JP4215380B2 - Fuel injection valve for internal combustion engine and its disassembly tool - Google Patents

Fuel injection valve for internal combustion engine and its disassembly tool Download PDF

Info

Publication number
JP4215380B2
JP4215380B2 JP2000260824A JP2000260824A JP4215380B2 JP 4215380 B2 JP4215380 B2 JP 4215380B2 JP 2000260824 A JP2000260824 A JP 2000260824A JP 2000260824 A JP2000260824 A JP 2000260824A JP 4215380 B2 JP4215380 B2 JP 4215380B2
Authority
JP
Japan
Prior art keywords
injection valve
spacer
fuel injection
cooling water
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000260824A
Other languages
Japanese (ja)
Other versions
JP2002070686A (en
Inventor
雅寛 伊藤
成太 秋本
俊次 濱岡
周輔 岡田
素臣 関
敏之 千代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Original Assignee
Yanmar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Co Ltd filed Critical Yanmar Co Ltd
Priority to JP2000260824A priority Critical patent/JP4215380B2/en
Publication of JP2002070686A publication Critical patent/JP2002070686A/en
Application granted granted Critical
Publication of JP4215380B2 publication Critical patent/JP4215380B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M53/00Fuel-injection apparatus characterised by having heating, cooling or thermally-insulating means
    • F02M53/04Injectors with heating, cooling, or thermally-insulating means

