EP3292232B1 - Reduction method for electrochemical carbon dioxide utilization, alkali carbonate preparation and alkali hydrogen carbonate preparation - Google Patents

Reduction method for electrochemical carbon dioxide utilization, alkali carbonate preparation and alkali hydrogen carbonate preparation Download PDF

Info

Publication number
EP3292232B1
EP3292232B1 EP16733951.4A EP16733951A EP3292232B1 EP 3292232 B1 EP3292232 B1 EP 3292232B1 EP 16733951 A EP16733951 A EP 16733951A EP 3292232 B1 EP3292232 B1 EP 3292232B1
Authority
EP
European Patent Office
Prior art keywords
carbon dioxide
catholyte
cathode
hydrogen carbonate
alkali metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16733951.4A
Other languages
German (de)
French (fr)
Other versions
EP3292232A1 (en
Inventor
Günter Schmid
Maximilian Fleischer
Philippe Jeanty
Ralf Krause
Erhard Magori
Anna Maltenberger
Sebastian Neubauer
Christian Reller
Bernhard Schmid
Elena Volkova
Kerstin WIESNER-FLEISCHNER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Energy Global GmbH and Co KG
Original Assignee
Siemens Energy Global GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Energy Global GmbH and Co KG filed Critical Siemens Energy Global GmbH and Co KG
Priority to PL16733951T priority Critical patent/PL3292232T3/en
Publication of EP3292232A1 publication Critical patent/EP3292232A1/en
Application granted granted Critical
Publication of EP3292232B1 publication Critical patent/EP3292232B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/25Reduction
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/14Alkali metal compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/23Carbon monoxide or syngas
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/24Halogens or compounds thereof
    • C25B1/26Chlorine; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • C25B15/083Separating products
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • C25B15/087Recycling of electrolyte to electrochemical cell
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/25Reduction
    • C25B3/26Reduction of carbon dioxide

Definitions

  • the present invention relates to a reduction process for the electrochemical utilization of carbon dioxide. Carbon dioxide is fed into an electrolysis cell and reduced at a cathode.
  • a natural breakdown of carbon dioxide takes place, for example, through photosynthesis.
  • carbon dioxide is converted into carbohydrates in a process that is broken down into many sub-steps in terms of time and space. This process cannot easily be adapted on a large scale.
  • a copy of the natural photosynthesis process with large-scale photocatalysis has so far not been sufficiently efficient.
  • US 2012/228147 A1 discloses methods and systems for the electrochemical production of formic acid from carbon dioxide.
  • the cathode is selected from the group consisting of indium, lead, tin, cadmium and bismuth.
  • U.S. 3,959,094 A discloses a method and system for synthesizing methanol from the CO 2 in air using electrical energy. The CO 2 is absorbed into a solution of KOH to form K 2 CO 3 , which is electrolyzed to produce methanol, a liquid hydrocarbon fuel.
  • US 2008/223727 A1 discloses electrochemical processes for the reduction of carbon dioxide, for example the conversion of carbon dioxide into formate salts or formic acid.
  • the table shows Faraday efficiencies [%] of products that are produced during the reduction of carbon dioxide on various metal electrodes.
  • the specified values apply to a 0.1 M potassium hydrogen carbonate solution as the electrolyte and current densities below 10 mA / cm 2 .
  • a silver cathode would produce predominantly carbon monoxide and only a little hydrogen.
  • the reactions at the anode and cathode can be represented with the following reaction equations: Cathode: 2 CO 2 + 4 e - + 4 H + ⁇ 2 CO + 2 H 2 O Anode: 2 H 2 O ⁇ O 2 + 4 H + + 4 e -
  • An electrolysis system not according to the invention for carbon dioxide utilization comprises at least one electrolyzer with an anode in an anode compartment and a cathode in a cathode compartment, the cathode compartment having at least one access for carbon dioxide and the cathode compartment being designed to bring the incoming carbon dioxide into contact with the cathode .
  • the cathode compartment comprises a catholyte or is designed to be able to accommodate a catholyte, wherein the catholyte can access the cathode compartment via the same access as the carbon dioxide or via a separate second access.
  • at least the anode compartment, when the cell is in operation, anode compartment and cathode compartment have alkaline cations.
  • a catholyte is an electrolyte that is directly influenced by the cathode during electrolysis.
  • anolyte is also used in the following when an electrolyte is referred to that is directly influenced by the anode during electrolysis.
  • Alkaline cations refer to positively charged ions which have at least one element of the first main group of the periodic table.
  • the anode compartment of the electrolyser has at least one access for an anolyte and comprises an anolyte or is at least designed to receive an anolyte via this access, this anolyte having chlorine anions.
  • the anode compartment and the cathode compartment are separated from one another by a membrane.
  • the membrane is at least one mechanically separating layer, for example a diaphragm, which separates at least the electrolysis products produced in the anode compartment and cathode compartment from one another. Then you could too speak of a separator membrane or separating layer. Since the electrolysis products are in particular gaseous substances, a membrane with a high bubble point of 10 mbar or greater is preferably used. The so-called bubble point is a defining variable for the membrane used, which describes the pressure difference ⁇ P between the two sides of the membrane from which a gas flow through the membrane would start.
  • the membrane can also be a proton- or cation-conducting or permeable membrane. While molecules, liquids or gases are separated, a flow of protons or cations is guaranteed from the anode compartment to the cathode compartment.
  • a membrane is preferably used which has sulfonated polytetrafluoroethylene, for example Nafion.
  • the electrolysis system further comprises at least one separation basin for crystallizing an alkali hydrogen carbonate and / or alkali carbonate from the catholyte.
  • this separation basin has a product outlet.
  • a second separation basin can also be provided for the most advantageous possible crystallization process. This is then typically arranged in the catholyte circulation direction after the first separation basin.
  • the reduction of carbon dioxide produces different products: For example, carbon monoxide, ethylene, methane, ethanol or monoethylene glycol are produced. In all these cases, hydroxide ions are also formed, which are neutralized to hydrogen carbonate by excess carbon dioxide.
  • the source of the alkaline cations lies in the anode compartment. A cation current through the membrane compensates for the electrical current caused by the applied voltage. For example, the alkali cations and the chloride anions are metered into the anolyte in the form of a chloride salt.
  • the alkali cations migrate through the membrane into the catholyte circuit, where they react in the cathode compartment with the carbonate or hydrogen carbonate formed there to form an alkali metal carbonate or alkali hydrogen carbonate and in particular leave the catholyte circuit via the separate product outlet of the separation basin.
  • the electrolysis system not according to the invention has the advantage that, in addition to chlorine, at least one alkali metal carbonate and / or alkali metal hydrogen carbonate is generated as a valuable chemical substance. Whether alkali carbonate or alkali hydrogen carbonate is produced depends, for example, on the alkali metal and the recycling process. In aqueous solution, for example, the solubility is crucial. The less soluble carbonate or hydrogen carbonate crystallizes out. In the case of sodium and potassium, it is the hydrogen carbonate that is more sparingly soluble than the carbonate and then has to be calcined in a subsequent step. The combustion of sodium in carbon dioxide is an example that produces carbon monoxide and directly sodium carbonate Na 2 CO 3.
  • the electrolysis system described serves to utilize carbon dioxide and it can typically also be used to provide at least one third valuable substance, such as carbon monoxide, ethylene, methane, ethanol or monoethylene glycol.
  • a third valuable substance such as carbon monoxide, ethylene, methane, ethanol or monoethylene glycol.
  • the actual cathode reaction in which the carbon dioxide is reduced, is followed by a subsequent reaction, namely the neutralization of the hydroxide ions (OH-). These are neutralized in particular by excess carbon dioxide to form hydrogen carbonate (HCO 3 - ).
  • HCO 3 - hydrogen carbonate
  • the pH value in the cathode compartment is buffered in a pH value range of 6 to 8 will. It also has the effect that the electrolyte concentration increases continuously.
  • the catholyte is fed into a catholyte circuit, that is to say is pumped into the cathode compartment and also discharged from it again, the hydrogen carbonate formed in the cathode compartment can be removed from the catholyte.
  • the catholyte circuit in particular in the catholyte circuit, but for example also in the anolyte circuit, there is in each case at least one pump which provides for an electrolyte circuit.
  • alkali metal cations that are present in the cathode compartment originate from the anode compartment, into which they were initially introduced, in particular as alkali metal chloride as an oxidation reactant or in the form of another alkali metal salt, for example to increase conductivity.
  • the alkali ions are preferably fed into the anode compartment as alkali chloride.
  • the membrane between the anode and cathode compartments is in particular chosen so that the cation current from the anode compartment to the cathode is ensured in the electric field of the electrolyzer.
  • the separation basin preferably comprises a cooling device, by means of which the catholyte is cooled by several degrees Kelvin, in contrast to the temperature range that prevails in the electrolyzer.
  • the set temperature difference between the separation basin and the electrolyzer is preferably at least 15 K, in particular at least 20 K.
  • a temperature difference between 30 K and 50 K can be particularly suitable.
  • the temperature difference between the electrolyzer and the separation basin can be in a temperature range between 5 K and 70 K.
  • the lowering of the temperature in the separation basin has the additional advantage for the overall system that cooling takes place in the catholyte circuit before the catholyte is returned to the cathode compartment. This avoids excessive system-related heat development, especially in the electrolyser. However, a cooling device which may be provided especially for this purpose can be saved.
  • pH buffers are preferably used, which are made available, for example, in a buffer reservoir to the separation basin and / or the catholyte circuit and / or the cathode compartment in order to buffer the catholyte volume accordingly.
  • the pH of the catholyte can also be used as such to control the process of separating the alkali hydrogen carbonate from the electrolyte.
  • the pH value in the cathode compartment in particular is initially kept at a higher value, e.g. 8 or higher. This can shift the equilibrium in favor of the alkali carbonate in contrast to the alkali hydrogen carbonate.
  • the pH is then lowered, preferably to a value of 6 or less, which leads to the formation and crystallization of the alkali hydrogen carbonate.
  • the lowering of the pH value is typically done by blowing carbon dioxide into the separation basin.
  • an alkali hydrogen carbonate or an alkali carbonate can initially be formed.
  • the two procedures described can be used to remove the desired product from the catholyte can also be combined.
  • the sodium carbonate Na 2 CO 3 for example, can also be obtained afterwards from the crystallized sodium hydrogen carbonate NaHCO 3 by heating. Then hydrogen carbonate is even preferably first produced, deposited, and then the desired proportion of it is further processed into carbonate.
  • the pH dependence of the hydrogen carbonate or carbonate ions is, for example, in Figure 6 shown in a Hägg diagram for a sodium carbonate solution.
  • a buffer reservoir is preferably also provided in the anolyte circuit, which can in particular also serve to introduce or replenish alkali chloride in the electrolyte in order to maintain the salt content in the anolyte.
  • the catholyte has at least one solvent, in particular water.
  • aqueous electrolytes and correspondingly water-soluble conductive salts are used.
  • the conductive salt content can be increased by adding further carbonates, hydrogen carbonates, but also sulfates or other conductive salts in order to increase the conductivity of the electrolyte in the catholyte as well as in the anolyte circuit, which leads to an increase in the metabolism in the overall system.
  • the crystallization process must be adapted accordingly in order to extract the desired product in as pure a form as possible.
  • the conductive salts used are therefore typically chosen so that their solubility differs significantly from that of the alkali hydrogen carbonate or the alkali carbonate.
  • the electrolysis system not according to the invention has a gas separation device on the anolyte side, which is designed to separate the chlorine gas from the anolyte.
  • a gas separation device can also be provided in the catholyte circuit, e.g. if it is geared towards the generation of carbon monoxide gas by using a cathode containing silver. Additional devices for inlets or outlets from the system or additional buffer reservoirs can be provided in the anolyte and catholyte circuits.
  • the type and quality of the membrane used in the electrolyser ultimately plays a major role in how pure the product that has crystallized out is. If only a separator is used as the membrane, chloride anions, for example, can also diffuse into the cathode space, even against the electric field in the electrolyzer, so that chlorides may also be formed in addition to hydrogen carbonate. Therefore, in the electrolysis system described, which is not according to the invention, a cation-conducting membrane is preferably used, which can almost exclusively pass cations. A purely anion-conducting membrane is accordingly not advantageous.
  • the described, inventive reduction process for carbon dioxide utilization by means of an electrolysis system is defined in claim 1 and comprises the following steps: A catholyte comprising water and hydroxide ions and carbon dioxide are introduced into a cathode compartment and brought into contact there with a cathode. In the interior of the cathode compartment, this catholyte has alkaline cations which migrate through the cation-conducting membrane that separates the anode and cathode compartments.
  • At least part of the catholyte volume is introduced into a separation basin and an alkali hydrogen carbonate and / or an alkali carbonate is crystallized there.
  • an anolyte, which has chloride anions is introduced into an anode space and brought into contact there with an anode, at the anode the chloride anions are oxidized to chlorine and this is separated from the anolyte as chlorine gas via a gas separation device.
  • this reduction process is carried out in such a way that the anolyte and catholyte are each conducted in a separate circuit, i.e. two pumps are provided in the electrolysis system, which at least at one point in the circuit transport the catholyte through the cathode compartment and transport the anolyte through the anode compartment effect.
  • the circuits are separated from one another by the membrane in the electrolyser, which ideally only allows the transport of cations from the anode compartment into the cathode compartment.
  • the alkali cations required in the cathode compartment are obtained from the anode compartment.
  • the anolyte preferably has an alkali chloride, which can accordingly be used as a conductive salt but also as an electrolysis product.
  • the alkali metal chloride in the anolyte can be used as the electrolysis product and an additional conductive salt, for example a sulfate, a phosphate, etc., preferably an alkali metal sulfate, can be used.
  • an additional conductive salt for example a sulfate, a phosphate, etc., preferably an alkali metal sulfate
  • ammonium salts or their homologues can also be used.
  • Imidazolium salts or other ionic liquids can have a positive effect on the selectivity of the electrode, especially the cathode.
  • carbon monoxide, ethylene, methane, ethanol and / or monoethylene glycol is produced in the reduction process during the reduction of the carbon dioxide at the cathode.
  • a suitable cathode is used as a catalyst for these reactions.
  • the cathode is a silver-containing cathode and mainly forms carbon monoxide, hydroxide ions and only a little hydrogen as products from the carbon dioxide and the catholyte.
  • the cathode is a copper-containing cathode and forms ethylene, methane, ethanol and / or from the carbon dioxide and the catholyte Monoethylene glycol and hydroxide ions as products.
  • the great advantage of this reduction process is that, in addition to the utilization of carbon dioxide, chemical valuable substances can also be generated.
  • the hydroxide ions formed during the carbon dioxide reduction are converted to hydrogen carbonate ions with excess carbon dioxide.
  • the hydrogen carbonate production directly in the cathode compartment has the advantage that it can react further directly with the alkali cations present in the cathode compartment to form another interesting valuable material that would otherwise have to be produced in separate manufacturing processes.
  • At least part of the catholyte volume is introduced into a separation basin and cooled there by at least 15 K, preferably by at least 20 K.
  • the temperature dependence of the carbonate solubility is used here to remove the valuable substance from the catholyte cycle.
  • the temperature difference between the separation basin and the electrolyser can also be more than 30 K, in particular more than 50 K, depending on the alkali hydrogen carbonate to be extracted and also depending on which other salts are present in the circuit.
  • the temperature difference between the electrolyzer and the separation unit can be between 5 K and 70 K.
  • At least part of the catholyte volume is introduced into a separation basin and its pH value there, in particular by blowing in carbon dioxide from above 8 to a pH value lowered by 6 or less. Buffering the pH value to a value above 8 in the cathode compartment has the advantage of preventing the alkali hydrogen carbonate from precipitating in the cathode compartment itself.
  • the reduction process can be carried out so that the precipitated alkali hydrogen carbonate is converted to alkali carbonate by heating. This can be done directly after the hydrogen carbonate has crystallized out in the separation basin or it can be done separately from the electrolysis system described.
  • the process can be run in such a way that the pH value in the cathode compartment is kept at the upper limit of the reaction by 8 or higher, so that the equilibrium is initially shifted in favor of sodium carbonate is: 2 NaHCO 3 ⁇ Na 2 CO 3 + H 2 O + CO 2 .
  • the process is not limited to sodium hydrogen carbonate.
  • potassium hydrogen carbonate can also be produced in this process.
  • the potassium hydrogen carbonate can also be crystallized from a pure potassium hydrogen carbonate electrolyte by lowering the temperature in the separation basin. At 20 ° C the solubility of potassium hydrogen carbonate is 337 g / l, at 60 ° C 600 g / l.
  • potassium sulfate K 2 SO 4
  • KHCO 3 potassium hydrogen carbonate
  • the separation tank AB potassium sulphate K 2 SO 4 preferably crystallizes out, which is then, in the direction of the circulation, after the separation tank AB , can be fed back into the electrolyte.
  • the electrolyte volume from which the potassium sulfate K 2 SO 4 has already been removed is then concentrated, preferably in a further separation basin, ie the water is removed from the potassium hydrogen carbonate solution, for example by cooling, in order to obtain the crystalline material.
  • this method can also be used for other cations or mixtures of cations. Due to the migration of the cations, the catholyte concentrates until the most difficult to dissolve salt or double salt separates. It is important that the process of concentration and separation does not take place in the cathode compartment, i.e. not in the electrolysis cell itself, but rather that the catholyte is transported to a separation basin integrated in the electrolysis system.
  • a further additional physical or chemical difference between the electrolysis cell and the separation basin for example a temperature, pH value or pressure gradient, enables or facilitates the separation in the separation basin.
  • a suitable pressure difference between the electrolysis cell and the separation basin can be up to 100 bar. A pressure difference between 2 bar and 20 bar would preferably be selected. An increased pressure in the separation basin would favor the formation of hydrogen carbonate.
  • a valuable substance such as carbon monoxide, ethylene, methane, ethanol or monoethylene glycol is obtained from the carbon dioxide reduction; and / or sodium carbonate as a by-product and chlorine is produced on the anode side.
  • FIG. 1 and 2 Examples of electrolysis systems not according to the invention for carbon dioxide reduction are shown in a schematic representation, which can also be read as flow charts for the reduction process described.
  • the anolyte circuit AK is shown on the left-hand side and the catholyte circuit KK is shown on the right-hand side.
  • These two circuits AK, KK are connected via the electrolyzer E1, E2, the anode compartment AR and cathode compartment KR of which are connected to one another via a membrane M or are separated from one another via these.
  • a cation-conducting membrane M is preferably used as the membrane M.
  • An anode A is arranged in the anode space AR and a cathode K is arranged in the cathode space KR, which are electrically connected via a voltage source U.
  • Both circuits AK, KK preferably each have a pump P1, P2 which pump the electrolytes through the electrolyzer.
  • devices N1, N2, N3 can be present in both circuits AK, KK at different points in the direction of flow, which can be additional inflows or outflows or as buffer reservoirs.
  • At least one gas separation device G2 with a product outlet PA2, via which the product chlorine gas Cl 2 can be removed, is provided in the anolyte circuit AK.
  • At least one gas separation device G1 with a product outlet PA1 is also provided in the catholyte circuit KK, via which, for example, the electrolysis product carbon monoxide CO, for example also hydrogen H 2 , can be withdrawn.
  • the electrolysis product carbon monoxide CO for example also hydrogen H 2
  • other electrolysis products such as ethylene, methane, ethanol, monoethylene glycol can also be taken from the system via this or, for example, via a further product outlet.
  • the electrolyzer E1, E2 has, for example, a gas diffusion electrode GDE for the carbon dioxide inlet.
  • the electrolyser E1 shown is a two-chamber structure and the carbon dioxide CO 2 is introduced into the electrolyte via a reservoir CO 2 -R and in the direction of the circulation in front of the cathode chamber KR.
  • the catholyte circuit KK has a separation basin AB, which can be integrated directly into the circuit or through which only part of the catholyte volume is passed.
  • a branch of the circuit KK may be provided.
  • the separation basin AB or several separation basins connected in series can be connected, for example, to a cooling device or to a buffer reservoir PR, so that the crystallization of the hydrogen carbonate is promoted by setting a temperature difference, pressure difference or pH value difference to the electrolyzer E1, E2. Furthermore, the separation basin AB has a product outlet PA3. Several separation basins connected in series would each have a product outlet.
  • electrolysis systems are shown as they can be used for carrying out the reduction process according to the invention.
  • care is taken to ensure that separate anolyte AK and catholyte circles KK are available.
  • the electrolytes used are then pumped continuously through the electrolysis cell E1, E2, ie through the anode space AR and through the cathode space KR.
  • a pump P1, P2 is provided in each of the two circuits AK, KK in the structure.
  • the structure can have materials made of plastic, plastic-coated metal or glass. Glass flasks can be used as storage vessels, the cell itself is made of PTFE, for example, and the tubes are made of neoprene.
  • the electrolyzer E1, E2, as it is installed in the electrolysis systems shown, can also have a different structure, as it is, for example, in FIG Figures 3 to 5 is shown.
  • An alternative electrolysis cell is the one based on the polymer electrolyte membrane structure (PEM structure). In this case lies at least one electrode directly on the polymer electrolyte membrane PEM.
  • the electrolysis cell can be designed as a PEM half-cell, as in FIG Figures 4 and 5 in which the anode side is designed as a PEM half-cell, that is, the anode A is arranged in direct contact with the membrane PEM and the anode space AR is arranged on the side of the anode A facing away from the membrane.
  • the cathode K is designed to be porous and at least partially gas-permeable and / or electrolyte-permeable.
  • the anode PEM half-cell is combined with a gas diffusion electrode GDE for introducing the carbon dioxide CO 2 into the cathode space KR.
  • a cathode K flowing behind is shown, the cathode space KR of which is connected to a gas reservoir via the cathode K.
  • the gas reservoir for its part has at least one gas inlet GE and possibly gas outlet GA.
  • Such an embodiment has hitherto been used, for example, as an oxygen-consuming electrode, for example in the production of sodium hydroxide solution.
  • the oxygen-consuming cathode can be used, for example, to avoid the formation of hydrogen H 2 in the cathode chamber KR in favor of a reaction to water H 2 O.
  • the water formation energy lowers the necessary system voltage U and thus results in a lower energy consumption of the electrolysis system.
  • the cathode K of an oxygen-consuming electrode consists primarily of silver, it can also catalyze the carbon dioxide reduction. If no oxygen is made available, the oxygen consumption reaction cannot take place. Instead, the carbon dioxide reduction to carbon monoxide CO takes place with a certain amount of hydrogen formation.
  • the sodium example is particularly suitable because the sodium hydrogen carbonate can be separated out very easily from the electrolyte.
  • sodium hydrogen carbonate and sodium carbonate are important, frequently required chemical substances.
  • Worldwide annual sodium carbonate production is around 50 million tons, such as the Roskill market report " Soda Ash: Market Outlook to 2018 ", available from Roskill Information Services Ltd, email: info@roskill.co.uk, www.roskill.co.uk/soda-ash , can be found.
  • Table 2 shows other salts, potassium hydrogen carbonate KHCO 3 , potassium sulfate K 2 SO 4 , potassium phosphate K 3 PO 4 , potassium iodide KI, potassium bromide KBr, potassium chloride KCl, sodium hydrogen carbonate NaHCO 3 , sodium sulfate Na 2 SO 4 , which can be used with preference.
  • other sulfates, phosphates, iodides or bromides can also be used to increase the conductivity in the electrolyte. Due to the constant supply of carbon dioxide, carbonates or hydrogen carbonates do not have to be supplied, but are formed in the cathode space KR during operation.
  • the solubility of sodium hydrogen carbonate NaHCO 3 in water is 69 g / l at 0 ° C, 96 g / l at 20 ° C, 165 g / l at 60 ° C and 236 g / l at 100 ° C.
  • Sodium carbonate NaCO 3 dissolves comparatively well, its solubility is 217 g / l at 20 ° C.
  • the sodium hydrogen carbonate NaHCO 3 tends to crystallize out in the electrolysis cell E1, E2. This can be counteracted by means of an increased temperature, which is already created by the operation of the system, and also by means of appropriate pH value buffering.
  • the sodium hydrogen carbonate NaHCO 3 should only crystallize out of the electrolyte in the separation basin AB.
  • the sodium hydrogen carbonate NaHCO 3 formed in the cathode chamber KR is led out of this and the catholyte circuit KK can run through a separation basin AB or a partial volume of the catholyte is branched off into a separation basin AB, in which, for example, the cooling of the electrolyte, the sodium hydrogen carbonate NaHCO 3 crystallizes out and can thus be obtained.
  • a hydrogen sulfate HSO 4 - or sulfate SO 4 2- is preferably used as the conductive additive. This can be, for example, sodium sulfate Na 2 SO 4 or sodium hydrogen sulfate NaHSO 4 .
  • the solubility of sodium hydrogen sulfate NaHSO 4 is 1080 g / l at 20 ° C and that of sodium sulfate Na 2 SO 4 is 170 g / l at 20 ° C, see Table 2.
  • This large difference in solubility compared to sodium hydrogen carbonate NaHCO 3 ensures that Sodium hydrogen carbonate NHCO 3 preferably crystallizes out in the separation basin.
  • This variant of the reduction process has the immense advantage that it can basically replace the Solvay process used as standard for the production of sodium hydrogen carbonate.
  • the Solvay process for producing sodium hydrogen carbonate has a major disadvantage, namely that it consumes very large amounts of water. In addition, for every kilogram of soda, i.e.
  • Sodium hydrogen carbonate NaHCO 3 occurs as a natural mineral Nahcolith in the United States of America. It usually occurs finely distributed in oil shale and can then be obtained as a by-product of oil production. Particularly rich Nahcolith horizons are being mined in the state of Colorado. However, the annual production in 2007 was only 93,440 tons. It also occurs, for example, in soda lakes in Egypt, in Turkey in Lake Van, in East Africa, e.g. B.
  • FIG. 6 an example of a Hägg diagram of a 0.05 molar solution of carbon dioxide CO 2 is shown to illustrate the dependence on the concentration and pH value parameters.
  • carbon dioxide CO 2 and its salts are present next to one another.
  • the strongly basic carbon dioxide CO 2 is preferably present as carbonate CO 3 2-
  • the medium pH range preferably as hydrogen carbonate HCO 3 -
  • the hydrogen carbonate ions are expelled from the solution in the form of at low pH values in an acidic environment Carbon dioxide CO 2 .

