EP3445967B1 - Fuel injector - Google Patents

Fuel injector Download PDF

Info

Publication number
EP3445967B1
EP3445967B1 EP17714205.6A EP17714205A EP3445967B1 EP 3445967 B1 EP3445967 B1 EP 3445967B1 EP 17714205 A EP17714205 A EP 17714205A EP 3445967 B1 EP3445967 B1 EP 3445967B1
Authority
EP
European Patent Office
Prior art keywords
cooling
fuel injector
nozzle
nozzle body
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17714205.6A
Other languages
German (de)
French (fr)
Other versions
EP3445967A1 (en
Inventor
Martin Bernhaupt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP3445967A1 publication Critical patent/EP3445967A1/en
Application granted granted Critical
Publication of EP3445967B1 publication Critical patent/EP3445967B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M53/00Fuel-injection apparatus characterised by having heating, cooling or thermally-insulating means
    • F02M53/04Injectors with heating, cooling, or thermally-insulating means
    • F02M53/043Injectors with heating, cooling, or thermally-insulating means with cooling means other than air cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2700/00Supplying, feeding or preparing air, fuel, fuel air mixtures or auxiliary fluids for a combustion engine; Use of exhaust gas; Compressors for piston engines
    • F02M2700/07Nozzles and injectors with controllable fuel supply
    • F02M2700/077Injectors having cooling or heating means

