EP3442929A1 - Composition de mortier fortement allege et isolant thermique - Google Patents

Composition de mortier fortement allege et isolant thermique

Info

Publication number
EP3442929A1
EP3442929A1 EP17719658.1A EP17719658A EP3442929A1 EP 3442929 A1 EP3442929 A1 EP 3442929A1 EP 17719658 A EP17719658 A EP 17719658A EP 3442929 A1 EP3442929 A1 EP 3442929A1
Authority
EP
European Patent Office
Prior art keywords
composition according
weight
composition
mixing
chosen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP17719658.1A
Other languages
German (de)
English (en)
Inventor
Daniel Comoy
Michaël PERRAT DIT GENTON
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain Weber SA
Original Assignee
Saint Gobain Weber SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint Gobain Weber SA filed Critical Saint Gobain Weber SA
Publication of EP3442929A1 publication Critical patent/EP3442929A1/fr
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/06Aluminous cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/06Aluminous cements
    • C04B28/065Calcium aluminosulfate cements, e.g. cements hydrating into ettringite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/14Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00637Uses not provided for elsewhere in C04B2111/00 as glue or binder for uniting building or structural materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00663Uses not provided for elsewhere in C04B2111/00 as filling material for cavities or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00663Uses not provided for elsewhere in C04B2111/00 as filling material for cavities or the like
    • C04B2111/00672Pointing or jointing materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/10Compositions or ingredients thereof characterised by the absence or the very low content of a specific material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/28Fire resistance, i.e. materials resistant to accidental fires or high temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/60Flooring materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the present invention relates to a thermally insulating lightened mortar composition, the low density of the dough after kneading remains stable during the plastic phase of the mortar (that is to say before the hardened phase). This stability of the dough makes it possible to obtain cured products of low density whatever the method of implementation (manual, by casting or by pumping) and whatever the machine used (machine or mortar pump, continuous mixing or discontinuous).
  • the present invention also relates to the use of this composition in the field of construction, in particular for the thermal insulation of floors, ceilings and / or walls and the filling of insulating blocks or interstitial voids, for example wall cavities. .
  • insulating mortars Today we try to lighten as much as possible insulating mortars, both for facade type solutions and in particular for external thermal insulation systems (ITE or ETICS in English) as for materials for the soil in order to form lightened screeds.
  • leaching loads such as, for example, mineral fillers such as perlite, vermiculite, expanded clays, or with synthetic organic fillers such as expanded polystyrene beads.
  • leaching loads such as, for example, mineral fillers such as perlite, vermiculite, expanded clays, or with synthetic organic fillers such as expanded polystyrene beads.
  • these lightening loads does not achieve very low densities while maintaining the desired maneuverability for the desired applications.
  • Patent FR 2 955 103 proposes mineral foams obtained by adding a conventional air-entraining agent and a complex foaming adjuvant comprising a modified starch ether, a stabilizer comprising at least one polyacrylamide and a film-forming polymer.
  • the apparent densities of the cured product that are the lowest attainable with these formulations and measured at 28 days are of the order of 370 kg / m 3 , which remains densities considered high to reach thermal conductivities of less than 55 mW / m. K.
  • the present invention relates to a mortar composition for obtaining products whose paste densities after mixing are very low and remain stable over time, and which have in the state cured satisfactory mechanical strengths.
  • the present invention also relates to a method of preparing building material from said mortar composition. The building material obtainable by mixing such a composition or from this preparation process and its use are also objects of the present invention.
  • the inventors have discovered that by combining certain inorganic hydraulic binders with leaching loads a large amount of air could be introduced by addition of a conventional air-entraining agent and thus obtain a very important relief, while keeping a very good stability of the volume density of the dough and very good handling in the fresh state.
  • the amount of air entrained by the formulation proposed in the present invention is such as to halve the density relative to a formulation that would conventionally use lightening loads, and this with perfect stability and a very advantageous cost.
  • composition according to the present invention is a pre-mixed dry composition ready for use in the sense that its constituents are already premixed and where it is sufficient to mix it with the mixing water. It is not necessary to add other stabilizer to the dry composition when preparing the mortar on site.
  • the mortar obtained from the composition according to the present invention has a thermal conductivity less than or equal to 55 mW / m. K. and a compressive strength at 28 days of at least 0.40 MPa, which makes it possible to classify it in type CS 1 mortars according to standard NF EN 998-1, relating to industrial mortars. It also has improved acoustic properties, especially in terms of sound absorption.