Description

Die vorliegende Erfindung betrifft ein Reduktionsverfahren zur elektrochemischen Kohlenstoffdioxid-Verwertung. Kohlenstoffdioxid wird in eine Elektrolysezelle eingeleitet und an einer Kathode reduziert.The present invention relates to a reduction process for the electrochemical utilization of carbon dioxide. Carbon dioxide is fed into an electrolysis cell and reduced at a cathode.

Stand der TechnikState of the art

Aktuell wird ca. 80 % des weltweiten Energiebedarfs durch die Verbrennung von fossilen Brennstoffen gedeckt, deren Verbrennungsprozesse eine weltweite Emission von etwa 34000 Millionen Tonnen Kohlenstoffdioxid in die Atmosphäre pro Jahr verursacht. Durch diese Freisetzung in die Atmosphäre wird der Großteil an Kohlenstoffdioxid entsorgt, was z.B. bei einem Braunkohlekraftwerk bis zu 50000 Tonnen pro Tag betragen kann. Kohlenstoffdioxid gehört zu den sogenannten Treibhausgasen, deren negative Auswirkungen auf die Atmosphäre und das Klima diskutiert werden. Da Kohlenstoffdioxid thermodynamisch sehr niedrig liegt, kann es nur schwierig zu wiederverwertbaren Produkten reduziert werden, was die tatsächliche Wiederverwertung von Kohlenstoffdioxid bisher in der Theorie beziehungsweise in der akademischen Welt belassen hat.Currently, around 80% of the world's energy needs are covered by the combustion of fossil fuels, the combustion processes of which cause global emissions of around 34,000 million tons of carbon dioxide into the atmosphere per year. As a result of this release into the atmosphere, most of the carbon dioxide is disposed of, which can be up to 50,000 tons per day in a lignite power station, for example. Carbon dioxide is one of the so-called greenhouse gases, the negative effects of which on the atmosphere and the climate are being discussed. Since carbon dioxide is thermodynamically very low, it can only be reduced to recyclable products with difficulty, which has so far left the actual recycling of carbon dioxide in theory or in the academic world.

Ein natürlicher Kohlenstoffdioxid-Abbau erfolgt beispielsweise durch Fotosynthese. Dabei werden in einem zeitlich und auf molekularer Ebene räumlich in viele Teilschritte aufgegliederten Prozess Kohlenstoffdioxid zu Kohlehydraten umgesetzt. Dieser Prozess ist so nicht einfach großtechnisch adaptierbar. Eine Kopie des natürlichen Fotosyntheseprozesses mit großtechnischer Fotokatalyse ist bisher nicht ausreichend effizient.A natural breakdown of carbon dioxide takes place, for example, through photosynthesis. In this process, carbon dioxide is converted into carbohydrates in a process that is broken down into many sub-steps in terms of time and space. This process cannot easily be adapted on a large scale. A copy of the natural photosynthesis process with large-scale photocatalysis has so far not been sufficiently efficient.

Eine Alternative stellt die elektrochemische Reduktion des Kohlenstoffdioxids dar. Systematische Untersuchungen der elektrochemischen Reduktion von Kohlenstoffdioxid sind noch ein relativ junges Entwicklungsfeld. Erst seit wenigen Jahren gibt es Bemühungen, ein elektrochemisches System zu entwickeln, das eine akzeptable Kohlenstoffdioxidmenge reduzieren kann. Forschungen im Labormaßstab haben gezeigt, dass zur Elektrolyse von Kohlenstoffdioxid bevorzugt Metalle als Katalysatoren einzusetzen sind.An alternative is the electrochemical reduction of carbon dioxide. Systematic studies of the electrochemical reduction of carbon dioxide are still a relatively young field of development. Efforts have only been made for a few years to develop an electrochemical system that can reduce an acceptable amount of carbon dioxide. Research on a laboratory scale has shown that metals are the preferred catalysts for the electrolysis of carbon dioxide.

US 2012/228147 A1 offenbart Verfahren und Systeme zur elektrochemischen Herstellung von Ameisensäure aus Kohlendioxid. Die Kathode ist ausgewählt aus der Gruppe bestehend aus Indium, Blei, Zinn, Cadmium und Wismut. US 3 959 094 A offenbart ein Verfahren und ein System zur Synthese von Methanol aus dem CO2 in Luft unter Verwendung elektrischer Energie. Das CO2 wird von einer Lösung von KOH absorbiert, um K2CO3 zu bilden, das elektrolysiert wird, um Methanol, einen flüssigen Kohlenwasserstoffbrennstoff, zu erzeugen. US 2008/223727 A1 offenbart elektrochemische Verfahren zur Reduktion von Kohlendioxid, beispielsweise die Umwandlung von Kohlendioxid in Formiat-Salze oder Ameisensäure. US 2012/228147 A1 discloses methods and systems for the electrochemical production of formic acid from carbon dioxide. The cathode is selected from the group consisting of indium, lead, tin, cadmium and bismuth. U.S. 3,959,094 A discloses a method and system for synthesizing methanol from the CO 2 in air using electrical energy. The CO 2 is absorbed into a solution of KOH to form K 2 CO 3 , which is electrolyzed to produce methanol, a liquid hydrocarbon fuel. US 2008/223727 A1 discloses electrochemical processes for the reduction of carbon dioxide, for example the conversion of carbon dioxide into formate salts or formic acid.