Definitions

  • the invention relates to a fuel injector for injecting fuel into the combustion chamber of an internal combustion engine, the fuel injector having cooling channels.
  • a fuel injector for injecting fuel into the combustion chamber of an internal combustion engine according to the preamble of claim 1 is known from EP1781931 B1 and GB407654A known.
  • the known fuel injector comprises a holding body, a valve body with a throttle plate and a nozzle body. The holding body and the nozzle body are clamped together by a nozzle clamping nut.
  • a pressure chamber is formed in the nozzle body and can be supplied with pressurized fuel via an inlet bore.
  • a longitudinally movable nozzle needle which opens or closes at least one injection opening is arranged to be longitudinally movable in the pressure chamber.
  • the known fuel injector has cooling channels formed in the nozzle body. These cooling channels serve to cool the nozzle body and nozzle needle, especially in the areas facing the combustion chamber.
  • the formation of the cooling channels in the nozzle body requires a structural change in the components of the fuel injector. If the basic dimensions are retained, the hydraulic flow cross-section through the cooling channels is severely limited, which is disadvantageous for the cooling effect. If larger flow cross-sections through the cooling channels are required, this means a major change in the internal components of the fuel injector at the same time significantly larger dimensions. Depending on the version, this can also result in an adaptation of the design of the internal combustion engine.
  • a high flow cross-section for the cooling medium is realized in the fuel injector according to the invention, without having to significantly increase the radial dimensions of the fuel injector.
  • the components holding body and optionally also valve body and throttle plate can be used unchanged or only slightly modified. This common part concept reduces the development and manufacturing costs considerably.
  • the fuel injector for injecting fuel into the combustion chamber of an internal combustion engine comprises a holding body and a nozzle body.
  • the holding body and the nozzle body are clamped together by a nozzle clamping nut, optionally with the interposition of further components.
  • a pressure chamber is formed in the nozzle body and can be supplied with pressurized fuel via an inlet bore.
  • a nozzle needle which opens or closes at least one injection opening is arranged to be longitudinally movable in the pressure chamber.
  • a cooling cap is arranged radially surrounding the nozzle body. A cooling space through which cooling medium can flow is formed between the nozzle body and the cooling cap.
  • a guide sleeve is arranged in the radial direction between the holding body and the nozzle body on the one hand and the nozzle clamping nut on the other hand.
  • An inflow channel for supplying the cooling medium is formed between the guide sleeve and the nozzle clamping nut, the inflow channel being hydraulically connected to the cooling chamber.
  • the cooling cap preferably surrounds the nozzle body in the radial direction at least at its end facing the combustion chamber. As a result, the cooling of the nozzle body takes place very close to the combustion chamber, that is to say very efficiently close to the area of greatest heat input. Due to the formation of the inflow channel between the cooling cap and the nozzle body, the strength of the nozzle body is not reduced by the inflow channel.
  • Existing fuel injectors can thus be upgraded from Guide sleeve and cooling cap can be retrofitted for active cooling.
  • the inflow channel can preferably be designed in a ring over the entire circumference of the guide sleeve. This results in a high flow cross section with only a small additional radial installation space. The additional dimensions required are therefore very small. The further design of the fuel injector does not have to be changed or not significantly.
  • the cooling space is designed in a ring shape.
  • the cooling of the nozzle body takes place over its entire circumference at its end facing the combustion chamber. This cooling is particularly effective since the hottest area of the nozzle body is on the combustion chamber side. Because such a relatively large amount of heat is dissipated from the tip of the nozzle body, the tip of the nozzle needle is also effectively cooled indirectly.
  • the cooling space is hydraulically connected to the inflow channel via a cooling channel formed in the nozzle body.
  • the cooling cap can be made very small, particularly in the radial direction.
  • a feed groove is preferably formed radially between the nozzle body and the cooling cap.
  • the feed groove lies in the flow direction of the cooling medium between the inflow channel and the cooling space.
  • the feed groove can advantageously be designed as an internal geometry of the cooling cap, for example in the form of a flattened portion. As a result, there is no longer any structural weakening by cooling ducts at the tip of the nozzle body.
  • a cooling inlet is formed in the inflow channel in the holding body.
  • the cooling chamber can be supplied with cooling medium via the cooling inlet and flow channel, predominantly in the axial direction of the fuel injector.
  • the space requirement in the radial direction is minimized.
  • the connection to the cooling inlet can also be made in the axial direction.
  • a cooling inlet is formed in the inflow channel in the nozzle clamping nut.
  • the cooling inlet is preferably radial Direction trained. This can be advantageous in the case of a corresponding installation space in the radial direction, in order not to increase the axial dimensions of the fuel injector.
  • an outflow channel for discharging the cooling medium is formed in the nozzle body.
  • the outflow channel is hydraulically connected to the cooling room.
  • the cooling cap can be made very small, particularly in the radial direction.
  • the cooling medium can be guided through the inflow channel and the outflow channel in a particularly controlled manner. If necessary, these two cooling channels can also be used as a throttle.
  • the outflow channel opens into a collecting space delimited by the guide sleeve.
  • the guide sleeve is used functionally not only to form supplying cooling ducts, but also to form discharging cooling ducts.
  • the collecting space is hydraulically connected to a cooling drain formed in the holding body.
  • the cooling medium can be removed from the cooling chamber via the outflow channel and cooling outlet, predominantly in the axial direction of the fuel injector.
  • the space requirement in the radial direction is minimized.
  • the connection to the cooling outlet can also be made in the axial direction.
  • the fuel injector has a control valve, the control valve controlling the longitudinal movement of the nozzle needle.
  • the control valve requires a cut-off amount of fuel for control processes.
  • the discharge amount can be removed via the cooling process.
  • the cooling medium is preferably fuel, so that the discharge quantity and the cooling quantity can be mixed without problems.
  • FIG. 1 A fuel injector 100 for injecting fuel into the combustion chamber of an internal combustion engine is shown in longitudinal section, as is known from the prior art.
  • the known fuel injector 100 comprises a holding body 1, a valve body 3, a throttle plate 5 and a nozzle body 16. All these components are held together by a nozzle clamping nut 7.
  • the nozzle body 16 here contains a nozzle needle 6, which is arranged in a longitudinally displaceable manner in a pressure chamber 8 formed in the nozzle body 16. When the nozzle needle 6 opens, fuel is injected into the combustion chamber of the internal combustion engine via a plurality of injection openings 60 formed in the nozzle body 16.
  • a collar can be seen on the nozzle needle 6, on which a compression spring 61 is supported.
  • the other end of the compression spring 61 is supported on a control sleeve 62, which in turn bears against the underside of the throttle plate 5.
  • the control sleeve 62 defines the upper, the injection openings 60 opposite end face of the nozzle needle 6 and with the underside of the throttle plate 5 a control chamber 63.
  • the pressure prevailing in the control chamber 63 is decisive for controlling the longitudinal movement of the nozzle needle 6.
  • An inlet bore 64 is formed in the fuel injector 100. Via the inlet bore 64, the fuel pressure is effective on the one hand in the pressure chamber 8, where it exerts a force in the opening direction of the nozzle needle 6 via a pressure shoulder of the nozzle needle 6. On the other hand, this fuel pressure acts via an inlet throttle 65 formed in the control sleeve 62 in the control chamber 63 and, supported by the force of the compression spring 61, holds the nozzle needle 6 in its closed position.
  • a magnet armature 71 and a valve needle 72 connected to the magnet armature 71 are lifted off a valve seat 73 formed on the valve body 3.
  • the fuel from the control chamber 63 can flow out through an outlet throttle 75 formed in the throttle plate 5 via the valve seat 73 into an outlet channel 76.
  • the drop in the hydraulic force in this way to the upper end face of the nozzle needle 6 leads to the opening of the nozzle needle 6.
  • the fuel from the pressure chamber 8 thus passes through the injection openings 60 into the combustion chamber of the internal combustion engine.
  • cooling channels 30 are formed in valve body 3, throttle plate 5 and nozzle body 16 of the known fuel injector 100.
  • the tip of the nozzle needle 6 and the nozzle body 16 can be cooled.
  • the cooling channels 30 are partially in the inlet bore 64. However, this is only due to the sectional view, in the embodiments the cooling channels 30 are separated from the inlet bore 64.
  • the cooling channels 30 of the known fuel injector 100 require a complex redesign of the valve body 3 and throttle plate 5 with an additionally very limited potential with regard to the hydraulic flow cross-section of the cooling channels 30. According to the invention, the cooling channels 30 are therefore largely outside the nozzle body 16, the valve body 3 and the throttle plate 5 educated.
  • Fig. 2 schematically shows a fuel injector 100 according to the invention, only the essential areas being shown.
  • the fuel injector 100 is similar to that of FIG Fig. 1 constructed and has the holding body 1, a control valve 2 and a throttle plate 5.
  • the control valve 2 can be electromagnetic, as in Fig. 1 shown, or some other drive, for example piezoelectric.
  • the control valve 2 is arranged in the valve body 3 and a valve plate 4.
  • the fuel injector 100 can also be designed such that the three components valve body 3, valve plate 4 and throttle plate 5 are made in two or even in one piece.
  • the control throttles for the nozzle needle movement that is to say the inlet and outlet throttle, are formed in the throttle plate 5.
  • Holding body 1, valve body 3, valve plate 4, throttle plate 5 and a nozzle 80 are connected by means of the nozzle clamping nut 7.
  • the nozzle 80 comprises the nozzle body 16 with the injection openings 60 (not shown) and a cooling cap 20.
  • a guide sleeve 11 is arranged in the fuel injector 100 between the outer nozzle clamping nut 7 and the inner holding body 1, valve body 3, valve plate 4, throttle plate 5 and nozzle body 16.
  • a first O-ring 12 seals the guide sleeve 11 to the holding body 1
  • a second O-ring 13 seals the guide sleeve 11 to the nozzle body 16, so that flow channels for the cooling medium are formed between the guide sleeve 11 and the nozzle clamping nut 7.
  • the cooling medium which can also be fuel, is supplied to the holding body 1 with a sufficient supply pressure via a cooling inlet 38 fed. Via an inlet bore 9 formed in the holding body 1, the cooling medium reaches a first annular space 10, which is formed between the nozzle clamping nut 7 and the holding body 1.
  • the first annular space 10 is hydraulically connected to an inflow channel 14 formed between the nozzle clamping nut 7 and the guide sleeve 11.
  • the inflow channel 14 extends essentially in the longitudinal direction of the fuel injector 100.
  • the inflow channel 14 can be both annular and in the form of guide grooves.
  • a second annular space 15 is formed between the nozzle body 16 and the nozzle clamping nut 7, into which the inflow channel 14 opens.
  • a cooling channel 17 is formed in the nozzle body 16, which can comprise several bores, for example. The cooling channel 17 hydraulically connects the second annular space 15 to a feed groove 18 formed between the nozzle body 16 and the cooling cap 20.
  • a preferably annular cooling space 19 is formed between the nozzle body 16 and the cooling cap 20.
  • the highest temperatures occur during operation of the fuel injector 100, so that cooling is effectively carried out via the cooling space 19 very close to the highest temperature input.
  • a discharge groove 21 formed between the nozzle body 16 and the cooling cap 20 serves to return the cooling medium from the cooling space 19. Furthermore, an outflow channel 22 is formed in the nozzle body 16 and in the throttle plate 5.
  • the guide sleeve 11, the throttle plate 5, the valve plate 4 and the valve body 3 delimit a collecting space 24 which is hydraulically connected to the cooling space 19 via the outflow channel 22 and the discharge groove 21.
  • the cooling medium can be removed from the collecting space 24 in various ways: When fuel is used as the cooling medium, the cooling quantity can be drawn out of the fuel injector 100 from the collecting space 24 via an existing control quantity return 25 of the control valve 2 of the fuel injector 100 be dissipated.
  • a cooling outlet 26 is also a control quantity outlet or a leak outlet outlet.
  • cooling medium for example engine oil or cooling water - the return of the cooling medium must be routed separately from the return of the fuel.
  • FIG Fig. 3 Such an embodiment of the fuel injector 100 is shown in FIG Fig. 3 .
  • the cooling inlet 38 of the cooling medium to the cooling space 19 and further to the collecting space 24 takes place as in the embodiment of FIG Fig. 1 .
  • the further backflow of the cooling medium does not take place via the control quantity return 25 of the control valve 2, but via an annular discharge channel 34, which is formed between the outside diameter of the valve body 3 and the inside diameter of the guide sleeve 11.
  • An exemption 32 is formed in the holding body 1 in the sealing surface to the valve body 3.
  • the cooling sequence 26 is in the execution of the Fig. 3 formed in the holding body 1 and hydraulically connected to the collecting space 24 via the drain channel 34 and the exemption 32.
  • Cooling media other than fuel can also be used since there is no mixing with the control quantity return 25 of the control valve 2.
  • the flow direction of the cooling medium can also be changed in this variant, so that cooling medium is led to the cooling chamber 19 via the cooling outlet 26 and is subsequently discharged again from the fuel injector 100 via the cooling inlet 38.
  • a bore of the control quantity return 25 can open into the collecting space 24. This is then closed in a media-tight manner by a stopper 37 in order to prevent the cooling medium from being mixed with fuel.
  • Fig. 4 shows a further embodiment of the fuel injector 100 according to the invention.
  • the cooling inlet 38 does not take place via an inlet hole 9 in the holding body 1, but via an inlet hole 9 formed in the nozzle clamping nut 7.
  • the inlet hole 9 is in this case via O-rings arranged on the nozzle clamping nut 7 27, 28 sealed to the environment.
  • the inlet bore 9 opens directly into the inflow channel 14 and is further connected to the cooling chamber 19 via the annular space 15, the cooling channel 17 and the feed groove 18.
  • the cooling medium can also be removed in this way.
  • the cooling sequence 26 would then also be formed in the nozzle clamping nut 7.
  • the inflow channel 14 could then not be made over the entire circumference of the guide sleeve, but would be designed, for example, in the form of a longitudinal groove.
  • the guide sleeve 11 can be made very thin-walled.
  • the preferably circular cross section of the inflow channel 14 shows a very large cross section with a small radial space requirement.
  • the guide sleeve 11 is suitable due to its small space requirement with appropriate configurations of the fuel injector 100 as a retrofit kit for existing fuel injectors 100 without active cooling or with other active cooling.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

Stand der TechnikState of the art

Die Erfindung betrifft einen Kraftstoffinjektor zum Einspritzen von Kraftstoff in den Brennraum einer Brennkraftmaschine, wobei der Kraftstoffinjektor Kühlkanäle aufweist.The invention relates to a fuel injector for injecting fuel into the combustion chamber of an internal combustion engine, the fuel injector having cooling channels.