Description

【0001】
【発明の属する技術分野】
本願発明は、噴口及び燃料通路を有する噴射弁チップを、ノズルスリーブを介してシリンダヘッドの弁取付孔に嵌合支持している内燃機関の燃料噴射弁及びその分解工具に関する。
【0002】
【従来の技術】
図12は従来の燃料噴射弁99を示しており、燃料噴射弁99の先端部を構成する噴射弁チップ100は、ノズルスリーブ101を介してシリンダヘッド102の弁取付孔103に挿入され、ノズルスリーブ101は弁取付孔103のめねじ部103aに螺着されている。噴射弁チップ100の先端部には燃焼室105に開口する噴口106が形成され、噴射弁チップ100内には、上記噴口106に連通する環状燃料通路110及び縱向きの燃料供給通路111等が形成されると共に、環状冷却水室112及び該環状冷却水室112に連通する冷却水供給通路114及び戻し通路115等が形成されている。
【0003】
図11は、燃料噴射弁99の冷却水循環経路を示す配管図であり、燃料噴射弁99には冷却水入口120と冷却水出口121が形成され、冷却水入口120は、外部の冷却水供給管124を介してクーラ125及び清水ポンプ126に接続し、冷却水出口121は、外部の冷却水戻し管127を介して水タンク128及び清水ポンプ126に接続している。
【0004】
【発明が解決しようとする課題】
図12のような燃料噴射弁冷却構造では、機関冷却水の循環経路以外に、図11のように噴射弁冷却専用のクーラ125、清水ポンプ126及び水タンク128等が必要になると共に、冷却水供給管124及び冷却水戻し管127等の外部配管が必要となり、部品点数が多くなると共にエンジンの配管構造が複雑化する。
【0005】
また、図12のように、噴射弁チップ100内に直接環状冷却水室112及び冷却水通路114,115を形成する場合には、スペース的に制限される噴射弁チップ100内に燃料通路110等と共に成形加工しなければならず、噴射弁チップ100内の構造が複雑化し、成形加工に手間がかかると共に、充分な容積の冷却水室112を確保することも困難である。
【0006】
また、図12の環状冷却水室112及び冷却水通路114,115に、燃料油を供給して冷却に利用する場合もあるが、上記冷却水の場合と同様、燃料噴射弁冷却専用のポンプ及びクーラなどが必要になると共に、燃料油漏出防止のために配管及び継手等のシールを厳重にしなければならず、配管コストが高くなると共にメンテナンスにも手間がかかる。
【0007】
【課題を解決するための手段】
上記課題を解決するため、本願請求項1記載の発明は、噴口及び燃料通路を有する噴射弁チップを、ノズルスリーブを介してシリンダヘッドの弁取付孔に嵌合支持する内燃機関の燃料噴射弁において、
ノズルスリーブ内に噴射弁チップを間接的に囲む水衣部を形成し、該水衣部をシリンダヘッド内の冷却水ジャケットに連通し、機関冷却水により噴射弁チップを冷却するようにしていることを特徴としている。
【0008】
【課題を解決するための手段】
上記課題を解決するため、本願請求項1記載の発明は、噴口及び燃料通路を有する噴射弁チップを、ノズルスリーブを介してシリンダヘッドの弁取付孔に嵌合支持する内燃機関の燃料噴射弁において、ノズルスリーブ内に噴射弁チップを間接的に囲む水衣部を形成し、該水衣部をシリンダヘッド内の冷却水ジャケットに連通し、機関冷却水により噴射弁チップを冷却するようにし、前記ノズルスリーブの内周テーパー面と前記噴射弁チップの外周面の間に、熱伝導性に優れた間座を密着状態で介在させ、該間座は、縱割り状のスリットを有すると共に、外周面が弁軸芯方向の噴口側が小径となるテーパー状に形成されて前記ノズルスリーブの内周テーパー面にテーパー嵌合し、弁軸芯方向の噴口側へ押え込まれていることを特徴としている。
【0009】
請求項2記載の発明は、請求項1記載の内燃機関の燃料噴射弁において、前記間座の弁軸芯方向の噴口側の先端を、燃焼室の略天井面まで延設している。
【0010】
請求項3記載の発明は、請求項1または2に記載の間座を引き抜くための分解工具であって、拡張可能な係合爪を先端部に備えた引抜筒と、引抜筒内に筒芯方向移動可能に挿入されると共に上記係合爪に連動連結した操作桿とを備え、操作桿の操作により係合爪を拡張して前記請求項1または2に記載の間座の端縁に係合させるようにしたことを特徴としている。
【0014】
ノズルスリーブ7は、燃焼室2に面する下端から弁取付孔3の下側部分及び冷却水ジャケット5を経て、弁取付孔3の上側部分まで至っており、下端部内周面に環状の水衣部形成部7aが溶接により一体に固着されている。ノズルスリーブ7の上端部はOリング10を介して弁取付孔3の上側部分の内周面に嵌合している。
【0015】
燃料噴射弁4は、弁本体部12と、該弁本体部12の下端面に袋ナット14により結合された噴射弁チップ15から構成されており、上方から押え金具16により押え付けられている。押え金具16は、シリンダヘッド1に螺着された植込みボルト18に挿通され、該ボルト18に螺挿されたナット19により係止されている。
【0016】
弁取付孔3の下側部分とノズルスリーブ7の間には、環状空間21が確保されており、該環状空間21は、上方の冷却水ジャケット5に開口すると共に、複数の冷却水通路22を介して、他の冷却水ジャケット5にも連通している。
【0017】
図2は噴射弁チップ15の拡大図であり、噴射弁チップ15の下端には燃焼室2に開口する複数の噴口25が形成され、噴射弁チップ15内には、前記噴口25に連通する環状燃料通路26が形成され、該環状燃料通路26は上方に延びる縱向き燃料通路27を介して弁本体部12の燃料通路28に連通している。
【0018】
ノズルスリーブ7の外周面には環状の段面7bが形成され、弁取付孔3に形成された環状段面3bに環状パッキン30を介して圧接している。ノズルスリーブ7の下端部分の内周面には、前述のように水衣部形成部7aが一体に溶接されることにより、噴射弁チップ15の下半部分を間接的に取り囲む環状の水衣部31が形成されている。
【0019】
水衣部31の垂直断面形状(弁軸芯O1を含む断面))は、図2のように上下方向に長くなっており、上端部は放射状に配置された複数の連通孔33を介して前記環状空間21に連通している。連通孔33は水衣部31から斜め上向き形成されている。水衣部形成部7aの内周面は下方側(噴口側)が小径となるテーパー状に形成されており、該テーパー状内周面と噴射弁チップ15の外周面の間には、筒状の間座35が圧入されている。
【0020】
間座35は、熱伝導性に優れかつ硬度が低くてなじみ性のある金属、たとえば銅で形成されており、外周面が上記水衣部形成部7aのテーパ−状内周面に対応するテーパー面となっている。間座35の上端面と噴射弁チップ15に形成された押え用段面15aの間には、弾性を有するテフロン等で形成された環状の間座押え37が挟圧されており、これにより、間座押え37を介して間座35を下方へ押え付け、くさび作用により、間座35の内外両面を、噴射弁チップ15の外周面と水衣部形成部7aのテーパ−状内周面に密着させている。間座35の上端位置は水衣部31の概ね上端位置に対応し、間座35の下端35bは水衣部形成部7aの下端位置、すなわち燃焼室天井面まで至っている。
【0021】
図3は図2のIII-III断面図であり、ノズルスリーブ7の連通孔33は、流通断面積を充分に確保するために、たとえば周方向に等間隔をおいて8本形成されており、シリンダヘッド1の冷却水通路22は、たとえば周方向に等間隔をおいて4本形成されている。間座35は、上下方向の全長に亘るスリット(割れ目)35aが形成されると共に、自由状態における内径は噴射弁チップ15の外径より若干小さく形成されている。
【0022】
連通孔33の流通断面積は、たとえば4つの連通孔33の流通断面積の合計が、少なくとも水衣部31の流通断面積(弁軸芯O1を通る切断面による断面)以上になるように設定されている。
【0023】
図4〜図6は、燃料噴射弁分解時に、間座35を引き抜くために用いる分解工具を示している。図4において、引抜用分解工具は、細長い引抜管41と、該引抜管41の下端部に固着された調芯部材42と、該調芯部材42の下端に拡張可能に固着された係合爪44と、引抜管41内に挿入された操作桿45と、引抜管41の上部外周面に螺合したジャッキナット47と、引抜管41の上端部内周面に螺合すると共に操作桿45の上端に当接する開閉操作ボルト48等から構成され、引抜管41はシリンダヘッド1に固定される固定ベース50のガイド孔51に上下方向移動可能に挿通され、ジャッキナット47を回転操作することにより、引抜管41を徐々に引き上げるようになっている。
【0024】
図5は分解工具の下端部拡大図であり、調芯部材42はノズルスリーブ7の内周面に嵌合することにより調芯作用を行なうようになっており、係合爪44は円筒状に形成されると共に、複数に分割されることにより径方向の外方に拡張可能となっており、係合爪4の外周には、拡張時に間座35の下端縁に係合する段面44aが形成されている。
【0025】
係合爪44の内周には、操作桿45の下端部に形成された円錐部45aが挿入されると共に、該円錐部45aに当接するテーパー受け部44bが形成されており、操作桿45を押し下げることにより、テーパー受け部44bを介して各係合爪44を径方向の外方に拡張するように構成されている。
【0026】
図6は図5のVI-VI断面図であり、係合爪44はたとえば4つに分割されている。
【0027】
【作用】
機関に装備された水ポンプ(図示せず)から吐出される機関冷却水は、シリンダ内の冷却水ジャケットに供給され、シリンダ内を冷却した後、図1に示すシリンダヘッド1の冷却水ジャケット5に供給され、吸、排気通路及び吸,排気弁等を冷却すると共に、冷却水通路22を通って環状空間21に供給され、該環状空間21から連通孔33の幾つかを通って水衣部31に供給され、噴射弁チップ15の下半部分を間接的に冷却する。
【0028】
図2において、ノズルスリーブ7の水衣部形成部7aの内周面と噴射弁チップ15の外周面の間には、両面に密着した熱伝導性の良い間座35が配置されているので、間接冷却構造であっても、噴射弁チップ15を効率良く冷却することができる。
【0029】
図3のように連通孔33を8つ形成し、その半分(4つ)の合計流通断面積を、水衣部31の流通断面積以上としていることにより、水衣部31への流入量及び水衣部31からの流出量を充分に確保することができ、これにより水衣部31内の冷却水の入れ替えを速やかに行い、噴射弁チップ15を効率良く冷却する。
【0030】
【取外方法】
図1において、燃料噴射弁4を取り外す場合には、燃料高圧管55を燃料噴射弁4から外すと共に、押え金具16のナット19を外し、燃料噴射弁4を弁取付孔3から上方に引き抜く。この際、ノズルスリーブ7の水衣部31に冷却水が残っていても、燃焼室2内に漏れることはない。
【0031】
燃料噴射弁4を引き抜いても、間座35はノズルスリーブ7に取り残されているので、図4に示す引抜き用分解工具を利用して、間座35を上方へ引き抜く。すなわち、シリンダヘッド1に固定した固定ベース50のガイド孔51に引抜管41を挿通し、係合爪44及び調芯部材42をノズルスリーブ7内に挿入し、調芯部材42で芯出しを行ないながら係合爪44を間座35から下方へ突出させる。
【0032】
次に上端の操作ボルト48を回動して操作桿45を押し下げることにより、図5の下端円錐部45aのくさび作用により係合爪44を拡張させ、間座35の下端に段面44aを係合させる。
【0033】
そして、図4のジャッキナット47を固定ベース50に当接させた状態で回転することにより、引抜管41を徐々に引き上げ、ノズルスリーブ7から間座35を引き抜く。したがって、シリンダヘッド1を分解することなく、間座35を引抜くことができる。
【0034】
【取付方法】
図2において、燃料噴射弁4を取り付ける際には、噴射弁チップ15の外周に新しい間座押え37及び新しい間座35を順次嵌め、間座35の締り嵌め作用により、間座35及び間座押え37を脱落不能に保持しておく。
【0035】
図1において、上記のように間座押え37及び間座35を装着した燃料噴射弁4を弁取付孔3に挿入し、押え金具16により上方から押え付ける。この時、間座押え37はその弾性力により上下方向に圧縮されると共に、間座35を下方へ押え込み、間座35の内外両面を噴射弁チップ15の外周面とノズルスリーブ7の水衣部形成部7aの内周面に密着させる。
【0036】
【その他の発明の実施の形態】
(1)図7は水衣部31の伝熱面積を拡張するために、水衣部31にフィン60を形成した例であり、図8は水衣部31に溝61を形成した例である。上記フィン60又は溝61を螺旋状に形成すると、冷却水の流れを螺旋状に整流できると共に流速を上げることができ、熱交換率を向上させることができる。
【0037】
(2)図9は、連通孔33を1つ置きに、水衣部31の接線方向に向くように傾斜させ、これにより水衣部31内に旋回流を発生させ、冷却効率を向上させる構造である。
【0038】
(3)図10は、間座の変形例であり、互いに上下反対向きに配置された内外1対の間座65,66を、ノズルスリーブ7の水衣部形成部7aと噴射弁チップ15の間に介在させた例である。内側の間座65は、外周面が下方に行くに従い小径となるテーパーに形成されており、外側の間座66は、内周面が下方に行くに従い小径となるテーパーに形成されており、両間座65,66のテーパー面同士が接触している。このように互いにテーパー嵌合する1対の間座65,66を使用することにより、噴射弁チップ15の外周面及びノズルスリーブ7の内周面をいずれもストレートにすることができる。
【0039】
(4)前記実施の形態では間座35として銅を使用しているが、熱伝導性が良くて、なじみ性(密着性)が良いその他の金属あるは樹脂を使用することも可能である。
【0040】
(5)図2では間座35の外周面とノズルスリーブ7の水衣部形成部7aの内周面をテーパー嵌合しているが、これに加えて間座35の内周面と噴射弁チップ15の外周面を、下方に行くに従い小径となるテーパー嵌合とすることもできる。