Aus der Veröffentlichung Electrochemical CO2 reduction on metal electrodes von Y. Hori, veröffentlicht in: C. Vayenas, et al. (Eds.), Modern Aspects of Electrochemistry, Springer, New York, 2008, pp. 89-189 , sind Faraday Effizienzen an unterschiedlichen Metallkathoden zu entnehmen, siehe Tabelle 1 .From the publication Electrochemical CO 2 reduction on metal electrodes by Y. Hori, published in: C. Vayenas, et al. (Eds.), Modern Aspects of Electrochemistry, Springer, New York, 2008, pp. 89-189 , Faraday efficiencies can be found on different metal cathodes, see Table 1.

Wird Kohlenstoffdioxid beispielsweise an Silber-, Gold- oder Zink-Kathoden reduziert, entsteht nahezu ausschließlich Kohlenstoffmonoxid. Elektrode CH4 C2H4 C2H5OH C3H7OH CO HCOO H2 Total Cu 33.3 25.5 5.7 3.0 1.3 9.4 20.5 103.5 Au 0.0 0.0 0.0 0.0 87.1 0.7 10.2 98.0 Ag 0.0 0.0 0.0 0.0 81.5 0.8 12.4 94.6 Zn 0.0 0.0 0.0 0.0 79.4 6.1 9.9 95.4 Pd 2.9 0.0 0.0 0.0 28.3 2.8 26.2 60.2 Ga 0.0 0.0 0.0 0.0 23.2 0.0 79.0 102.0 Pb 0.0 0.0 0.0 0.0 0.0 97.4 5.0 102.4 Hg 0.0 0.0 0.0 0.0 0.0 99.5 0.0 99.5 In 0.0 0.0 0.0 0.0 2.1 94.9 3.3 100.3 Sn 0.0 0.0 0.0 0.0 7.1 88.4 4.6 100.1 Cd 1.3 0.0 0.0 0.0 13.9 78.4 9.4 103.0 Tl 0.0 0.0 0.0 0.0 0.0 95.1 6.2 101.3 Ni 1.8 0.1 0.0 0.0 0.0 1.4 88.9 92.4 Fe 0.0 0.0 0.0 0.0 0.0 0.0 94.8 94.8 Pt 0.0 0.0 0.0 0.0 0.0 0.1 95.7 95.8 Ti 0.0 0.0 0.0 0.0 0.0 0.0 99.7 99.7 If carbon dioxide is reduced on silver, gold or zinc cathodes, for example, carbon monoxide is formed almost exclusively. electrode CH 4 C 2 H 4 C 2 H 5 OH C 3 H 7 OH CO HCOO H 2 Total Cu 33.3 25.5 5.7 3.0 1.3 9.4 20.5 103.5 Au 0.0 0.0 0.0 0.0 87.1 0.7 10.2 98.0 Ag 0.0 0.0 0.0 0.0 81.5 0.8 12.4 94.6 Zn 0.0 0.0 0.0 0.0 79.4 6.1 9.9 95.4 Pd 2.9 0.0 0.0 0.0 28.3 2.8 26.2 60.2 Ga 0.0 0.0 0.0 0.0 23.2 0.0 79.0 102.0 Pb 0.0 0.0 0.0 0.0 0.0 97.4 5.0 102.4 Ed 0.0 0.0 0.0 0.0 0.0 99.5 0.0 99.5 In 0.0 0.0 0.0 0.0 2.1 94.9 3.3 100.3 Sn 0.0 0.0 0.0 0.0 7.1 88.4 4.6 100.1 CD 1.3 0.0 0.0 0.0 13.9 78.4 9.4 103.0 Tl 0.0 0.0 0.0 0.0 0.0 95.1 6.2 101.3 Ni 1.8 0.1 0.0 0.0 0.0 1.4 88.9 92.4 Fe 0.0 0.0 0.0 0.0 0.0 0.0 94.8 94.8 Pt 0.0 0.0 0.0 0.0 0.0 0.1 95.7 95.8 Ti 0.0 0.0 0.0 0.0 0.0 0.0 99.7 99.7

Tabelle 1:Table 1:

In der Tabelle sind Faraday Effizienzen [%] von Produkten angegeben, die bei der Kohlenstoffdioxid-Reduktion an verschiedenen Metallelektroden entstehen. Die angegebenen Werte gelten für eine 0,1 M Kaliumhydrogencarbonatlösung als Elektrolyten und Stromdichten unterhalb von 10 mA/cm2.The table shows Faraday efficiencies [%] of products that are produced during the reduction of carbon dioxide on various metal electrodes. The specified values apply to a 0.1 M potassium hydrogen carbonate solution as the electrolyte and current densities below 10 mA / cm 2 .

An einer Silberkathode würden beispielsweise überwiegend Kohlenmonoxid und nur wenig Wasserstoff entstehen. Die Reaktionen an Anode und Kathode können mit folgenden Reaktionsgleichungen dargestellt werden: Kathode: 2 CO2 + 4 e- + 4 H+ → 2 CO + 2 H2O Anode: 2 H2O → O2 + 4 H+ + 4 e- For example, a silver cathode would produce predominantly carbon monoxide and only a little hydrogen. The reactions at the anode and cathode can be represented with the following reaction equations: Cathode: 2 CO 2 + 4 e - + 4 H + → 2 CO + 2 H 2 O Anode: 2 H 2 O → O 2 + 4 H + + 4 e -

Wie Tabelle 1 außerdem zu entnehmen ist, entstehen etwa an einer Kupferkathode, eine Vielzahl an Kohlenwasserstoffen als Reaktionsprodukte. Von besonderem wirtschaftlichem Interesse ist beispielsweise die elektrochemische Erzeugung von Methan oder Ethylen, Ethanol oder Monoethylenglykol. Dabei handelt es sich um energetisch höherwertige Produkte als Kohlenstoffdioxid. Ethylen: 2CO2 + 12e- + 8H2O → C2H4 + 12OH- Methan: CO2 + 8e- + 4H2O → CH4 + 4OH- Ethanol: 2CO2 + 12e- + 9H2O → C2H5OH + 12OH- Monoethylenglykol: 2CO2 + 10e- + 8H2O → HOC2H4OH + 10OH- As can also be seen in Table 1, a large number of hydrocarbons are produced as reaction products on a copper cathode. The electrochemical production of methane or ethylene, ethanol or monoethylene glycol, for example, is of particular economic interest. In terms of energy, these are products of higher value than carbon dioxide. Ethylene: 2CO 2 + 12e - + 8H 2 O → C 2 H 4 + 12OH - Methane: CO 2 + 8e - + 4H 2 O → CH 4 + 4OH - Ethanol: 2CO 2 + 12e - + 9H 2 O → C 2 H 5 OH + 12OH - Monoethylene glycol: 2CO 2 + 10e - + 8H 2 O → HOC 2 H 4 OH + 10OH -

Mit einem chloridhaltigen Elektrolyten kann folgende Reaktion an der Anode ablaufen:

        2 Cl- → Cl2 + 2 e-

With an electrolyte containing chloride, the following reaction can take place at the anode:

2 Cl - → Cl 2 + 2 e -

Bei der elektrochemischen Stoffumsetzung von Kohlenstoffdioxid in ein energetisch höherwertiges Produkt sind die Erhöhung der Wirtschaftlichkeit von Interesse sowie eine Verbesserung hinsichtlich der kontinuierlichen Betreibbarkeit der Elektrolysesysteme.In the electrochemical conversion of carbon dioxide into an energetically higher-value product, the increase in economic efficiency and an improvement in terms of the continuous operability of the electrolysis systems are of interest.

Folglich stellt es sich als technisch erforderlich dar, eine verbesserte Lösung für die elektrochemische Kohlenstoffdioxid-Verwertung vorzuschlagen, welche die aus dem Stand der Technik bekannten Nachteile vermeidet. Insbesondere soll die vorzuschlagende Lösung eine kontinuierliche Kohlenstoffdioxidumsetzung ermöglichen. Es ist Aufgabe der Erfindung, ein verbessertes Reduktionsverfahren zur Kohlenstoffdioxid-Verwertung anzugeben.Consequently, it is technically necessary to propose an improved solution for electrochemical carbon dioxide utilization which avoids the disadvantages known from the prior art. In particular, the solution to be proposed should enable continuous conversion of carbon dioxide. It is the object of the invention to provide an improved reduction process for the utilization of carbon dioxide.

Diese der vorliegenden Erfindung zugrundeliegenden Aufgaben werden durch ein Reduktionsverfahren gemäß dem Patentanspruch 1 gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind Gegenstand der Unteransprüche.These objects on which the present invention is based are achieved by a reduction method according to patent claim 1. Advantageous refinements of the invention are the subject matter of the subclaims.

Beschreibung der ErfindungDescription of the invention

Das erfindungsgemäße Reduktionsverfahren zur Kohlenstoffdioxidverwertung mittels eines Elektrolysesystems ist in Anspruch 1 definiert.The reduction process according to the invention for utilizing carbon dioxide by means of an electrolysis system is defined in claim 1.

Ein nicht-erfindungsgemäßes Elektrolysesystem zur Kohlenstoffdioxidverwertung umfasst zumindest einen Elektrolyseur mit einer Anode in einem Anodenraum und einer Kathode in einem Kathodenraum, wobei der Kathodenraum zumindest einen Zugang für Kohlenstoffdioxid aufweist und wobei der Kathodenraum ausgestaltet ist, das zugegangene Kohlenstoffdioxid in Kontakt mit der Kathode zu bringen. Des Weiteren umfasst der Kathodenraum einen Katholyten oder ist ausgestaltet, einen Katholyten aufnehmen zu können, wobei der Katholyt dem Kathodenraum über denselben Zugang wie das Kohlenstoffdioxid oder über einen separaten zweiten Zugang zugehen kann. Außerdem weist zumindest der Anodenraum, im Betrieb der Zelle Anoden- und Kathodenraum Alkalikationen auf.An electrolysis system not according to the invention for carbon dioxide utilization comprises at least one electrolyzer with an anode in an anode compartment and a cathode in a cathode compartment, the cathode compartment having at least one access for carbon dioxide and the cathode compartment being designed to bring the incoming carbon dioxide into contact with the cathode . Furthermore, the cathode compartment comprises a catholyte or is designed to be able to accommodate a catholyte, wherein the catholyte can access the cathode compartment via the same access as the carbon dioxide or via a separate second access. In addition, at least the anode compartment, when the cell is in operation, anode compartment and cathode compartment have alkaline cations.

Als Katholyt wird ein Elektrolyt bezeichnet, der in direktem Einfluss der Kathode bei der Elektrolyse steht. Entsprechend wird im Folgenden auch von Anolyt gesprochen, wenn ein Elektrolyt bezeichnet wird, der in direktem Einfluss der Anode bei einer Elektrolyse steht. Mit Alkalikationen werden positiv geladene Ionen bezeichnet, die zumindest ein Element der ersten Hauptgruppe des Periodensystems aufweisen.A catholyte is an electrolyte that is directly influenced by the cathode during electrolysis. Correspondingly, anolyte is also used in the following when an electrolyte is referred to that is directly influenced by the anode during electrolysis. Alkaline cations refer to positively charged ions which have at least one element of the first main group of the periodic table.

Der Anodenraum des Elektrolyseurs weist zumindest einen Zugang für einen Anolyten auf und umfasst einen Anolyten oder ist zumindest ausgestaltet, über diesen Zugang einen Anolyten aufzunehmen, wobei dieses Anolyt Chloranionen aufweist.The anode compartment of the electrolyser has at least one access for an anolyte and comprises an anolyte or is at least designed to receive an anolyte via this access, this anolyte having chlorine anions.

Typischerweise sind in dem nicht-erfindungsgemäßen Elektrolysesystem der Anodenraum und der Kathodenraum durch eine Membran voneinander getrennt. Die Membran ist dabei zumindest eine mechanisch trennende Schicht, z.B. ein Diaphragma, welches zumindest die im Anodenraum und Kathodenraum entstehenden Elektrolyseprodukte voneinander trennt. Man könnte dann auch von Separatormembran oder Trennschicht sprechen. Da es sich bei den Elektrolyseprodukten insbesondere um gasförmige Stoffe handelt, wird bevorzugt eine Membran mit einem hohen Bubble-Point von 10 mbar oder größer eingesetzt. Der sogenannte Bubble-Point ist dabei eine definierende Größe für die eingesetzte Membran, der beschreibt, ab welchem Druckunterschied ΔP zwischen den zwei Seiten der Membran ein Gasfluss durch die Membran einsetzen würde. Bei der Membran kann es sich auch um eine protonen- oder kationenleitende bzw. - durchlässige Membran handeln. Während Moleküle, Flüssigkeiten oder Gase separiert werden, ist ein Protonen- bzw. Kationenfluss vom Anodenraum zum Kathodenraum gewährleistet. Vorzugsweise wird eine Membran eingesetzt, die sulfoniertes Polytetrafluorethylen, z.B. Nafion aufweist.Typically, in the electrolysis system not according to the invention, the anode compartment and the cathode compartment are separated from one another by a membrane. The membrane is at least one mechanically separating layer, for example a diaphragm, which separates at least the electrolysis products produced in the anode compartment and cathode compartment from one another. Then you could too speak of a separator membrane or separating layer. Since the electrolysis products are in particular gaseous substances, a membrane with a high bubble point of 10 mbar or greater is preferably used. The so-called bubble point is a defining variable for the membrane used, which describes the pressure difference ΔP between the two sides of the membrane from which a gas flow through the membrane would start. The membrane can also be a proton- or cation-conducting or permeable membrane. While molecules, liquids or gases are separated, a flow of protons or cations is guaranteed from the anode compartment to the cathode compartment. A membrane is preferably used which has sulfonated polytetrafluoroethylene, for example Nafion.

Das Elektrolysesystem umfasst des Weiteren zumindest ein Abscheidebecken zur Auskristallisation eines Alkalihydrogencarbonats und/oder Alkalicarbonats aus dem Katholyten. Insbesondere weist dieses Abscheidebecken einen Produktauslass auf. Je nach Produkt, ob ein Alkalihydrogencarbonats und/oder Alkalicarbonat dem Katholyten entnommen werden soll, und je nach Alkalimetall, kann für einen möglichst vorteilhaften Auskristallisationsprozess auch ein zweites Abscheidebecken vorgesehen sein. Dieses ist dann typischerweise in Katholytkreislaufrichtung nach dem ersten Abscheidebecken angeordnet.The electrolysis system further comprises at least one separation basin for crystallizing an alkali hydrogen carbonate and / or alkali carbonate from the catholyte. In particular, this separation basin has a product outlet. Depending on the product, whether an alkali hydrogen carbonate and / or alkali carbonate is to be removed from the catholyte, and depending on the alkali metal, a second separation basin can also be provided for the most advantageous possible crystallization process. This is then typically arranged in the catholyte circulation direction after the first separation basin.