Ein Kraftstoffinjektor zum Einspritzen von Kraftstoff in den Brennraum einer Brennkraftmaschine nach dem Oberbegriff des Anspruchs 1 ist aus der EP1781931 B1 und GB407654A bekannt. Der bekannte Kraftstoffinjektor umfasst einen Haltekörper, einen Ventilkörper mit Drosselplatte und einen Düsenkörper. Der Haltekörper und der Düsenkörper sind durch eine Düsenspannmutter miteinander verspannt. In dem Düsenkörper ist ein Druckraum ausgebildet, der über eine Zulaufbohrung mit unter Druck stehendem Kraftstoff versorgbar ist. Eine zumindest eine Einspritzöffnung freigebende oder verschließende längsbewegliche Düsennadel ist in dem Druckraum längsbeweglich angeordnet.A fuel injector for injecting fuel into the combustion chamber of an internal combustion engine according to the preamble of claim 1 is known from EP1781931 B1 and GB407654A known. The known fuel injector comprises a holding body, a valve body with a throttle plate and a nozzle body. The holding body and the nozzle body are clamped together by a nozzle clamping nut. A pressure chamber is formed in the nozzle body and can be supplied with pressurized fuel via an inlet bore. A longitudinally movable nozzle needle which opens or closes at least one injection opening is arranged to be longitudinally movable in the pressure chamber.

Weiterhin weist der bekannte Kraftstoffinjektor in dem Düsenkörper ausgebildete Kühlkanäle auf. Diese Kühlkanäle dienen der Kühlung von Düsenkörper und Düsennadel, speziell in den dem Brennraum zugewandten Bereichen.Furthermore, the known fuel injector has cooling channels formed in the nozzle body. These cooling channels serve to cool the nozzle body and nozzle needle, especially in the areas facing the combustion chamber.

Die Ausbildung der Kühlkanäle in dem Düsenkörper erfordert eine konstruktive Änderung der Bauteile des Kraftstoffinjektors. Bei Beibehaltung der Grundabmessungen ist der hydraulische Durchflussquerschnitt durch die Kühlkanäle stark beschränkt, was nachteilig für die Kühlwirkung ist. Wenn größere Durchflussquerschnitte durch die Kühlkanäle erforderlich sind, bedeutet dies somit eine starke Änderung der Innenbauteile des Kraftstoffinjektors bei gleichzeitig deutlich größeren Abmessungen. Je nach Ausführung kann dies auch eine Anpassung des Designs der Brennkraftmaschine zur Folge haben.The formation of the cooling channels in the nozzle body requires a structural change in the components of the fuel injector. If the basic dimensions are retained, the hydraulic flow cross-section through the cooling channels is severely limited, which is disadvantageous for the cooling effect. If larger flow cross-sections through the cooling channels are required, this means a major change in the internal components of the fuel injector at the same time significantly larger dimensions. Depending on the version, this can also result in an adaptation of the design of the internal combustion engine.

Offenbarung der ErfindungDisclosure of the invention

Demgegenüber ist bei dem erfindungsgemäßen Kraftstoffinjektor ein hoher Durchflussquerschnitt für das Kühlmedium realisiert, ohne dabei die radialen Abmessungen des Kraftstoffinjektors wesentlich erhöhen zu müssen. Außerdem können die Bauteile Haltekörper und optional auch Ventilkörper und Drosselplatte unverändert bzw. nur leicht modifiziert verwendet werden. Durch dieses Gleichteilkonzept verringern sich die Entwicklungs- und Fertigungskosten sehr stark.In contrast, a high flow cross-section for the cooling medium is realized in the fuel injector according to the invention, without having to significantly increase the radial dimensions of the fuel injector. In addition, the components holding body and optionally also valve body and throttle plate can be used unchanged or only slightly modified. This common part concept reduces the development and manufacturing costs considerably.

Dazu umfasst der Kraftstoffinjektor zum Einspritzen von Kraftstoff in den Brennraum einer Brennkraftmaschine einen Haltekörper und einen Düsenkörper. Der Haltekörper und der Düsenkörper sind durch eine Düsenspannmutter miteinander verspannt, gegebenenfalls unter Zwischenlage weiterer Bauteile. In dem Düsenkörper ist ein Druckraum ausgebildet, der über eine Zulaufbohrung mit unter Druck stehendem Kraftstoff versorgbar ist. Eine zumindest eine Einspritzöffnung freigebende oder verschließende Düsennadel ist in dem Druckraum längsbeweglich angeordnet. Eine Kühlkappe ist den Düsenkörper radial umgebend angeordnet. Zwischen dem Düsenkörper und der Kühlkappe ist ein mit Kühlmedium durchströmbarer Kühlraum ausgebildet. In radialer Richtung zwischen dem Haltekörper und dem Düsenkörper einerseits und der Düsenspannmutter andererseits ist eine Führungshülse angeordnet. Zwischen der Führungshülse und der Düsenspannmutter ist ein Anströmkanal zur Zufuhr des Kühlmediums ausgebildet, wobei der Anströmkanal mit dem Kühlraum hydraulisch verbunden ist.For this purpose, the fuel injector for injecting fuel into the combustion chamber of an internal combustion engine comprises a holding body and a nozzle body. The holding body and the nozzle body are clamped together by a nozzle clamping nut, optionally with the interposition of further components. A pressure chamber is formed in the nozzle body and can be supplied with pressurized fuel via an inlet bore. A nozzle needle which opens or closes at least one injection opening is arranged to be longitudinally movable in the pressure chamber. A cooling cap is arranged radially surrounding the nozzle body. A cooling space through which cooling medium can flow is formed between the nozzle body and the cooling cap. A guide sleeve is arranged in the radial direction between the holding body and the nozzle body on the one hand and the nozzle clamping nut on the other hand. An inflow channel for supplying the cooling medium is formed between the guide sleeve and the nozzle clamping nut, the inflow channel being hydraulically connected to the cooling chamber.

Vorzugsweise umgibt die Kühlkappe den Düsenkörper in radialer Richtung zumindest an seinem dem Brennraum zugewandten Ende. Dadurch erfolgt die Kühlung des Düsenkörpers über den Kühlraum sehr brennraumnah, also sehr effizient nahe im Bereich des größten Wärmeeintrags. Durch die Ausbildung des Anströmkanals zwischen der Kühlkappe und dem Düsenkörper wird die Festigkeit des Düsenkörpers nicht durch den Anströmkanal verringert. Bestehende Kraftstoffinjektoren können somit durch Nachrüsten von Führungshülse und Kühlkappe auf eine Aktivkühlung nachgerüstet werden. Der Anströmkanal kann dabei vorzugsweise ringförmig über den gesamten Umfang der Führungshülse ausgeführt werden. Dies hat einen hohen Durchflussquerschnitt bei nur geringem zusätzlichem radialem Bauraum zur Folge. Die zusätzlichen erforderlichen Abmessungen sind somit sehr gering. Das weitere Design des Kraftstoffinjektors muss dabei nicht bzw. nicht wesentlich geändert werden.The cooling cap preferably surrounds the nozzle body in the radial direction at least at its end facing the combustion chamber. As a result, the cooling of the nozzle body takes place very close to the combustion chamber, that is to say very efficiently close to the area of greatest heat input. Due to the formation of the inflow channel between the cooling cap and the nozzle body, the strength of the nozzle body is not reduced by the inflow channel. Existing fuel injectors can thus be upgraded from Guide sleeve and cooling cap can be retrofitted for active cooling. The inflow channel can preferably be designed in a ring over the entire circumference of the guide sleeve. This results in a high flow cross section with only a small additional radial installation space. The additional dimensions required are therefore very small. The further design of the fuel injector does not have to be changed or not significantly.

