EP3445893B1 - Arrangement for the electrolysis of carbon dioxide - Google Patents

Arrangement for the electrolysis of carbon dioxide Download PDF

Info

Publication number
EP3445893B1
EP3445893B1 EP17724054.6A EP17724054A EP3445893B1 EP 3445893 B1 EP3445893 B1 EP 3445893B1 EP 17724054 A EP17724054 A EP 17724054A EP 3445893 B1 EP3445893 B1 EP 3445893B1
Authority
EP
European Patent Office
Prior art keywords
arrangement
gas
cathode
space
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17724054.6A
Other languages
German (de)
French (fr)
Other versions
EP3445893A1 (en
Inventor
Philippe Jeanty
Erhard Magori
Christian Scherer
Angelika Tawil
Kerstin WIESNER-FLEISCHNER
Oliver von Sicard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to PL17724054T priority Critical patent/PL3445893T3/en
Publication of EP3445893A1 publication Critical patent/EP3445893A1/en
Application granted granted Critical
Publication of EP3445893B1 publication Critical patent/EP3445893B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/25Reduction
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms

Definitions

  • the invention relates to an arrangement for carbon dioxide electrolysis according to the preamble of claim 1.
  • CO2 is a strongly bound molecule and can therefore be reduced to usable products only with difficulty.
  • CO2 is converted to carbohydrates by photosynthesis. This complex process is very difficult to replicate on an industrial scale.
  • the electrochemical reduction of CO2 is currently a technically feasible way.
  • the carbon dioxide is converted into an energetically higher-quality product such as CO, CH4, C2H4 or C1-C4 alcohols by supplying electrical energy.
  • the electrical energy in turn comes preferably from renewable energy sources such as wind power or photovoltaics.
  • Metals are generally used as catalysts for the electrolysis of CO2.
  • the type of metal influences the products of electrolysis.
  • CO2 is reduced almost exclusively to CO on Ag, Au, Zn, and with restrictions on Pd, Ga, whereas a large number of hydrocarbons can be observed as reduction products on copper.
  • a gas diffusion electrode (GDE) can be used as a cathode, similar to chlorine-alkali electrolysis, to establish a three-phase boundary between the liquid electrolyte, the gaseous CO2 and the solid silver particles.
  • GDE gas diffusion electrode
  • An electrolysis cell as is also known from fuel cell technology, is used with two electrolyte chambers, the electrolyte chambers being separated by an ion exchange membrane.
  • the working electrode is a porous gas diffusion electrode. It comprises a metal mesh on which a mixture of PTFE, activated carbon, a catalyst and other components is applied. It comprises a pore system into which the reactants penetrate and react at the three-phase interfaces.
  • the counter electrode is a sheet loaded with platinum or an iridium mixed oxide.
  • the GDE is in contact with the electrolyte on one side. On the other hand, it is supplied with CO2, which is pressed through with excess pressure by the GDE (so-called convective mode of operation).
  • the GDE can contain various metals and metal compounds that have a catalytic effect on the process.
  • the functionality of a GDE is, for example, from the EP 297377 A2 , of the EP 2444526 A2 and the EP 2410079 A2 known.
  • the resulting product in carbon dioxide electrolysis is gaseous and not liquid.
  • the CO2 used forms salts with the alkali metal or alkaline earth metal hydroxide formed from the electrolyte.
  • KOH is formed and the salts KHCO3 and K2CO3 are formed. Because of of the operating conditions, the salts in and on the GDE crystallize from the gas side.
  • the arrangement according to the invention for carbon dioxide electrolysis comprises an electrolytic cell with an anode and a cathode, the anode and cathode being connected to a voltage supply, the cathode being designed as a gas diffusion electrode to which a gas space is attached on a first side and a gas space on a second side Connects to the cathode compartment, an electrolyte circuit connected to the electrolytic cell, for supplying an anode compartment and the cathode compartment with a liquid electrolyte, and a gas supply for supplying gas containing carbon dioxide into the gas compartment.
  • the gas space has an outlet for electrolyte, carbon dioxide and product gases from the electrolysis and the outlet is connected to the electrolyte circuit via a throttle, the throttle being designed, a definable pressure difference between the gas space and cathode space when a mixture of product gases and liquid electrolyte flows through to effect.
  • the structure of an electrolysis cell 11 shown schematically in FIG. 1 is typically suitable for carrying out a carbon dioxide electrolysis.
  • the embodiment of the electrolytic cell 11 comprises at least one anode 13 with adjacent anode space 12 and a cathode 15 and an adjacent cathode space 14.
  • Anode space 12 and cathode space 14 are separated from one another by a membrane 21.
  • the membrane 21 is typically made of a PTFE-based material.
  • a construction without a membrane 21 is also conceivable, in which case a pH compensation goes beyond that of the membrane 21.
  • Anode 13 and cathode 15 are electrically connected to a voltage supply 22, which is controlled by the control unit 23.
  • the control unit 23 can apply a protective voltage or an operating voltage to the electrodes 13, 15, that is to say the anode 13 and the cathode 15.
  • the anode compartment 12 of the electrolytic cell 11 shown is equipped with an electrolyte inlet.
  • the anode space 12 shown includes an outlet for electrolyte and, for example, oxygen O 2 or another gaseous by-product, which is formed on the anode 13 during carbon dioxide electrolysis.
  • the cathode compartment 14 also has at least one product and electrolyte outlet.
  • the total electrolysis product can be composed of a large number of electrolysis products.
  • the electrolysis cell 11 is also designed in a three-chamber structure in which the carbon dioxide CO 2 flows into the cathode space 14 via the cathode 15 designed as a gas diffusion electrode.
  • Gas diffusion electrodes make it possible to bring a solid catalyst, a liquid electrolyte and a gaseous electrolysis adduct into contact with one another.
  • the catalyst can be porous and take over the electrode function, or a porous electrode takes over the catalyst function.
  • the pore system of the electrode is designed such that the liquid and the gaseous phase can penetrate the pore system equally and can be present in it or on its electrically accessible surface at the same time.
  • An example of a gas diffusion electrode is an oxygen depletion electrode used in chlor-alkali electrolysis.
  • the cathode 15 in this example comprises a metal network to which a mixture of PTFE, activated carbon and a catalyst is applied.
  • the electrolytic cell 11 comprises a carbon dioxide inlet 24 in the gas space 16. The carbon dioxide reaches the cathode 15 in the gas space 16 and can penetrate there into the porous structure of the cathode 15 and thus react.
  • the arrangement 10 further comprises an electrolyte circuit 20, via which the anode compartment 12 and the cathode compartment 14 are supplied with a liquid electrolyte, for example K2SO4, KHCO3, KOH, Cs2SO4, and the electrolyte is returned to a reservoir 19.
  • a liquid electrolyte for example K2SO4, KHCO3, KOH, Cs2SO4, and the electrolyte is returned to a reservoir 19.
  • the electrolyte is circulated in the electrolyte circuit 20 by an electrolyte pump 18.
  • the gas space 16 comprises an outlet 25 which is arranged in the floor area.
  • the outlet 25 is designed as an opening with a sufficient cross-section so that both electrolyte that passes through the cathode 15 and carbon dioxide and product gases can get into the connected pipe through the outlet.
  • the outlet 25 leads to an overflow vessel 26.
  • the liquid electrolyte is collected in the overflow vessel 26 and collects. Carbon dioxide and product gases coming from the gas space 16 are separated from the electrolyte and collect above it.
  • a further pipe 28 leads to a pump 27, in this exemplary embodiment a diaphragm pump, and further to the gas supply 17.
  • the pump 27 can also be a piston, stroke, extruder or gear pump.
  • the carbon dioxide and existing product gases are led back from the overflow vessel 26 into the gas supply and thus the gas is partly circulated.
  • the volume flow of the pump 27 is significantly higher than the volume flow of new carbon dioxide.
  • Starting gas, which is not consumed, is advantageously guided past the cathode 15 again and has the opportunity to be reduced one more time or several times. Some of the product gases are also circulated. By repeatedly passing the carbon dioxide past the cathode 15, the efficiency of the conversion is increased.
  • the overflow vessel 26 There is a further connection from the overflow vessel 26 which leads back to the electrolyte circuit 20.
  • This connection begins with an outlet 29, which is arranged on a side wall of the overflow vessel 26, preferably near the bottom, but not in the bottom.
  • the outlet 29 is connected to a throttle 30, which is designed as a vertical tube piece with a length of 90 cm, for example.
  • the diameter of the pipe section is significantly larger than that of the feed lines to the throttle 30.
  • the feed line has, for example, an inner diameter of 4 mm, the pipe section has an inner diameter of 20 mm.
  • the choke 30 is on the output side, i.e. connected to the electrolyte circuit 20 at the upper end of the pipe section.
  • the throttle 30 produces and maintains a pressure difference between the electrolyte circuit 20 connected at the top and thus also the cathode chamber 14 on the one hand and the overflow vessel 26 and the gas chamber 16 on the other hand.
  • This pressure difference is between 10 and 100 hPa (mbar), ie the gas space 16 remains at only a slight overpressure in relation to the cathode space 14.
  • the throttle 30 produces the pressure difference regardless of whether a liquid or gaseous medium is flowing through or a mixture of them.
  • the differential pressure is set as a function of the height of the pipe section due to the hydrostatic pressure. Will the pipe piece rotatably mounted, the differential pressure of the throttle 30 can be continuously reduced down to almost zero in a horizontal position.
  • the accumulating electrolyte thereby causes an increase in pressure in the gas space 16.
  • this pressure increase is compensated for again by the throttle 30, in that electrolyte and / or gas is returned from the overflow vessel 26 to the electrolyte circuit 20.
  • the pressure difference between the two sides of the cathode 15 thus remains in the desired range between 10 and 100 hPa.
  • the OH - ions passing through the cathode 15 cause salt formation together with the carbon dioxide and the alkali metal ions from the electrolyte, but the differential pressure at the cathode 15 is so low that sufficient liquid is flushed through the cathode 15 and the salt formed in Bring solution, wash off permanently and transported from the gas space 16 into the overflow vessel 26. A further increase in pressure, which would lead to crystallization of the salt formed, is prevented by the throttle 30.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Automation & Control Theory (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Description