Je nach eingesetztem Kathodenmaterial entstehen bei der Reduktion von Kohlenstoffdioxid unterschiedliche Produkte: Beispielsweise entstehen Kohlenmonoxid, Ethylen, Methan, Ethanol oder Monoethylenglykol. In all diesen Fällen entstehen außerdem Hydroxidionen, welche durch überschüssiges Kohlenstoffdioxid zu Hydrogencarbonat neutralisiert werden. Die Quelle der Alkalikationen liegt im Anodenraum. Durch die Membran hindurch kompensiert ein Kationenstrom den durch die angelegte Spannung bedingten elektrischen Strom. Beispielsweise werden die Alkalikationen und die Chloridanionen in Form eines Chloridsalzes in den Anolyten zu dosiert. Während die Chloridanionen an der Anode zu Chlor oxidiert werden und als Chlorgas den Anolytkreislauf verlassen, wandern die Alkalikationen durch die Membran in den Katholytkreislauf, wo sie im Kathodenraum mit dem dort entstehenden Carbonat oder Hydrogencarbonat zu einem Alkalicarbonat oder Alkalihydrogencarbonat reagieren und insbesondere über den separaten Produktauslass des Abscheidebeckens den Katholytkreislauf verlassen.Depending on the cathode material used, the reduction of carbon dioxide produces different products: For example, carbon monoxide, ethylene, methane, ethanol or monoethylene glycol are produced. In all these cases, hydroxide ions are also formed, which are neutralized to hydrogen carbonate by excess carbon dioxide. The source of the alkaline cations lies in the anode compartment. A cation current through the membrane compensates for the electrical current caused by the applied voltage. For example, the alkali cations and the chloride anions are metered into the anolyte in the form of a chloride salt. While the chloride anions are oxidized to chlorine at the anode and as chlorine gas Leaving the anolyte circuit, the alkali cations migrate through the membrane into the catholyte circuit, where they react in the cathode compartment with the carbonate or hydrogen carbonate formed there to form an alkali metal carbonate or alkali hydrogen carbonate and in particular leave the catholyte circuit via the separate product outlet of the separation basin.

Das nicht-erfindungsgemäße Elektrolysesystem hat den Vorteil, neben Chlor zusätzlich wenigstens ein Alkalicarbonat und/oder Alkalihydrogencarbonat als chemischen Wertstoff zu erzeugen. Ob Alkalicarbonat oder Alkalihydrogencarbonat entsteht hängt z.B. vom Alkalimetall und vom Verwertungsverfahren ab. In wässriger Lösung etwa ist die Löslichkeit ausschlaggebend. Das schwerlöslichere Carbonat oder Hydrogencarbonat kristallisiert aus. Bei Natrium und Kalium ist es das Hydrogencarbonat, das schwerlöslicher als das Carbonat ist und dann in einem Folgeschritt kalziniert werden muss. Die Verbrennung von Natrium in Kohlenstoffdioxid ist ein Beispiel, bei dem Kohlenstoffmonoxid und direkt Natriumcarbonat Na2CO3 erzeugt wird.The electrolysis system not according to the invention has the advantage that, in addition to chlorine, at least one alkali metal carbonate and / or alkali metal hydrogen carbonate is generated as a valuable chemical substance. Whether alkali carbonate or alkali hydrogen carbonate is produced depends, for example, on the alkali metal and the recycling process. In aqueous solution, for example, the solubility is crucial. The less soluble carbonate or hydrogen carbonate crystallizes out. In the case of sodium and potassium, it is the hydrogen carbonate that is more sparingly soluble than the carbonate and then has to be calcined in a subsequent step. The combustion of sodium in carbon dioxide is an example that produces carbon monoxide and directly sodium carbonate Na 2 CO 3.

Darüber hinaus dient das beschriebene, nicht-erfindungsgemäße Elektrolysesystem der Kohlenstoffdioxidverwertung und es kann auch damit typischerweise noch wenigstens ein dritter Wertstoff, wie beispielsweise Kohlenstoffmonoxid, Ethylen, Methan, Ethanol oder Monoethylenglykol bereitgestellt werden. Über die sehr vorteilhafte Ausnutzung des Ausgleichsstroms durch die Kationen ist damit ein nicht-erfindungsgemäßes Elektrolysesystem geschaffen, welches eine kontinuierliche Hydrogencarbonatproduktion ermöglicht.In addition, the electrolysis system described, not according to the invention, serves to utilize carbon dioxide and it can typically also be used to provide at least one third valuable substance, such as carbon monoxide, ethylene, methane, ethanol or monoethylene glycol. Via the very advantageous utilization of the compensating current by the cations, an electrolysis system not according to the invention is thus created which enables continuous hydrogen carbonate production.

Wie bereits beschrieben, folgt der eigentlichen Kathodenreaktion, in der das Kohlenstoffdioxid reduziert wird, eine Folgereaktion, nämlich die Neutralisierung der Hydroxidionen (OH-). Diese werden insbesondere durch überschüssiges Kohlenstoffdioxid zu Hydrogencarbonat (HCO3 -) neutralisiert. Dies hat zum einen die Wirkung, dass der pH-Wert im Kathodenraum dadurch in einem pH-Wertbereich von 6 bis 8 gepuffert wird. Außerdem hat es die Wirkung, dass die Elektrolytkonzentration kontinuierlich anstiege. Wird aber der Katholyt in einen Katholytkreislauf geführt, d.h. in den Kathodenraum hinein gepumpt und daraus auch wieder abgeleitet, kann dem Katholyten das im Kathodenraum entstandene Hydrogencarbonat entnommen werden. Dazu ist insbesondere im Katholytkreislauf, beispielsweise aber auch im Anolytkreislauf, jeweils wenigstens eine Pumpe angeordnet, die für einen Elektrolytkreislauf sorgt.As already described, the actual cathode reaction, in which the carbon dioxide is reduced, is followed by a subsequent reaction, namely the neutralization of the hydroxide ions (OH-). These are neutralized in particular by excess carbon dioxide to form hydrogen carbonate (HCO 3 - ). On the one hand, this has the effect that the pH value in the cathode compartment is buffered in a pH value range of 6 to 8 will. It also has the effect that the electrolyte concentration increases continuously. If, however, the catholyte is fed into a catholyte circuit, that is to say is pumped into the cathode compartment and also discharged from it again, the hydrogen carbonate formed in the cathode compartment can be removed from the catholyte. For this purpose, in particular in the catholyte circuit, but for example also in the anolyte circuit, there is in each case at least one pump which provides for an electrolyte circuit.

Anschließend an die Neutralisierungsreaktion der Hydroxidionen (OH-) mit überschüssigem Kohlenstoffdioxid zu Hydrogencarbonationen (HCO3 -) reagieren diese bevorzugt mit Alkalikationen weiter zu Alkalihydrogencarbonaten. Die Alkalikationen, die im Kathodenraum vorliegen, entstammen dem Anodenraum, in den sie zunächst insbesondere als Alkalichlorid als Oxidationsedukt oder in Form eines anderen Alkalisalzes, z.B. zur Erhöhung der Leitfähigkeit, eingebracht wurden. In den Anodenraum nachgeführt werden die Alkalikation bevorzugt als Alkalichlorid. Die Membran zwischen dem Anoden- und Kathodenraum ist dabei insbesondere so gewählt, dass der Kationenstrom vom Anodenraum zur Kathode hin im elektrischen Feld des Elektrolyseurs gewährleistet ist. Die Temperatur- und auch pH-Wertabhängigkeit der Löslichkeit von Alkalihydrogencarbonaten führt nun dazu, dass unterschiedliche Prozesse zur Auskristallisation bzw. zur Entnahme aus dem Katholyten vorgenommen werden:Following the neutralization reaction of the hydroxide ions (OH - ) with excess carbon dioxide to form hydrogen carbonate ions (HCO 3 - ), these preferably react further with alkali metal cations to form alkali metal hydrogen carbonates. The alkali cations that are present in the cathode compartment originate from the anode compartment, into which they were initially introduced, in particular as alkali metal chloride as an oxidation reactant or in the form of another alkali metal salt, for example to increase conductivity. The alkali ions are preferably fed into the anode compartment as alkali chloride. The membrane between the anode and cathode compartments is in particular chosen so that the cation current from the anode compartment to the cathode is ensured in the electric field of the electrolyzer. The temperature and pH value dependency of the solubility of alkali hydrogen carbonates now leads to different processes for crystallization or removal from the catholyte being carried out:

Zum einen kann die Temperaturabhängigkeit der Löslichkeit der als Elektrolyseprodukt erwünschten Alkalihydrogencarbonate genutzt werden. Dazu umfasst das Abscheidebecken vorzugsweise eine Kühlvorrichtung, mittels der der Katholyt im Gegensatz zum Temperaturbereich, der im Elektrolyseur vorherrscht, um mehrere Grad Kelvin abgekühlt wird. Bevorzugt liegt die eingestellte Temperaturdifferenz vom Abscheidebecken zum Elektrolyseur bei mindestens 15 K, insbesondere mindestens 20 K. Je nach Elektrolytkonzentration im Katholyten und je nach dem, mit welchen Alkalikationen das Hydrogencarbonat gebildet ist, kann auch eine Temperaturdifferenz zwischen 30 K und 50 K besonders geeignet sein. Die Temperaturdifferenz zwischen Elektrolyseur und Abscheidebecken kann in einem Temperaturbereich zwischen 5 K und 70 K liegen.On the one hand, the temperature dependency of the solubility of the alkali hydrogen carbonates desired as electrolysis product can be used. For this purpose, the separation basin preferably comprises a cooling device, by means of which the catholyte is cooled by several degrees Kelvin, in contrast to the temperature range that prevails in the electrolyzer. The set temperature difference between the separation basin and the electrolyzer is preferably at least 15 K, in particular at least 20 K. Depending on the electrolyte concentration in the catholyte and depending on the alkali cations with which the hydrogen carbonate is formed is, a temperature difference between 30 K and 50 K can be particularly suitable. The temperature difference between the electrolyzer and the separation basin can be in a temperature range between 5 K and 70 K.

Die Absenkung der Temperatur im Abscheidebecken hat den zusätzlichen Vorteil für das Gesamtsystem, dass eine Abkühlung im Katholytkreislauf vor der Rückführung des Katholyten in den Kathodenraum erfolgt. Somit wird eine zu hohe systembedingte Wärmeentwicklung, gerade im Elektrolyseur vermieden. Aber eine gegebenenfalls extra für diesen Zweck vorgesehene Kühleinrichtung kann eingespart werden.The lowering of the temperature in the separation basin has the additional advantage for the overall system that cooling takes place in the catholyte circuit before the catholyte is returned to the cathode compartment. This avoids excessive system-related heat development, especially in the electrolyser. However, a cooling device which may be provided especially for this purpose can be saved.

Auch bei der Abscheidemethode der Auskristallisation des Alkalihydrogencarbonats mittels Abkühlung des Katholyten werden bevorzugt pH-Wertpuffer eingesetzt, die beispielsweise in einem Pufferreservoir dem Abscheidebecken und/oder dem Katholytkreislauf und/oder dem Kathodenraum zur Verfügung gestellt werden, um das Katholytvolumen entsprechend zu puffern.Also with the separation method of crystallizing out the alkali hydrogen carbonate by cooling the catholyte, pH buffers are preferably used, which are made available, for example, in a buffer reservoir to the separation basin and / or the catholyte circuit and / or the cathode compartment in order to buffer the catholyte volume accordingly.

Der pH-Wert des Katholyten kann auch als solcher für die Steuerung des Abscheidevorgangs des Alkalihydrogencarbonats aus dem Elektrolyten herangezogen werden. Dazu wird insbesondere der pH-Wert im Kathodenraum zunächst auf einem höheren Wert, z.B. bei 8 oder höher gehalten. Dies kann das Gleichgewicht zugunsten des Alkalicarbonats im Gegensatz zum Alkalihydrogencarbonat verschieben. Zur Auskristallisation im Abscheidebecken wird dann der pH-Wert abgesenkt, bevorzugt auf einen Wert von 6 oder weniger, was zur Bildung und Auskristallisation des Alkalihydrogencarbonats führt. Die pH-Wertabsenkung geschieht typischerweise durch Einblasen von Kohlenstoffdioxid in das Abscheidebecken.The pH of the catholyte can also be used as such to control the process of separating the alkali hydrogen carbonate from the electrolyte. For this purpose, the pH value in the cathode compartment in particular is initially kept at a higher value, e.g. 8 or higher. This can shift the equilibrium in favor of the alkali carbonate in contrast to the alkali hydrogen carbonate. For crystallization in the separation basin, the pH is then lowered, preferably to a value of 6 or less, which leads to the formation and crystallization of the alkali hydrogen carbonate. The lowering of the pH value is typically done by blowing carbon dioxide into the separation basin.

Je nach dem, mit welchem Alkalikation das Hydrogencarbonat reagiert, und abhängig vom pH-Wert im Kathodenraum, kann zunächst ein Alkalihydrogencarbonat oder ein Alkalicarbonat gebildet werden. Insbesondere können die beiden beschriebenen Vorgehensweisen zur Entnahme des erwünschten Produktes aus dem Katholyten auch kombiniert werden. In manchen Fällen, z.B. bei der Bildung von Natriumhydrogencarbonat NaHCO3, kann beispielsweise das Natriumcarbonat Na2CO3 auch im Nachhinein aus dem auskristallisierten Natriumhydrogencarbonat NaHCO3 durch Erhitzen gewonnen werden. Dann wird sogar bevorzugt zunächst Hydrogencarbonat erzeugt, abgeschieden, und im Nachgang der gewünschte Mengenanteil davon zu Carbonat weiterverarbeitet.Depending on the alkaline cation with which the hydrogen carbonate reacts, and depending on the pH value in the cathode compartment, an alkali hydrogen carbonate or an alkali carbonate can initially be formed. In particular, the two procedures described can be used to remove the desired product from the catholyte can also be combined. In some cases, for example when sodium hydrogen carbonate NaHCO 3 is formed , the sodium carbonate Na 2 CO 3 , for example, can also be obtained afterwards from the crystallized sodium hydrogen carbonate NaHCO 3 by heating. Then hydrogen carbonate is even preferably first produced, deposited, and then the desired proportion of it is further processed into carbonate.

Die pH-Wertabhängigkeit der Hydrogencarbonat- oder Carbonationen ist z.B. in Figur 6 in einem Hägg-Diagramm für eine Natriumcarbonatlösung gezeigt.The pH dependence of the hydrogen carbonate or carbonate ions is, for example, in Figure 6 shown in a Hägg diagram for a sodium carbonate solution.

In dem nicht-erfindungsgemäßen Elektrolysesystem ist bevorzugt auch im Anolytkreislauf ein Pufferreservoir vorgesehen, welches insbesondere auch zum Einbringen bzw. Nachliefern von Alkalichlorid in den Elektrolyten dienen kann, um den Salzgehalt im Anolyten zu halten.In the electrolysis system not according to the invention, a buffer reservoir is preferably also provided in the anolyte circuit, which can in particular also serve to introduce or replenish alkali chloride in the electrolyte in order to maintain the salt content in the anolyte.

In einer bevorzugten Ausführungsform des nicht-erfindungsgemäßen Elektrolysesystems weist der Katholyt wenigstens ein Lösemittel auf, insbesondere Wasser. Typischerweise wird mit wässrigen Elektrolyten und dementsprechend wasserlöslichen Leitsalzen gearbeitet. Der Leitsalzgehalt kann über die Zugabe von weiteren Carbonaten, Hydrogencarbonaten aber auch Sulfaten oder anderen Leitsalzen erhöht werden, um die Leitfähigkeit des Elektrolyten im Katholyt- sowie auch im Anolytkreislauf zu erhöhen, was im Gesamtsystem zu einer Erhöhung des Stoffumsatzes führt. Je nachdem, welche und in welchen Mengen zusätzliche Leitsalze im Katholytkreislauf enthalten sind, muss der Auskristallisationsprozess entsprechend angepasst werden, um das gewünschte Produkt in möglichst reiner Form zu extrahieren. Eingesetzte Leitsalze werden daher typischerweise so gewählt, dass deren Löslichkeit sich signifikant von der des Alkalihydrogencarbonats bzw. des Alkalicarbonats unterscheidet.In a preferred embodiment of the electrolysis system not according to the invention, the catholyte has at least one solvent, in particular water. Typically, aqueous electrolytes and correspondingly water-soluble conductive salts are used. The conductive salt content can be increased by adding further carbonates, hydrogen carbonates, but also sulfates or other conductive salts in order to increase the conductivity of the electrolyte in the catholyte as well as in the anolyte circuit, which leads to an increase in the metabolism in the overall system. Depending on which and in which quantities additional conductive salts are contained in the catholyte cycle, the crystallization process must be adapted accordingly in order to extract the desired product in as pure a form as possible. The conductive salts used are therefore typically chosen so that their solubility differs significantly from that of the alkali hydrogen carbonate or the alkali carbonate.