In vorteilhaften Ausführungen ist der Kühlraum ringförmig gestaltet. Dadurch erfolgt die Kühlung des Düsenkörpers über seinen gesamten Umfang an seinem dem Brennraum zugewandten Ende. Diese Kühlung ist besonders effektiv, da brennraumseitig der heißeste Bereich des Düsenkörpers ist. Weil so eine verhältnismäßig große Wärmemenge von der Spitze des Düsenkörpers abgeführt wird, wird dadurch auch mittelbar die Spitze der Düsennadel wirkungsvoll gekühlt.In advantageous embodiments, the cooling space is designed in a ring shape. As a result, the cooling of the nozzle body takes place over its entire circumference at its end facing the combustion chamber. This cooling is particularly effective since the hottest area of the nozzle body is on the combustion chamber side. Because such a relatively large amount of heat is dissipated from the tip of the nozzle body, the tip of the nozzle needle is also effectively cooled indirectly.

In vorteilhaften Ausführungen ist der Kühlraum über einen in dem Düsenkörper ausgebildeten Kühlkanal hydraulisch mit dem Anströmkanal verbunden. Dadurch kann die Kühlkappe besonders in radialer Richtung sehr klein ausgeführt werden.In advantageous embodiments, the cooling space is hydraulically connected to the inflow channel via a cooling channel formed in the nozzle body. As a result, the cooling cap can be made very small, particularly in the radial direction.

Vorzugsweise ist radial zwischen dem Düsenkörper und der Kühlkappe eine Zuführnut ausgebildet. Die Zuführnut liegt in Flussrichtung des Kühlmediums zwischen dem Anströmkanal und dem Kühlraum. Die Zuführnut kann dabei vorteilhafterweise als Innengeometrie der Kühlkappe ausgebildet sein, beispielsweise in Form einer Abflachung. Dadurch erfolgt an der Spitze des Düsenkörpers keine Strukturschwächung durch Kühlkanäle mehr.A feed groove is preferably formed radially between the nozzle body and the cooling cap. The feed groove lies in the flow direction of the cooling medium between the inflow channel and the cooling space. The feed groove can advantageously be designed as an internal geometry of the cooling cap, for example in the form of a flattened portion. As a result, there is no longer any structural weakening by cooling ducts at the tip of the nozzle body.

In vorteilhaften Weiterbildungen ist ein Kühlzulauf in den Anströmkanal in dem Haltekörper ausgebildet. Dadurch kann die Versorgung des Kühlraums mit Kühlmedium über Kühlzulauf und Anströmkanal vorwiegend in axialer Richtung des Kraftstoffinjektors erfolgen. Der Bauraumbedarf in radialer Richtung ist minimiert. Der Anschluss an den Kühlzulauf kann dabei ebenfalls in axialer Richtung erfolgen.In advantageous developments, a cooling inlet is formed in the inflow channel in the holding body. As a result, the cooling chamber can be supplied with cooling medium via the cooling inlet and flow channel, predominantly in the axial direction of the fuel injector. The space requirement in the radial direction is minimized. The connection to the cooling inlet can also be made in the axial direction.

In einer alternativen Ausführung ist ein Kühlzulauf in den Anströmkanal in der Düsenspannmutter ausgebildet. Vorzugsweise ist der Kühlzulauf dabei in radialer Richtung ausgebildet. Dies kann bei in radialer Richtung entsprechend vorhandenem Bauraum vorteilhaft sein, um die axialen Abmaße des Kraftstoffinjektors nicht zu erhöhen.In an alternative embodiment, a cooling inlet is formed in the inflow channel in the nozzle clamping nut. The cooling inlet is preferably radial Direction trained. This can be advantageous in the case of a corresponding installation space in the radial direction, in order not to increase the axial dimensions of the fuel injector.

In vorteilhaften Ausführungen ist in dem Düsenkörper ein Abströmkanal zum Abführen des Kühlmediums ausgebildet. Der Abströmkanal ist hydraulisch mit dem Kühlraum verbunden. Dadurch kann die Kühlkappe besonders in radialer Richtung sehr klein ausgeführt werden.In advantageous embodiments, an outflow channel for discharging the cooling medium is formed in the nozzle body. The outflow channel is hydraulically connected to the cooling room. As a result, the cooling cap can be made very small, particularly in the radial direction.

Durch den Anströmkanal und den Abströmkanal kann das Kühlmedium besonders kontrolliert geführt werden. Diese beiden Kühlkanäle können erforderlichenfalls auch als Drossel verwendet werden.The cooling medium can be guided through the inflow channel and the outflow channel in a particularly controlled manner. If necessary, these two cooling channels can also be used as a throttle.

In vorteilhaften Weiterbildungen mündet der Abströmkanal in einen von der Führungshülse begrenzten Sammelraum. Dadurch wird die Führungshülse funktional nicht nur zur Ausbildung von zuführenden Kühlkanälen verwendet, sondern auch zur Ausbildung von abführenden Kühlkanälen.In advantageous developments, the outflow channel opens into a collecting space delimited by the guide sleeve. As a result, the guide sleeve is used functionally not only to form supplying cooling ducts, but also to form discharging cooling ducts.

In vorteilhaften Ausführungen ist der Sammelraum hydraulisch mit einem in dem Haltekörper ausgebildeten Kühlablauf verbunden. Dadurch kann die Abführung des Kühlmediums aus dem Kühlraum über Abströmkanal und Kühlablauf vorwiegend in axialer Richtung des Kraftstoffinjektors erfolgen. Der Bauraumbedarf in radialer Richtung ist minimiert. Der Anschluss an den Kühlablauf kann dabei ebenfalls in axialer Richtung erfolgen.In advantageous embodiments, the collecting space is hydraulically connected to a cooling drain formed in the holding body. As a result, the cooling medium can be removed from the cooling chamber via the outflow channel and cooling outlet, predominantly in the axial direction of the fuel injector. The space requirement in the radial direction is minimized. The connection to the cooling outlet can also be made in the axial direction.

In vorteilhaften Weiterbildungen weist der Kraftstoffinjektor ein Steuerventil auf, wobei das Steuerventil die Längsbewegung der Düsennadel steuert. Das Steuerventil benötigt für Steuervorgänge eine Absteuermenge an Kraftstoff. Die Absteuermenge ist dabei über den Kühlablauf abführbar. Vorzugsweise ist das Kühlmedium dabei Kraftstoff, so dass Absteuermenge und Kühlmenge problemlos gemischt werden können.In advantageous developments, the fuel injector has a control valve, the control valve controlling the longitudinal movement of the nozzle needle. The control valve requires a cut-off amount of fuel for control processes. The discharge amount can be removed via the cooling process. The cooling medium is preferably fuel, so that the discharge quantity and the cooling quantity can be mixed without problems.

Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung bevorzugter Ausführungsbeispiele sowie anhand der Zeichnungen.Further advantages, features and details of the invention emerge from the following description of preferred exemplary embodiments and from the drawings.

Diese zeigen in:

Fig. 1
einen Längsschnitt durch einen Kraftstoffinjektor gemäß dem Stand der Technik,
Fig. 2
schematisch einen erfindungsgemäßen Kraftstoffinjektor, wobei nur die wesentlichen Bereiche dargestellt sind,
Fig. 3
schematisch einen erfindungsgemäßen Kraftstoffinjektor in einem weiteren Ausführungsbeispiel, wobei nur die wesentlichen Bereiche dargestellt sind,
Fig. 4
schematisch einen erfindungsgemäßen Kraftstoffinjektor in noch einem weiteren Ausführungsbeispiel, wobei nur die wesentlichen Bereiche dargestellt sind.
These show in:
Fig. 1
2 shows a longitudinal section through a fuel injector according to the prior art,
Fig. 2
schematically a fuel injector according to the invention, only the essential areas being shown,
Fig. 3
schematically a fuel injector according to the invention in a further embodiment, only the essential areas being shown,
Fig. 4
schematically a fuel injector according to the invention in yet another embodiment, only the essential areas are shown.

Gleiche Elemente bzw. Elemente mit gleicher Funktion sind in den Figuren mit den gleichen Bezugsziffern versehen.The same elements or elements with the same function are provided with the same reference numbers in the figures.