【0041】
(6)間座35に工具係合孔を形成して、該係合孔に分解工具の爪を係合して抜くようにすることもできる。
【0042】
【発明の効果】
以上説明したように本願発明によると、
(1)噴口25及び燃料通路26を有する噴射弁チップ15を、ノズルスリーブ7を介してシリンダヘッド1の取付孔3に嵌合支持している内燃機関の燃料噴射弁において、ノズルスリーブ7内に噴射弁チップ15を間接的に冷却する水衣部31を形成し、水衣部31をシリンダヘッド1内の冷却水ジャケット5に連通し、機関冷却水を利用して噴射弁チップ15を冷却するようにしているので、図11の従来例のように、機関冷却水の循環経路とは別に、噴射弁チップ専用の冷却配管、クーラ及びポンプ等の機器を備えることが不要となり、エンジンの部品点数が削減できると共に、部品コストも低減できる。
【0043】
(2)噴射弁チップ冷却専用の配管及び継手等が必要なくなるため、噴射弁周りの構造がシンプルとなり、燃料噴射弁の分解及び組付が容易になる。
【0044】
(3)図12のように噴射弁チップ内に冷却水室及び冷却水通路を形成する必要がなくなるので、噴射弁チップ自体の構造も簡素化することができる。
【0045】
(4)ノズルスリーブ7の内周面と噴射弁チップ15の外周面の間に、熱伝導性に優れかつ密着性の良い間座35を介在させていると、間接冷却構造でありながら、水衣部31と噴射弁チップ15との間の熱伝達効率を高めることができ、冷却性能高めることができる。
【0046】
(5)間座35に縱割り状のスリット35aを形成し、間座35とノズルスリーブ7の内周面とを、弁軸芯方向の噴口側が小径となるテーパー嵌合とし、間座押え37により、弁軸芯O1方向の噴口側へ押え込むようにすると、組付け時、間座35のくさび作用により、簡単にノズルスリーブ7と噴射弁チップ15との間の密着性を高め、熱伝達効率を高めることができる。
【0047】
(6)水衣部31にフィン60又は溝61を形成することにより、熱伝達効率を一層向上させることができる。
【0048】
(7)間座35の弁軸芯方向の噴口側の先端を、燃焼室2の略天井面まで延設することにより、温度上昇が大きい噴口付近まで充分に冷却することができる。
【0049】
(8)請求項3に記載された分解工具によると、操作桿45の操作により、下端の係合爪44を開き、間座35の下端に係合させるようにしているので、燃料噴射弁分解時、シリンダヘッド1を分解することなく、間座35を上方に引抜くことができ、分解作業の能率が向上する。
【図面の簡単な説明】
【図1】 本願発明を適用した内燃機関の燃料噴射弁の縱断面図である。
【図2】 図1の下端部分の拡大図である。
【図3】 図2のIII-III断面図である。
【図4】 間座引抜作業時の状態を示す引抜用分解工具の縱断面図である。
【図5】 図4の下端部分の拡大図である。
【図6】 図5のVI-VI断面図である。
【図7】 水衣部の変形例を示す縱断面拡大図である。
【図8】 水衣部の変形例を示す縱断面拡大図である。
【図9】 水衣部の連通孔の変形例を示す図3と同様の水平断面図である。
【図10】 間座の変形例を示す縱断面拡大図である。
【図11】 従来例の配管略図である。
【図12】 従来の燃料噴射弁の縱断面図である。
【符号の説明】
1 シリンダヘッド
2 燃焼室
3 弁取付孔
4 燃料噴射弁
5 冷却水ジャケット
7 ノズルスリーブ
7a 水衣部形成部
15 噴射弁チップ
21 環状空間
22 冷却水通路
25 噴口
26 環状燃料通路
31 水衣部
33 連通孔
35 間座
35a スリット
37 間座押え
41 引抜管
42 調芯部材
44 係合爪
45 操作桿
47 ジャッキナット
48 操作ボルト
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fuel injection valve for an internal combustion engine in which an injection valve chip having a nozzle hole and a fuel passage is fitted and supported in a valve mounting hole of a cylinder head via a nozzle sleeve, and a disassembly tool thereof.
[0002]
[Prior art]
FIG. 12 shows a conventional fuel injection valve 99, and an injection valve chip 100 constituting the tip of the fuel injection valve 99 is inserted into a valve mounting hole 103 of a cylinder head 102 via a nozzle sleeve 101, and the nozzle sleeve 101 is screwed into the female thread portion 103 a of the valve mounting hole 103. A nozzle hole 106 that opens to the combustion chamber 105 is formed at the tip of the injection valve chip 100, and an annular fuel passage 110 that communicates with the nozzle hole 106, a soot-facing fuel supply passage 111, and the like are formed in the injection valve chip 100. In addition, an annular cooling water chamber 112, a cooling water supply passage 114 and a return passage 115 communicating with the annular cooling water chamber 112 are formed.
[0003]
FIG. 11 is a piping diagram showing a cooling water circulation path of the fuel injection valve 99. The fuel injection valve 99 is formed with a cooling water inlet 120 and a cooling water outlet 121. The cooling water inlet 120 is an external cooling water supply pipe. The cooling water outlet 121 is connected to the water tank 128 and the fresh water pump 126 via the external cooling water return pipe 127 via the cooling water 125 and the fresh water pump 126 via 124.
[0004]
[Problems to be solved by the invention]
In the fuel injection valve cooling structure as shown in FIG. 12, in addition to the circulation path of the engine coolant, a cooler 125, a fresh water pump 126, a water tank 128, etc. dedicated to the injection valve cooling are required as shown in FIG. External piping such as the supply pipe 124 and the cooling water return pipe 127 is required, which increases the number of components and complicates the piping structure of the engine.
[0005]
Further, as shown in FIG. 12, when the annular cooling water chamber 112 and the cooling water passages 114 and 115 are formed directly in the injection valve chip 100, the fuel passage 110 and the like in the injection valve chip 100 limited in space. In addition, the structure inside the injection valve chip 100 becomes complicated, and it takes time and effort to form the cooling water chamber 112, and it is difficult to secure the cooling water chamber 112 having a sufficient volume.
[0006]
In addition, fuel oil may be supplied to the annular cooling water chamber 112 and the cooling water passages 114 and 115 in FIG. 12 to be used for cooling. As in the case of the cooling water, a pump dedicated to cooling the fuel injection valve and A cooler and the like are required, and seals such as pipes and joints must be tightened to prevent fuel oil leakage, resulting in high pipe costs and troublesome maintenance.
[0007]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, an invention according to claim 1 of the present invention is a fuel injection valve for an internal combustion engine in which an injection valve chip having a nozzle hole and a fuel passage is fitted and supported in a valve mounting hole of a cylinder head via a nozzle sleeve. ,
A water garment part indirectly surrounding the injection valve chip is formed in the nozzle sleeve, the water garment part is communicated with a cooling water jacket in the cylinder head, and the injection valve chip is cooled by engine cooling water. It is characterized by.
[0008]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, an invention according to claim 1 of the present invention is a fuel injection valve for an internal combustion engine in which an injection valve chip having a nozzle hole and a fuel passage is fitted and supported in a valve mounting hole of a cylinder head via a nozzle sleeve. to form a Mizukoromo part indirectly surrounds the injector tip into the nozzle sleeve, the aqueous radical 145 communicates with a cooling water jacket in the cylinder head, so as to cool the injector tip by the engine cooling water, the A spacer having excellent thermal conductivity is interposed between the inner tapered surface of the nozzle sleeve and the outer peripheral surface of the injection valve chip in a close contact state, and the spacer has a split slit and the outer peripheral surface. Is formed in a tapered shape having a small diameter on the nozzle hole side in the valve axis direction, is taper-fitted to the inner peripheral tapered surface of the nozzle sleeve, and is pressed into the nozzle hole side in the valve axis direction .