Die Erfindung betrifft eine Anordnung für die Kohlendioxid-Elektrolyse gemäß dem Oberbegriff von Anspruch 1.The invention relates to an arrangement for carbon dioxide electrolysis according to the preamble of claim 1.

Durch die Verbrennung von fossilen Brennstoffen wird momentan etwa 80% des weltweiten Energiebedarfs gedeckt. Durch diese Verbrennungsprozesse wurden im Jahr 2011 weltweit circa 34000 Millionen Tonnen Kohlendioxid (CO2) in die Atmosphäre emittiert. Diese Freisetzung ist der einfachste Weg, auch große Mengen an CO2 (große Braunkohlekraftwerke über 50000 t pro Tag) zu entsorgen.The burning of fossil fuels currently covers around 80% of the world's energy needs. As a result of these combustion processes, around 34,000 million tons of carbon dioxide (CO2) were emitted into the atmosphere in 2011. This release is the easiest way to dispose of large amounts of CO2 (large lignite-fired power plants over 50,000 t per day).

Die Diskussion über die negativen Auswirkungen des Treibhausgases CO2 auf das Klima hat dazu geführt, dass über eine Wiederverwertung von CO2 nachgedacht wird. CO2 ist ein stark gebundenes Molekül und kann daher nur schwer wieder zu brauchbaren Produkten reduziert werden.The discussion about the negative effects of the greenhouse gas CO2 on the climate has led to the consideration of a recycling of CO2. CO2 is a strongly bound molecule and can therefore be reduced to usable products only with difficulty.

In der Natur wird das CO2 durch Photosynthese zu Kohlenhydraten umgesetzt. Dieser komplexe Prozess ist nur sehr schwer großtechnisch nachbildbar. Einen momentan technisch gangbaren Weg stellt die elektrochemische Reduktion des CO2 dar. Dabei wird das Kohlendioxid unter Zufuhr von elektrischer Energie in ein energetisch höherwertiges Produkt wie beispielsweise CO, CH4, C2H4 oder C1-C4-Alkohole umgewandelt. Die elektrische Energie wiederum stammt bevorzugt aus regenerativen Energiequellen wie Windkraft oder Photovoltaik.In nature, CO2 is converted to carbohydrates by photosynthesis. This complex process is very difficult to replicate on an industrial scale. The electrochemical reduction of CO2 is currently a technically feasible way. The carbon dioxide is converted into an energetically higher-quality product such as CO, CH4, C2H4 or C1-C4 alcohols by supplying electrical energy. The electrical energy in turn comes preferably from renewable energy sources such as wind power or photovoltaics.

Zur Elektrolyse von CO2 werden in der Regel Metalle als Katalysatoren eingesetzt. Die Art des Metalls nimmt Einfluss auf die Produkte der Elektrolyse. So wird CO2 beispielsweise an Ag, Au, Zn, und mit Einschränkungen an Pd, Ga, nahezu ausschließlich zu CO reduziert, wohingegen an Kupfer eine Vielzahl an Kohlenwasserstoffen als Reduktionsprodukte zu beobachten ist. Neben reinen Metallen sind auch Metalllegierungen sowie auch Gemische aus Metall und Metalloxid, das cokatalytisch wirksam ist, von Interesse, da diese die Selektivität eines bestimmten Kohlenwasserstoffes erhöhen können.Metals are generally used as catalysts for the electrolysis of CO2. The type of metal influences the products of electrolysis. For example, CO2 is reduced almost exclusively to CO on Ag, Au, Zn, and with restrictions on Pd, Ga, whereas a large number of hydrocarbons can be observed as reduction products on copper. In addition to pure metals, there are also metal alloys and also mixtures of metal and metal oxide, which is cocatalytically active, of interest, since these can increase the selectivity of a particular hydrocarbon.

Bei der CO2-Elektrolyse kann eine Gasdiffusionselektrode (GDE) als Kathode ähnlich wie bei der Chlor-Alkali-Elektrolyse verwendet werden, um eine Drei-Phasen-Grenze zwischen dem flüssigen Elektrolyten, dem gasförmigen CO2 und den soliden Silber-Partikeln herzustellen. Dabei wird eine Elektrolysezelle, wie auch aus der Brennstoffzellentechnik bekannt, mit zwei Elektrolytkammern verwendet, wobei die Elektrolytkammern durch eine Ionenaustauschmembran getrennt sind.In CO2 electrolysis, a gas diffusion electrode (GDE) can be used as a cathode, similar to chlorine-alkali electrolysis, to establish a three-phase boundary between the liquid electrolyte, the gaseous CO2 and the solid silver particles. An electrolysis cell, as is also known from fuel cell technology, is used with two electrolyte chambers, the electrolyte chambers being separated by an ion exchange membrane.

Die Arbeitselektrode ist eine poröse Gasdiffusionselektrode. Sie umfasst ein Metallnetz, auf das eine Mischung aus PTFE, Aktivkohle, einem Katalysator und weiteren Komponenten aufgebracht ist. Sie umfasst ein Porensystem, in das die Reaktanden eindringen und an den Drei-Phasen-Grenzflächen reagieren.The working electrode is a porous gas diffusion electrode. It comprises a metal mesh on which a mixture of PTFE, activated carbon, a catalyst and other components is applied. It comprises a pore system into which the reactants penetrate and react at the three-phase interfaces.

Die Gegenelektrode ist ein mit Platin oder einem Iridium-Mischoxid beaufschlagtes Blech. Die GDE steht auf der einen Seite mit dem Elektrolyten in Kontakt. Auf der anderen Seite wird sie mit CO2 versorgt, das mit Überdruck durch die GDE durchgepresst wird (sog. konvektive Betriebsweise). Die GDE kann dabei verschiedene Metalle und Metallverbindungen enthalten, die eine katalytische Wirkung auf den Prozess haben. Die Funktionsweise einer GDE ist beispielsweise aus der EP 297377 A2 , der EP 2444526 A2 und der EP 2410079 A2 bekannt.The counter electrode is a sheet loaded with platinum or an iridium mixed oxide. The GDE is in contact with the electrolyte on one side. On the other hand, it is supplied with CO2, which is pressed through with excess pressure by the GDE (so-called convective mode of operation). The GDE can contain various metals and metal compounds that have a catalytic effect on the process. The functionality of a GDE is, for example, from the EP 297377 A2 , of the EP 2444526 A2 and the EP 2410079 A2 known.

Im Unterschied zur Chlor-Alkali-Elektrolyse und zur Brennstoffzellentechnik ist das entstehende Produkt bei der Kohlendioxid-Elektrolyse gasförmig und nicht flüssig. Weiterhin bildet das eingesetzte CO2 mit dem aus dem Elektrolyten entstehenden Alkali- oder Erdalkalihydroxid Salze. Beispielsweise wird bei Verwendung von Kaliumsalzen als Elektrolyten KOH gebildet und es entstehen die Salze KHCO3 und K2CO3. Aufgrund der Betriebsbedingungen kommt es zu einer Auskristallisierung der Salze in und auf der GDE von der Gasseite aus.In contrast to chlor-alkali electrolysis and fuel cell technology, the resulting product in carbon dioxide electrolysis is gaseous and not liquid. Furthermore, the CO2 used forms salts with the alkali metal or alkaline earth metal hydroxide formed from the electrolyte. For example, when using potassium salts as electrolytes, KOH is formed and the salts KHCO3 and K2CO3 are formed. Because of of the operating conditions, the salts in and on the GDE crystallize from the gas side.