In der Fig.1 ist ein Kraftstoffinjektor 100 zum Einspritzen von Kraftstoff in den Brennraum einer Brennkraftmaschine im Längsschnitt dargestellt, wie er aus dem Stand der Technik bekannt ist.In the Fig. 1 A fuel injector 100 for injecting fuel into the combustion chamber of an internal combustion engine is shown in longitudinal section, as is known from the prior art.

Der bekannte Kraftstoffinjektor 100 umfasst einen Haltekörper 1, einen Ventilkörper 3, eine Drosselplatte 5 und einen Düsenkörper 16. Alle diese Bauteile werden durch eine Düsenspannmutter 7 zusammengehalten. Der Düsenkörper 16 enthält hierbei eine Düsennadel 6, welche in einem im Düsenkörper 16 ausgebildeten Druckraum 8 längsverschiebbar angeordnet ist. Bei einer Öffnungsbewegung der Düsennadel 6 wird Kraftstoff über mehrere im Düsenkörper 16 ausgebildete Einspritzöffnungen 60 in den Brennraum der Brennkraftmaschine eingespritzt.The known fuel injector 100 comprises a holding body 1, a valve body 3, a throttle plate 5 and a nozzle body 16. All these components are held together by a nozzle clamping nut 7. The nozzle body 16 here contains a nozzle needle 6, which is arranged in a longitudinally displaceable manner in a pressure chamber 8 formed in the nozzle body 16. When the nozzle needle 6 opens, fuel is injected into the combustion chamber of the internal combustion engine via a plurality of injection openings 60 formed in the nozzle body 16.

An der Düsennadel 6 ist ein Bund ersichtlich, an welchem eine Druckfeder 61 abgestützt ist. Das andere Ende der Druckfeder 61 ist an einer Steuerhülse 62 abgestützt, welche selbst wiederum an der Unterseite der Drosselplatte 5 anliegt. Die Steuerhülse 62 definiert mit der oberen, den Einspritzöffnungen 60 gegenüberliegenden Stirnfläche der Düsennadel 6 und mit der Unterseite der Drosselplatte 5 einen Steuerraum 63. Der im Steuerraum 63 herrschende Druck ist für die Steuerung der Längsbewegung der Düsennadel 6 maßgeblich.A collar can be seen on the nozzle needle 6, on which a compression spring 61 is supported. The other end of the compression spring 61 is supported on a control sleeve 62, which in turn bears against the underside of the throttle plate 5. The control sleeve 62 defines the upper, the injection openings 60 opposite end face of the nozzle needle 6 and with the underside of the throttle plate 5 a control chamber 63. The pressure prevailing in the control chamber 63 is decisive for controlling the longitudinal movement of the nozzle needle 6.

Im Kraftstoffinjektor 100 ist eine Zulaufbohrung 64 ausgebildet. Über die Zulaufbohrung 64 wird der Kraftstoffdruck einerseits im Druckraum 8 wirksam, wo er über eine Druckschulter der Düsennadel 6 eine Kraft in Öffnungsrichtung der Düsennadel 6 ausübt. Andererseits wirkt dieser Kraftstoffdruck über eine in der Steuerhülse 62 ausgebildete Zulaufdrossel 65 im Steuerraum 63 und hält, unterstützt von der Kraft der Druckfeder 61, die Düsennadel 6 in ihrer Schließstellung.An inlet bore 64 is formed in the fuel injector 100. Via the inlet bore 64, the fuel pressure is effective on the one hand in the pressure chamber 8, where it exerts a force in the opening direction of the nozzle needle 6 via a pressure shoulder of the nozzle needle 6. On the other hand, this fuel pressure acts via an inlet throttle 65 formed in the control sleeve 62 in the control chamber 63 and, supported by the force of the compression spring 61, holds the nozzle needle 6 in its closed position.

Wenn in der Folge ein Elektromagnet 70 angesteuert wird, wird ein Magnetanker 71 sowie eine mit dem Magnetanker 71 verbundene Ventilnadel 72 von einem an dem Ventilkörper 3 ausgebildeten Ventilsitz 73 abgehoben. Der Kraftstoff aus dem Steuerraum 63 kann auf diese Weise durch eine in der Drosselplatte 5 ausgebildete Ablaufdrossel 75 über den Ventilsitz 73 in einen Ablaufkanal 76 abströmen. Das auf diese Weise bewirkte Absinken der hydraulischen Kraft auf die obere Stirnfläche der Düsennadel 6 führt zu einem Öffnen der Düsennadel 6. Der Kraftstoff aus dem Druckraum 8 gelangt so durch die Einspritzöffnungen 60 in den Brennraum der Brennkraftmaschine.If an electromagnet 70 is subsequently actuated, a magnet armature 71 and a valve needle 72 connected to the magnet armature 71 are lifted off a valve seat 73 formed on the valve body 3. In this way, the fuel from the control chamber 63 can flow out through an outlet throttle 75 formed in the throttle plate 5 via the valve seat 73 into an outlet channel 76. The drop in the hydraulic force in this way to the upper end face of the nozzle needle 6 leads to the opening of the nozzle needle 6. The fuel from the pressure chamber 8 thus passes through the injection openings 60 into the combustion chamber of the internal combustion engine.

Sobald der Elektromagnet 70 abgeschaltet wird, wird der Magnetanker 71 durch die Kraft einer weiteren Druckfeder 74 in Richtung des Ventilsitzes 73 gedrückt, so dass die Ventilnadel 72 an den Ventilsitz 73 gepresst wird. Auf diese Weise wird der Ablaufweg des Kraftstoffs über die Ablaufdrossel 75 und den Ventilsitz 73 gesperrt. Über die Zulaufdrossel 65 wird im Steuerraum 63 wieder Kraftstoffdruck aufgebaut, wodurch die hydraulische Schließkraft erhöht wird. Dadurch wird die Düsennadel 6 in Richtung der Einspritzöffnungen 60 verschoben und verschließt diese. Der Einspritzvorgang ist dann beendet.As soon as the electromagnet 70 is switched off, the armature 71 is pressed by the force of a further compression spring 74 in the direction of the valve seat 73, so that the valve needle 72 is pressed against the valve seat 73. In this way, the drain path of the fuel via the drain throttle 75 and the valve seat 73 is blocked. Fuel pressure is built up again in the control chamber 63 via the inlet throttle 65, as a result of which the hydraulic closing force is increased. As a result, the nozzle needle 6 is displaced in the direction of the injection openings 60 and closes them. The injection process is then ended.

Um die Bauteile im Bereich des Brennraums zu kühlen, sind Kühlkanäle 30 in Ventilkörper 3, Drosselplatte 5 und Düsenkörper 16 des bekannten Kraftstoffinjektors 100 ausgebildet. So können speziell die Spitze der Düsennadel 6 und der Düsenkörper 16 gekühlt werden. In der Schnittdarstellung der Fig.1 liegen die Kühlkanäle 30 teilweise in der Zulaufbohrung 64. Dies ist jedoch lediglich der Schnittdarstellung geschuldet, in den Ausführungen sind die Kühlkanäle 30 von der Zulaufbohrung 64 getrennt.In order to cool the components in the area of the combustion chamber, cooling channels 30 are formed in valve body 3, throttle plate 5 and nozzle body 16 of the known fuel injector 100. In particular, the tip of the nozzle needle 6 and the nozzle body 16 can be cooled. In the sectional view of the Fig. 1 the cooling channels 30 are partially in the inlet bore 64. However, this is only due to the sectional view, in the embodiments the cooling channels 30 are separated from the inlet bore 64.

Die Kühlkanäle 30 des bekannten Kraftstoffinjektors 100 erfordern eine aufwändige Umgestaltung von Ventilkörper 3 und Drosselplatte 5 bei zusätzlich sehr beschränktem Potenzial bzgl. des hydraulischen Durchflussquerschnitts der Kühlkanäle 30. Erfindungsgemäß werden daher die Kühlkanäle 30 weitestgehend außerhalb des Düsenkörpers 16, des Ventilkörpers 3 und der Drosselplatte 5 ausgebildet.The cooling channels 30 of the known fuel injector 100 require a complex redesign of the valve body 3 and throttle plate 5 with an additionally very limited potential with regard to the hydraulic flow cross-section of the cooling channels 30. According to the invention, the cooling channels 30 are therefore largely outside the nozzle body 16, the valve body 3 and the throttle plate 5 educated.