[0009]
According to a second aspect of the present invention, in the fuel injection valve for the internal combustion engine according to the first aspect, the tip of the spacer in the direction of the valve axis extends toward the substantially ceiling surface of the combustion chamber.
[0010]
The invention described in claim 3 is a disassembling tool for pulling out the spacer according to claim 1 or 2, wherein the pulling cylinder is provided with an expandable engaging claw at the tip portion, and the cylinder core is provided in the pulling cylinder. An operating rod inserted into the engaging claw and interlockingly connected to the engaging claw, and the engaging claw is expanded by operation of the operating claw, and is engaged with the edge of the spacer according to claim 1 or 2. It is characterized by the fact that they are combined.
[0014]
The nozzle sleeve 7 extends from the lower end facing the combustion chamber 2 to the lower portion of the valve mounting hole 3 and the cooling water jacket 5 to the upper portion of the valve mounting hole 3. The forming portion 7a is integrally fixed by welding. The upper end portion of the nozzle sleeve 7 is fitted to the inner peripheral surface of the upper portion of the valve mounting hole 3 via the O-ring 10.
[0015]
The fuel injection valve 4 includes a valve main body 12 and an injection valve chip 15 coupled to a lower end surface of the valve main body 12 by a cap nut 14 and is pressed by a presser fitting 16 from above. The presser fitting 16 is inserted into a stud bolt 18 screwed into the cylinder head 1 and is locked by a nut 19 screwed into the bolt 18.
[0016]
An annular space 21 is secured between the lower portion of the valve mounting hole 3 and the nozzle sleeve 7, and the annular space 21 opens into the upper cooling water jacket 5 and includes a plurality of cooling water passages 22. The other cooling water jacket 5 is also communicated.
[0017]
FIG. 2 is an enlarged view of the injection valve chip 15. A plurality of injection holes 25 that open to the combustion chamber 2 are formed at the lower end of the injection valve chip 15, and the injection valve chip 15 has an annular shape that communicates with the injection hole 25. A fuel passage 26 is formed, and the annular fuel passage 26 communicates with the fuel passage 28 of the valve body 12 through a saddle-facing fuel passage 27 extending upward.
[0018]
An annular step surface 7 b is formed on the outer peripheral surface of the nozzle sleeve 7 and is in pressure contact with the annular step surface 3 b formed in the valve mounting hole 3 via an annular packing 30. As described above, the water robe forming portion 7a is integrally welded to the inner peripheral surface of the lower end portion of the nozzle sleeve 7 so as to indirectly surround the lower half portion of the injection valve chip 15. 31 is formed.
[0019]
The vertical cross-sectional shape (cross section including the valve shaft core O1) of the swimsuit portion 31 is long in the vertical direction as shown in FIG. 2, and the upper end portion is formed through the plurality of communication holes 33 arranged radially. It communicates with the annular space 21. The communication hole 33 is formed obliquely upward from the swimsuit portion 31. The inner peripheral surface of the swimsuit portion forming portion 7a is formed in a tapered shape whose lower side (the nozzle hole side) has a small diameter, and a tubular shape is formed between the tapered inner peripheral surface and the outer peripheral surface of the injection valve chip 15. A spacer 35 is press-fitted.
[0020]
The spacer 35 is formed of a metal having excellent thermal conductivity, low hardness, and conformability, such as copper, and the outer peripheral surface is a taper corresponding to the tapered inner peripheral surface of the swimsuit portion forming portion 7a. It is a surface. An annular spacer presser 37 made of elastic Teflon or the like is sandwiched between the upper end surface of the spacer 35 and the presser step surface 15a formed on the injection valve chip 15, The spacer 35 is pressed downward via the spacer presser 37, and the wedge inner action causes both the inner and outer surfaces of the spacer 35 to become the outer peripheral surface of the injection valve chip 15 and the tapered inner peripheral surface of the water robe forming portion 7a. It is in close contact. The upper end position of the spacer 35 substantially corresponds to the upper end position of the swimsuit portion 31, and the lower end 35b of the spacer 35 reaches the lower end position of the swimsuit portion forming portion 7a, that is, the combustion chamber ceiling surface.
[0021]
FIG. 3 is a cross-sectional view taken along the line III-III of FIG. 2, and eight communicating holes 33 of the nozzle sleeve 7 are formed, for example, at equal intervals in the circumferential direction in order to ensure a sufficient flow cross-sectional area. For example, four cooling water passages 22 of the cylinder head 1 are formed at equal intervals in the circumferential direction. The spacer 35 is formed with slits (cracks) 35a extending over the entire length in the vertical direction, and the inner diameter in the free state is slightly smaller than the outer diameter of the injection valve chip 15.
[0022]
The flow cross-sectional area of the communication hole 33 is set so that, for example, the sum of the flow cross-sectional areas of the four communication holes 33 is at least equal to or greater than the flow cross-sectional area of the swimsuit portion 31 (cross section cut by the valve shaft core O1). Has been.
[0023]