Die elektrochemische Umsetzung von CO2 an Silberelektroden erfolgt nach der folgenden Gleichung:

        Kathode: CO2 + 2e- + H2O → CO + 2OH-

mit der Gegenreaktion

        Anode: 6H2O → O2 + 4e- + 4H3O+

The electrochemical conversion of CO2 on silver electrodes takes place according to the following equation:

Cathode: CO2 + 2e- + H2O → CO + 2OH-

with the backlash

Anode: 6H2O → O2 + 4e- + 4H3O +

Aufgrund der elektrochemischen Bedingungen erfolgt der Ladungsausgleich der chemischen Gleichungen nicht einheitlich mit H3O+ oder OH-. Trotz saurem Elektrolyt kommt es an der GDE zu lokal basischen pH-Werten. Zum Betreiben einer alkalischen Brennstoffzellentechnik muss der eingeleitete Sauerstoff CO2-frei sein, da sich ansonsten KHCO/K2CO3 gemäß folgenden Gleichungen bilden würde:

        CO2 + KOH → KHCO3

        CO2 + 2KOH → K2CO3 + H2O

Due to the electrochemical conditions, the charge balance of the chemical equations is not uniform with H3O + or OH-. Despite the acidic electrolyte, locally basic pH values occur at the GDE. To operate an alkaline fuel cell technology, the oxygen introduced must be CO2-free, otherwise KHCO / K2CO3 would form according to the following equations:

CO2 + KOH → KHCO3

CO2 + 2KOH → K2CO3 + H2O

Der gleiche Vorgang ist nun auch bei der CO2-Elektrolyse zu beobachten, mit dem Unterschied, dass das eingespeiste Gas nicht CO2-frei sein kann. Als Folge davon kristallisiert nach endlicher Zeit (abhängig von der Stromdichte) Salz in und auf der GDE von der Gasseite aus und verstopft die Poren der GDE. Der Gasdruck steigt, die GDE wird stark belastet und reißt ab einem bestimmten Druck. Zudem werden die für den Prozess nötigen Kaliumionen dem Prozess entzogen und der Gasraum allmählich mit Salz gefüllt. Ein analoger Prozess ist mit anderen Alkali-/Erdalkalimetallen, beispielsweise Cäsium, zu beobachten.The same process can now be observed for CO2 electrolysis, with the difference that the gas fed in cannot be CO2-free. As a result, after a finite time (depending on the current density), salt crystallizes in and on the GDE from the gas side and clogs the pores of the GDE. The gas pressure rises, the GDE is heavily loaded and breaks at a certain pressure. In addition, the potassium ions required for the process are withdrawn from the process and the gas space is gradually filled with salt. An analogous process can be observed with other alkali / alkaline earth metals, for example cesium.

Ein stabiler Langzeitbetrieb der Gasdiffusionselektrode im Bereich von mehr als 1000 h ist bei der CO2-Elektrolyse nicht möglich, da das entstehende Salz die Poren der GDE verstopft und diese somit gasundurchlässig wird.Stable long-term operation of the gas diffusion electrode in the range of more than 1000 h is not possible with CO2 electrolysis, since the salt formed clogs the pores of the GDE, making it gas-impermeable.

US 2014/291163 A1 , US 2013/186771 A1 , DE 10 2013 226357 A1 und DE 10 2013 105605 A1 offenbaren weitere Verfahren und Vorrichtungen für die CO2 Elektrolyse. US 2014/291163 A1 , US 2013/186771 A1 , DE 10 2013 226357 A1 and DE 10 2013 105605 A1 disclose further processes and devices for CO2 electrolysis.

Es ist Aufgabe der vorliegenden Erfindung, eine verbesserte Anordnung für die Kohlendioxid-Elektrolyse anzugeben, mit der ein stabiler Langzeitbetrieb unter Vermeidung der eingangs erwähnten Nachteile ermöglicht wird.It is an object of the present invention to provide an improved arrangement for carbon dioxide electrolysis, with which stable long-term operation is possible while avoiding the disadvantages mentioned at the outset.

Diese Aufgabe wird durch eine Anordnung mit den Merkmalen von Anspruch 1 gelöst. Die Unteransprüche betreffen vorteilhafte Ausgestaltungen der Anordnung.This object is achieved by an arrangement with the features of claim 1. The subclaims relate to advantageous configurations of the arrangement.

Die erfindungsgemäße Anordnung für die Kohlendioxid-Elektrolyse umfasst eine Elektrolysezelle mit einer Anode und einer Kathode, wobei Anode und Kathode mit einer Spannungsversorgung verbunden sind, wobei die Kathode als Gasdiffusionselektrode gestaltet ist, an die auf einer ersten Seite ein Gasraum und auf einer zweiten Seite ein Kathodenraum anschließt, einen an die Elektrolysezelle anschließenden Elektrolyt-Kreislauf, zur Versorgung eines Anodenraums und des Kathodenraums mit einem flüssigen Elektrolyten, und eine Gaszuführung zur Zuführung von kohlendioxidhaltigem Gas in den Gasraum.The arrangement according to the invention for carbon dioxide electrolysis comprises an electrolytic cell with an anode and a cathode, the anode and cathode being connected to a voltage supply, the cathode being designed as a gas diffusion electrode to which a gas space is attached on a first side and a gas space on a second side Connects to the cathode compartment, an electrolyte circuit connected to the electrolytic cell, for supplying an anode compartment and the cathode compartment with a liquid electrolyte, and a gas supply for supplying gas containing carbon dioxide into the gas compartment.

Weiterhin weist der Gasraum einen Auslass für Elektrolyt, Kohlendioxid und Produktgase der Elektrolyse auf und der Auslass ist über eine Drossel mit dem Elektrolytkreislauf verbunden, wobei die Drossel ausgestaltet ist, eine festlegbare Druckdifferenz zwischen Gasraum und Kathodenraum bei Durchfluss von einem Gemisch aus Produktgasen und flüssigem Elektrolyt zu bewirken.Furthermore, the gas space has an outlet for electrolyte, carbon dioxide and product gases from the electrolysis and the outlet is connected to the electrolyte circuit via a throttle, the throttle being designed, a definable pressure difference between the gas space and cathode space when a mixture of product gases and liquid electrolyte flows through to effect.

Somit wird eine Kohlendioxid-Elektrolyse-Anlage geschaffen, die im "flow-by"-Modus arbeitet. Das Kohlendioxid wird dabei nicht durch die Kathode, also die Gasdiffusionselektrode, auf die Katholytseite durchgepresst ("flow-through"), sondern an dieser im Gasraum vorbeigeführt. Die Druckdifferenz zwischen Kathodenraum und Gasraum ist beim flow-by-Betrieb gering. Um aber einerseits genügend Elektrolyt durch die Kathode strömen zu lassen, um eine Versalzung zu verhindern und andererseits auch die Bildung eines Flüssigkeitsfilms auf der Gasraumseite der Kathode zu vermeiden, wird eine Druckdifferenz mittels der Drossel erzeugt und gehalten.This creates a carbon dioxide electrolysis plant that works in "flow-by" mode. The carbon dioxide is not pressed through the cathode, that is to say the gas diffusion electrode, onto the catholyte side ("flow-through"), but is guided past it in the gas space. The pressure difference between the cathode compartment and the gas compartment is low in flow-by operation. However, in order to allow enough electrolyte to flow through the cathode on the one hand to prevent salinization and on the other hand also to form a liquid film on the gas space side to avoid the cathode, a pressure difference is generated and maintained by means of the throttle.