Fig.2 zeigt schematisch einen erfindungsgemäßen Kraftstoffinjektor 100, wobei nur die wesentlichen Bereiche dargestellt sind. Der Kraftstoffinjektor 100 ist ähnlich dem der Fig.1 aufgebaut und weist den Haltekörper 1, ein Steuerventil 2 und eine Drosselplatte 5 auf. Das Steuerventil 2 kann elektromagnetisch sein, wie in Fig.1 dargestellt, oder ein anderweitiger Antrieb, beispielsweise piezoelektrisch. Das Steuerventil 2 ist in dem Ventilkörper 3 und einer Ventilplatte 4 angeordnet. Fig. 2 schematically shows a fuel injector 100 according to the invention, only the essential areas being shown. The fuel injector 100 is similar to that of FIG Fig. 1 constructed and has the holding body 1, a control valve 2 and a throttle plate 5. The control valve 2 can be electromagnetic, as in Fig. 1 shown, or some other drive, for example piezoelectric. The control valve 2 is arranged in the valve body 3 and a valve plate 4.

Der Kraftstoffinjektor 100 kann auch so ausgeführt sein, dass die drei Bauteile Ventilkörper 3, Ventilplatte 4 und Drosselplatte 5 zwei- oder sogar nur einstückig ausgeführt sind. In der Drosselplatte 5 sind die Steuerdrosseln für die Düsennadelbewegung, also Zulauf- und Ablaufdrossel ausgebildet. Haltekörper 1, Ventilkörper 3, Ventilplatte 4, Drosselplatte 5 und eine Düse 80 sind mittels der Düsenspannmutter 7 verbunden. Die Düse 80 umfasst den Düsenkörper 16 mit den nicht dargestellten Einspritzöffnungen 60 und eine Kühlkappe 20.The fuel injector 100 can also be designed such that the three components valve body 3, valve plate 4 and throttle plate 5 are made in two or even in one piece. The control throttles for the nozzle needle movement, that is to say the inlet and outlet throttle, are formed in the throttle plate 5. Holding body 1, valve body 3, valve plate 4, throttle plate 5 and a nozzle 80 are connected by means of the nozzle clamping nut 7. The nozzle 80 comprises the nozzle body 16 with the injection openings 60 (not shown) and a cooling cap 20.

Erfindungsgemäß ist in dem Kraftstoffinjektor 100 eine Führungshülse 11 zwischen der außenliegenden Düsenspannmutter 7 und den innenliegenden Haltekörper 1, Ventilkörper 3, Ventilplatte 4, Drosselplatte 5 und Düsenkörper 16 angeordnet. Ein erster O-Ring 12 dichtet die Führungshülse 11 zum Haltekörper 1 ab, und ein zweiter O-Ring 13 dichtet die Führungshülse 11 zum Düsenkörper 16 ab, so dass Strömungskanäle für das Kühlmedium zwischen der Führungshülse 11 und der Düsenspannmutter 7 ausgebildet sind.According to the invention, a guide sleeve 11 is arranged in the fuel injector 100 between the outer nozzle clamping nut 7 and the inner holding body 1, valve body 3, valve plate 4, throttle plate 5 and nozzle body 16. A first O-ring 12 seals the guide sleeve 11 to the holding body 1, and a second O-ring 13 seals the guide sleeve 11 to the nozzle body 16, so that flow channels for the cooling medium are formed between the guide sleeve 11 and the nozzle clamping nut 7.

Das Kühlmedium, welches auch Kraftstoff sein kann, wird mit einem ausreichenden Vorlaufdruck dem Haltekörper 1 über einen Kühlzulauf 38 zugeführt. Über eine im Haltekörper 1 ausgebildete Zulaufbohrung 9 gelangt das Kühlmedium in einen ersten Ringraum 10, welcher zwischen der Düsenspannmutter 7 und dem Haltekörper 1 ausgebildet ist. Der erste Ringraum 10 ist hydraulisch mit einem zwischen der Düsenspannmutter 7 und der Führungshülse 11 ausgebildeten Anströmkanal 14 verbunden. Der Anströmkanal 14 verläuft dabei im Wesentlichen in Längsrichtung des Kraftstoffinjektors 100. Der Anströmkanal 14 kann dabei sowohl ringförmig als auch in Form von Führungsnuten ausgebildet sein.The cooling medium, which can also be fuel, is supplied to the holding body 1 with a sufficient supply pressure via a cooling inlet 38 fed. Via an inlet bore 9 formed in the holding body 1, the cooling medium reaches a first annular space 10, which is formed between the nozzle clamping nut 7 and the holding body 1. The first annular space 10 is hydraulically connected to an inflow channel 14 formed between the nozzle clamping nut 7 and the guide sleeve 11. The inflow channel 14 extends essentially in the longitudinal direction of the fuel injector 100. The inflow channel 14 can be both annular and in the form of guide grooves.

Zwischen dem Düsenkörper 16 und der Düsenspannmutter 7 ist ein zweiter Ringraum 15 ausgebildet, in welchen der Anströmkanal 14 mündet. Im Düsenkörper 16 ist ein Kühlkanal 17 ausgebildet, welcher beispielsweise mehrere Bohrungen umfassen kann. Der Kühlkanal 17 verbindet den zweiten Ringraum 15 hydraulisch mit einer zwischen dem Düsenkörper 16 und der Kühlkappe 20 ausgebildeten Zuführnut 18.A second annular space 15 is formed between the nozzle body 16 and the nozzle clamping nut 7, into which the inflow channel 14 opens. A cooling channel 17 is formed in the nozzle body 16, which can comprise several bores, for example. The cooling channel 17 hydraulically connects the second annular space 15 to a feed groove 18 formed between the nozzle body 16 and the cooling cap 20.

An der Spitze der Düse 80, also im den Einspritzöffnungen benachbarten Bereich, ist zwischen dem Düsenkörper 16 und der Kühlkappe 20 ein vorzugsweise ringförmiger Kühlraum 19 ausgebildet. An der Spitze der Düse 80 treten die größten Temperaturen im Betrieb des Kraftstoffinjektors 100 auf, so dass hier über den Kühlraum 19 effektiv sehr nahe des höchsten Temperatureintrags gekühlt wird.At the tip of the nozzle 80, that is to say in the region adjacent to the injection openings, a preferably annular cooling space 19 is formed between the nozzle body 16 and the cooling cap 20. At the tip of the nozzle 80, the highest temperatures occur during operation of the fuel injector 100, so that cooling is effectively carried out via the cooling space 19 very close to the highest temperature input.

Eine zwischen dem Düsenkörper 16 und der Kühlkappe 20 ausgebildete Abführnut 21 dient der Rückführung des Kühlmediums vom Kühlraum 19. Weiterhin ist in dem Düsenkörper 16 und in der Drosselplatte 5 ein Abströmkanal 22 ausgebildet. Die Führungshülse 11, die Drosselplatte 5, die Ventilplatte 4 und der Ventilkörper 3 begrenzen einen Sammelraum 24, welcher hydraulisch über den Abströmkanal 22 und die Abführnut 21 mit dem Kühlraum 19 verbunden ist.A discharge groove 21 formed between the nozzle body 16 and the cooling cap 20 serves to return the cooling medium from the cooling space 19. Furthermore, an outflow channel 22 is formed in the nozzle body 16 and in the throttle plate 5. The guide sleeve 11, the throttle plate 5, the valve plate 4 and the valve body 3 delimit a collecting space 24 which is hydraulically connected to the cooling space 19 via the outflow channel 22 and the discharge groove 21.