  • An object of the present invention is a thermally insulating mortar composition which is free of siliceous or calcareous aggregates of a size greater than 100 ⁇ , and which comprises a mixture of at least:
  • a mineral binder chosen from sulfo-aluminous cements, aluminous cements and / or binary or ternary binders comprising at least one aluminous or sulfoaluminous cement,
  • a surfactant-type air entrainment agent chosen from organic fatty acids, sulphated compounds, sulphonated compounds and / or natural wood resins, and
  • a viscosing agent chosen from polyvinyl alcohols, starch ethers, cellulose ethers, guar ethers or clays such as bentonite. Unless otherwise indicated, the percentages of the various constituents of the dry composition are given in percentages by weight and relate to the total composition of the composition.
  • the bulk density of a granular filler is the mass per unit volume taking into account voids present in or between grains. It is given in kg / m 3 .
  • the composition according to the present invention does not comprise siliceous aggregates, limestone and / or silico-limestone having a particle size greater than 100 ⁇ .
  • the absence of coarse aggregates advantageously makes it possible to obtain the desired lightening.
  • the composition according to the present invention comprises less than 5% of siliceous fillers, limestone and / or silico-limestone having a particle size less than 100 ⁇ .
  • the composition is free of siliceous, calcareous and / or silico-calcareous fillers having a particle size of less than 100 ⁇ .
  • the mortar composition according to the present invention comprises at least 40% by weight of lightening mineral fillers whose bulk density is less than 200 kg / m 3 . These charges are in particular of spherical shape and have an average diameter less than or equal to 80 ⁇ .
  • the mineral lightening fillers are chosen from expanded perlite, expanded vermiculite, expanded glass beads, hollow glass microspheres, cenospheres, expanded clays, expanded shales, pumice stones, expanded silicates and / or aerogels. .
  • the mineral lightening fillers are chosen from expanded perlite, expanded vermiculite, expanded glass beads, hollow glass microspheres, cenospheres, expanded clays, expanded shales, pumice stones and / or silicates. expanded.
  • the lightening mineral fillers are perlite, which may be hydrophobic. Hydrophobized perlite may be advantageous in formulations intended to improve thermal insulation.
  • the composition according to the present invention comprises at least 50% by weight of lightening mineral fillers and more preferably at least 60% by weight.
  • the composition according to the present invention comprises a hydraulic mineral binder chosen from sulfo-aluminous cements, aluminous cements and / or binary or ternary binders comprising at least one aluminous or sulfoaluminous cement.
  • This type of binder advantageously makes it possible to contribute to the stability of the lightened dough produced.
  • Aluminous cements are based on calcium aluminate.
  • the sulfo-aluminous cements consist of a mixture of sulfo-aluminous clinker and calcium sulphates hydrate (gypsum, semi-hydrate) or not (anhydrite).
  • compositions which have in common the presence of calcium sulfoaluminate Mention may be made, for example, of alitic sulphoaluminous cement, of alumitic cement, of belitic sulpho-aluminous cements.
  • Binary or ternary binder is used when the hydraulic binder consists of a mixture of several binders.
  • the binary or ternary binders within the meaning of the present invention comprise a mixture of at least one aluminous or sulfo-aluminous cement, with respectively one or two other binders such as Portland cements, slags, natural or artificial lime and / or sources of calcium sulphate such as plaster or hemihydrate, gypsum and / or anhydrite.
  • the binary or ternary binder comprises less than 30% by weight of Portland cement and / or lime with respect to the total weight of binder. Too much Portland cement and / or lime in the binder could cause an increase in pH, which appears to be detrimental to the stability of the entrained air. The amount of binders whose pH is greater than or equal to 12.4 should not be too great in the composition according to the present invention.
  • the composition according to the present invention advantageously comprises a large amount of air entraining agent. It comprises at least 0.3% by weight of air entraining agent. Thus, with such a quantity, it becomes possible to entrain a lot of air during the mixing with water of the dry composition under usual mixing conditions and thus to significantly reduce the final product.
  • said composition comprises at least 0.5% by weight of air-entraining agent. Contrary to what was known, thanks to the particular choices of the constituents of said composition, it becomes possible to entrain more air, while maintaining the stability of the relief obtained.
  • the coaching agent of air is chosen from alkyl sulphates, alkyl sulphonates and alkyl aryl sulphates, alone or as a mixture.
  • the air-entraining agent is sodium lauryl sulphate.
  • a significant improvement in lightening therefore becomes possible, by judiciously choosing the various constituents of the composition according to the present invention, and by using an air entrainment agent considered as simple and therefore cheap.
  • the composition according to the present invention also comprises a viscosing agent which is chosen from polyvinyl alcohols, starch ethers, cellulose ethers, guar ethers or clays.
  • a viscosing agent which is chosen from polyvinyl alcohols, starch ethers, cellulose ethers, guar ethers or clays.
  • the viscosing agent is a cellulose ether such as ethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, hydroxyethylmethylcellulose or hydroxypropylmethylcellulose.