Vorteilhafte Ausgestaltungen der erfindungsgemäßen Einrichtung gehen aus den von Anspruch 1 abhängigen Ansprüchen hervor. Dabei kann die Ausführungsform nach Anspruch 1 mit den Merkmalen eines der Unteransprüche oder vorzugsweise auch mit denen aus mehreren Unteransprüchen kombiniert werden. Demgemäß können für die Anordnung noch zusätzlich folgende Merkmale vorgesehen werden:

  • Die Drossel kann ein in einem Winkel von zwischen 0° und 80° zur Senkrechten angeordnetes Rohr umfassen. In einer Ausgestaltung umfasst die Drossel ein senkrecht stehendes Rohr. Das Rohr weist bevorzugt eine Länge von zwischen 60 cm und 140 cm, insbesondere zwischen 90 cm und 110 cm auf.
  • Das Rohr kann drehbar angeordnet sein. Dadurch lässt sich die absolute Höhe, die das Rohr überbrückt, verändern. Dadurch wiederum wird die vom Rohr bewirkte Druckdifferenz verändert. Somit lässt sich also eine gewünschte Druckdifferenz zwischen Gasraum und Kathodenraum durch eine Drehung des Rohrs einstellen. Die maximale Druckdifferenz besteht, wenn das Rohr senkrecht steht. Ist das Rohr in die Waagrechte gedreht, ist die Druckdifferenz nahe Null.
  • Das Rohr weist einen Innendurchmesser auf, der wenigstens dem doppelten Innendurchmesser der sonstigen Verbindung zwischen Gasraum und Elektrolytkreislauf entspricht. Insbesondere beträgt der Innendurchmesser das Fünffache vom Innendurchmesser der sonstigen Verbindung. Der Innendurchmesser beträgt bevorzugt weniger als das Zehnfache des Innendurchmessers der sonstigen Verbindung. Bei dem Rohr sorgt die Länge für den Betrag des hydrostatischen Drucks, die Querschnittserweiterung ermöglicht aber erst, dass sich die Flüssigkeit in diesem Rohrbereich auch hält. Dabei wird davon ausgegangen, dass die weiteren Rohrverbindungen, also insbesondere ein sonstiger Teil der Verbindung zwischen Gasraum und Elektrolytkreislauf, speziell zwischen Überlaufbehälter und Elektrolytreservoir, mit einem möglichst geringen Querschnitt realisiert ist, um einen schnellen Durchfluss zu bewirken. Durch den größeren Querschnitt des Rohrs wird die Pfropfenströmung (Flüssigpfropfen im Gasstrom) aufgerissen und die Gasblasen werden befreit.
  • Der Auslass ist bevorzugt im Gasraum bodenseitig angeordnet. Dadurch kann der Elektrolyt, der vom Kathodenraum k in den Gasraum tritt und an der Kathode zum Boden des Gasraums abläuft, problemlos aus dem Gasraum herausgeführt werden.
  • Der Auslass kann über eine Rückverbindung mit der Gaszuführung verbunden sein.
  • Es kann eine Pumpvorrichtung zur Zirkulation von Kohlendioxid und Produktgas in dem Kreislauf, der aus dem Gasraum und der Rückverbindung gebildet ist, vorhanden sein.
  • Der Auslass ist zweckmäßig mit einem Überlaufbehälter verbunden. Der Auslass und ein ggfs. anschließendes Rohr führen Elektrolyt und Kohlendioxid und Produktgase. Für die weitere Arbeit der Elektrolysezelle müssen Gase und Elektrolyt aufgeteilt werden, was durch das Einleiten in den Überlaufbehälter geschieht. Am Boden des Überlaufbehälters sammelt sich der Elektrolyt und im Bereich über dem Elektrolyt das Kohlendioxid und ggfs. Produktgase. Zweckmäßig schließt die Rückverbindung zur Gaszuführung im oberen Bereich des Überlaufbehälters an, so dass das Kohlendioxid ohne Elektrolyt rückgeführt werden kann. Die Führung von Elektrolyt zum Überlaufbehälter erfolgt bevorzugt schwerkraftgetrieben.
  • Der Überlaufbehälter kann separat vom Gasraum aufgebaut sein und beispielsweise über eine Rohrverbindung verbunden. Der Überlaufbehälter kann auch in den Gasraum integriert sein.
  • Der Überlaufbehälter kann über eine Drossel mit dem Elektrolytkreislauf verbunden sein, wobei die Drossel ausgestaltet ist, eine festlegbare Druckdifferenz zwischen Gasraum und Kathodenraum zu bewirken. Die Druckdifferenz soll dabei nicht abhängig davon sein, ob Gas, Elektrolyt oder ein Gemisch davon die Drossel passiert. Hierdurch wird die Druckdifferenz in einem vorbestimmten Bereich gehalten. Dadurch wird ein stetiger Fluss von Elektrolyt durch die Gasdiffusionselektrode in den Gasraum aufrechterhalten, der eine Versalzung verhindert, andererseits der Fluss des Elektrolyten aber begrenzt, um die Bedeckung der Gasdiffusionselektrode mit einem Flüssigkeitsfilm zu verhindern, der die Effizienz der Elektrolyse verringern würde. Die Drossel kann beispielsweise auf einer mittleren Höhe im Überlaufbehälter angeordnet sein. Sobald der Flüssigkeitsspiegel im Überlaufbehälter diese mittlere Höhe erreicht, wird der Elektrolyt durch die Drossel abtransportiert. Der Flüssigkeitsspiegel im Überlaufbehälter wird somit konstant auf der mittleren Höhe gehalten.
  • Ein erster Drucksensor kann im Gasraum vorhanden sein. Dieser gibt ein Drucksignal beispielsweise an eine Steuerungseinrichtung zur Ansteuerung der Absperreinrichtung. Ein zweiter Drucksensor kann im Kathodenraum angeordnet sein. Dieser kann ebenfalls ein Drucksignal an die Steuerungseinrichtung geben. Aus den beiden Drucksignalen kann die Steuerungseinrichtung die Druckdifferenz bestimmen.
  • Alternativ kann ein Differenzdrucksensor für Gasraum und Kathodenraum vorhanden sein. Dieser gibt direkt ein Signal für die Druckdifferenz an eine Steuerungseinrichtung.
  • Die Druckdifferenz zwischen Gasraum und Kathodenraum wird bevorzugt zwischen 10 und 100 hPa gehalten. Diese leichte Druckerhöhung gasseitig lässt noch einen ausreichend guten Durchtritt des Elektrolyten durch die Gasdiffusionselektrode zu, wäscht also die Salze gut ab, und verlagert gleichzeitig die Drei-Phasen-Grenze etwas in die Gasdiffusionselektrode hinein. Es wird somit ein modifizierter flow-by Betrieb verwendet, in dem das Eduktgas leicht in die Gasdiffusionselektrode gedrückt wird. Dadurch erhöht sich die Ausbeute an Produktgas, beispielsweise Kohlenmonoxid.
  • Der Gasraum kann Turbulenzpromotoren umfassen. Die Elektrolyse findet im flow-by-Betrieb statt, d.h. das Kohlendioxid wird an der Gasdiffusionselektrode vorbeigeleitet und nicht durch diese hindurchgepresst. Ohne zusätzliche Einbauten bildet sich somit eine laminare Strömung aus, bei der an der Oberfläche der Gasdiffusionselektrode die Gasgeschwindigkeit sehr gering ist. Der Gasraum wird daher vorteilhaft so umgestaltet, dass das einströmende Gas verwirbelt wird und somit der Strömungsfilm an der Oberfläche der Kathode abreißt. Dadurch kommt es zu einem besseren Eindringen des Kohlendioxids in die Gasdiffusionselektrode und somit zu einer besseren Ausbeute an Produktgas, beispielsweise CO. Turbulenzpromotoren können beispielsweise umfassen: Strömungskanal, Strömungsbrecher, Reduzierung des Querschnitts.
  • Die Turbulenzpromotoren können so gestaltet sein, dass zwischen ihnen und der Oberfläche der Kathode ein Luftspalt von zwischen 0,1 mm und 5 mm verbleibt. Dadurch wird vorteilhaft erreicht, dass durch die Gasdiffusionselektrode tretender Elektrolyt nicht die Turbulenzpromotoren benetzt und dort festgehalten wird. Das wiederum würde zu einem verringerten Fluss von Kohlendioxid führen und die Effizienz der Elektrolyse insgesamt stark schädigen. Der Luftspalt schafft aber einen Abstand der Turbulenzpromotoren von der Oberfläche der Gasdiffusionselektrode, so dass der Elektrolyt ablaufen kann und sich bodenseitig im Gasraum sammeln kann. Bevorzugt bestehen aber stützende Verbindungen an mehreren Stellen zwischen den Turbulenzpromotoren und der Gasdiffusionselektrode, wodurch die Gasdiffusionselektrode eine mechanische Festigung erfährt.
  • Die Turbulenzpromotoren können Ablaufkanäle aufweisen, mittels derer der Elektrolyt an den Rand des Gasraums geführt wird.
  • Bevorzugt ist der Volumenstrom der Pumpe deutlich größer als der Feedgasvolumenstrom, d.h. der Volumenstrom an neuem Kohlendioxid. Damit erfolgt zum einen eine höhere Durchströmung des Gasraumes, was wiederum eine turbulentere Strömung zur Folge hat, zum anderen wird dadurch der Umsatz des Kohlendioxids verbessert. Des Weiteren erfolgt ein besserer Abtransport des Überlaufs aus dem Gasraum aufgrund der höheren Gasströmungsgeschwindigkeit.
  • Die Pumpvorrichtung kann im Gasraum angeordnet sein. Beispielsweise kann die Pumpvorrichtung am Eingang zum Gasraum, in den die Gaszuführung mündet, angeordnet sein oder im Bereich des Auslasses. Bei der Pumpvorrichtung kann es sich beispielsweise um eine Membranpumpe handeln, die vorteilhaft chemikalienbeständig ist. Auch andere Pumpentypen kommen in Frage, wie Zahnrad-, Kolben-, Hub- oder Peristalitikpumpen. Der Volumenstrom der Pumpvorrichtung kann beispielsweise 2 l/min bis 5 l/min betragen. Er sollte wenigstens das Zehnfache des Volumenstroms des einströmenden Kohlendioxids sein.
  • Die Pumpvorrichtung kann alternativ in der Rückverbindung angeordnet sein. Mit anderen Worten ist die Pumpvorrichtung außerhalb des Gasraums angeordnet.
Advantageous embodiments of the device according to the invention emerge from the claims dependent on claim 1. The embodiment according to claim 1 can be combined with the features of one of the subclaims or preferably also with those from several subclaims. Accordingly, the following features can also be provided for the arrangement:
  • The throttle can comprise a tube arranged at an angle of between 0 ° and 80 ° to the vertical. In one embodiment, the throttle comprises a vertical tube. The tube preferably has a length of between 60 cm and 140 cm, in particular between 90 cm and 110 cm.
  • The tube can be rotatably arranged. This allows you to change the absolute height that spans the pipe. This in turn changes the pressure difference caused by the pipe. A desired pressure difference between the gas space and the cathode space can thus be set by rotating the tube. The maximum pressure difference is when the pipe is vertical. If the pipe is turned horizontally, the pressure difference is close to zero.
  • The tube has an inner diameter which corresponds to at least twice the inner diameter of the other connection between the gas space and the electrolyte circuit. In particular, the inside diameter is five times the inside diameter of the other connection. The inside diameter is preferably less than ten times the inside diameter of the other connection. In the case of the pipe, the length ensures the amount of hydrostatic pressure, but the widening of the cross-section only enables the liquid to also remain in this pipe area. It is assumed that the other pipe connections, ie in particular, another part of the connection between the gas space and the electrolyte circuit, especially between the overflow tank and the electrolyte reservoir, is realized with the smallest possible cross section in order to achieve a rapid flow. The plug cross-section (liquid plug in the gas stream) is torn open by the larger cross-section of the tube and the gas bubbles are freed.
  • The outlet is preferably arranged on the bottom in the gas space. As a result, the electrolyte which enters the gas space from the cathode space k and runs off at the cathode to the bottom of the gas space can be led out of the gas space without any problems.
  • The outlet can be connected to the gas supply via a return connection.
  • A pump device for circulating carbon dioxide and product gas can be present in the circuit which is formed from the gas space and the return connection.
  • The outlet is expediently connected to an overflow tank. The outlet and a possibly connected pipe carry electrolyte and carbon dioxide and product gases. For the further work of the electrolysis cell, gases and electrolyte must be divided, which is done by introducing them into the overflow tank. The electrolyte collects at the bottom of the overflow tank and, in the area above the electrolyte, the carbon dioxide and possibly product gases. The return connection to the gas supply expediently connects in the upper region of the overflow container, so that the carbon dioxide can be returned without electrolyte. The guidance of electrolyte to the overflow tank is preferably gravity driven.
  • The overflow tank can be constructed separately from the gas space and connected, for example, via a pipe connection. The overflow tank can also be integrated in the gas space.
  • The overflow container can be connected to the electrolyte circuit via a throttle, the throttle being designed to bring about a definable pressure difference between the gas space and the cathode space. The pressure difference should not depend on whether gas, electrolyte or a mixture thereof passes the throttle. As a result, the pressure difference is kept in a predetermined range. This maintains a steady flow of electrolyte through the gas diffusion electrode into the gas space, which prevents salinization, but on the other hand limits the flow of the electrolyte in order to prevent the gas diffusion electrode from being covered with a liquid film which would reduce the efficiency of the electrolysis. The throttle can be arranged, for example, at a medium height in the overflow tank. As soon as the liquid level in the overflow tank reaches this average height, the electrolyte is removed by the throttle. The liquid level in the overflow tank is thus kept constant at the middle level.
  • A first pressure sensor can be present in the gas space. This gives a pressure signal, for example, to a control device for controlling the shut-off device. A second pressure sensor can be arranged in the cathode compartment. This can also give a pressure signal to the control device. The control device can determine the pressure difference from the two pressure signals.
  • Alternatively, a differential pressure sensor for the gas space and cathode space can be provided. This gives a signal for the pressure difference directly to a control device.
  • The pressure difference between the gas space and the cathode space is preferably kept between 10 and 100 hPa. This slight increase in pressure on the gas side still allows the electrolyte to pass sufficiently well through the gas diffusion electrode, that is to say it washes off the salts well and at the same time shifts the three-phase boundary somewhat into the gas diffusion electrode. A modified flow-by operation is thus used, in which the feed gas is slightly pressed into the gas diffusion electrode. This increases the yield of product gas, for example carbon monoxide.
  • The gas space may include turbulence promoters. The electrolysis takes place in flow-by mode, ie the carbon dioxide is directed past the gas diffusion electrode and is not pressed through it. Without additional internals, a laminar flow is formed in which the gas velocity on the surface of the gas diffusion electrode is very low. The gas space is therefore advantageously redesigned such that the inflowing gas is swirled and the flow film on the surface of the cathode is thus torn off. This leads to a better penetration of the carbon dioxide into the gas diffusion electrode and thus to a better yield of product gas, for example CO. Turbulence promoters can include, for example: flow channel, flow breaker, reducing the cross section.
  • The turbulence promoters can be designed such that an air gap of between 0.1 mm and 5 mm remains between them and the surface of the cathode. This advantageously ensures that electrolyte passing through the gas diffusion electrode does not wet the turbulence promoters and is held there. This in turn would lead to a reduced flow of carbon dioxide and severely damage the efficiency of electrolysis as a whole. However, the air gap creates a distance between the turbulence promoters and the surface of the gas diffusion electrode, so that the electrolyte can run off and collect in the gas space on the bottom. However, there are preferably supporting connections at several points between the turbulence promoters and the gas diffusion electrode, as a result of which the gas diffusion electrode is mechanically strengthened.
  • The turbulence promoters can have drainage channels by means of which the electrolyte is led to the edge of the gas space.
  • The volume flow of the pump is preferably significantly larger than the feed gas volume flow, ie the volume flow of new carbon dioxide. On the one hand, this results in a higher flow through the gas space, which in turn results in a more turbulent flow, and on the other hand it improves the conversion of carbon dioxide. Furthermore, the overflow is better removed from the gas space due to the higher gas flow rate.
  • The pump device can be arranged in the gas space. For example, the pump device can be arranged at the entrance to the gas space, into which the gas supply opens, or in the area of the outlet. The pump device can be, for example, a diaphragm pump which is advantageously resistant to chemicals. Other types of pumps are also possible, such as gear, piston, stroke or peristaltic pumps. The volume flow of the pump device can be, for example, 2 l / min to 5 l / min. It should be at least ten times the volume flow of the incoming carbon dioxide.
  • The pump device can alternatively be arranged in the reverse connection. In other words, the pump device is arranged outside the gas space.