Aus den Sammelraum 24 kann das Kühlmedium auf verschiedene Weise abgeführt werden:
Bei Verwendung von Kraftstoff als Kühlmedium kann die Kühlmenge von dem Sammelraum 24 über einen vorhandenen Steuermengenrücklauf 25 des Steuerventils 2 des Kraftstoffinjektors 100 wieder aus dem Kraftstoffinjektor 100 abgeführt werden. Ein Kühlablauf 26 ist in dieser Ausführung auch ein Steuermengenablauf bzw. ein Leckageablauf.
The cooling medium can be removed from the collecting space 24 in various ways:
When fuel is used as the cooling medium, the cooling quantity can be drawn out of the fuel injector 100 from the collecting space 24 via an existing control quantity return 25 of the control valve 2 of the fuel injector 100 be dissipated. In this embodiment, a cooling outlet 26 is also a control quantity outlet or a leak outlet outlet.

Falls andere Medien als Kühlmedium verwendet werden - beispielsweise Motoröl oder Kühlwasser - muss der Rücklauf des Kühlmediums getrennt vom Rücklauf des Kraftstoffs geführt werden. Eine derartige Ausführung des Kraftstoffinjektors 100 zeigt die Fig.3 .If other media are used as the cooling medium - for example engine oil or cooling water - the return of the cooling medium must be routed separately from the return of the fuel. Such an embodiment of the fuel injector 100 is shown in FIG Fig. 3 .

Der Kühlzulauf 38 des Kühlmediums zum Kühlraum 19 und weiter bis zum Sammelraum 24 erfolgt wie bei der Ausführungsform der Fig.1 . Von dem Sammelraum 24 erfolgt der weitere Rückfluss des Kühlmediums nicht über den Steuermengenrücklauf 25 des Steuerventils 2, sondern über einen ringförmigen Abflusskanal 34, welcher zwischen dem Außendurchmesser des Ventilkörpers 3 und dem Innendurchmesser der Führungshülse 11 ausgebildet ist. Im Haltekörper 1 ist eine Freistellung 32 in der Dichtfläche zum Ventilkörper 3 ausgebildet. Der Kühlablauf 26 ist in der Ausführung der Fig.3 in dem Haltekörper 1 ausgebildet und über den Abflusskanal 34 und die Freistellung 32 hydraulisch mit dem Sammelraum 24 verbunden.The cooling inlet 38 of the cooling medium to the cooling space 19 and further to the collecting space 24 takes place as in the embodiment of FIG Fig. 1 . From the collecting space 24, the further backflow of the cooling medium does not take place via the control quantity return 25 of the control valve 2, but via an annular discharge channel 34, which is formed between the outside diameter of the valve body 3 and the inside diameter of the guide sleeve 11. An exemption 32 is formed in the holding body 1 in the sealing surface to the valve body 3. The cooling sequence 26 is in the execution of the Fig. 3 formed in the holding body 1 and hydraulically connected to the collecting space 24 via the drain channel 34 and the exemption 32.

In der Ausführung der Fig.3 können auch andere Kühlmedien als Kraftstoff verwendet werden, da es keine Vermischung mit dem Steuermengenrücklauf 25 des Steuerventils 2 gibt. Weiterhin kann bei dieser Variante auch die Durchflussrichtung des Kühlmediums gewechselt werden, so dass Kühlmedium über den Kühlablauf 26 zu dem Kühlraum 19 geführt wird und über den Kühlzulauf 38 anschließend wieder aus dem Kraftstoffinjektor 100 abgeführt wird.In the execution of the Fig. 3 Cooling media other than fuel can also be used since there is no mixing with the control quantity return 25 of the control valve 2. Furthermore, the flow direction of the cooling medium can also be changed in this variant, so that cooling medium is led to the cooling chamber 19 via the cooling outlet 26 and is subsequently discharged again from the fuel injector 100 via the cooling inlet 38.

Je nach Ausführung des Steuermengenrücklaufs 25 kann eine Bohrung des Steuermengenrücklaufs 25 in den Sammelraum 24 münden. Diese wird dann durch einen Stopfen 37 mediendicht verschlossen, um eine Vermengung des Kühlmediums mit Kraftstoff zu vermeiden.Depending on the design of the control quantity return 25, a bore of the control quantity return 25 can open into the collecting space 24. This is then closed in a media-tight manner by a stopper 37 in order to prevent the cooling medium from being mixed with fuel.

Fig.4 zeigt eine weitere Ausführungsform des erfindungsgemäßen Kraftstoffinjektors 100. Anders als in der Ausführung der Fig.2 erfolgt der Kühlzulauf 38 nicht über eine Zulaufbohrung 9 im Haltekörper 1, sondern über eine in der Düsenspannmutter 7 ausgebildete Zulaufbohrung 9. Die Zulaufbohrung 9 ist dabei über an der Düsenspannmutter 7 angeordnete O-Ringe 27, 28 zur Umgebung abgedichtet. Die Zulaufbohrung 9 mündet direkt in den Anströmkanal 14 und ist weiter über den Ringraum 15, den Kühlkanal 17 und die Zuführnut 18 mit dem Kühlraum 19 verbunden. Fig. 4 shows a further embodiment of the fuel injector 100 according to the invention. In contrast to the embodiment of FIG Fig. 2 the cooling inlet 38 does not take place via an inlet hole 9 in the holding body 1, but via an inlet hole 9 formed in the nozzle clamping nut 7. The inlet hole 9 is in this case via O-rings arranged on the nozzle clamping nut 7 27, 28 sealed to the environment. The inlet bore 9 opens directly into the inflow channel 14 and is further connected to the cooling chamber 19 via the annular space 15, the cooling channel 17 and the feed groove 18.

In Weiterführungen der Erfindung kann auch die Abführung des Kühlmediums in dieser Art und Weise erfolgen. Der Kühlablauf 26 wäre demzufolge dann ebenfalls in der Düsenspannmutter 7 ausgebildet. In dieser Ausführung könnte der Anströmkanal 14 dann jedoch nicht über den gesamten Umfang der Führungshülse ausgeführt sein, sondern wäre beispielsweise in Form einer Längsnut ausgestaltet.In further developments of the invention, the cooling medium can also be removed in this way. The cooling sequence 26 would then also be formed in the nozzle clamping nut 7. In this embodiment, however, the inflow channel 14 could then not be made over the entire circumference of the guide sleeve, but would be designed, for example, in the form of a longitudinal groove.

In allen Ausführungsformen kann die Führungshülse 11 sehr dünnwandig ausgeführt werden. Außerdem wird durch den vorzugsweise kreisringförmigen Querschnitt des Anströmkanals 14 ein sehr großer Querschnitt bei geringem radialen Platzbedarf dargestellt. Diese beiden Merkmale ermöglichen einen großen Durchsatz von Kühlmedium und daher hohe potentielle Kühlleistung bei sehr geringem Platzbedarf im Durchmesser des Kraftstoffinjektors 100.In all embodiments, the guide sleeve 11 can be made very thin-walled. In addition, the preferably circular cross section of the inflow channel 14 shows a very large cross section with a small radial space requirement. These two features enable a large throughput of cooling medium and therefore high potential cooling performance with a very small space requirement in the diameter of the fuel injector 100.

Die Führungshülse 11 eignet sich aufgrund ihres geringen Platzbedarfs bei entsprechenden Ausgestaltungen des Kraftstoffinjektors 100 auch als Nachrüstsatz für bestehende Kraftstoffinjektoren 100 ohne Aktivkühlung bzw. mit anderweitiger Aktivkühlung.The guide sleeve 11 is suitable due to its small space requirement with appropriate configurations of the fuel injector 100 as a retrofit kit for existing fuel injectors 100 without active cooling or with other active cooling.