4 to 6 show a disassembling tool used for pulling out the spacer 35 when disassembling the fuel injection valve. In FIG. 4, the disassembling tool for drawing includes an elongated drawing tube 41, an alignment member 42 fixed to the lower end portion of the extraction tube 41, and an engaging claw fixed to the lower end of the alignment member 42 so as to be expandable. 44, an operating rod 45 inserted into the drawing tube 41, a jack nut 47 screwed into the upper outer peripheral surface of the drawing tube 41, and an upper end of the operating tube 45 while screwing into the inner peripheral surface of the upper end portion of the drawing tube 41 The pull-out tube 41 is inserted into the guide hole 51 of the fixed base 50 fixed to the cylinder head 1 so as to be movable in the vertical direction, and the jack nut 47 is rotated to rotate it. The tube 41 is gradually pulled up.
[0024]
FIG. 5 is an enlarged view of the lower end portion of the disassembling tool. The alignment member 42 is adapted to perform alignment by fitting to the inner peripheral surface of the nozzle sleeve 7, and the engaging claw 44 is cylindrical. It is formed and can be expanded radially outward by being divided into a plurality, and a step surface 44a that engages with the lower edge of the spacer 35 at the time of expansion is provided on the outer periphery of the engaging claw 4. Is formed.
[0025]
A conical portion 45a formed at the lower end portion of the operating rod 45 is inserted on the inner periphery of the engaging claw 44, and a taper receiving portion 44b that contacts the conical portion 45a is formed. By pushing down, each engaging claw 44 is configured to expand radially outward via the taper receiving portion 44b.
[0026]
6 is a cross-sectional view taken along the line VI-VI in FIG. 5, and the engaging claw 44 is divided into, for example, four parts.
[0027]
[Action]
Engine cooling water discharged from a water pump (not shown) installed in the engine is supplied to a cooling water jacket in the cylinder, and after cooling the inside of the cylinder, the cooling water jacket 5 of the cylinder head 1 shown in FIG. And is supplied to the annular space 21 through the cooling water passage 22, and from the annular space 21 through some of the communication holes 33 to the swimsuit portion. 31 and indirectly cools the lower half of the injection valve chip 15.
[0028]
In FIG. 2, between the inner peripheral surface of the swimsuit portion forming portion 7 a of the nozzle sleeve 7 and the outer peripheral surface of the injection valve chip 15, a spacer 35 having good thermal conductivity that is in close contact with both surfaces is disposed. Even with the indirect cooling structure, the injection valve chip 15 can be efficiently cooled.
[0029]
As shown in FIG. 3, eight communication holes 33 are formed, and the total flow cross-sectional area of half (four) of the communication holes 33 is equal to or larger than the flow cross-sectional area of the water robe portion 31. A sufficient amount of outflow from the swimsuit portion 31 can be ensured, whereby the cooling water in the swimsuit portion 31 is quickly replaced, and the injection valve chip 15 is efficiently cooled.
[0030]
[Removal method]
In FIG. 1, when removing the fuel injection valve 4, the fuel high-pressure pipe 55 is removed from the fuel injection valve 4, the nut 19 of the presser fitting 16 is removed, and the fuel injection valve 4 is pulled upward from the valve mounting hole 3. At this time, even if cooling water remains in the swimsuit portion 31 of the nozzle sleeve 7, it does not leak into the combustion chamber 2.
[0031]
Even when the fuel injection valve 4 is pulled out, the spacer 35 is left behind in the nozzle sleeve 7, so the spacer 35 is pulled upward using the disassembling tool for extraction shown in FIG. 4. That is, the extraction tube 41 is inserted into the guide hole 51 of the fixed base 50 fixed to the cylinder head 1, the engaging claw 44 and the alignment member 42 are inserted into the nozzle sleeve 7, and the alignment member 42 performs centering. Then, the engaging claw 44 is protruded downward from the spacer 35.
[0032]
Next, the operating bolt 48 at the upper end is rotated to push down the operating rod 45, whereby the engaging claw 44 is expanded by the wedge action of the lower end conical portion 45a of FIG. 5, and the step surface 44a is engaged with the lower end of the spacer 35. Combine.
[0033]
Then, by rotating the jack nut 47 in FIG. 4 in contact with the fixed base 50, the pulling tube 41 is gradually pulled up, and the spacer 35 is pulled out from the nozzle sleeve 7. Therefore, the spacer 35 can be pulled out without disassembling the cylinder head 1.
[0034]
[Mounting method]
In FIG. 2, when the fuel injection valve 4 is attached, a new spacer presser 37 and a new spacer 35 are sequentially fitted on the outer periphery of the injection valve chip 15, and the spacer 35 and the spacer are fitted by an interference fitting action of the spacer 35. The presser foot 37 is held so as not to fall off.
[0035]
In FIG. 1, the fuel injection valve 4 equipped with the spacer presser 37 and the spacer 35 as described above is inserted into the valve mounting hole 3 and pressed from above by the presser fitting 16. At this time, the spacer presser 37 is compressed in the vertical direction by its elastic force, and the spacer 35 is pressed downward, and both the inner and outer surfaces of the spacer 35 are connected to the outer peripheral surface of the injection valve chip 15 and the swimsuit portion of the nozzle sleeve 7. It is made to contact | adhere to the internal peripheral surface of the formation part 7a.
[0036]
[Other Embodiments]
(1) FIG. 7 is an example in which fins 60 are formed in the swimsuit part 31 in order to expand the heat transfer area of the swimsuit part 31, and FIG. 8 is an example in which the groove 61 is formed in the swimsuit part 31. . When the fin 60 or the groove 61 is formed in a spiral shape, the flow of the cooling water can be rectified in a spiral shape, the flow velocity can be increased, and the heat exchange rate can be improved.
[0037]
(2) FIG. 9 shows a structure in which every other communication hole 33 is inclined so as to face the tangential direction of the water robe portion 31, thereby generating a swirl flow in the water robe portion 31 and improving the cooling efficiency. It is.