Ein bevorzugtes, jedoch keinesfalls einschränkendes Ausführungsbeispiel für die Erfindung wird nunmehr anhand der Figur der Zeichnung näher erläutert. Dabei sind die Merkmale schematisiert dargestellt.A preferred, but in no way limiting, exemplary embodiment of the invention will now be explained in more detail with reference to the figure of the drawing. The features are shown schematically.

Der in Figur 1 schematisch dargestellte Aufbau einer Elektrolysezelle 11 ist typischerweise dazu geeignet, eine Kohlenstoffdioxid-Elektrolyse vorzunehmen. Dabei umfasst die Ausführungsform der Elektrolysezelle 11 wenigstens eine Anode 13 mit angrenzendem Anodenraum 12 sowie eine Kathode 15 und einen angrenzenden Kathodenraum 14. Anodenraum 12 und Kathodenraum 14 sind durch eine Membran 21 voneinander getrennt. Die Membran 21 ist typischerweise aus einem PTFE-basierten Material gefertigt. Je nach verwendeter Elektrolytlösung ist auch ein Aufbau ohne Membran 21 denkbar, bei dem dann ein pH-Wert-Ausgleich über den der Membran 21 hinausgeht.The structure of an electrolysis cell 11 shown schematically in FIG. 1 is typically suitable for carrying out a carbon dioxide electrolysis. The embodiment of the electrolytic cell 11 comprises at least one anode 13 with adjacent anode space 12 and a cathode 15 and an adjacent cathode space 14. Anode space 12 and cathode space 14 are separated from one another by a membrane 21. The membrane 21 is typically made of a PTFE-based material. Depending on the electrolyte solution used, a construction without a membrane 21 is also conceivable, in which case a pH compensation goes beyond that of the membrane 21.