Claims (8)

  1. Fuel injector (100) for injecting fuel into the combustion chamber of an internal combustion engine, wherein the fuel injector (100) comprises a holding body (1) and a nozzle body (16), wherein the holding body (1) is braced with the nozzle body (16) by means of a nozzle clamping nut (7), wherein a pressure space (8) is formed in the nozzle body (16) and is able to be supplied with pressurized fuel via a feed bore (64), wherein a nozzle needle (6) which opens up or closes off at least one injection opening (60) is arranged in a longitudinally movable manner in the pressure space (8), wherein a cooling cap (20) is arranged so as to at least partially surround the nozzle body (16), wherein a cooling space (19) through which cooling medium is able to flow is formed between the nozzle body (16) and the cooling cap (20),
    characterized in that
    a guide sleeve (11) is, in a radial direction, arranged between the holding body (1) and the nozzle body (16) at one side and the nozzle clamping nut (7) at the other side, wherein an inflow duct (14) for supplying the cooling medium is formed between the guide sleeve (11) and the nozzle clamping nut (7), wherein the inflow duct (14) is hydraulically connected to the cooling space (19).
  2. Fuel injector (100) according to Claim 1,

    characterized
    in that the cooling space (19) is hydraulically connected to the inflow duct (14) via a cooling duct (17) formed in the nozzle body (16).
  3. Fuel injector (100) according to Claim 1 or 2,
    characterized
    in that a cooling feed (9, 38) into the inflow duct (14) is formed in the holding body (1).
  4. Fuel injector (100) according to Claim 1 or 2,
    characterized
    in that a cooling feed (9, 38) into the inflow duct (14) is formed in the nozzle clamping nut (7).
  5. Fuel injector (100) according to one of Claims 1 to 4,
    characterized
    in that an outflow duct (22) for discharging the cooling medium is formed in the nozzle body (16), wherein the outflow duct (22) is hydraulically connected to the cooling space (19).
  6. Fuel injector (100) according to Claim 5,

    characterized
    in that the outflow duct (22) opens into a collecting space (24) delimited by the guide sleeve (11) .
  7. Fuel injector (100) according to Claim 6,

    characterized
    in that the collecting space (24) is hydraulically connected to a cooling discharge (26) formed in the holding body (1).
  8. Fuel injector (100) according to Claim 7,
    characterized
    in that the fuel injector (100) has a control valve (2), wherein the control valve (2) controls the longitudinal movement of the nozzle needle (6), wherein the control valve (2) requires a cut-off quantity of fuel, wherein the cut-off quantity is able to be discharged via the cooling discharge (26).
EP17714205.6A 2016-04-21 2017-03-29 Fuel injector Active EP3445967B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016206796.6A DE102016206796A1 (en) 2016-04-21 2016-04-21 fuel injector
PCT/EP2017/057362 WO2017182242A1 (en) 2016-04-21 2017-03-29 Fuel injector

Publications (2)

Publication Number Publication Date
EP3445967A1 EP3445967A1 (en) 2019-02-27
EP3445967B1 true EP3445967B1 (en) 2020-05-06

Family

ID=58448547

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17714205.6A Active EP3445967B1 (en) 2016-04-21 2017-03-29 Fuel injector

Country Status (5)

Country Link
EP (1) EP3445967B1 (en)
KR (1) KR102211974B1 (en)
CN (1) CN109072834B (en)
DE (1) DE102016206796A1 (en)
WO (1) WO2017182242A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016211477A1 (en) 2016-06-27 2017-12-28 Robert Bosch Gmbh Nozzle body for a fuel injector
CN113818978A (en) * 2021-09-14 2021-12-21 南京中远海运船舶设备配件有限公司 Composite forming fuel nozzle

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB407654A (en) * 1933-02-25 1934-03-22 Sulzer Ag Improvements in or relating to water-cooled fuel injection valves for internal combustion engines
GB441181A (en) * 1934-05-11 1936-01-14 Bataafsche Petroleum Fuel injection device for internal combustion engines
DE2725707C2 (en) * 1977-06-07 1986-05-15 Münchner Motor-Zubehör GmbH, 8000 München Water-cooled fuel injector for internal combustion engines
DE3502098A1 (en) * 1985-01-23 1986-07-24 Robert Bosch Gmbh, 7000 Stuttgart FUEL INJECTION NOZZLE FOR INTERNAL COMBUSTION ENGINES
DE3622142C1 (en) * 1986-07-02 1988-02-04 Daimler Benz Ag Liquid-cooled injection valve
DE19720891A1 (en) * 1997-05-17 1998-11-19 Bosch Gmbh Robert Diesel engine injection valve for controlled injection section
JP4215380B2 (en) * 2000-08-30 2009-01-28 ヤンマー株式会社 Fuel injection valve for internal combustion engine and its disassembly tool
AT500773B8 (en) 2004-08-24 2007-02-15 Bosch Gmbh Robert INJECTION NOZZLE FOR INTERNAL COMBUSTION ENGINES
JP2010138778A (en) * 2008-12-11 2010-06-24 Mitsubishi Heavy Ind Ltd Cooling structure of fuel injection valve
US8230838B2 (en) * 2009-09-23 2012-07-31 Cummins Intellectual Properties, Inc. Injector seal assembly and method of sealing a coolant passage from an injector
AT512422B1 (en) * 2012-02-07 2016-01-15 Bosch Gmbh Robert DEVICE FOR INJECTING FUEL IN THE COMBUSTION ENGINE OF AN INTERNAL COMBUSTION ENGINE
AT512667B1 (en) * 2012-04-05 2014-03-15 Bosch Gmbh Robert Injection nozzle for injecting media into a combustion chamber
DE102013211684A1 (en) * 2013-06-20 2014-12-24 Robert Bosch Gmbh Heat sink for injector
CN204729206U (en) * 2015-07-02 2015-10-28 马鞍山市增润机械制造有限公司 A kind of oil sprayer conduit

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2017182242A1 (en) 2017-10-26
CN109072834B (en) 2021-04-09
KR20180132905A (en) 2018-12-12
KR102211974B1 (en) 2021-02-08
DE102016206796A1 (en) 2017-10-26
CN109072834A (en) 2018-12-21
EP3445967A1 (en) 2019-02-27

Similar Documents

Publication Publication Date Title
EP2183476B1 (en) Fuel injection valve with improved tightness on the sealing seat of a pressure-compensated control valve
EP3535486B1 (en) Fuel injection valve for injecting a gaseous and / or liquid fuel
WO2006012658A1 (en) Device for the injection of fuel into the combustion chamber of an internal combustion engine
EP1869311B1 (en) Fuel injection valve
EP3475555B1 (en) Nozzle body for a fuel injector
EP3445967B1 (en) Fuel injector
WO2017029076A1 (en) Fuel injector
EP2278152B1 (en) Fuel injection valve
EP2511514B1 (en) Fuel injector valve
DE102014225392A1 (en) Nozzle assembly for a fuel injector and fuel injector
EP1999363B1 (en) Fuel injection valves for internal combustion engines
EP1836385B1 (en) Fuel injection valve with pressure gain
EP3583310B1 (en) Fuel injector
EP2957760B1 (en) Nozzle assembly for a fuel injector and fuel injector
EP2726728B1 (en) Fuel injector
DE102006036782B4 (en) injector
DE102006035982A1 (en) Injector for fuel injection system of internal-combustion engine, has piezo-electric actuator formed as pipe and radially limiting coupling space in its interior in area of its actuator bases
DE102014220779A1 (en) Injection valve for injecting fluid into a combustion chamber of an internal combustion engine
DE102006027484A1 (en) Fuel injector for an internal combustion motor, with a common rail fuel injection system, has the armature of the magnetic setting unit in the equalizing zone with the control piston pressure surface to reduce injector height
WO2006056522A1 (en) Fuel injection nozzle
DE102014215450B4 (en) Fluid injection apparatus
EP2246553B1 (en) Fuel injector
DE102013220823B3 (en) Fuel injection valve for internal combustion engines
WO2009033964A1 (en) Leakage-free fuel injector with long nozzle needle
WO2018153596A1 (en) Fuel injection valve for injecting a gaseous and/or liquid fuel

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20181121

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20191115

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ROBERT BOSCH GMBH

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1267141

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017005184

Country of ref document: DE

REG Reference to a national code

Ref country code: FI

Ref legal event code: FGE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200806

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200907

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200906

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017005184

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210329

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210329

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210329

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1267141

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170329

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220329

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20230402

Year of fee payment: 7

Ref country code: DE

Payment date: 20230524

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20240319

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240329

Year of fee payment: 8