  • This agent plays in particular on the rheology of the composition in the fresh state, and in particular on the retention of water. It is a simple viscosifying agent, usually used in mortar formulations.
  • the viscosifying agent participates notably in the trapping of the air bubbles created by the air-entraining agent and in their static and dynamic stability over time by increasing the flow threshold as well as the dynamic viscosity of the interstitial fluid between the solid particles and air bubbles.
  • the content of viscosity agent in the composition is preferably between 0.1% and 1% by weight.
  • the composition further comprises a polymeric additive which is a copolymer of vinyl type, of acrylic type and / or of carboxylic acid derivative and more preferably a copolymer of vinyl acetate, of vinyl versatate and of methacrylic acid and / or ester, maleic ester, olefin and / or vinyl chloride.
  • a polymeric additive which is a copolymer of vinyl type, of acrylic type and / or of carboxylic acid derivative and more preferably a copolymer of vinyl acetate, of vinyl versatate and of methacrylic acid and / or ester, maleic ester, olefin and / or vinyl chloride.
  • composition according to the present invention may also further comprise rheological agents such as plasticizers or superplasticizers, water-retaining agents, thickening agents, biocidal and / or fungicidal protection, dispersing agents, pigments, accelerators and / or retarders, water-repellent agents, fibers.
  • rheological agents such as plasticizers or superplasticizers, water-retaining agents, thickening agents, biocidal and / or fungicidal protection, dispersing agents, pigments, accelerators and / or retarders, water-repellent agents, fibers.
  • rheological agents such as plasticizers or superplasticizers, water-retaining agents, thickening agents, biocidal and / or fungicidal protection, dispersing agents, pigments, accelerators and / or retarders, water-repellent agents, fibers.
  • the respective amount of these agents depends on their nature. They are generally between 0.01% and 2% by weight. It is possible to introduce, for example, larger amounts of certain
  • composition according to the present invention when mixed with mixing water can be manually applied, cast or can be mechanically sprayed onto a support.
  • Another object of the present invention is a method of preparing by projection of a building material from the mortar composition described hereinbefore.
  • the method according to the present invention comprises the steps of:
  • the composition according to the present invention can advantageously be pumped and used in a mortar spraying process.
  • This type of process is generally critical for lightweight mortar compositions. It is indeed common for a mortar composition to have the desired lightening before projection but once introduced into the projection device and projected on the support, it loses its lightening properties. Surprisingly, the composition according to the present invention retains lightening properties, even once it is pumped and transferred to the spraying lance.
  • the paste obtained is projected onto the support, generally by successive passages.
  • the support is thus covered with several centimeters of mortar; the thickness depending on the nature of the support and / or type of finish sought.
  • the method according to the invention optionally comprises a finishing step, consisting of making the surface homogeneous and smooth. For an application as a facade, this finishing step is mandatory: it allows in particular to obtain a flat surface for the application of the finishing coating necessary for increase the surface hardness and ensure the protection, including waterproofing, of the facade.
  • the mixing step in the blender of the blasting device varies from a few seconds for a continuous blending machine to several minutes in the case of batch blending machine.
  • the mixing time in the mixer of the projection device is between 15 seconds and
  • the process according to the present invention can be carried out with a batch mixing mortar machine, in the sense that a defined quantity of dough is spun and then sprayed.
  • a batch mixing mortar machine in the sense that a defined quantity of dough is spun and then sprayed.
  • machines that are conventionally used such as the Putzmeister SP1 1 projection machines.
  • An object of the invention relates to a lightweight construction material that can be obtained by the method described above, or after mixing a composition as described above.
  • Said material has a thermal conductivity less than or equal to 55 mW / m. K. and a compressive strength at 28 days of at least 0.40 MPa.
  • the material according to the present invention is a lightened material, very good thermal insulator and sufficiently mechanically resistant for the desired application. The performances obtained in terms of mechanical strength allow it to be classified in the category CS 1 mortars according to standard NF 998-1.
  • the present invention also relates to the use of the material described above and having a thermal conductivity less than or equal to 55 mW / m. K. and a 28-day compressive strength of at least 0.40 MPa as screed, wall underlayment, ceilings, insulating masonry block filler material or interstitial void fillers and wall cavities.
  • the examples below illustrate the invention without limiting its scope.
  • compositions C1 to C8 are compositions in accordance with the invention, whereas compositions C9 based on Portland cement and C10 based on aerial lime are given for comparison and are not in accordance with the invention.
  • Tackle retardant agent 0.1
  • composition C9 is kneaded with water with a mixing rate of 170% in a kneader described above for a period of 90 seconds.
  • the same measurement carried out after a time of 30 min (ie t30) is worth 600 kg / m 3 , demonstrating a very clear instability of the air entrained in this mortar formulation since the difference between the densities measured at t0 and at t30 is well above 100 kg / m 3 .
