecules (equations (1) and (2)) and radicals from anions through oxidation (equation ( 3)) and radicals (equation (4)) are formed from cations by reduction. Correspondingly, reactive intermediate products arise at the electrodes through the uptake or release of electrons, which can react accordingly.

Eine weitere in der Durchflusszelle 2 ablaufende chemische Reaktion kann beispielsweise eine Kolbe-Elektrolyse sein, bei welcher Karbonsäuren oder Salze der Karbonsäuren zu Alkanen und Kohlendioxid umgewandelt werden. Ferner kann beispielsweise eine elektrochemische Oxidation stattfinden, an welcher Hydroxylradikale beteiligt sind.Another chemical reaction taking place in the flow cell 2 can be, for example, Kolbe electrolysis, in which carboxylic acids or salts of the carboxylic acids are converted to alkanes and carbon dioxide. Furthermore, for example, an electrochemical oxidation can take place in which hydroxyl radicals are involved.

Weitere im Zuge der elektrochemischen Konversion stattfindende Prozesse sind beispielsweise die Hydrierung der Moleküle der organischen Verbindungen, welche von an den Elektroden frisch gebildetem atomarem Wasserstoff (naszierender Wasserstoff) initiiert wird.Further processes taking place in the course of the electrochemical conversion are, for example, the hydrogenation of the molecules of the organic compounds, which is initiated by atomic hydrogen (nascent hydrogen) freshly formed on the electrodes.

Bei einer weiteren Ausführungsvariante der Erfindung ist die die Gasleitung 4 direkt an der Durchflusszelle 2 oder an der Rücklaufleitung 7b angeschlossen. Ferner kann die Elektrolytlösung auch unmittelbar in die Durchflusszelle 2 ein- und aus dieser abgeleitet, sodass kein Behälter 1 vorgesehen ist. Da die Menge an zuströmender für die Konvertierung vorgesehener Elektrolytlösung schwanken kann, ist vorzugsweise der Behälter 1 vorgesehen, über welchen diese Schwankungen ausgeglichen werden können, sodass die Durchflusszelle 2 besonders zuverlässig fortlaufend von der Elektrolytlösung umspült wird.In a further embodiment of the invention, the gas line 4 is connected directly to the flow cell 2 or to the return line 7b. Furthermore, the electrolyte solution can also enter and drain directly from the flow cell 2, so that no container 1 is provided. Since the amount of incoming electrolyte solution provided for the conversion can fluctuate, the container 1 is preferably provided, via which these fluctuations can be compensated, so that the flow cell 2 is continuously and particularly reliably washed around by the electrolyte solution.

BezugsziffernlisteList of reference numbers

11
Behältercontainer
1a1a
BehälterbodenContainer bottom
1b1b
BehälterdeckelContainer lid
1c1c
BehälterwandContainer wall
22
DurchflusszelleFlow cell
3a3a
FlüssigkeitszuleitungLiquid supply line
3b3b
FlüssigkeitsableitungFluid drainage
44th
GasleitungGas pipe
55
Gehäusecasing
66th
ElektrodenpaketElectrode package
6a6a
KontaktelektrodeContact electrode
6b6b
DiamantpartikelelektrodeDiamond particle electrode
7a7a
ZulaufleitungFeed line
7b7b
RücklaufleitungReturn line
88th
Pumpepump
99
SpannungsquelleVoltage source
1010
GasraumGas compartment

Claims (12)