Typischerweise weist das nicht-erfindungsgemäße Elektrolysesystem auf der Anolytseite eine Gasabtrennungseinrichtung auf, welche ausgestaltet ist, die Chlorgasabtrennung aus dem Anolyten vorzunehmen. Auch im Katholytkreislauf kann eine Gasabtrennungseinrichtung vorgesehen sein, z.B. wenn dieser durch Einsatz einer Silber enthaltenden Kathode auf die Kohlenstoffmonoxidgas-Erzeugung ausgerichtet ist. Im Anolyt- sowie im Katholytkreislauf können zusätzliche Einrichtungen für Zu- oder Auslässe aus dem System oder zusätzliche Pufferreservoirs vorgesehen sein.Typically, the electrolysis system not according to the invention has a gas separation device on the anolyte side, which is designed to separate the chlorine gas from the anolyte. A gas separation device can also be provided in the catholyte circuit, e.g. if it is geared towards the generation of carbon monoxide gas by using a cathode containing silver. Additional devices for inlets or outlets from the system or additional buffer reservoirs can be provided in the anolyte and catholyte circuits.

Die Art und Qualität der eingesetzten Membran im Elektrolyseur trägt letztendlich wesentlichen Anteil daran, wie rein das auskristallisierte Produkt ist. Wird als Membran lediglich ein Separator eingesetzt, können beispielsweise auch Chloridanionen in den Kathodenraum diffundieren, selbst entgegen des elektrischen Feldes im Elektrolyseur, so dass neben Hydrogencarbonat gegebenenfalls auch Chloride entstehen. Daher wird in dem beschriebenen, nicht-erfindungsgemäßen Elektrolysesystem bevorzugt eine kationenleitende Membran eingesetzt, die nahezu ausschließlich Kationen passieren können. Eine rein anionenleitende Membran ist dementsprechend nicht von Vorteil.The type and quality of the membrane used in the electrolyser ultimately plays a major role in how pure the product that has crystallized out is. If only a separator is used as the membrane, chloride anions, for example, can also diffuse into the cathode space, even against the electric field in the electrolyzer, so that chlorides may also be formed in addition to hydrogen carbonate. Therefore, in the electrolysis system described, which is not according to the invention, a cation-conducting membrane is preferably used, which can almost exclusively pass cations. A purely anion-conducting membrane is accordingly not advantageous.

Das beschriebene, erfindungsgemäße Reduktionsverfahren zur Kohlenstoffdioxidverwertung mittels eines Elektrolysesystems, wie oben stehend beschrieben wurde, ist in Anspruch 1 definiert und umfasst folgende Schritte: Ein Wasser und Hydroxidionen umfassender Katholyt und Kohlenstoffdioxid werden in einen Kathodenraum eingebracht und dort in Kontakt mit einer Kathode gebracht. Im Inneren des Kathodenraums weist dieser Katholyt Alkalikationen auf, die durch die kationenleitende Membran, die Anoden- und Kathodenraum trennt, hindurch wandern. Überschüssiges Kohlenstoffdioxid reagiert im Kathodenraum mit den Hydroxidionen zu Carbonat und/oder Hydrogencarbonat, welche mit den durch die Membran in den Katholyt gewanderten Alkalikationen zu Alkali-Hydrogencarbonat und/oder Alkali-Carbonat reagieren. Zumindest ein Teil des Katholytvolumens wird in ein Abscheidebecken eingeleitet und dort ein Alkalihydrogencarbonat und/oder ein Alkalicarbonat auskristallisiert. Außerdem wird ein Anolyt, welcher Chloridanionen aufweist, in einen Anodenraum eingebracht und dort in Kontakt mit einer Anode gebracht, an der Anode werden die Chloridanionen zur Chlor oxidiert und dieses als Chlorgas über eine Gasabtrennungseinrichtung aus dem Anolyten abgetrennt. Typischerweise erfolgt dieses Reduktionsverfahren so, dass Anolyt und Katholyt jeweils in einem voneinander getrennten Kreislauf geführt wird, d.h. es sind zwei Pumpen im Elektrolysesystem vorgesehen, die zumindest an einer Stelle im Kreislauf einen Transport des Katholyten durch den Kathodenraum und einen Transport des Anolyten durch den Anodenraum bewirken. Die Kreisläufe sind durch die Membran im Elektrolyseur voneinander getrennt, welche idealerweise ausschließlich einen Kationentransport aus dem Anodenraum in den Kathodenraum zulässt. Insbesondere werden die im Kathodenraum benötigten Alkalikationen aus dem Anodenraum erhalten. Der Anolyt weist dazu bevorzugt ein Alkalichlorid auf, dieses kann dementsprechend als Leitsalz aber auch als Elektrolyseedukt gleichermaßen eingesetzt werden. Alternativ kann das Alkalichlorid im Anolyten als Elektrolyseedukt und ein zusätzliches Leitsalz, z.B. ein Sulfat, ein Phosphat et cetera, bevorzugt ein Alkalisulfat, eingesetzt werden. Alternativ können auch Ammoniumsalze oder deren Homologe eingesetzt werden. Imidazoliumsalze oder andere ionische Flüssigkeiten können die Selektivität der Elektrode, besonders der Kathode, positiv beeinflussen.The described, inventive reduction process for carbon dioxide utilization by means of an electrolysis system, as described above, is defined in claim 1 and comprises the following steps: A catholyte comprising water and hydroxide ions and carbon dioxide are introduced into a cathode compartment and brought into contact there with a cathode. In the interior of the cathode compartment, this catholyte has alkaline cations which migrate through the cation-conducting membrane that separates the anode and cathode compartments. Excess carbon dioxide reacts in the cathode space with the hydroxide ions to form carbonate and / or hydrogen carbonate, which react with the alkali cations that have migrated through the membrane into the catholyte to form alkali hydrogen carbonate and / or alkali carbonate. At least part of the catholyte volume is introduced into a separation basin and an alkali hydrogen carbonate and / or an alkali carbonate is crystallized there. In addition, an anolyte, which has chloride anions, is introduced into an anode space and brought into contact there with an anode, at the anode the chloride anions are oxidized to chlorine and this is separated from the anolyte as chlorine gas via a gas separation device. Typically, this reduction process is carried out in such a way that the anolyte and catholyte are each conducted in a separate circuit, i.e. two pumps are provided in the electrolysis system, which at least at one point in the circuit transport the catholyte through the cathode compartment and transport the anolyte through the anode compartment effect. The circuits are separated from one another by the membrane in the electrolyser, which ideally only allows the transport of cations from the anode compartment into the cathode compartment. In particular, the alkali cations required in the cathode compartment are obtained from the anode compartment. For this purpose, the anolyte preferably has an alkali chloride, which can accordingly be used as a conductive salt but also as an electrolysis product. Alternatively, the alkali metal chloride in the anolyte can be used as the electrolysis product and an additional conductive salt, for example a sulfate, a phosphate, etc., preferably an alkali metal sulfate, can be used. Alternatively, ammonium salts or their homologues can also be used. Imidazolium salts or other ionic liquids can have a positive effect on the selectivity of the electrode, especially the cathode.

Typischerweise wird bei dem Reduktionsverfahren bei der Reduktion des Kohlenstoffdioxids an der Kathode Kohlenstoffmonoxid, Ethylen, Methan, Ethanol und/oder Monoethylenglykol erzeugt. Dazu wird eine entsprechende Kathode als Katalysator dieser Reaktionen eingesetzt. Die Kathode ist eine silberhaltige Kathode und bildet aus dem Kohlenstoffdioxid und dem Katholyten überwiegend Kohlenstoffmonoxid, Hydroxidionen und nur wenig Wasserstoff als Produkte. Alternativ ist die Kathode eine kupferhaltige Kathode und bildet aus dem Kohlenstoffdioxid und dem Katholyten Ethylen, Methan, Ethanol und/oder Monoethylenglykol und Hydroxidionen als Produkte. Der große Vorteil dieses Reduktionsverfahrens ist, dass neben der Kohlenstoffdioxidverwertung zusätzlich chemische Wertstoffe erzeugt werden können.Typically, carbon monoxide, ethylene, methane, ethanol and / or monoethylene glycol is produced in the reduction process during the reduction of the carbon dioxide at the cathode. For this purpose, a suitable cathode is used as a catalyst for these reactions. The cathode is a silver-containing cathode and mainly forms carbon monoxide, hydroxide ions and only a little hydrogen as products from the carbon dioxide and the catholyte. Alternatively, the cathode is a copper-containing cathode and forms ethylene, methane, ethanol and / or from the carbon dioxide and the catholyte Monoethylene glycol and hydroxide ions as products. The great advantage of this reduction process is that, in addition to the utilization of carbon dioxide, chemical valuable substances can also be generated.

In einer Ausführungsform des Reduktionsverfahrens werden die bei der Kohlenstoffdioxidreduktion entstehenden Hydroxidionen mit überschüssig vorhandenem Kohlenstoffdioxid zu Hydrogencarbonationen umgewandelt. Die Hydrogencarbonaterzeugung direkt im Kathodenraum hat den Vorteil, dass diese direkt mit im Kathodenraum vorhandenen Alkalikationen weiter reagieren können zu einem weiteren interessanten Wertstoff, wie er sonst in separaten Herstellungsprozessen produziert werden müsste.In one embodiment of the reduction process, the hydroxide ions formed during the carbon dioxide reduction are converted to hydrogen carbonate ions with excess carbon dioxide. The hydrogen carbonate production directly in the cathode compartment has the advantage that it can react further directly with the alkali cations present in the cathode compartment to form another interesting valuable material that would otherwise have to be produced in separate manufacturing processes.

Um diesen Wertstoff dem System zu entnehmen, wird insbesondere zumindest ein Teil des Katholytvolumens in ein Abscheidebecken eingeleitet und dort um wenigstens 15 K, bevorzugt um wenigstens 20 K abgekühlt. Hier wird also die Temperaturabhängigkeit der Carbonatlöslichkeit ausgenutzt, um den Wertstoff aus dem Katholytkreislauf zu entnehmen. Die Temperaturdifferenz von Abscheidebecken zu Elektrolyseur kann auch mehr als 30 K betragen, insbesondere auch mehr als 50 K, je nach vorliegendem zu extrahierendem Alkalihydrogencarbonat und auch abhängig davon, welche weiteren Salze im Kreislauf vorhanden sind. Die Temperaturdifferenz zwischen Elektrolyseur und Abscheideeinheit kann zwischen 5 K und 70 K betragen.In order to remove this valuable material from the system, in particular at least part of the catholyte volume is introduced into a separation basin and cooled there by at least 15 K, preferably by at least 20 K. The temperature dependence of the carbonate solubility is used here to remove the valuable substance from the catholyte cycle. The temperature difference between the separation basin and the electrolyser can also be more than 30 K, in particular more than 50 K, depending on the alkali hydrogen carbonate to be extracted and also depending on which other salts are present in the circuit. The temperature difference between the electrolyzer and the separation unit can be between 5 K and 70 K.

In einer alternativen Variante zur Extraktion des Hydrogencarbonatproduktes aus dem Katholytvolumen wird die Abhängigkeit der Löslichkeit vom pH-Wert ausgenutzt. Dieses Verfahren kann mit dem temperaturabhängigen Verfahren kombiniert werden.In an alternative variant for the extraction of the hydrogen carbonate product from the catholyte volume, the dependence of the solubility on the pH value is used. This method can be combined with the temperature-dependent method.

In einer Ausführungsform des Reduktionsverfahrens wird dazu zumindest ein Teil des Katholytvolumens in ein Abscheidebecken eingeleitet und dort dessen pH-Wert insbesondere mittels Einblasen von Kohlenstoffdioxid von über 8 auf einen pH-Wert von 6 oder weniger abgesenkt. Gerade das Puffern des pH-Werts auf einen Wert über 8 im Kathodenraum bringt den Vorteil, das Ausfällen des Alkalihydrogencarbonats im Kathodenraum selbst zu verhindern.In one embodiment of the reduction process, at least part of the catholyte volume is introduced into a separation basin and its pH value there, in particular by blowing in carbon dioxide from above 8 to a pH value lowered by 6 or less. Buffering the pH value to a value above 8 in the cathode compartment has the advantage of preventing the alkali hydrogen carbonate from precipitating in the cathode compartment itself.

Das Reduktionsverfahren kann so vorgenommen werden, dass das ausgefällte Alkalihydrogencarbonat durch Erhitzen zu Alkalicarbonat umgewandelt wird. Dies kann direkt im Anschluss an die Auskristallisation des Hydrogencarbonats im Abscheidebecken vorgenommen werden oder separat von dem beschriebenen Elektrolysesystem erfolgen.The reduction process can be carried out so that the precipitated alkali hydrogen carbonate is converted to alkali carbonate by heating. This can be done directly after the hydrogen carbonate has crystallized out in the separation basin or it can be done separately from the electrolysis system described.

Alternativ zur Temperaturmethode der Auskristallisation oder zur temperaturunterstützten Auskristallisation oder auch in Kombination mit dieser kann der Prozess so gefahren werden, dass der pH-Wert im Kathodenraum im oberen Limit der Reaktion um 8 oder höher gehalten wird, so dass das Gleichgewicht zunächst zugunsten von Natriumcarbonat verschoben ist:

        2 NaHCO3 → Na2CO3 + H2O + CO2.

As an alternative to the temperature method of crystallization or temperature-assisted crystallization, or in combination with this, the process can be run in such a way that the pH value in the cathode compartment is kept at the upper limit of the reaction by 8 or higher, so that the equilibrium is initially shifted in favor of sodium carbonate is:

2 NaHCO 3 → Na 2 CO 3 + H 2 O + CO 2 .

Dazu muss die Kohlenstoffdioxidzufuhr in das System sehr gut kontrolliert werden, um in dieses basische Regime zu gelangen und dieses zu halten. Im Abscheidebecken würde dann der pH-Wert zur optimalen Abscheidung des Natriumhydrogencarbonats durch Einblasen von Kohlenstoffdioxid gesenkt und somit die Gleichgewichtsreaktion wieder zugunsten von Natriumhydrogencarbonat verschoben.To do this, the supply of carbon dioxide into the system must be very carefully controlled in order to get into and maintain this basic regime. In the separation basin, the pH value would then be lowered for optimal separation of the sodium hydrogen carbonate by blowing in carbon dioxide and thus the equilibrium reaction would be shifted again in favor of sodium hydrogen carbonate.

Das Verfahren ist aber nicht auf Natriumhydrogencarbonat beschränkt. Beispielsweise kann auch Kaliumhydrogencarbonat in diesem Verfahren hergestellt werden. Analog zum beschriebenen Abscheideverfahren für Natriumhydrogencarbonat kann auch das Kaliumhydrogencarbonat aus einem reinen Kaliumhydrogencarbonatelektrolyten durch Absenken der Temperatur im Abscheidebecken auskristallisiert werden. Bei 20°C beträgt die Löslichkeit von Kaliumhydrogencarbonat 337 g/l, bei 60°C 600 g/l.However, the process is not limited to sodium hydrogen carbonate. For example, potassium hydrogen carbonate can also be produced in this process. Analogously to the described separation process for sodium hydrogen carbonate, the potassium hydrogen carbonate can also be crystallized from a pure potassium hydrogen carbonate electrolyte by lowering the temperature in the separation basin. At 20 ° C the solubility of potassium hydrogen carbonate is 337 g / l, at 60 ° C 600 g / l.