  • composition C10 based on aerial lime is mixed with water at an identical mixing rate (170%).
  • the apparent density values measured respectively at t0 and t30 are 450 kg / m 3 and 750 kg / m 3 , again demonstrating a very high instability of the entrained air.
  • composition C1 is compared with an identical composition without air-entraining agent, comprising 29.4% by weight of ALI PRE® sulfo-aluminous cement.
  • the bulk density of this slurry without air-entraining is close to 700 kg / m3 with a satisfactory stability at 30 min.
  • the addition of 0.6% of air entrainer (composition C1) makes it possible to reduce the apparent density of the pulp up to 350 kg / m 3 .
  • Pasta is prepared with compositions C1 to C7 by kneading for 90 seconds before being placed in molds.
  • compositions according to the present invention make it possible to obtain lightened mortars whose density remains low after hardening, attesting to good stability of the dough over time.
  • the compressive strengths at 28 days of the C2, C5 and C6 mortars were measured and are respectively 0.46 MPa, 0.67 MPa and 0.61 MPa.
  • composition close to the composition C2 thus based on ALICEM® sulfoaluminous cement is prepared by mixing:
  • This composition is spoiled (mixing rate of 160%) in the kneader described above.
  • the mixing time is varied so as to vary the amount of entrained air.
  • Apparent density measurements of the paste at 100, as well as the hardened mortar at 28 days are shown in Table 3 below.
  • the compressive strength at 28 days is also indicated in MPa.
  • Example 4 The composition of Example 4 is spoiled (mixing rate of 155%) and kneaded for 5 min before being projected onto a wall of breeze blocks with a Putzmeister SP1 type 1 machine. This mixing gives a paste whose bulk density is 350 kg / m 3 in the tank, 356 kg / m 3 at the projection lance outlet and 170 kg / m 3 after curing after 28 days.
  • the compressive strength measured on a sample of 4 * 4 * 4 cm after 28 days is 0.52 MPa and the thermal conductivity is 52 mW / m. K.
  • composition C8 is spoiled (mixing rate of 147%) and kneaded for 5 min before being projected onto a wall of blocks with a Putzmeister SP1 type machine 1.
  • This mixing gives a paste whose bulk density is 380 kg / m 3 tank, 320 kg / m 3 by spraying lance outlet and 155 kg / m 3 after curing at 28 days.
  • the compressive strength measured on a sample of 4 * 4 * 4 cm after 28 days is 0.42 MPa and the thermal conductivity is 49 mW / m. K.
  • Example 7 Example 7
  • Example 4 The composition of Example 4 is projected with a continuous mixing machine of the Mtec M330 type.
  • the water flow is 250 l / h.
  • the bulk density of the slurry measured at the outlet of lance is 380 kg / m 3, which is quite comparable with the values obtained with batch mixing machines.

Abstract

La présente invention porte sur une composition pour mortier isolant thermiquement exempte de granulats siliceux, calcaires et/ou silico-calcaires d'une granulométrie supérieure à 100 μm et comprenant un mélange d'au moins : - 40% de charges allégeantes minérales dont la masse volumique apparente est inférieure à 200 kg/ m3, - un liant minéral choisi parmi les ciments sulfo-alumineux, les ciments alumineux et/ou les liants binaires ou ternaires comprenant au moins un ciment alumineux ou sulfoalumineux, - un agent entraîneur d'air de type tensioactif choisi parmi les acides gras organiques, les composés sulfatés, les composés sulfonatés et/ou les résines naturelles du bois et - un agent viscosant choisi parmi les alcools polyvinyliques, les éthers d'amidon, les éthers de cellulose, les éthers de guar ou les argiles telles que la bentonite. Cette composition peut être mise en œuvre dans un dispositif de projection fonctionnant en mode continu ou discontinu et permet d'obtenir des mortiers durcis allégés grâce à une très bonne stabilité de la pâte. La présente invention porte également sur un procédé de préparation d'un matériau de construction, sur le matériau ainsi obtenu et sur son utilisation dans le domaine de la construction.

Description

COMPOSITION DE MORTIER FORTEMENT ALLÉGÉ ET ISOLANT THERMIQUE
La présente invention porte sur une composition de mortier allégé isolant thermiquement, dont la faible masse volumique de la pâte après malaxage reste stable pendant la phase plastique du mortier (c'est-à-dire avant la phase durcie). Cette stabilité de la pâte permet d'obtenir des produits durcis de faible densité quelle que soit la méthode de mise en œuvre (manuelle, par coulage ou par pompage) et quelle que soit la machine utilisée (machine ou pompe à mortier, à gâchage continu ou discontinu). La présente invention porte également sur l'utilisation de cette composition dans le domaine de la construction, notamment pour l'isolation thermique des planchers, plafonds et/ou des murs et le remplissage des blocs isolants ou des vides interstitiels, par exemple des cavités murales.