  1. Method for electrochemical conversion of organic compounds contained in residual material or occurring as residual material,
    wherein the residual materials are or will be dissolved, suspended or emulsified in an electrolyte solution and the electrolyte solution is alkaline or set to be alkaline,
    wherein the electrolyte solution flows continuously into and out of at least one single chamber electrolytic cell devised as a flow cell (2), which has an electrode bundle (6) of at least two contact electrodes (6a) connected to a voltage source (9), wherein the electrolyte solution flows through the electrode bundle (6),
    wherein a gaseous fuel is generated from at least one of the organic compounds in the electrolytic cell by setting of one or more process parameters, which is discharged or drained off from the electrolytic cell, and
    wherein at least one compound for the formation of potassium ions and/or sodium ions is added to the electrolyte solution before introducing it into the electrolysis cell until the ion concentration is at least 0.1 mol/l.
  2. Method according to claim 1, characterised in that as combustible main constituent is or combustible main constituents of the gaseous fuel, one or more hydrogen group and gaseous hydrocarbons, particularly ethane, propane, butane, ethylene, propylene and butylene, are formed.
  3. Method according to claim 1 or 2, characterised in that the electrolyte solution flows continuously into and out of an electrolytic cell, the electrode bundle of which has an additional, in particular a bipolar electrode (6b), between the contact electrodes (6a).
  4. Method according to claim 3, characterised in that the electrolyte solution flows continuously into and out of an electrolytic cell, the electrode bundle of which has at least one diamond electrode (6b), in particular a diamond particle electrode, between the contact electrodes (6a).
  5. Method according to one of the claims 1 to 4, characterised in that the electrolyte cell comprises of contact electrodes (6a) and possible additional electrodes (6b) which are directly contactable diamond electrodes, in particular diamond particle electrodes, platinum coated titanium electrodes, mixed oxide electrodes, in particular Ir/Ru coated titanium electrodes, or electrodes made of glass carbon, graphite or carbon.
  6. Method according to one of the claims 1 to 5, characterised in that the process parameter or process parameters, which can be set is/are the residence time of electrolyte solution in the electrolytic cell, the temperature of the electrolyte solution, the pH value of the electrolyte solution, the ion concentration of the electrolyte solution, the current strength and the voltage of the voltage source (9).
  7. Method according to one of claims 1 to 6, characterized in that the alkaline electrolyte solution has a pH value of at least 8, in particular at least 10, or is set to such a pH value.
  8. Method according to one of the claims 1 to 7, characterised in that as residual material, a lignin-containing black liquor produced in the sulphate process of the pulp industry, are used.
  9. Method according to one of the claims 1 to 7, characterised in that as residual material, waste lye, which occurs in the alkaline hydrolysis of animal carcasses, are used.
  10. Method according to one of the claims 1 to 7, characterised in that as residual material, the alkaline wastewater containing fats in particular during sanitation and disinfection, are used.
  11. Method according to claims 1 to 7, characterised in that as residual material, dissolved and/or finely suspended organic material in an alkaline treatment, are used.
  12. Method according to claims 1 to 7, characterised in that as a residual material, solutions of sodium and potassium salts of fatty acids, are used.
EP17720746.1A 2016-04-29 2017-04-25 Method for the electrochemical conversion of organic compounds contained in residual materials or arising as residual materials Active EP3449041B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA50387/2016A AT518544B1 (en) 2016-04-29 2016-04-29 Process for the electrochemical conversion of organic compounds contained in residues or obtained as residues and use of a single-cell flow cell designed as an electrolytic cell for the electrochemical conversion of organic compounds contained in residues or as residues in a gaseous fuel
PCT/EP2017/059731 WO2017186682A1 (en) 2016-04-29 2017-04-25 Method for the electrochemical conversion of organic compounds contained in residual materials or arising as residual materials and use of a single-chamber electrolytic cell designed as a flow cell for electrochemical conversion

Publications (2)

Publication Number Publication Date
EP3449041A1 EP3449041A1 (en) 2019-03-06
EP3449041B1 true EP3449041B1 (en) 2020-12-23

Family

ID=58664677

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17720746.1A Active EP3449041B1 (en) 2016-04-29 2017-04-25 Method for the electrochemical conversion of organic compounds contained in residual materials or arising as residual materials

Country Status (3)

Country Link
EP (1) EP3449041B1 (en)
AT (1) AT518544B1 (en)
WO (1) WO2017186682A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109279738A (en) * 2018-09-30 2019-01-29 广西大学 A kind of method of A-D-E-UASB-RO processing black liquor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1113497A (en) * 1965-07-05 1968-05-15 Universal Oil Prod Co Process for electrolytic oxidation of anions
DE19944990A1 (en) * 1999-09-20 2001-03-22 Basf Ag Process for the electrolytic conversion of organic compounds
US7488409B1 (en) * 2001-10-05 2009-02-10 Scimist, Inc. Mediated electrochemical oxidation of animal waste materials
DE102006034895A1 (en) * 2006-07-25 2008-01-31 Siemens Ag Process for the removal of pollutants from liquids and apparatus for carrying out the process
WO2009138368A1 (en) * 2008-05-14 2009-11-19 Basf Se Method for electrochemically cleaving lignin on a diamond electrode
US8518680B2 (en) * 2009-04-17 2013-08-27 The United States Of America, As Represented By The Secretary Of Agriculture Biological/electrolytic conversion of biomass to hydrocarbons