Etwas anders muss vorgegangen werden, wenn ein zusätzliches Leitsalz, z.B. Kaliumsulfat (K2SO4) eingesetzt werden soll. Dieses hat eine geringere Löslichkeit von 111,1 g/l bei 20°C und 250 g/l bei 100°C, was dazu führt, dass im gemischten Elektrolyten immer zunächst das Kaliumsulfat ausfallen würde. Um das Kaliumhydrogencarbonat (KHCO3) aus einem Elektrolyten, der sowohl Kaliumsulfat als auch Kaliumhydrogencarbonat enthält, zu gewinnen, muss folgendermaßen vorgegangen werden: Im Abscheidebecken AB kristallisiert bevorzugt Kaliumsulfat K2SO4 aus, welches im Anschluss, also in Kreislaufrichtung nach dem Abscheidebecken AB, dem Elektrolyten wieder zugeführt werden kann. Das Elektrolytvolumen, dem das Kaliumsulfat K2SO4 bereits entzogen wurde, wird dann, bevorzugt in einem weiteren Abscheidebecken, aufkonzentriert, d.h. der Kaliumhydrogencarbonatlösung wird z.B. durch Abkühlung das Wasser entzogen, um das kristalline Material zu erhalten.The procedure is somewhat different if an additional conductive salt, eg potassium sulfate (K 2 SO 4 ) is to be used. This has a lower solubility of 111.1 g / l at 20 ° C and 250 g / l at 100 ° C, which means that the potassium sulfate would always precipitate first in the mixed electrolyte. In order to obtain the potassium hydrogen carbonate (KHCO 3 ) from an electrolyte that contains both potassium sulphate and potassium hydrogen carbonate, the following procedure must be followed: In the separation tank AB, potassium sulphate K 2 SO 4 preferably crystallizes out, which is then, in the direction of the circulation, after the separation tank AB , can be fed back into the electrolyte. The electrolyte volume from which the potassium sulfate K 2 SO 4 has already been removed is then concentrated, preferably in a further separation basin, ie the water is removed from the potassium hydrogen carbonate solution, for example by cooling, in order to obtain the crystalline material.

Prinzipiell ist dieses Verfahren auch für andere Kationen bzw. Mischungen von Kationen anwendbar. Durch die Migration der Kationen konzentriert sich der Katholyt dabei so weit auf, bis sich das am schwersten löslichste Salz oder Doppelsalz abscheidet. Dabei ist wichtig, dass der Prozess der Aufkonzentration und Abscheidung nicht im Kathodenraum also nicht in der Elektrolysezelle selbst erfolgt, sondern der Katholyt dafür in ein im Elektrolysesystem integriertes Abscheidebecken transportiert wird. Über einen weiteren zusätzlichen physikalischen oder chemischen Unterschied zwischen Elektrolysezelle und Abscheidebecken, also z.B. über einen Temperatur-, pH-Wert- oder Druckgradienten wird die Abscheidung im Abscheidebecken erreicht oder begünstigt. Eine geeignete Druckdifferenz zwischen Elektrolysezelle und Abscheidebecken kann bis zu 100 bar betragen. Bevorzugt würde eine Druckdifferenz zwischen 2 bar und 20 bar gewählt werden. Ein erhöhter Druck im Abscheidebecken würde die Hydrogencarbonatbildung begünstigen.In principle, this method can also be used for other cations or mixtures of cations. Due to the migration of the cations, the catholyte concentrates until the most difficult to dissolve salt or double salt separates. It is important that the process of concentration and separation does not take place in the cathode compartment, i.e. not in the electrolysis cell itself, but rather that the catholyte is transported to a separation basin integrated in the electrolysis system. A further additional physical or chemical difference between the electrolysis cell and the separation basin, for example a temperature, pH value or pressure gradient, enables or facilitates the separation in the separation basin. A suitable pressure difference between the electrolysis cell and the separation basin can be up to 100 bar. A pressure difference between 2 bar and 20 bar would preferably be selected. An increased pressure in the separation basin would favor the formation of hydrogen carbonate.

Auf Anodenseite sind grundsätzlich auch alternative Anodenreaktionen denkbar, allerdings ist die Kopplung mit der Chlorproduktion die wirtschaftlich sinnvollste, da der Chlormarkt bei ca. 75 Millionen Tonnen pro Jahr liegt. Die heutige Produktion an Natriumhydrogencarbonat (NaHCO3) liegt bei ca. 50 Millionen Tonnen im Jahr, die bisher über den energetisch ungünstigen Solvay-Prozess hergestellt werden.In principle, alternative anode reactions are also conceivable on the anode side, but the coupling with chlorine production makes the most economic sense, since the chlorine market is around 75 million tons per year. Today's production of sodium hydrogen carbonate (NaHCO 3 ) is around 50 million tons per year, which has so far been produced using the energetically unfavorable Solvay process.

Mit dem beschriebenen Elektrolysesystem und Reduktionsverfahren ist es möglich, elektrochemisch kontinuierlich und gleichzeitig drei Wertstoffe zu erzeugen: An der Kathode wird aus der Kohlenstoffdioxid-Reduktion ein Wertstoff wie Kohlenmonoxid, Ethylen, Methan, Ethanol oder Monoethylenglykol gewonnen, als Folgeprodukt dieser Reduktion entstehend im Kathodenraum Natriumhydrogencarbonat und/oder Natriumcarbonat als Koppelprodukt und auf Anodenseite wird Chlor produziert.With the described electrolysis system and reduction process it is possible to electrochemically continuously and simultaneously generate three valuable substances: At the cathode, a valuable substance such as carbon monoxide, ethylene, methane, ethanol or monoethylene glycol is obtained from the carbon dioxide reduction; and / or sodium carbonate as a by-product and chlorine is produced on the anode side.

Beispiele und Ausführungsformen der vorliegenden Erfindung werden noch in exemplarischer Weise mit Bezug auf die Figuren 1 bis 6 der angehängten Zeichnung beschrieben:

Figur 1
zeigt in schematischer Darstellung ein nichterfindungsgemäßes Elektrolysesystem mit Kohlenstoffdioxid-Reservoir und Abscheidebecken,
Figur 2
zeigt in schematischer Darstellung ein nichterfindungsgemäßes Elektrolysesystem mit Gasdiffusionselektrode,
Figur 3
zeigt in schematischer Darstellung einen PEM-Aufbau einer Elektrolysezelle,
Figur 4
zeigt in schematischer Darstellung eine PEM-Halbzelle gekoppelt mit einer Gasdiffusionselektrode,
Figur 5
zeigt in schematischer Darstellung eine PEM-Halbzelle gekoppelt mit einer hinterströmten Kathode und
Figur 6
zeigt ein Hägg-Diagramm.
Examples and embodiments of the present invention will be further exemplified with reference to FIG Figures 1 to 6 described in the attached drawing:
Figure 1
shows a schematic representation of an electrolysis system not in accordance with the invention with a carbon dioxide reservoir and separation basin,
Figure 2
shows a schematic representation of an electrolysis system not according to the invention with a gas diffusion electrode,
Figure 3
shows a schematic representation of a PEM structure of an electrolysis cell,
Figure 4
shows a schematic representation of a PEM half-cell coupled with a gas diffusion electrode,
Figure 5
shows a schematic representation of a PEM half-cell coupled with a cathode flowing behind and
Figure 6
shows a Hägg diagram.

In den Figuren 1 und 2 sind in schematischer Darstellung Beispiele für nicht-erfindungsgemäße Elektrolysesysteme zur Kohlenstoffdioxidreduktion gezeigt, welche gleichermaßen als Flussdiagramme für den beschriebenen Reduktionsprozess gelesen werden können. Auf der linken Seite ist jeweils der Anolytkreislauf AK, auf der rechten Seite der Katholytkreislauf KK gezeigt. Verbunden sind diese beiden Kreisläufe AK, KK über den Elektrolyseur E1, E2, dessen Anodenraum AR und Kathodenraum KR über eine Membran M miteinander verbunden bzw. über diese voneinander getrennt sind. Als Membran M wird bevorzugt eine kationenleitende Membran M eingesetzt. Im Anodenraum AR ist eine Anode A, im Kathodenraum KR eine Kathode K angeordnet, welche über eine Spannungsquelle U elektrisch verbunden sind. Beide Kreisläufe AK, KK weisen bevorzugt jeweils eine Pumpe P1, P2 auf, welche die Elektrolyten durch den Elektrolyseur pumpen. Zusätzlich können Einrichtungen N1, N2, N3 in beiden Kreisläufen AK, KK an unterschiedlicher Stelle der Flussrichtung vorhanden sein, welche zusätzliche Zu- oder Abflüsse oder als Pufferreservoirs sein können. Im Anolytkreislauf AK ist zumindest eine Gasabscheideeinrichtung G2 mit einem Produktauslass PA2 vorgesehen, über welche das Produkt Chlorgas Cl2 entnommen werden kann. Im Katholytkreislauf KK ist ebenso zumindest eine Gasabscheideeinrichtung G1 mit Produktauslass PA1 vorgesehen, über welche beispielsweise das Elektrolyseprodukt Kohlenstoffmonoxid CO, beispielsweise auch Wasserstoff H2 entnommen werden kann. Aber auch weitere Elektrolyseprodukte, wie Ethylen, Methan, Ethanol, Monoethlenglykol können über diesen oder beispielswiese über einen weiteren Produktauslass dem System entnommen werden. Der Elektrolyseur E1, E2 weist beispielsweise eine Gasdiffusionselektrode GDE für den Kohlenstoffdioxideinlass auf.In the Figures 1 and 2 Examples of electrolysis systems not according to the invention for carbon dioxide reduction are shown in a schematic representation, which can also be read as flow charts for the reduction process described. The anolyte circuit AK is shown on the left-hand side and the catholyte circuit KK is shown on the right-hand side. These two circuits AK, KK are connected via the electrolyzer E1, E2, the anode compartment AR and cathode compartment KR of which are connected to one another via a membrane M or are separated from one another via these. A cation-conducting membrane M is preferably used as the membrane M. An anode A is arranged in the anode space AR and a cathode K is arranged in the cathode space KR, which are electrically connected via a voltage source U. Both circuits AK, KK preferably each have a pump P1, P2 which pump the electrolytes through the electrolyzer. In addition, devices N1, N2, N3 can be present in both circuits AK, KK at different points in the direction of flow, which can be additional inflows or outflows or as buffer reservoirs. At least one gas separation device G2 with a product outlet PA2, via which the product chlorine gas Cl 2 can be removed, is provided in the anolyte circuit AK. At least one gas separation device G1 with a product outlet PA1 is also provided in the catholyte circuit KK, via which, for example, the electrolysis product carbon monoxide CO, for example also hydrogen H 2 , can be withdrawn. However, other electrolysis products such as ethylene, methane, ethanol, monoethylene glycol can also be taken from the system via this or, for example, via a further product outlet. The electrolyzer E1, E2 has, for example, a gas diffusion electrode GDE for the carbon dioxide inlet.

Im Fall des in Figur 1 gezeigten Elektrolyseurs E1 ist ein Zweikammeraufbau gewählt und das Kohlenstoffdioxid CO2 wird über ein Reservoir CO2-R und in Kreislaufrichtung vor dem Kathodenraum KR in den Elektrolyten eingebracht. Der Katholytkreislauf KK weist in beiden gezeigten Fällen ein Abscheidebecken AB auf, welches direkt in den Kreislauf eingebunden sein kann oder durch welches nur ein Teil des Katholytvolumens geführt wird. Dazu kann, wie in den Figuren 1 und 2 gezeigt, ein Abzweig des Kreislaufs KK vorgesehen sein. Das Abscheidebecken AB oder mehrere hintereinandergeschaltete Abscheidebecken, können beispielsweise mit einer Kühleinrichtung oder mit einem Pufferreservoir PR verbunden sein, so dass die Auskristallisation des Hydrogencarbonats durch Einstellen einer Temperaturdifferenz, Druckdifferenz oder pH-Wertdifferenz zum Elektrolyseur E1, E2 begünstigt wird. Des Weiteren weist das Abscheidebecken AB einen Produktauslass PA3 auf. Mehrere hintereinandergeschaltete Abscheidebecken würden jeweils einen Produktauslass aufweisen.In the case of the in Figure 1 The electrolyser E1 shown is a two-chamber structure and the carbon dioxide CO 2 is introduced into the electrolyte via a reservoir CO 2 -R and in the direction of the circulation in front of the cathode chamber KR. In both cases shown, the catholyte circuit KK has a separation basin AB, which can be integrated directly into the circuit or through which only part of the catholyte volume is passed. As in the Figures 1 and 2 shown, a branch of the circuit KK may be provided. The separation basin AB or several separation basins connected in series can be connected, for example, to a cooling device or to a buffer reservoir PR, so that the crystallization of the hydrogen carbonate is promoted by setting a temperature difference, pressure difference or pH value difference to the electrolyzer E1, E2. Furthermore, the separation basin AB has a product outlet PA3. Several separation basins connected in series would each have a product outlet.

In den Figur 1 und 2 sind also Elektrolysesysteme gezeigt, wie sie für eine Ausführung des erfindungsgemäßen Reduktionsverfahrens eingesetzt werden können. In diesem Aufbau wird darauf geachtet, dass separate Anolyt- AK und Katholytkreise KK vorhanden sind. Die verwendeten Elektrolyte werden dann kontinuierlich durch die Elektrolysezelle E1, E2, d.h. durch den Anodenraum AR und durch den Kathodenraum KR gepumpt. Dazu sind in dem Aufbau in jedem der beiden Kreisläufe AK, KK jeweils eine Pumpe P1, P2 vorgesehen. Der Aufbau kann Materialien aus Kunststoff, kunststoffbeschichtetes Metall oder Glas aufweisen. Als Vorratsgefäße können Glaskolben eingesetzt werden, die Zelle selbst ist bspw. aus PTFE, die Schläuche aus Neopren.In the Figure 1 and 2 That is, electrolysis systems are shown as they can be used for carrying out the reduction process according to the invention. In this setup, care is taken to ensure that separate anolyte AK and catholyte circles KK are available. The electrolytes used are then pumped continuously through the electrolysis cell E1, E2, ie through the anode space AR and through the cathode space KR. For this purpose, a pump P1, P2 is provided in each of the two circuits AK, KK in the structure. The structure can have materials made of plastic, plastic-coated metal or glass. Glass flasks can be used as storage vessels, the cell itself is made of PTFE, for example, and the tubes are made of neoprene.

Der Elektrolyseur E1, E2, wie er in den gezeigten Elektrolysesystemen verbaut ist, kann auch einen anderen Aufbau aufweisen, wie er beispielsweise in den Figuren 3 bis 5 gezeigt ist. Eine alternative Elektrolysezelle ist die nach dem Polymerelektrolytmembranaufbau (PEM-Aufbau). In diesem Fall liegt zumindest eine Elektrode direkt an der Polymerelektrolytmembran PEM an. Entsprechend kann die Elektrolysezelle als PEM-Halbzelle ausgestaltet sein, wie in den Figuren 4 und 5 gezeigt, in denen die Anodenseite als PEM-Halbzelle ausgestaltet ist, also die Anode A in direktem Kontakt mit der Membran PEM angeordnet ist und der Anodenraum AR auf der membranabgewandten Seite der Anode A angeordnet ist.The electrolyzer E1, E2, as it is installed in the electrolysis systems shown, can also have a different structure, as it is, for example, in FIG Figures 3 to 5 is shown. An alternative electrolysis cell is the one based on the polymer electrolyte membrane structure (PEM structure). In this case lies at least one electrode directly on the polymer electrolyte membrane PEM. Correspondingly, the electrolysis cell can be designed as a PEM half-cell, as in FIG Figures 4 and 5 in which the anode side is designed as a PEM half-cell, that is, the anode A is arranged in direct contact with the membrane PEM and the anode space AR is arranged on the side of the anode A facing away from the membrane.