On cherche aujourd'hui à alléger le plus possible les mortiers isolants, aussi bien pour des solutions de type façade et en particulier pour les systèmes d'isolation thermique par l'extérieur (ITE ou ETICS en langue anglaise) que pour des matériaux pour le sol dans le but de former des chapes allégées. Traditionnellement, l'allégement des mortiers isolants est obtenu par l'emploi de charges allégeantes comme par exemple des charges minérales telles que la perlite, la vermiculite, les argiles expansées, ou avec des charges synthétiques organiques comme les billes de polystyrène expansé. Toutefois, le simple ajout de ces charges allégeantes ne permet pas d'atteindre des densités très basses tout en gardant la maniabilité souhaitée pour les applications recherchées. En augmentant trop la quantité de charges allégeantes dans les formulations, on se trouve confronté à des problématiques liées d'une part à des trop fortes concentrations de particules granulaires (empilement granulaire maximum atteint) et d'autre part à des problèmes de pompabilité ou de maniabilité des pâtes obtenues à partir de ces formulations. La seule façon d'améliorer encore l'allégement est d'utiliser des formulations moussées et donc d'ajouter des additifs spécifiques permettant d'augmenter la quantité d'air occlus, c'est-à-dire la quantité d'air contenu dans la pâte ou dans le mortier une fois durci. Certains de ces additifs peuvent générer des gaz in-situ et donc former des mousses en générant des bulles. D'autres sont du type entraîneur d'air et permettent d'entraîner de l'air lors des phases de préparation des compositions, en particulier pendant le malaxage avec l'eau de gâchage. L'usage de ces types d'entraineurs d'air reste cependant limité car il est difficile d'obtenir la stabilité de l'air entraîné soit dans le temps, soit lors du passage dans les outils de projection qui sollicitent fortement la pâte, notamment par d'importants cisaillements. Il est en effet important que les mortiers, même de faible masse volumique, possèdent une bonne ouvrabilité ou maniabilité et qu'une fois durcis, ils aient les propriétés de résistance mécanique attendues. L'air entraîné lors du malaxage doit rester stable dès la formation des bulles qui a lieu pendant le malaxage et également pendant la mise en œuvre de la pâte et jusqu'au démarrage de la phase de durcissement. On considère que l'air entraîné est stable lorsque la différence entre les masses volumiques de la pâte mesurées à tO, c'est-à-dire immédiatement après le malaxage et à t30, soit 30 minutes après le malaxage, est inférieure à 100 kg/m3 (conformément à la certification CSTB). Le brevet FR 2 955 103 propose des mousses minérales obtenues par ajout d'un agent entraîneur d'air classique et d'un adjuvant moussant complexe comprenant un éther d'amidon modifié, un stabilisant comprenant au moins un polyacrylamide et un polymère filmogène. Les masses volumiques apparentes du produit durci les plus faibles atteignables avec ces formulations et mesurées à 28 jours sont de l'ordre de 370 kg/m3, ce qui reste des masses volumiques considérées comme élevées pour atteindre des conductivités thermiques inférieures à 55 mW/m. K. Aujourd'hui, il est encore très difficile d'obtenir des mortiers très allégés, c'est-à-dire dont la masse volumique apparente est inférieure à 250 kg/m3 à l'état durci, et maniables par l'utilisation d'additifs entraîneurs d'air. En effet, les bulles générées lors du malaxage du mortier avec l'eau de gâchage collapsent très rapidement. Les densités faibles mesurées juste après le malaxage ne sont pas pérennes et ont tendance à augmenter très rapidement dans les minutes qui suivent le malaxage. De plus, l'éclatement des bulles créées lors du malaxage entraîne une dégradation de la maniabilité du produit qui perd alors de son onctuosité.
Les solutions connues actuellement pour obtenir des produits durcis dont les masses volumiques apparentes à l'état durci sont inférieures à 250 kg/m3 utilisent notamment des compositions à base de billes de polystyrène. Ces charges, en raison de leur nature organique, présentent notamment de mauvaises propriétés en termes de résistance au feu.
Les seules solutions connues à ce jour qui permettent d'obtenir des mortiers ou des pâtes dont la masse volumique à l'état durci est inférieure à 250 kg/m3 consistent à ajouter, dans la pâte ou dans le mortier, de la mousse préalablement générée à l'aide d'un générateur ou encore d'introduire une quantité d'air, ou de gaz, dans la pâte ou le mortier encore frais non durci. Cependant, les techniques de génération de mousse et leur introduction dans une pâte ou mortier cimentaire, même si en usine elles peuvent être contrôlées et maîtrisées, restent très complexes et souvent non compatibles avec les consignes d'application sur chantier notamment à cause des temps de préparation trop long. Un autre inconvénient des mortiers ou pâtes moussées, bullées, ou gazéifiées, reste la stabilité des bulles créées ou introduites pendant les phases de pompage et de projection.