Anode 13 und Kathode 15 sind elektrisch mit einer Spannungsversorgung 22 verbunden, welche durch die Steuereinheit 23 kontrolliert wird. Die Steuereinheit 23 kann eine Schutzspannung oder eine Betriebsspannung an die Elektroden 13, 15, also die Anode 13 und die Kathode 15, anlegen. Der Anodenraum 12 der gezeigten Elektrolysezelle 11 ist mit einem Elektrolyt-Einlass ausgestattet. Ebenso umfasst der abgebildete Anodenraum 12 einen Auslass für Elektrolyt sowie beispielsweise Sauerstoff O2 oder ein anderes gasförmiges Nebenprodukt, das bei der Kohlenstoffdioxid-Elektrolyse an der Anode 13 gebildet wird. Der Kathodenraum 14 weist ebenso jeweils zumindest einen Produkt- und Elektrolytauslass auf. Dabei kann das Gesamt-Elektrolyseprodukt aus einer Vielzahl von Elektrolyseprodukten zusammengesetzt sein.Anode 13 and cathode 15 are electrically connected to a voltage supply 22, which is controlled by the control unit 23. The control unit 23 can apply a protective voltage or an operating voltage to the electrodes 13, 15, that is to say the anode 13 and the cathode 15. The anode compartment 12 of the electrolytic cell 11 shown is equipped with an electrolyte inlet. Likewise, the anode space 12 shown includes an outlet for electrolyte and, for example, oxygen O 2 or another gaseous by-product, which is formed on the anode 13 during carbon dioxide electrolysis. The cathode compartment 14 also has at least one product and electrolyte outlet. The total electrolysis product can be composed of a large number of electrolysis products.

Die Elektrolysezelle 11 ist weiterhin in einem Dreikammer-Aufbau ausgeführt, bei dem das Kohlendioxid CO2 über die als Gasdiffusionselektrode ausgeführte Kathode 15 in den Kathodenraum 14 eingeströmt wird. Gasdiffusionselektroden ermöglichen es, einen festen Katalysator, einen flüssigen Elektrolyten sowie ein gasförmiges Elektrolyseedukt in Kontakt miteinander zu bringen. Dazu kann beispielsweise der Katalysator porös ausgeführt sein und die Elektrodenfunktion übernehmen, oder eine poröse Elektrode übernimmt die Katalysatorfunktion. Das Porensystem der Elektrode ist dabei so ausgeführt, dass die flüssige sowie die gasförmige Phase gleichermaßen in das Porensystem eindringen können und darin beziehungsweise an dessen elektrisch zugängiger Oberfläche gleichzeitig vorliegen können. Ein Beispiel für eine Gasdiffusionselektrode ist eine Sauerstoffverzehrelektrode, die bei der ChloralkaliElektrolyse verwendet wird.The electrolysis cell 11 is also designed in a three-chamber structure in which the carbon dioxide CO 2 flows into the cathode space 14 via the cathode 15 designed as a gas diffusion electrode. Gas diffusion electrodes make it possible to bring a solid catalyst, a liquid electrolyte and a gaseous electrolysis adduct into contact with one another. For this purpose, for example, the catalyst can be porous and take over the electrode function, or a porous electrode takes over the catalyst function. The pore system of the electrode is designed such that the liquid and the gaseous phase can penetrate the pore system equally and can be present in it or on its electrically accessible surface at the same time. An example of a gas diffusion electrode is an oxygen depletion electrode used in chlor-alkali electrolysis.

Zur Ausgestaltung als Gasdiffusionselektrode umfasst die Kathode 15 in diesem Beispiel ein Metallnetz, auf das eine Mischung aus PTFE, Aktivkohle und einem Katalysator aufgebracht ist. Zur Einbringung des Kohlenstoffdioxids CO2 in den Katholytkreislauf umfasst die Elektrolysezelle 11 einen Kohlenstoffdioxideinlass 24 in den Gasraum 16. Das Kohlendioxid erreicht im Gasraum 16 die Kathode 15 und kann dort in die poröse Struktur der Kathode 15 eindringen und so zur Reaktion kommen.To be designed as a gas diffusion electrode, the cathode 15 in this example comprises a metal network to which a mixture of PTFE, activated carbon and a catalyst is applied. To introduce the carbon dioxide CO2 into the catholyte circuit, the electrolytic cell 11 comprises a carbon dioxide inlet 24 in the gas space 16. The carbon dioxide reaches the cathode 15 in the gas space 16 and can penetrate there into the porous structure of the cathode 15 and thus react.

Ferner umfasst die Anordnung 10 einen Elektrolytkreislauf 20, über den der Anodenraum 12 und der Kathodenraum 14 mit einem flüssigen Elektrolyten, beispielsweise K2SO4, KHCO3, KOH, Cs2SO4 versorgt wird und der Elektrolyt in ein Reservoir 19 zurückgeführt wird. Die Umwälzung des Elektrolyten im Elektrolytkreislauf 20 erfolgt durch eine Elektrolyt-Pumpe 18.The arrangement 10 further comprises an electrolyte circuit 20, via which the anode compartment 12 and the cathode compartment 14 are supplied with a liquid electrolyte, for example K2SO4, KHCO3, KOH, Cs2SO4, and the electrolyte is returned to a reservoir 19. The electrolyte is circulated in the electrolyte circuit 20 by an electrolyte pump 18.

Der Gasraum 16 umfasst im vorliegenden Beispiel einen Auslass 25, der im Bodenbereich angeordnet ist. Der Auslass 25 ist als Öffnung mit ausreichendem Querschnitt gestaltet, sodass sowohl Elektrolyt, der durch die Kathode 15 tritt, als auch Kohlendioxid und Produktgase durch den Auslass in das angebundene Rohr gelangen können. Der Auslass 25 führt zu einem Überlaufgefäß 26. Im Überlaufgefäß 26 wird der flüssige Elektrolyt aufgefangen und sammelt sich. Kohlendioxid und Produktgase, die aus dem Gasraum 16 kommen, werden vom Elektrolyten getrennt und sammeln sich oberhalb davon.In the present example, the gas space 16 comprises an outlet 25 which is arranged in the floor area. The outlet 25 is designed as an opening with a sufficient cross-section so that both electrolyte that passes through the cathode 15 and carbon dioxide and product gases can get into the connected pipe through the outlet. The outlet 25 leads to an overflow vessel 26. The liquid electrolyte is collected in the overflow vessel 26 and collects. Carbon dioxide and product gases coming from the gas space 16 are separated from the electrolyte and collect above it.

Von einem oben gelegenen Punkt des Überlaufgefäß 26 führt ein weiteres Rohr 28 zu einer Pumpe 27, in diesem Ausführungsbeispiel einer Membranpumpe, und weiter zur Gaszuführung 17. Die Pumpe 27 kann auch eine Kolben-, Hub-, Extruder- oder Zahnradpumpe sein. Ein Teil der Gaszuführung 17, der Gasraum 16, das Rohr 18 und das Überlaufgefäß 26 zusammen mit seiner Verbindung zum Auslass 25 bilden somit zusammen einen Kreislauf. Mittels der Pumpe 27 werden das Kohlendioxid und vorhandene Produktgase vom Überlaufgefäß 26 zurück in die Gaszuführung geführt und somit das Gas teilweise im Kreis geführt. Dabei ist der Volumenstrom der Pumpe 27 deutlich höher als der Volumenstrom an neuem Kohlendioxid. Eduktgas, das nicht verbraucht ist, wird dadurch vorteilhaft noch einmal an der Kathode 15 vorbeigeführt und hat ein weiteres Mal oder mehrere Male die Gelegenheit, reduziert zu werden. Produktgase werden dabei teilweise ebenfalls im Kreis geführt. Durch das mehrmalige Vorbeiführen des Kohlendioxids an der Kathode 15 wird die Effizienz der Umwandlung erhöht.From an upper point of the overflow vessel 26, a further pipe 28 leads to a pump 27, in this exemplary embodiment a diaphragm pump, and further to the gas supply 17. The pump 27 can also be a piston, stroke, extruder or gear pump. Part of the gas supply 17, the gas space 16, the tube 18 and the overflow vessel 26 together with its connection to the outlet 25 thus together form a circuit. By means of the pump 27, the carbon dioxide and existing product gases are led back from the overflow vessel 26 into the gas supply and thus the gas is partly circulated. The volume flow of the pump 27 is significantly higher than the volume flow of new carbon dioxide. Starting gas, which is not consumed, is advantageously guided past the cathode 15 again and has the opportunity to be reduced one more time or several times. Some of the product gases are also circulated. By repeatedly passing the carbon dioxide past the cathode 15, the efficiency of the conversion is increased.