In den Fällen, wie in Figur 4 und 5 gezeigt, ist die Kathode K porös und zumindest teilweise gasdurchlässig und/oder elektrolytdurchlässig ausgeführt. In der Figur 4 ist die Anoden-PEM-Halbzelle mit einer Gasdiffusionselektrode GDE zum Einbringen des Kohlenstoffdioxids CO2 in den Kathodenraum KR kombiniert. Außerdem ist in der Figur 5 eine hinterströmte Kathode K gezeigt, deren Kathodenraum KR über die Kathode K mit einem Gasreservoir verbunden ist. Das Gasreservoir weist dabei seinerseits zumindest einen Gaseinlass GE und gegebenenfalls Gasauslass GA auf. Eine solche Ausführungsform wird bisher beispielsweise als Sauerstoffverzehrelektrode eingesetzt, z.B. bei der Herstellung von Natronlauge. Dann würde die Kathode K mit Sauerstoff hinterströmt. Die Sauerstoffverzehrkathode kann beispielsweise dazu eingesetzt werden, die Wasserstoffbildung H2 im Kathodenraum KR zu vermeiden zugunsten einer Reaktion hin zu Wasser H2O. Dabei senkt die Wasserbildungsenergie die notwendige Systemspannung U und bewirkt somit einen geringeren Energieverbrauch des Elektrolysesystems. Da die Kathode K einer Sauerstoffverzehrelektrode vornehmlich aus Silber besteht, kann sie auch die Kohlenstoffdioxidreduktion katalysieren. Wird kein Sauerstoff zur Verfügung gestellt, kann die Sauerstoffverzehrreaktion nicht ablaufen. Stattdessen findet die Kohlenstoffdioxidreduktion zu Kohlenstoffmonoxid CO mit einer gewissen Wasserstoffbildung statt.In the cases as in Figure 4 and 5 As shown, the cathode K is designed to be porous and at least partially gas-permeable and / or electrolyte-permeable. In the Figure 4 the anode PEM half-cell is combined with a gas diffusion electrode GDE for introducing the carbon dioxide CO 2 into the cathode space KR. In addition, the Figure 5 a cathode K flowing behind is shown, the cathode space KR of which is connected to a gas reservoir via the cathode K. The gas reservoir for its part has at least one gas inlet GE and possibly gas outlet GA. Such an embodiment has hitherto been used, for example, as an oxygen-consuming electrode, for example in the production of sodium hydroxide solution. Then the cathode K would flow behind with oxygen. The oxygen-consuming cathode can be used, for example, to avoid the formation of hydrogen H 2 in the cathode chamber KR in favor of a reaction to water H 2 O. The water formation energy lowers the necessary system voltage U and thus results in a lower energy consumption of the electrolysis system. Since the cathode K of an oxygen-consuming electrode consists primarily of silver, it can also catalyze the carbon dioxide reduction. If no oxygen is made available, the oxygen consumption reaction cannot take place. Instead, the carbon dioxide reduction to carbon monoxide CO takes place with a certain amount of hydrogen formation.

Wird beispielsweise als Alkalimetall Natrium gewählt, laufen bei Einsatz einer kupferhaltigen Kathode K folgende Reaktionen im Kathodenraum KR ab:

  • Ethylen: 12 NaCl + 14 CO2 + 8 H2O → C2H4 + 12 NaHCO3 + 6 Cl2
  • Methan: 8 NaCl + 9 CO2 + 4 H2O → CH4 + 8 NaHCO3 + 4 Cl2
  • Ethanol: 12 NaCl + 14 CO2 + 9 H2O → C2H5OH + 12 NaHCO3 + 6 Cl2
  • Monoethylenglykol:
    10 NaCl + 12 CO2 + 8 H2O → HOC2H4OH + 10 NaHCO3 + 5 Cl2.
If, for example, sodium is selected as the alkali metal, the following reactions take place in the cathode compartment KR when a copper-containing cathode K is used:
  • Ethylene: 12 NaCl + 14 CO 2 + 8 H 2 O → C 2 H 4 + 12 NaHCO 3 + 6 Cl 2
  • Methane: 8 NaCl + 9 CO 2 + 4 H 2 O → CH 4 + 8 NaHCO 3 + 4 Cl 2
  • Ethanol: 12 NaCl + 14 CO 2 + 9 H 2 O → C 2 H 5 OH + 12 NaHCO 3 + 6 Cl 2
  • Monoethylene glycol:
    10 NaCl + 12 CO 2 + 8 H 2 O → HOC 2 H 4 OH + 10 NaHCO 3 + 5 Cl 2 .

Bei einer silberhaltigen Kathode K würde folgende Reaktion an der Kathode K ablaufen:
Kohlenstoffmonoxid:
2 NaCl + 3 CO2 + H2O → CO + 2 NaHCO3 + Cl2.
In the case of a silver-containing cathode K, the following reaction would take place at the cathode K:
Carbon monoxide:
2 NaCl + 3 CO 2 + H 2 O → CO + 2 NaHCO 3 + Cl 2 .

Diese Gleichungen beschreiben den Summenprozess in der Elektrolysezelle. Das Chlorgas Cl2 entsteht, wie beschrieben, durch Oxidation der Chloridanionen Cl- an der Anode A, die anderen Elektrolyseprodukte entstehen an der Kathode K bzw. durch Folgereaktionen im Kathodenraum KR.These equations describe the total process in the electrolysis cell. The chlorine gas Cl 2 arises, as described, through oxidation of the chloride anions Cl - at the anode A, the other electrolysis products arise at the cathode K or through subsequent reactions in the cathode space KR.

Das Beispiel Natrium ist besonders geeignet, da sich das Natriumhydrogencarbonat sehr gut aus dem Elektrolyten abscheiden lässt. Außerdem handelt es sich bei Natriumhydrogencarbonat und Natriumcarbonat um wichtige, häufig benötigte chemische Wertstoffe. Die weltweite jährliche Natriumcarbonatproduktion liegt bei etwa 50 Millionen Tonnen, wie beispielsweise dem Roskill-Marktbericht " Soda Ash: Market Outlook to 2018", available from Roskill Information Services Ltd, E-Mail: info@roskill.co.uk, www.roskill.co.uk/soda-ash , zu entnehmen ist.The sodium example is particularly suitable because the sodium hydrogen carbonate can be separated out very easily from the electrolyte. In addition, sodium hydrogen carbonate and sodium carbonate are important, frequently required chemical substances. Worldwide annual sodium carbonate production is around 50 million tons, such as the Roskill market report " Soda Ash: Market Outlook to 2018 ", available from Roskill Information Services Ltd, email: info@roskill.co.uk, www.roskill.co.uk/soda-ash , can be found.

Die Löslichkeit von Natriumhydrogencarbonat NaHCO3 in Wasser H2O ist vergleichsweise gering und zeigt auch eine starke Temperaturabhängigkeit, s. Tabelle 2. Tabelle2 Molekularformel KHCO3 K2SO4 K3PO4 KI KBr KCl NaHCO3 Na2SO4 Molarmasse in g/mol 100.1 174.3 212.3 166.0 119.0 74.6 84.01 142.04 Löslichkeit in H2O bei 20°C: In g/l 337 111 900 1400 678 344 96 170 In mol/l 3.37 0.64 4.24 8.43 5.70 4.61 1.19 1.14 Leitfähigkeiten σ in mS/cm: Bei 0.05M 4.8 9.9 17.3 7.2 7.7 7.4 5.8 14.8 Bei 0.1M 9.1 19.2 30.1 14.0 14.3 13.8 28.1 51.6 Bei 0.5M 38.9 (69.9) 108 65.2 67.5 62.8 The solubility of sodium hydrogen carbonate NaHCO 3 in water H 2 O is comparatively low and also shows a strong temperature dependence, see Table 2. Table 2 Molecular formula KHCO 3 K 2 SO 4 K 3 PO 4 AI KBr KCl NaHCO 3 Na 2 SO 4 Molar mass in g / mol 100.1 174.3 212.3 166.0 119.0 74.6 84.01 142.04 Solubility in H 2 O at 20 ° C: In g / l 337 111 900 1400 678 344 96 170 In mol / l 3.37 0.64 4.24 8.43 5.70 4.61 1.19 1.14 Conductivities σ in mS / cm: At 0.05M 4.8 9.9 17.3 7.2 7.7 7.4 5.8 14.8 At 0.1M 9.1 19.2 30.1 14.0 14.3 13.8 28.1 51.6 At 0.5M 38.9 (69.9) 108 65.2 67.5 62.8

In der Tabelle 2 sind weitere Salze, Kaliumhydrogencarbonat KHCO3, Kaliumsulfat K2SO4, Kaliumphosphat K3PO4, Kaliumiodid KI, Kaliumbromid KBr, Kaliumchlorid KCl, Natriumhydrogencarbonat NaHCO3, Natriumsulfat Na2SO4 aufgeführt, die bevorzugt eingesetzt werden können. Aber auch andere Sulfate, Phosphate, Iodide oder Bromide können zur Erhöhung der Leitfähigkeit im Elektrolyten eingesetzt werden. Durch ständiges Zuführen des Kohlenstoffdioxids müssen Carbonate bzw. Hydrogencarbonate nicht zugeführt werden, sondern werden im Betrieb im Kathodenraum KR gebildet.Table 2 shows other salts, potassium hydrogen carbonate KHCO 3 , potassium sulfate K 2 SO 4 , potassium phosphate K 3 PO 4 , potassium iodide KI, potassium bromide KBr, potassium chloride KCl, sodium hydrogen carbonate NaHCO 3 , sodium sulfate Na 2 SO 4 , which can be used with preference. However, other sulfates, phosphates, iodides or bromides can also be used to increase the conductivity in the electrolyte. Due to the constant supply of carbon dioxide, carbonates or hydrogen carbonates do not have to be supplied, but are formed in the cathode space KR during operation.

Die Löslichkeit von Natriumhydrogencarbonat NaHCO3 in Wasser beträgt 69 g/l bei 0°C, 96 g/l bei 20°C, 165 g/l bei 60°C und 236 g/l bei 100°C. Natriumcarbonat NaCO3 löst sich hingegen vergleichsweise gut, dessen Löslichkeit liegt bei 217 g/l bei 20°C. Bei fortlaufender Elektrolyse neigt also das Natriumhydrogencarbonat NaHCO3 zu einer Auskristallisation in der Elektrolysezelle E1, E2. Dem kann über eine erhöhte Temperatur, wie sie ohnehin durch den Betrieb des Systems entsteht und auch durch eine entsprechende pH-Wertpufferung entgegengewirkt werden. Das Natriumhydrogencarbonat NaHCO3 soll erst im Abscheidebecken AB aus dem Elektrolyten auskristallisieren. Durch das Umpumpen des Elektrolyten in einen Kreislauf KK wird das im Kathodenraum KR gebildete Natriumhydrogencarbonat NaHCO3 aus diesem herausgeführt und der Katholytkreislauf KK kann durch ein Abscheidebecken AB hindurch verlaufen oder es erfolgt ein Abzweig eines Teilvolumens des Katholyten in ein Abscheidebecken AB, in dem z.B. durch die Abkühlung des Elektrolyten das Natriumhydrogencarbonat NaHCO3 auskristallisiert und somit gewonnen werden kann. Da sich die Elektrolysezellen E1, E2 im Betrieb durch Prozessverluste ohnehin stark erwärmen, kann es zur effektiven Auskristallisation auf Temperaturdifferenzen von bis zu 70 K zwischen Kathodenraum KR und Abscheidebecken AB kommen. Bevorzugt wird in einem Bereich zwischen 30 K und 50 K Temperaturdifferenz gearbeitet. Insbesondere mit einer Temperaturdifferenz von mindestens 15 K oder sogar mindestens 20 K.The solubility of sodium hydrogen carbonate NaHCO 3 in water is 69 g / l at 0 ° C, 96 g / l at 20 ° C, 165 g / l at 60 ° C and 236 g / l at 100 ° C. Sodium carbonate NaCO 3 , on the other hand, dissolves comparatively well, its solubility is 217 g / l at 20 ° C. With ongoing electrolysis, the sodium hydrogen carbonate NaHCO 3 tends to crystallize out in the electrolysis cell E1, E2. This can be counteracted by means of an increased temperature, which is already created by the operation of the system, and also by means of appropriate pH value buffering. The sodium hydrogen carbonate NaHCO 3 should only crystallize out of the electrolyte in the separation basin AB. By pumping the electrolyte into a circuit KK, the sodium hydrogen carbonate NaHCO 3 formed in the cathode chamber KR is led out of this and the catholyte circuit KK can run through a separation basin AB or a partial volume of the catholyte is branched off into a separation basin AB, in which, for example, the cooling of the electrolyte, the sodium hydrogen carbonate NaHCO 3 crystallizes out and can thus be obtained. Since the electrolysis cells E1, E2 heat up considerably during operation due to process losses, effective crystallization to temperature differences of up to 70 K between the cathode space KR and the separation basin AB can occur. A temperature difference between 30 K and 50 K is preferred. In particular with a temperature difference of at least 15 K or even at least 20 K.

Enthält der Katholyt noch weitere Zusätze zur Leitfähigkeitssteigerung und damit Erhöhung der Energieeffizienz, minimiert also ein zusätzliches Leitsalz die ohmschen Verluste im Elektrolyten, muss dies bei der Auskristallisation des Natriumhydrogencarbonats NaHCO3 berücksichtigt werden, um ein möglichst reines Produkt zu erhalten. Bevorzugt wird ein Hydrogensulfat HSO4 - oder Sulfat SO4 2- als Leitzusatz eingesetzt. Dies kann beispielsweise Natriumsulfat Na2SO4 oder Natriumhydrogensulfat NaHSO4 sein. Die Löslichkeit von Natriumhydrogensulfat NaHSO4 beträgt 1080 g/l bei 20°C und die von Natriumsulfat Na2SO4 beträgt 170 g/l bei 20°C, s. Tabelle 2. Bei diesem großen Löslichkeitsunterschied zu Natriumhydrogencarbonat NaHCO3 ist gewährleistet, dass im Abscheidebecken bevorzugt Natriumhydrogencarbonat NHCO3 auskristallisiert. Diese Variante des Reduktionsverfahrens hat den immensen Vorteil, dass dieses im Grunde den für die Natriumhydrogencarbonatherstellung bislang standardmäßig eingesetzten Solvay-Prozess ersetzen kann. Das Solvay-Verfahren zur Natriumhydrogencarbonatherstellung hat nämlich einen großen Nachteil, nämlich dass es sehr große Mengen an Wasser verbraucht. Außerdem werden pro Kilogramm Soda, also Natriumcarbonat Na2CO3, in etwa auch ein Kilogramm unverwendbares Kalziumchlorid CaCl2 erzeugt, welches zumeist ins Abwasser und damit in Flüsse und Meere abgegeben wird. Bei einer Jahresherstellung von 50 Millionen Tonnen Natriumcarbonat Na2CO3 beträgt dies also auch in etwa 50 Millionen Tonnen Kalziumchlorid CaCl2.If the catholyte contains further additives to increase conductivity and thus increase energy efficiency, i.e. if an additional conductive salt minimizes the ohmic losses in the electrolyte, this must be taken into account when the sodium hydrogen carbonate NaHCO 3 crystallizes out in order to obtain the purest possible product. A hydrogen sulfate HSO 4 - or sulfate SO 4 2- is preferably used as the conductive additive. This can be, for example, sodium sulfate Na 2 SO 4 or sodium hydrogen sulfate NaHSO 4 . The solubility of sodium hydrogen sulfate NaHSO 4 is 1080 g / l at 20 ° C and that of sodium sulfate Na 2 SO 4 is 170 g / l at 20 ° C, see Table 2. This large difference in solubility compared to sodium hydrogen carbonate NaHCO 3 ensures that Sodium hydrogen carbonate NHCO 3 preferably crystallizes out in the separation basin. This variant of the reduction process has the immense advantage that it can basically replace the Solvay process used as standard for the production of sodium hydrogen carbonate. The Solvay process for producing sodium hydrogen carbonate has a major disadvantage, namely that it consumes very large amounts of water. In addition, for every kilogram of soda, i.e. sodium carbonate Na 2 CO 3 , roughly one kilogram of unusable calcium chloride is also produced CaCl 2 is generated, which is mostly released into wastewater and thus into rivers and seas. With an annual production of 50 million tons of sodium carbonate Na 2 CO 3 , this is also around 50 million tons of calcium chloride CaCl2.