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
AT518544B1 (en) 2017-11-15
EP3449041A1 (en) 2019-03-06
AT518544A4 (en) 2017-11-15
WO2017186682A1 (en) 2017-11-02

Similar Documents

Publication Publication Date Title
WO2020057998A1 (en) Electrolysis cell, electrolyzer and method for reducing co2
DE2629506A1 (en) ELECTROLYSIS CELL FOR THE PRODUCTION OF ALKALIMETAL HYDROXIDES AND HALOGENES
DE10196986T5 (en) Electrolytic commercial production of hydrogen from hydrocarbon compounds
DE2851225A1 (en) METHOD OF STORING SOLAR ENERGY
EP0989206A1 (en) Electrolysis cell and use thereof
EP3485065A1 (en) Method for production of propanol, propionaldehyde and/or propionic acid from carbon dioxide, water and electrical energy
DE2445058A1 (en) ELECTROLYSIS CELL FOR GENERATING CHLORINE GAS
WO2020001851A1 (en) Electrochemical low-temperature reverse water-gas shift reaction
EP3449041B1 (en) Method for the electrochemical conversion of organic compounds contained in residual materials or arising as residual materials
WO2012062353A1 (en) Method for using waste water arising during the production of lignocellulosic fibrous materials
WO2021069470A1 (en) Method and electrolysis device for the production of chlorine, carbon monoxide and optionally hydrogen
DE3001614A1 (en) METHOD FOR THE ELECTROLYTIC DECOMPOSITION OF HYDROCHLORIC ACID IN AN ELECTROLYSIS DEVICE
DE2321417A1 (en) METHOD OF ELECTROLYSIS AND ELECTROLYTIC CELL FOR CARRYING OUT THEREOF
DE1518548A1 (en) Process for the electrochemical hydrodimerization of aliphatic alpha, beta-monoolefinically unsaturated nitriles
DE3143304A1 (en) METHOD FOR OPERATING AN ELECTROLYTIC CELL
EP3692012B1 (en) Method for recovering valuable substances
DE102009037946A1 (en) Utilization of the wastewater occurring during the production of lignocellulosic fibers, comprises combusting the parts of the substances contained in the wastewater or recovering the parts of the substances as usable substances
DE3828848A1 (en) METHOD FOR THE ELECTROLYTIC DECARBOXYLATION OF PERFLUORCARBONIC ACIDS OR THEIR SOLUBLE SALTS AND FOLLOWING DIMERIZATION OF THE RADICALS THEREFORE
DE102020207186A1 (en) CO2 electrolysis with gas diffusion electrode and avoidance of salt formation through choice of electrolyte
Keller Fenton’s chemistry in biorefineries
DE3246499C2 (en) Process for electrochemical carbon conversion and use of the reaction products
US20170218322A1 (en) Apparatus and method for bioenergy production using regenerated acid solution
DE202015104046U1 (en) Harvesting system for microalgae
DE1958359A1 (en) Method and device for the production of hydrogen
WO2023193940A1 (en) Improved method for depolymerising polyethylene terephthalate

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20181123

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20190731

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: C25B 1/02 20060101ALI20200728BHEP

Ipc: C25B 15/02 20060101ALI20200728BHEP

Ipc: C25B 9/20 20060101ALI20200728BHEP

Ipc: C25B 3/00 20060101AFI20200728BHEP

Ipc: C25B 11/12 20060101ALI20200728BHEP

INTG Intention to grant announced

Effective date: 20200813

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017008759

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1347816

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201223

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210323

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201223

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20201223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201223

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210323

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201223

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201223

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201223

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201223

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201223

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201223

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201223

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201223

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201223

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017008759

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201223

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201223

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201223

26N No opposition filed

Effective date: 20210924

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170425

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: MC

Payment date: 20230417

Year of fee payment: 7

Ref country code: IE

Payment date: 20230419

Year of fee payment: 7

Ref country code: FR

Payment date: 20230424

Year of fee payment: 7

Ref country code: DE

Payment date: 20230420

Year of fee payment: 7

Ref country code: CH

Payment date: 20230502

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20230420

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20230419

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230419

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201223

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20240418

Year of fee payment: 8