Il n'existe pas aujourd'hui de formulation de produits de masse volumique apparente très basse (inférieure à 250 kg/m3) qui soient à base de charges allégeantes minérales, qui soient projetables avec des machines de projection classiques fonctionnant en continu ou en discontinu, dans des conditions de malaxage habituelles c'est-à-dire avec des durées de malaxage usuelles pour l'homme de l'art (quelques secondes pour une machine continue et de l'ordre de 5 minutes pour une machine discontinue), et qui possèdent la maniabilité et les résistances suffisantes. C'est dans ce cadre que s'inscrit la présente invention qui porte sur une composition pour mortier permettant d'obtenir des produits dont les densités de pâte après malaxage sont très faibles et restent stables dans le temps, et qui possèdent à l'état durci des résistances mécaniques satisfaisantes. La présente invention porte également sur un procédé de préparation de matériau de construction à partir de ladite composition de mortier. Le matériau de construction susceptible d'être obtenu par gâchage d'une telle composition ou à partir de ce procédé de préparation ainsi que son utilisation sont également des objets de la présente invention.
De façon très surprenante, les inventeurs ont découvert qu'en combinant certains liants hydrauliques minéraux avec des charges allégeantes minérales, il était possible d'introduire une quantité importante d'air par ajout d'un agent entraîneur d'air classique et ainsi d'obtenir un très important allégement, tout en gardant une très bonne stabilité de la densité volumique de la pâte et une très bonne maniabilité à l'état frais. Ainsi, la quantité d'air entraîné par la formulation proposée dans la présente invention est telle qu'elle permet de diviser par deux la densité par rapport à une formulation qui utiliserait de façon classique des charges allégeantes, et ceci avec une parfaite stabilité et à un coût très avantageux.
La composition selon la présente invention est une composition sèche pré-mixée prête à l'emploi dans le sens où ses constituants sont déjà prémélangés et où il suffit de la mélanger avec l'eau de gâchage. Il n'est pas nécessaire d'ajouter d'autre stabilisant à la composition sèche lors de la préparation du mortier sur chantier.
Le mortier obtenu à partir de la composition selon la présente invention a une conductivité thermique inférieure ou égale à 55 mW/m. K. et une résistance en compression à 28 jours d'au moins 0,40 MPa, ce qui permet de le classer dans les mortiers de type CS 1 selon la norme NF EN 998-1 , portant sur les mortiers industriels. Il présente également des propriétés acoustiques améliorées, notamment en termes d'absorption phonique.
Un objet de la présente invention est une composition pour mortier isolant thermiquement qui est exempte de granulats siliceux ou calcaires d'une taille supérieure à 100 μιτι, et qui comprend un mélange d'au moins:
- 40% en poids de charges allégeantes minérales dont la masse volumique apparente est inférieure à 200 kg/m3,
- un liant minéral choisi parmi les ciments sulfo-alumineux, les ciments alumineux et/ou les liants binaires ou ternaires comprenant au moins un ciment alumineux ou sulfoalumineux,
- un agent entraîneur d'air de type tensioactifs choisi parmi les acides gras organiques, les composés sulfatés, les composés sulfonatés et/ou les résines naturelles du bois, et
- un agent viscosant choisi parmi les alcools polyvinyliques, les éthers d'amidon, les éthers de cellulose, les éthers de guar ou les argiles telles que la bentonite. Sauf indication contraire, les pourcentages des différents constituants de la composition sèche sont donnés en pourcentages pondéraux et sont relatifs à la composition totale de la composition.
La masse volumique apparente d'une charge granulaire est la masse par unité de volume en tenant compte des vides présents dans ou entre les grains. Elle est donnée en kg/m3.
La composition selon la présente invention ne comprend pas de granulats siliceux, calcaire et/ou silico-calcaires présentant une granulométrie supérieure à 100 μητι. L'absence de granulats grossiers permet avantageusement d'obtenir l'allégement recherché. De façon préférée, la composition selon la présente invention comprend moins de 5% de fillers siliceux, calcaires et/ou silico-calcaires présentant une granulométrie inférieure à 100 μητι. Encore plus préférentiellement, la composition est exempte de fillers siliceux, calcaires et/ou silico-calcaires présentant une granulométrie inférieure à 100 μητι.