Die neben dem Solvay-Prozess verfügbaren natürlichen Quellen für Soda Na2CO3 reichen bei Weitem nicht aus. Natriumhydrogencarbonat NaHCO3 kommt als natürliches Mineral Nahcolith in den Vereinigten Staaten von Amerika vor. Es tritt meist feinverteilt in Ölschiefer auf und kann dann als Beiprodukt der Ölförderung gewonnen werden. Ein Bergbau besonders reicher Nahcolith-Horizonte wird im Bundesstaat Colorado betrieben. Die jährliche Förderung jedoch lag im Jahre 2007 bei lediglich 93.440 Tonnen. Außerdem kommt es beispielsweise in Sodaseen in Ägypten, in der Türkei im Van-See, in Ostafrika, z. B. im Lake Natron und andere Seen des ostafrikanischen Grabens, in Mexiko, in Kalifornien (USA), und als Trona (Na(HCO3) · Na2CO3 · 2H2O) in Wyoming (USA), Mexiko, Ostafrika und in der südlichen Sahara vor. The natural sources of soda Na 2 CO 3 available in addition to the Solvay process are nowhere near sufficient. Sodium hydrogen carbonate NaHCO 3 occurs as a natural mineral Nahcolith in the United States of America. It usually occurs finely distributed in oil shale and can then be obtained as a by-product of oil production. Particularly rich Nahcolith horizons are being mined in the state of Colorado. However, the annual production in 2007 was only 93,440 tons. It also occurs, for example, in soda lakes in Egypt, in Turkey in Lake Van, in East Africa, e.g. B. in Lake Natron and other lakes of the East African Rift, in Mexico, in California (USA), and as Trona (Na (HCO 3 ) · Na 2 CO 3 · 2H 2 O) in Wyoming (USA), Mexico, East Africa and in the southern Sahara.

In der Figur 6 ist zur Verdeutlichung der Abhängigkeit von den Konzentrations- und pH-Wertparametern ein Beispiel für ein Hägg-Diagramm einer 0,05 molaren Lösung von Kohlenstoffdioxid CO2 gezeigt. In einem mittleren pH-Wert Bereich liegen Kohlenstoffdioxid CO2 und dessen Salze nebeneinander vor. Während im stark basischen Kohlenstoffdioxid CO2 bevorzugt als Carbonat CO3 2-, im mittleren pH-Wert-Bereich bevorzugt als Hydrogencarbonat HCO3 - vorliegt, kommt es bei niedrigen pH-Werten im sauren Milieu zur Austreibung der Hydrogencarbonationen aus der Lösung in Form von Kohlenstoffdioxid CO2.In the Figure 6 an example of a Hägg diagram of a 0.05 molar solution of carbon dioxide CO 2 is shown to illustrate the dependence on the concentration and pH value parameters. In a medium pH range, carbon dioxide CO 2 and its salts are present next to one another. While in the strongly basic carbon dioxide CO 2 is preferably present as carbonate CO 3 2- , in the medium pH range preferably as hydrogen carbonate HCO 3 - , the hydrogen carbonate ions are expelled from the solution in the form of at low pH values in an acidic environment Carbon dioxide CO 2 .

Claims (4)

  1. Reduction process for carbon dioxide utilization by means of an electrolysis system,
    in which a catholyte comprising water and hydroxide ions, and carbon dioxide (CO2) are introduced into a cathode space (KR) and brought into contact with a cathode (K),
    in which carbon dioxide (CO2) is reduced at the cathode (K),
    in which an anolyte including chloride anions (Cl-) is introduced into an anode space (AR) and brought into contact with an anode (A),
    in which chloride anions (Cl-) are oxidized at the anode (A) to chlorine (Cl2) and the latter is separated from the anolyte as chlorine gas by means of a gas separation unit,
    in which the anolyte includes alkali metal cations that migrate into the catholyte through a cation-conducting membrane,
    wherein excess carbon dioxide reacts in the cathode space with the hydroxide ions to give carbonate and/or hydrogencarbonate, which react with the alkali metal cations that have migrated into the catholyte through the membrane to give alkali metal hydrogencarbonate and/or alkali metal carbonate, and
    in which at least a portion of the catholyte volume is introduced into a deposition tank, where the alkali metal hydrogencarbonate and/or alkali metal carbonate crystallizes out,
    wherein
    - the cathode (K) is a silver-containing cathode (K), and the carbon dioxide and the catholyte form predominantly carbon monoxide, hydroxide ions and only a little hydrogen as products; or wherein
    - the cathode (K) is a copper-containing cathode (K), and the carbon dioxide and the catholyte form ethylene, methane, ethanol and/or monoethylene glycol and hydroxide ions as products.
  2. Reduction process according to Claim 1, in which, on introduction of at least a portion of the catholyte volume into the deposition tank, the catholyte volume introduced is cooled down therein by at least 15 kelvin, preferably at least 20 kelvin.
  3. Reduction process according to Claim 1 or Claim 2, in which, on introduction of at least a portion of the catholyte volume into the deposition tank, the pH of the catholyte volume introduced is lowered from above 8 to a pH of 6 or less by blowing in carbon dioxide (CO2).
  4. Reduction process according to any of Claims 1 to 3, in which, on introduction of at least a portion of the catholyte volume into the deposition tank, an alkali metal hydrogencarbonate is crystallized out of the catholyte volume introduced and is subsequently converted to an alkali metal carbonate by heating.
EP16733951.4A 2015-07-03 2016-06-30 Reduction method for electrochemical carbon dioxide utilization, alkali carbonate preparation and alkali hydrogen carbonate preparation Active EP3292232B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL16733951T PL3292232T3 (en) 2015-07-03 2016-06-30 Reduction method for electrochemical carbon dioxide utilization, alkali carbonate preparation and alkali hydrogen carbonate preparation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015212504.1A DE102015212504A1 (en) 2015-07-03 2015-07-03 Electrolysis system and reduction process for electrochemical carbon dioxide recovery, alkali carbonate and alkali hydrogen carbonate production
PCT/EP2016/065277 WO2017005594A1 (en) 2015-07-03 2016-06-30 Electrolytic system and reduction method for electrochemical carbon dioxide utilization, alkali carbonate preparation and alkali hydrogen carbonate preparation

Publications (2)

Publication Number Publication Date
EP3292232A1 EP3292232A1 (en) 2018-03-14
EP3292232B1 true EP3292232B1 (en) 2021-08-11

Family

ID=56296812

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16733951.4A Active EP3292232B1 (en) 2015-07-03 2016-06-30 Reduction method for electrochemical carbon dioxide utilization, alkali carbonate preparation and alkali hydrogen carbonate preparation

Country Status (8)

Country Link
US (1) US20180195184A1 (en)
EP (1) EP3292232B1 (en)
CN (1) CN107735512B (en)
DE (1) DE102015212504A1 (en)
DK (1) DK3292232T3 (en)
ES (1) ES2897748T3 (en)
PL (1) PL3292232T3 (en)
WO (1) WO2017005594A1 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015212503A1 (en) * 2015-07-03 2017-01-05 Siemens Aktiengesellschaft Reduction process and electrolysis system for electrochemical carbon dioxide recovery
DE102016218235A1 (en) 2016-09-22 2018-03-22 Siemens Aktiengesellschaft Process for the preparation of propanol, propionaldehyde and / or propionic acid from carbon dioxide, water and electrical energy
JP6672193B2 (en) * 2017-02-02 2020-03-25 株式会社東芝 Carbon dioxide electrolysis cell and electrolyzer
JP6879549B2 (en) * 2017-04-27 2021-06-02 学校法人慶應義塾 Equipment and methods for recovering valuable resources by electrolytically reducing exhaust gas
DE102017208610A1 (en) 2017-05-22 2018-11-22 Siemens Aktiengesellschaft Two-membrane design for the electrochemical reduction of CO2
EP3418429A1 (en) * 2017-06-21 2018-12-26 Covestro Deutschland AG Gas diffusion electrode for reducing carbon dioxide
DE102017212278A1 (en) * 2017-07-18 2019-01-24 Siemens Aktiengesellschaft CO2 electrolyser
DE102017213471A1 (en) * 2017-08-03 2019-02-07 Siemens Aktiengesellschaft Apparatus and method for the electrochemical use of carbon dioxide
DE102017213473A1 (en) * 2017-08-03 2019-02-07 Siemens Aktiengesellschaft Electrolysis apparatus and method for operating an electrolyzer
DE102018212409A1 (en) 2017-11-16 2019-05-16 Siemens Aktiengesellschaft Hydrocarbon-selective electrode
DE102018202184A1 (en) * 2018-02-13 2019-08-14 Siemens Aktiengesellschaft Separatorless double GDE cell for electrochemical conversion
DE102018207589A1 (en) * 2018-05-16 2019-11-21 Robert Bosch Gmbh Process for recovering gold, silver and platinum metals from components of a fuel cell stack or an electrolyzer
EP3626861A1 (en) * 2018-09-18 2020-03-25 Covestro Deutschland AG Electrolytic cell, electrolyzer and method for the reduction of co2
US11193212B2 (en) * 2018-09-25 2021-12-07 Sekisui Chemical Co., Ltd. Synthetic method and synthetic system
CN110344071B (en) * 2019-08-14 2020-11-17 碳能科技(北京)有限公司 Electroreduction of CO2Apparatus and method
EP3805429A1 (en) * 2019-10-08 2021-04-14 Covestro Deutschland AG Method and electrolysis device for producing chlorine, carbon monoxide and hydrogen if applicable
CN110923736A (en) * 2019-10-23 2020-03-27 安徽中研理工仪器设备有限公司 Photoelectrocatalysis chemical reaction electrolytic cell device
CN110983357A (en) * 2019-12-04 2020-04-10 昆明理工大学 Three-chamber diaphragm electrolysis method for preparing carbon monoxide by electrolyzing carbon dioxide and simultaneously producing chlorine and bicarbonate as byproducts
JP7273346B2 (en) * 2019-12-11 2023-05-15 日本電信電話株式会社 Gas phase reduction method of carbon dioxide
JP7329011B2 (en) 2021-03-19 2023-08-17 出光興産株式会社 Solid electrolyte type electrolysis device and its maintenance method
WO2022226589A1 (en) * 2021-04-28 2022-11-03 University Of Wollongong Electrochemical capture of carbon dioxide and production of carbonate mineral

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080223727A1 (en) * 2005-10-13 2008-09-18 Colin Oloman Continuous Co-Current Electrochemical Reduction of Carbon Dioxide

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1254521A (en) * 1916-10-09 1918-01-22 Niagara Alkali Company Process of recovering high-grade potash products.
US3959094A (en) * 1975-03-13 1976-05-25 The United States Of America As Represented By The United States Energy Research And Development Administration Electrolytic synthesis of methanol from CO2
CN103233240B (en) * 2006-10-13 2015-10-28 曼得拉能源替代有限公司 The lasting co-current electrochemical reduction of carbonic acid gas
US8562811B2 (en) * 2011-03-09 2013-10-22 Liquid Light, Inc. Process for making formic acid
US10329676B2 (en) * 2012-07-26 2019-06-25 Avantium Knowledge Centre B.V. Method and system for electrochemical reduction of carbon dioxide employing a gas diffusion electrode
WO2015139136A1 (en) * 2014-03-19 2015-09-24 Brereton Clive M H Co2 electro-reduction process

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080223727A1 (en) * 2005-10-13 2008-09-18 Colin Oloman Continuous Co-Current Electrochemical Reduction of Carbon Dioxide

Also Published As

Publication number Publication date
US20180195184A1 (en) 2018-07-12
DE102015212504A1 (en) 2017-01-05
WO2017005594A1 (en) 2017-01-12
DK3292232T3 (en) 2021-10-25
EP3292232A1 (en) 2018-03-14
ES2897748T3 (en) 2022-03-02
CN107735512A (en) 2018-02-23
PL3292232T3 (en) 2022-01-10
CN107735512B (en) 2020-06-19

Similar Documents

Publication Publication Date Title
EP3292232B1 (en) Reduction method for electrochemical carbon dioxide utilization, alkali carbonate preparation and alkali hydrogen carbonate preparation
EP3607111B1 (en) Two-membrane construction for electrochemically reducing co2
EP3317435B1 (en) Reduction method and electrolysis system for electrochemical carbon dioxide utilization
DE102016200858A1 (en) Electrolysis system and process for electrochemical ethylene oxide production
EP3280834A1 (en) Electrolysis system for the electrochemical utilization of carbon dioxide, having a proton donor unit, and reduction method
EP3445893B1 (en) Arrangement for the electrolysis of carbon dioxide
EP3478878B1 (en) Arrangement and method for the electrolysis of carbon dioxide
WO2019011577A1 (en) Membrane-coupled cathode for the reduction of carbon dioxide in acid-based electrolytes without mobile cations
DE102016203946A1 (en) Process and apparatus for the electrochemical use of carbon dioxide
WO2018001637A1 (en) Arrangement and method for the electrolysis of carbon dioxide
DE102015201132A1 (en) Process and electrolysis system for carbon dioxide recovery
DE102015203245A1 (en) Deposition of a copper-containing, hydrocarbon-developing electrocatalyst on non-copper substrates
WO2019015919A1 (en) Co2 electrolyser
DE102017223521A1 (en) Flow-through anion exchanger fillings for electrolyte gaps in the CO2 electrolysis for better spatial distribution of gas evolution
WO2020001851A1 (en) Electrochemical low-temperature reverse water-gas shift reaction
WO2018054627A1 (en) Method for production of propanol, propionaldehyde and/or propionic acid from carbon dioxide, water and electrical energy
DE102018202184A1 (en) Separatorless double GDE cell for electrochemical conversion
DE102016211151A1 (en) Arrangement and method for carbon dioxide electrolysis
EP4041939A1 (en) Method and electrolysis device for the production of chlorine, carbon monoxide and optionally hydrogen
DE102020207186A1 (en) CO2 electrolysis with gas diffusion electrode and avoidance of salt formation through choice of electrolyte
DE102015213947A1 (en) Reduction process for electrochemical carbon dioxide recovery and electrolysis system with anion exchange membrane
DE102019201153A1 (en) Process for the energy-efficient production of CO
DE102019209759A1 (en) Electrolysis system and process for the production of peroxydicarbonate
DE102022122837B3 (en) Electrolytic process, electrolyzer, electrolysis system, use and installation
WO2023110198A1 (en) Cell concept for using non-ionically conductive extraction media

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20171204

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20181004

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502016013611

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C25B0003040000

Ipc: C25B0001140000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: C25B 15/08 20060101ALI20210217BHEP

Ipc: C25B 3/26 20210101ALI20210217BHEP

Ipc: C25B 1/23 20210101ALI20210217BHEP

Ipc: C25B 1/14 20060101AFI20210217BHEP

Ipc: C25B 1/26 20060101ALI20210217BHEP

INTG Intention to grant announced

Effective date: 20210311

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016013611

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

Ref country code: AT

Ref legal event code: REF

Ref document number: 1419465

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210915

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20211019

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20210811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211213

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211111

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211112

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2897748

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20220302

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016013611

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20230620

Year of fee payment: 8

Ref country code: NL

Payment date: 20230626

Year of fee payment: 8

Ref country code: DK

Payment date: 20230621

Year of fee payment: 8

Ref country code: DE

Payment date: 20230627

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20230607

Year of fee payment: 8

Ref country code: AT

Payment date: 20230619

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230620

Year of fee payment: 8

Ref country code: GB

Payment date: 20230620

Year of fee payment: 8

Ref country code: ES

Payment date: 20230721

Year of fee payment: 8

Ref country code: CH

Payment date: 20230702

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160630