[0038]
(3) FIG. 10 is a modified example of the spacer, and a pair of inner and outer spacers 65 and 66 arranged in an upside down direction are connected to the water robe forming portion 7 a of the nozzle sleeve 7 and the injection valve chip 15. It is an example intervening in between. The inner spacer 65 is formed in a taper having a smaller diameter as the outer peripheral surface goes downward, and the outer spacer 66 is formed in a taper having a smaller diameter as the inner peripheral surface goes downward. The tapered surfaces of the spacers 65 and 66 are in contact with each other. By using the pair of spacers 65 and 66 that are tapered to each other in this way, both the outer peripheral surface of the injection valve chip 15 and the inner peripheral surface of the nozzle sleeve 7 can be straightened.
[0039]
(4) Although copper is used as the spacer 35 in the above embodiment, other metals or resins having good thermal conductivity and good conformability (adhesiveness) can be used.
[0040]
(5) In FIG. 2, the outer peripheral surface of the spacer 35 and the inner peripheral surface of the water robe forming portion 7a of the nozzle sleeve 7 are taper-fitted, but in addition to this, the inner peripheral surface of the spacer 35 and the injection valve The outer peripheral surface of the chip 15 may be tapered so that the diameter decreases as it goes downward.
[0041]
(6) A tool engagement hole may be formed in the spacer 35, and a claw of the disassembling tool may be engaged and removed from the engagement hole.
[0042]
【The invention's effect】
As explained above, according to the present invention,
(1) In a fuel injection valve of an internal combustion engine in which an injection valve chip 15 having an injection hole 25 and a fuel passage 26 is fitted and supported in the mounting hole 3 of the cylinder head 1 via the nozzle sleeve 7, A water robe portion 31 for indirectly cooling the injection valve chip 15 is formed, and the water robe portion 31 communicates with the cooling water jacket 5 in the cylinder head 1 to cool the injection valve chip 15 using engine cooling water. Therefore, as in the conventional example of FIG. 11, it is not necessary to provide equipment such as a cooling pipe, a cooler and a pump dedicated to the injection valve chip separately from the circulation path of the engine cooling water. As well as part costs.
[0043]
(2) Since the piping and joints dedicated for cooling the injection valve tip are not required, the structure around the injection valve is simplified, and the fuel injection valve can be easily disassembled and assembled.
[0044]
(3) Since it is not necessary to form the cooling water chamber and the cooling water passage in the injection valve chip as shown in FIG. 12, the structure of the injection valve chip itself can be simplified.
[0045]
(4) When a spacer 35 having excellent thermal conductivity and good adhesion is interposed between the inner peripheral surface of the nozzle sleeve 7 and the outer peripheral surface of the injection valve chip 15, The heat transfer efficiency between the garment part 31 and the injection valve chip | tip 15 can be improved, and cooling performance can be improved.
[0046]
(5) A slit 35a having a split shape is formed in the spacer 35, and the spacer 35 and the inner peripheral surface of the nozzle sleeve 7 are tapered to have a small diameter on the nozzle hole side in the valve shaft core direction. By pressing the nozzle shaft 7 toward the nozzle hole side in the direction of the valve axis O1, the wedge action of the spacer 35 during assembly can easily increase the adhesion between the nozzle sleeve 7 and the injection valve chip 15 and transfer heat. Efficiency can be increased.
[0047]
(6) The heat transfer efficiency can be further improved by forming the fin 60 or the groove 61 in the swimsuit portion 31.
[0048]
(7) By extending the tip of the spacer 35 on the nozzle axis side in the valve axis direction to the substantially ceiling surface of the combustion chamber 2, it is possible to sufficiently cool the vicinity of the nozzle hole where the temperature rise is large.
[0049]
(8) According to the disassembling tool described in claim 3 , the lower end engaging claw 44 is opened and engaged with the lower end of the spacer 35 by the operation of the operating rod 45. At this time, the spacer 35 can be pulled upward without disassembling the cylinder head 1, and the efficiency of the disassembling work is improved.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a fuel injection valve of an internal combustion engine to which the present invention is applied.
FIG. 2 is an enlarged view of a lower end portion of FIG.
3 is a cross-sectional view taken along the line III-III in FIG.
FIG. 4 is a cross-sectional view of a pull-out disassembling tool showing a state during spacer pull-out work.
FIG. 5 is an enlarged view of a lower end portion of FIG.
6 is a cross-sectional view taken along the line VI-VI in FIG.
FIG. 7 is an enlarged cross-sectional view of a heel showing a modification of the swimsuit part.
FIG. 8 is an enlarged cross-sectional view of a heel showing a modification of the swimsuit part.
FIG. 9 is a horizontal sectional view similar to FIG. 3, showing a modification of the communication hole of the swimsuit portion.
FIG. 10 is an enlarged cross-sectional view of a saddle showing a modification of the spacer.
FIG. 11 is a schematic piping diagram of a conventional example.
FIG. 12 is a cross-sectional view of a conventional fuel injection valve.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Cylinder head 2 Combustion chamber 3 Valve attachment hole 4 Fuel injection valve 5 Cooling water jacket 7 Nozzle sleeve 7a Water robe part formation part 15 Injection valve chip 21 Annular space 22 Cooling water passage 25 Injection hole 26 Annular fuel passage 31 Water robe part 33 Communication Hole 35 Spacer 35a Slit 37 Spacer presser 41 Pull-out tube 42 Alignment member 44 Engaging claw 45 Operation rod 47 Jack nut 48 Operation bolt