La composition pour mortier selon la présente invention comprend au moins 40% en poids de charges minérales allégeantes dont la masse volumique apparente est inférieure à 200 kg/m3. Ces charges sont notamment de forme sphérique et possèdent un diamètre moyen inférieur ou égal à 80 μητι. Les charges allégeantes minérales sont choisies parmi la perlite expansée, la vermiculite expansée, les billes de verre expansé, les microsphères creuses de verre, les cénosphères, les argiles expansées, les schistes expansés, les pierres ponces, les silicates expansés et/ou les aérogels. De façon préférée, les charges allégeantes minérales sont choisies parmi la perlite expansée, la vermiculite expansée, les billes de verre expansé, les microsphères creuses de verre, les cénosphères, les argiles expansées, les schistes expansés, les pierres ponces et/ou les silicates expansés. De façon encore plus préférée, les charges minérales allégeantes sont de la perlite, éventuellement hydrophobe. La perlite hydrophobée peut être avantageuse dans des formulations destinées à améliorer l'isolation thermique.
De façon préférée, la composition selon la présente invention comprend au moins 50% en poids de charges minérales allégeantes et plus préférentiellement au moins 60% en poids. La composition selon la présente invention comprend un liant minéral hydraulique choisi parmi les ciments sulfo-alumineux, les ciments alumineux et/ou les liants binaires ou ternaires comprenant au moins un ciment alumineux ou sulfoalumineux. Ce type de liant permet avantageusement de contribuer à la stabilité de la pâte allégée produite. Les ciments alumineux sont à base d'aluminate de calcium. Les ciments sulfo-alumineux sont constitués d'un mélange de clinker sulfo-alumineux et de sulfates de calcium hydratés (gypse, semi-hydrate) ou non (anhydrite). Cette appellation recouvre de nombreuses compositions qui ont pour point commun la présence de sulfoaluminate de calcium. On peut citer par exemple le ciment sulfo- alumineux alitique, le ciment ye'elimitique, les ciments sulfo-alumineux bélitiques. On parle de liant binaire ou ternaire lorsque le liant hydraulique est constitué d'un mélange de plusieurs liants. Les liants binaires ou ternaires au sens de la présente invention comprennent un mélange d'au moins un ciment alumineux ou sulfo-alumineux, avec respectivement un ou deux autres liants comme les ciments Portland, les laitiers, la chaux naturelle ou artificielle et/ou les sources de sulfate de calcium telle que le plâtre ou hémihydrate, le gypse et/ou l'anhydrite. Selon la présente invention, le liant binaire ou ternaire comprend moins de 30% en poids de ciment Portland et/ou de chaux par rapport au poids total de liant. Une quantité trop importante de ciment Portland et/ou de chaux dans le liant pourrait provoquer une augmentation du pH, ce qui semble être défavorable à la stabilité de l'air entraîné. La quantité de liants dont le pH est supérieur ou égal à 12,4 ne doit pas être trop importante dans la composition selon la présente invention.
La composition selon la présente invention comprend avantageusement une quantité importante d'agent entraîneur d'air. Elle comprend au moins 0,3% en poids d'agent entraîneur d'air. Ainsi, avec une telle quantité, il devient possible d'entraîner beaucoup d'air lors du malaxage avec l'eau de la composition sèche dans des conditions de gâchage habituelles et donc d'alléger de façon notable le produit final. Préférentiellement, ladite composition comprend au moins 0,5% en poids d'agent entraîneur d'air. Contrairement à ce qui était connu, grâce aux choix particuliers des constituants de ladite composition, il devient possible d'entraîner plus d'air, tout en maintenant la stabilité de l'allégement obtenu. L'agent entraîneur d'air est choisi parmi les alkylsulfates, les alkylsulfonates, les alkylarylsulfates, seuls ou en mélange. Ces agents sont ceux utilisés classiquement dans les formulations de mortier allégé. De façon préférée, l'agent entraîneur d'air est du laurylsulfate de sodium. Une amélioration notable de l'allégement devient par conséquent possible, en choisissant de façon judicieuse les différents constituants de la composition selon la présente invention, et en utilisant un agent entraîneur d'air considéré comme simple donc bon marché.
La composition selon la présente invention comprend également un agent viscosant qui est choisi parmi les alcools polyvinyliques, les éthers d'amidon, les éthers de cellulose, les éthers de guar ou les argiles. La présence d'un tel agent dans une quantité comprise entre 0,01% et 2% en poids participe à la stabilité de l'air entraîné. De façon préférée, l'agent viscosant est un éther de cellulose tels que l'éthylcellulose, l'hydroxyéthylcellulose, l'hydroxypropylcellulose, l'hydroxyéthylméthylcellulose ou l'hydroxypropylméthylcellulose. Cet agent joue notamment sur la rhéologie de la composition à l'état frais, et en particulier sur la rétention d'eau. Il s'agit d'un agent viscosant simple, usuellement utilisé dans les formulations de mortier. Aucun mélange complexe comme ceux décrits dans l'art antérieur n'est nécessaire pour obtenir une pâte stable. L'agent viscosant participe notamment au piégeage des bulles d'air créées grâce à l'agent entraîneur d'air et à leur stabilité statique et dynamique dans le temps en augmentant le seuil d'écoulement ainsi que la viscosité dynamique du fluide interstitiel entre les particules solides et les bulles d'air. Préférentiellement, la teneur en agent viscosant dans la composition est préférentiellement comprise entre 0,1% et 1% en poids.