Vom Überlaufgefäß 26 besteht eine weitere Verbindung, die zum Elektrolytkreislauf 20 zurückführt. Diese Verbindung beginnt mit einem Auslass 29, der an einer Seitenwand des Überlaufgefäßes 26 angeordnet ist, bevorzugt nahe dem Boden, aber nicht im Boden. Der Auslass 29 ist mit einer Drossel 30 verbunden, die als senkrechtes Rohrstück mit einer Länge von beispielsweise 90 cm ausgebildet ist. Dabei ist der Durchmesser des Rohrstücks deutlich größer als derjenige der Zuleitungen zur Drossel 30. Die Zuleitung hat beispielsweise einen Innendurchmesser von 4mm, das Rohrstück hat einen Innendurchmesser von 20mm. Die Drossel 30 ist ausgangsseitig, d.h. am oberen Ende des Rohrstücks mit dem Elektrolytkreislauf 20 verbunden.There is a further connection from the overflow vessel 26 which leads back to the electrolyte circuit 20. This connection begins with an outlet 29, which is arranged on a side wall of the overflow vessel 26, preferably near the bottom, but not in the bottom. The outlet 29 is connected to a throttle 30, which is designed as a vertical tube piece with a length of 90 cm, for example. The diameter of the pipe section is significantly larger than that of the feed lines to the throttle 30. The feed line has, for example, an inner diameter of 4 mm, the pipe section has an inner diameter of 20 mm. The choke 30 is on the output side, i.e. connected to the electrolyte circuit 20 at the upper end of the pipe section.

Im laufenden Betrieb wird durch die Drossel 30 eine Druckdifferenz zwischen dem oberseitig angeschlossenen Elektrolytkreislauf 20 und damit auch dem Kathodenraum 14 einerseits und dem Überlaufgefäß 26 und dem Gasraum 16 andererseits hergestellt und gehalten. Diese Druckdifferenz beträgt zwischen 10 und 100 hPa (mbar), d.h. der Gasraum 16 verbleibt bei einem nur leichten Überdruck gegenüber dem Kathodenraum 14. Wichtig ist dabei, dass die Drossel 30 die Druckdifferenz unabhängig davon herstellt, ob gerade ein flüssiges oder gasförmiges Medium hindurchströmt oder ein Gemisch davon. In dem Rohrstück der Drossel 30, das mit Elektrolyt gefüllt ist, stellt sich abhängig von der Höhe des Rohrstücks aufgrund des hydrostatischen Drucks der Differenzdruck ein. Wird das Rohrstück drehbar gelagert, so kann der Differenzdruck der Drossel 30 stufenlos gesenkt werden, bis auf nahezu Null in waagrechter Stellung.During operation, the throttle 30 produces and maintains a pressure difference between the electrolyte circuit 20 connected at the top and thus also the cathode chamber 14 on the one hand and the overflow vessel 26 and the gas chamber 16 on the other hand. This pressure difference is between 10 and 100 hPa (mbar), ie the gas space 16 remains at only a slight overpressure in relation to the cathode space 14. It is important that the throttle 30 produces the pressure difference regardless of whether a liquid or gaseous medium is flowing through or a mixture of them. In the pipe section of the throttle 30, which is filled with electrolyte, the differential pressure is set as a function of the height of the pipe section due to the hydrostatic pressure. Will the pipe piece rotatably mounted, the differential pressure of the throttle 30 can be continuously reduced down to almost zero in a horizontal position.

Beim Starten der Elektrolyse wird trotz des leichten Überdrucks auf der Gasseite, d.h. im Gasraum 16 aufgrund der anliegenden elektrischen Spannung an der Kathode 15 Elektrolyt aus dem Katholytraum 14 durch die Gasdiffusionselektrode, also die Kathode 15, in Richtung Gasraum 16 "gepumpt". Es entstehen auf der Seite des Gasraums 16 Tropfen an der Oberfläche der Kathode 15, die koaleszieren und sich im unteren Bereich der Kathode 15 in Form sammeln.When starting the electrolysis, despite the slight overpressure on the gas side, i.e. in the gas space 16, due to the electrical voltage applied to the cathode 15, electrolyte from the catholyte space 14 is "pumped" through the gas diffusion electrode, ie the cathode 15, in the direction of the gas space 16. 16 drops are formed on the side of the gas space on the surface of the cathode 15, which coalesce and collect in shape in the lower region of the cathode 15.

Der sich anstauende Elektrolyt verursacht dadurch einen Druckanstieg im Gasraum 16. Dieser Druckanstieg wird jedoch von der Drossel 30 wieder ausgeglichen, indem Elektrolyt und/oder Gas aus dem Überlaufgefäß 26 wieder in den Elektrolytkreislauf 20 zurückgeführt wird. Somit verbleibt die Druckdifferenz zwischen den beiden Seiten der Kathode 15 im gewünschten Bereich zwischen 10 und 100 hPa.The accumulating electrolyte thereby causes an increase in pressure in the gas space 16. However, this pressure increase is compensated for again by the throttle 30, in that electrolyte and / or gas is returned from the overflow vessel 26 to the electrolyte circuit 20. The pressure difference between the two sides of the cathode 15 thus remains in the desired range between 10 and 100 hPa.

Die durch die Kathode 15 tretenden OH--Ionen verursachen zwar zusammen mit dem Kohlendioxid und den Alkalikationen aus dem Elektrolyten eine Salzbildung, allerdings ist der Differenzdruck an der Kathode 15 so gering, das ausreichend Flüssigkeit durch die Kathode 15 gespült wird und das gebildete Salz in Lösung bringt, permanent abwäscht und aus dem Gasraum 16 in das Überlaufgefäß 26 abtransportiert. Ein weiterer Druckanstieg, der zu einer Auskristallisation des gebildeten Salzes führen würde, wird durch die Drossel 30 verhindert.The OH - ions passing through the cathode 15 cause salt formation together with the carbon dioxide and the alkali metal ions from the electrolyte, but the differential pressure at the cathode 15 is so low that sufficient liquid is flushed through the cathode 15 and the salt formed in Bring solution, wash off permanently and transported from the gas space 16 into the overflow vessel 26. A further increase in pressure, which would lead to crystallization of the salt formed, is prevented by the throttle 30.

Claims (14)

  1. Arrangement (10) for carbon dioxide electrolysis, comprising
    - an electrolysis cell (11) having an anode (13) and a cathode (15), where anode (13) and cathode (15) are connected to a voltage supply (22), where the cathode (15) takes the form of a gas diffusion electrode adjoined on a first side by a gas space (16) and on a second side by a cathode space (14),
    - an electrolyte circuit (20) that adjoins the electrolysis cell (11), for supplying an anode space (12) and the cathode space (14) with a liquid electrolyte,
    - a gas supply (17) for supplying carbon dioxide-containing gas to the gas space (16),
    characterized in that
    - the gas space (16) has an outlet (25) for electrolyte, carbon dioxide and product gases from the electrolysis,
    - the outlet (25) is connected via a throttle (30) to the electrolyte circuit (20), where the throttle (30) is configured so as to bring about a definable pressure differential between gas space (16) and cathode space (14) when a mixture of product gases and liquid electrolyte flows through it.
  2. Arrangement (10) according to Claim 1, in which the throttle (30) comprises a pipe arranged at an angle of between 0° and 80° to the vertical.
  3. Arrangement (10) according to Claim 2, in which the pipe is in a vertical arrangement.
  4. Arrangement (10) according to Claim 2, in which the pipe is in a rotatable arrangement.
  5. Arrangement (10) according to any of the preceding Claims 2 to 4, in which the internal diameter of the pipe is at least twice, especially at least five times, the rest of the connection between gas space (16) and electrolyte circuit (20) .
  6. Arrangement (10) according to any of the preceding claims, in which the outlet (25) is connected to the gas supply via a return connection (28).
  7. Arrangement (10) according to Claim 6 having a pump apparatus (27) for circulation of carbon dioxide and product gas in the circuit formed from the gas space (16) and the return connection (28).
  8. Arrangement (10) according to Claim 7, in which the pump apparatus (27) is disposed in the return connection (28).
  9. Arrangement (10) according to Claim 7, in which the pump apparatus (27) is disposed in the gas space (16).
  10. Arrangement (10) according to any of the preceding claims, configured to keep the pressure differential between gas space (16) and cathode space (14) between 10 and 100 hPa.
  11. Arrangement (10) according to any of the preceding claims, in which the outlet (25) in the gas space (16) is disposed at the bottom end.
  12. Arrangement (10) according to any of the preceding claims, in which the outlet (25) is connected to an overflow vessel (26).
  13. Arrangement (10) according to any of the preceding claims, in which the gas space (16) has turbulence promoters.
  14. Arrangement (10) according to Claim 13, in which the turbulence promoters are configured such that an air gap of at least 0.1 mm remains between them and the surface of the cathode (15).
EP17724054.6A 2016-06-30 2017-05-18 Arrangement for the electrolysis of carbon dioxide Active EP3445893B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL17724054T PL3445893T3 (en) 2016-06-30 2017-05-18 Arrangement for the electrolysis of carbon dioxide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016211824.2A DE102016211824A1 (en) 2016-06-30 2016-06-30 Arrangement for the carbon dioxide electrolysis
PCT/EP2017/061924 WO2018001636A1 (en) 2016-06-30 2017-05-18 Arrangement for the electrolysis of carbon dioxide