Claims (3)

噴口及び燃料通路を有する噴射弁チップを、ノズルスリーブを介してシリンダヘッドの弁取付孔に嵌合支持する内燃機関の燃料噴射弁において、
ノズルスリーブ内に噴射弁チップを間接的に囲む水衣部を形成し、該水衣部をシリンダヘッド内の冷却水ジャケットに連通し、機関冷却水により噴射弁チップを冷却するようにし、
前記ノズルスリーブの内周テーパー面と前記噴射弁チップの外周面の間に、熱伝導性に優れた間座を密着状態で介在させ、
該間座は、縱割り状のスリットを有すると共に、外周面が弁軸芯方向の噴口側が小径となるテーパー状に形成されて前記ノズルスリーブの内周テーパー面にテーパー嵌合し、弁軸芯方向の噴口側へ押え込まれていることを特徴とする内燃機関の燃料噴射弁。
In a fuel injection valve of an internal combustion engine in which an injection valve chip having a nozzle hole and a fuel passage is fitted and supported in a valve mounting hole of a cylinder head via a nozzle sleeve
Forming a swimsuit portion indirectly surrounding the injection valve chip in the nozzle sleeve, communicating the swimsuit portion with a cooling water jacket in the cylinder head, and cooling the injection valve chip with engine cooling water;
Between the inner taper surface of the nozzle sleeve and the outer peripheral surface of the injection valve chip, a spacer having excellent thermal conductivity is interposed in a close contact state,
The spacer has a slit in a split shape, and the outer peripheral surface is formed in a taper shape having a small diameter on the nozzle hole side in the valve shaft core direction, and is taper-fitted to the inner peripheral taper surface of the nozzle sleeve. A fuel injection valve for an internal combustion engine, wherein the fuel injection valve is pressed toward the injection port side in the direction .
前記間座の弁軸芯方向の噴口側の先端を、燃焼室の略天井面まで延設していることを特徴とする請求項1記載の内燃機関の燃料噴射弁。 2. A fuel injection valve for an internal combustion engine according to claim 1, wherein a tip of the spacer in the direction of the valve axis extends toward the substantially ceiling surface of the combustion chamber . 拡張可能な係合爪を先端部に備えた引抜筒と、引抜筒内に筒芯方向移動可能に挿入されると共に上記係合爪に連動連結した操作桿とを備え、操作桿の操作により係合爪を拡張して前記請求項1または2に記載の間座の端縁に係合させるようにしたことを特徴とする内燃機関の燃料噴射弁の分解工具。A pull-out cylinder having an expandable engaging claw at its tip, and an operating rod that is inserted into the extracting cylinder so as to be movable in the cylinder core direction and interlocked with the engaging claw, and is engaged by operating the operating rod. A disassembling tool for a fuel injection valve of an internal combustion engine, wherein the pawl is expanded and engaged with the edge of the spacer according to claim 1 or 2.
JP2000260824A 2000-08-30 2000-08-30 Fuel injection valve for internal combustion engine and its disassembly tool Expired - Lifetime JP4215380B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000260824A JP4215380B2 (en) 2000-08-30 2000-08-30 Fuel injection valve for internal combustion engine and its disassembly tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000260824A JP4215380B2 (en) 2000-08-30 2000-08-30 Fuel injection valve for internal combustion engine and its disassembly tool