Publications (2)

Publication Number Publication Date
EP3445893A1 EP3445893A1 (en) 2019-02-27
EP3445893B1 true EP3445893B1 (en) 2020-04-01

Family

ID=58709995

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17724054.6A Active EP3445893B1 (en) 2016-06-30 2017-05-18 Arrangement for the electrolysis of carbon dioxide

Country Status (11)

Country Link
US (1) US20190233957A1 (en)
EP (1) EP3445893B1 (en)
CN (1) CN109415821A (en)
AU (1) AU2017288319B2 (en)
BR (1) BR112018075707A2 (en)
CL (1) CL2018003721A1 (en)
DE (1) DE102016211824A1 (en)
DK (1) DK3445893T3 (en)
ES (1) ES2795698T3 (en)
PL (1) PL3445893T3 (en)
WO (1) WO2018001636A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016211822A1 (en) 2016-06-30 2018-01-04 Siemens Aktiengesellschaft Arrangement and method for carbon dioxide electrolysis
DE102017213471A1 (en) * 2017-08-03 2019-02-07 Siemens Aktiengesellschaft Apparatus and method for the electrochemical use of carbon dioxide
DE102018202344A1 (en) * 2018-02-15 2019-08-22 Siemens Aktiengesellschaft Electrochemical production of carbon monoxide and / or synthesis gas
EP3626861A1 (en) * 2018-09-18 2020-03-25 Covestro Deutschland AG Electrolytic cell, electrolyzer and method for the reduction of co2
DE102018222338A1 (en) * 2018-12-19 2020-06-25 Siemens Aktiengesellschaft Electrolyser for carbon dioxide reduction
JP7203876B2 (en) * 2021-03-04 2023-01-13 本田技研工業株式会社 Electrochemical reactor, method for reducing carbon dioxide, and method for producing carbon compound
JP7203875B2 (en) * 2021-03-04 2023-01-13 本田技研工業株式会社 Electrochemical reactor, method for reducing carbon dioxide, and method for producing carbon compound
CN113373462A (en) * 2021-05-21 2021-09-10 南京理工大学 For electrochemical reduction of CO2Membrane type liquid flow electrolytic cell and testing process
EP4276223A1 (en) * 2022-05-09 2023-11-15 Siemens Energy Global GmbH & Co. KG Carbon dioxide electrolysis operation mode
CN116575058B (en) * 2023-07-13 2023-10-31 上海治臻新能源股份有限公司 Porous diffusion layer and water electrolysis device

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3679565A (en) * 1971-07-27 1972-07-25 Scm Corp Process for electrolytic treatment of liquors using pressure cell with porous electrode means
DE3722019A1 (en) 1987-07-03 1989-01-12 Varta Batterie METHOD FOR PRODUCING A PLASTIC-BONDED GAS DIFFUSION ELECTRODE USING A MANGANOXIDE CATALYST OF THE PRIMARY COMPOSITION MNO (DOWN ARROW) 2 (DOWN ARROW) (DOWN ARROW * DOWN ARROW) 8 (DOWN ARROW) INCLUDED
CN101649464A (en) * 2008-08-11 2010-02-17 浙江工业大学 Carbon dioxide decomposing oxygen generator
DE102010031571A1 (en) 2010-07-20 2012-01-26 Bayer Materialscience Ag Oxygen-consuming electrode
BR112013006922A2 (en) * 2010-09-24 2016-07-12 Det Norske Veritas As method and apparatus for electrochemical reduction of carbon dioxide
DE102010042729A1 (en) 2010-10-21 2012-04-26 Bayer Materialscience Aktiengesellschaft Oxygenated cathode and process for its preparation
CN102181876B (en) * 2011-03-30 2012-12-19 昆明理工大学 Method and device for preparing carbon monoxide through electrochemical catalytic reduction of carbon dioxide
US20140131197A1 (en) * 2011-05-31 2014-05-15 Michio Suzuka Carbon dioxide enrichment device
WO2012166997A2 (en) * 2011-05-31 2012-12-06 Clean Chemistry, Llc Electrochemical reactor and process
WO2013016447A2 (en) * 2011-07-26 2013-01-31 The Board Of Trustees Of The Leland Stanford Junior University Catalysts for low temperature electrolytic co2 reduction
WO2013031065A1 (en) * 2011-08-29 2013-03-07 パナソニック株式会社 Method for reducing carbon dioxide
WO2013178803A1 (en) * 2012-05-31 2013-12-05 Hettich Holding Gmbh & Co. Ohg Process and apparatus for the electrolytic synthesis of methanol and/or methane
DE102013226357A1 (en) * 2013-12-18 2015-06-18 Siemens Aktiengesellschaft Pulsating electrolyte supply into the reaction space of an electrolytic cell with gas-generating electrodes
CN103741164B (en) * 2014-01-03 2016-07-06 南开大学 A kind of electrochemical reduction CO2the preparation method of the gas-diffusion electrode of formic acid processed
CN107406993B (en) * 2014-12-19 2019-06-25 雷普索尔有限公司 Filters pressing optical electro-chemistry water oxygen and CO2Reduction cell

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3445893A1 (en) 2019-02-27
CN109415821A (en) 2019-03-01
US20190233957A1 (en) 2019-08-01
BR112018075707A2 (en) 2019-04-02
AU2017288319B2 (en) 2019-07-25
CL2018003721A1 (en) 2019-02-15
AU2017288319A1 (en) 2018-12-13
DE102016211824A1 (en) 2018-01-18
PL3445893T3 (en) 2020-11-16
WO2018001636A1 (en) 2018-01-04
DK3445893T3 (en) 2020-06-22
ES2795698T3 (en) 2020-11-24

Similar Documents

Publication Publication Date Title
EP3445893B1 (en) Arrangement for the electrolysis of carbon dioxide
EP3478878B1 (en) Arrangement and method for the electrolysis of carbon dioxide
EP3317435B1 (en) Reduction method and electrolysis system for electrochemical carbon dioxide utilization
EP3292232B1 (en) Reduction method for electrochemical carbon dioxide utilization, alkali carbonate preparation and alkali hydrogen carbonate preparation
WO2018001637A1 (en) Arrangement and method for the electrolysis of carbon dioxide
EP0717130B1 (en) Pressure compensated electrochemical cell
EP3626861A1 (en) Electrolytic cell, electrolyzer and method for the reduction of co2
WO2016128323A1 (en) Reduction method and electrolysis system for electrochemical carbon dioxide utilization
DE102013226357A1 (en) Pulsating electrolyte supply into the reaction space of an electrolytic cell with gas-generating electrodes
EP3642392A1 (en) Co2 elektrolyser
DE102016211155A1 (en) Arrangement and method for carbon dioxide electrolysis
WO1997047787A1 (en) Electrochemical half-cell with pressure compensation
WO2019025092A1 (en) Device and method for the electrochemical utilisation of carbon dioxide
WO2019091703A1 (en) Arrangement for the electrolysis of carbon dioxide
DE102016211151A1 (en) Arrangement and method for carbon dioxide electrolysis
DE102016217989A1 (en) Apparatus for the continuous operation of an electrolytic cell with gaseous substrate and gas diffusion electrode
EP3577256A1 (en) Electrodes comprising metal introduced into a solid-state electrolyte
DE975825C (en) Device for carrying out electrochemical processes, in particular for the production of supersulfuric acid and its compounds
EP2652176B1 (en) Electrolyser having a spiral inlet tube
DE102015213947A1 (en) Reduction process for electrochemical carbon dioxide recovery and electrolysis system with anion exchange membrane
WO2023198581A1 (en) Device for reprocessing an electrolyte liquid
DE102007029168A1 (en) Apparatus for generating hydrogen and fuel cell system using the same
DE2323493A1 (en) ELECTROLYSIS DEVICE
WO2020126118A1 (en) Electrolyser for carbon dioxide reduction
DE1197852B (en) Electrolysis cell for the production of alkali chlorate

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20181121

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20191206

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1251427

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200415

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017004528

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG, CH

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20200615

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20200511

Year of fee payment: 4

Ref country code: DK

Payment date: 20200527

Year of fee payment: 4

Ref country code: NL

Payment date: 20200504

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20200531

Year of fee payment: 4

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20200401

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200801

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200817

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200702

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20200824

Year of fee payment: 4

Ref country code: DE

Payment date: 20200720

Year of fee payment: 4

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2795698

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20201124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20200803

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017004528

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20200522

Year of fee payment: 4

26N No opposition filed

Effective date: 20210112

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200601

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502017004528

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20210531

REG Reference to a national code

Ref country code: NO

Ref legal event code: MMEP

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20210601

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210518

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210601

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200518

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1251427

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220518