Publications (2)

Publication Number Publication Date
JP2002070686A JP2002070686A (en) 2002-03-08
JP4215380B2 true JP4215380B2 (en) 2009-01-28

Family

ID=18748771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000260824A Expired - Lifetime JP4215380B2 (en) 2000-08-30 2000-08-30 Fuel injection valve for internal combustion engine and its disassembly tool

Country Status (1)

Country Link
JP (1) JP4215380B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3875603B2 (en) * 2002-07-31 2007-01-31 本田技研工業株式会社 Air fuel injection engine
JP4584875B2 (en) * 2006-07-07 2010-11-24 株式会社川崎造船 Fuel injection valve disassembly jig
DE102011001231A1 (en) * 2011-03-11 2012-09-13 Fev Gmbh Sleeve for retaining fuel injector of internal combustion engine of commercial vehicles and inserting receptacle of cylinder head, has edge guide whose outer diameter is smaller than region of another guide for forming cooling passage
DE102016206796A1 (en) * 2016-04-21 2017-10-26 Robert Bosch Gmbh fuel injector
CN110173382B (en) * 2019-04-26 2021-09-10 江苏大学 Oil sprayer cooling system for spray combustion experiment in combustion bomb

Also Published As

Publication number Publication date
JP2002070686A (en) 2002-03-08

Similar Documents

Publication Publication Date Title
JP4909269B2 (en) Piston with cooling channel for internal combustion engines with heat pipe
JP4838848B2 (en) Prefabricated liquid cooled piston
JP2010539416A (en) Pipe fastener
JP4215380B2 (en) Fuel injection valve for internal combustion engine and its disassembly tool
WO2007087184A2 (en) Bolted pre-combustion chamber
JP2003214253A (en) Piston cooling fin
JP2013500425A (en) Method for cooling a piston and cooled piston
KR19990088618A (en) Fuel injection nozzle
US7963461B2 (en) Fuel injection nozzle
JP3872704B2 (en) Fuel injection valve cooling structure
CN101087941A (en) Piston for a combustion engine
CN209672302U (en) A kind of injection boiler spray desuperheating jet pipe and cooling structure
WO2017128510A1 (en) Combined cylinder liner
JP2011163215A (en) Cylinder block for internal combustion engine
CN101949335A (en) Separated cylinder jacket connection structure
CN209856402U (en) Cage type throttle valve
US6672377B2 (en) Oil cooler
JP2018071546A (en) Internal Combustion Engine
JPS6136776Y2 (en)
CN107642430B (en) A kind of combined heat insulated piston stand alone type piston ring supporting body structure
CN207143944U (en) Tubular diesel hammer lower piston with direct-cooled structure
JPS581650Y2 (en) Diesel engine fuel injection valve sleeve fixing device
CN220216678U (en) Combined injection head for die casting machine
CN210135293U (en) Quick-release type split faucet
CN211730250U (en) Printer head heat abstractor is beaten to 3D printer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081028

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081104

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4215380

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141114

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term