Selon un mode de réalisation, la composition comprend en outre un additif polymérique qui est un copolymère de type vinylique, de type acrylique et/ou dérivé d'acide carboxylique et plus préférentiellement un copolymère d'acétate de vinyle, de versatate de vinyle et d'acide et/ou ester méthacrylique , d'ester maléique, d'oléfine et/ou de chlorure de vinyle.
La composition selon la présente invention peut également comprendre en outre des agents rhéologiques tels que les plastifiants ou les superplastifiants, des agents rétenteurs d'eau, des agents épaississants, des agents de protection biocides et/ ou fongicides, des agents dispersants, des pigments, des accélérateurs et/ou retardateurs de prise, des agents hydrofuges, des fibres. La quantité respective de ces agents dépend de leur nature. Ils sont généralement compris entre 0,01 % et 2% en poids. Il est possible d'introduire par exemple des quantités plus importantes de certains additifs, et notamment des fibres.
La composition selon la présente invention, une fois mélangée avec de l'eau de gâchage peut être appliquée manuellement, être coulée ou peut être projetée mécaniquement sur un support.
Un autre objet de la présente invention est un procédé de préparation par projection d'un matériau de construction à partir de la composition pour mortier décrite ci -avant. Le procédé selon la présente invention comprend les étapes de :
-mélange de ladite composition avec l'eau de gâchage dans le mélangeur d'un dispositif de projection pour obtenir une pâte,
-pompage de la pâte ainsi obtenue jusqu'à la lance du dispositif de projection, puis
-projection sur le support.
La composition selon la présente invention peut avantageusement être pompée et mise en œuvre dans un procédé de projection de mortier. Ce type de procédé est généralement critique pour les compositions de mortier allégé. Il est en effet courant qu'une composition de mortier ait l'allégement souhaité avant projection mais qu'une fois introduite dans le dispositif de projection et projetée sur le support, elle perde ses propriétés d'allégement. De façon très surprenante, la composition selon la présente invention garde les propriétés d'allégement, même une fois qu'elle est pompée et transférée jusqu'à la lance de projection. La pâte obtenue est projetée sur le support, généralement par passages successifs. Le support est ainsi recouvert de plusieurs centimètres de mortier ; l'épaisseur dépendant de la nature du support et/ou du type de finition recherchée. Le procédé selon l'invention comprend éventuellement une étape de finition, consistant à rendre la surface homogène et lisse. Pour une application en tant que façade, cette étape de finition est obligatoire : elle permet notamment d'obtenir une surface plane pour l'application de l'enduit de finition nécessaire pour augmenter la dureté de surface et assurer la protection, notamment l'imperméabilisation, de la façade.
L'étape de mélange dans le mélangeur du dispositif de projection varie de quelques secondes pour une machine à gâchage continu à plusieurs minutes dans le cas de machine à gâchage discontinu. La durée de malaxage dans le mélangeur du dispositif de projection est comprise entre 15 secondes et
10 minutes.
Le procédé selon la présente invention peut être mis en œuvre avec une machine à mortier à gâchage discontinu, dans le sens où une quantité définie de pâte est gâchée puis projetée. Il s'agit de machines utilisées de façon classique, comme par exemple les machines de projection Putzmeister SP1 1 .
11 peut également être mise en œuvre de façon continue, par exemple avec une machine à mortier de type Mtec M330.
Un objet de l'invention porte sur un matériau de construction allégé susceptible d'être obtenu par le procédé décrit ci-avant, ou après gâchage d'une composition telle que décrite ci-avant. Ledit matériau possède une conductivité thermique inférieure ou égale à 55 mW/m. K. et une résistance en compression à 28 jours d'au moins 0,40 MPa. Le matériau selon la présente invention est un matériau allégé, très bon isolant thermique et suffisamment résistant mécaniquement pour l'application souhaitée. Les performances obtenues en termes de résistance mécanique lui permettent d'être classé dans la catégorie des mortiers CS 1 selon la norme NF 998- 1 .
La présente invention porte également sur l'utilisation du matériau décrit ci-dessus et présentant une conductivité thermique inférieure ou égale à 55 mW/m. K. et une résistance en compression à 28 jours d'au moins 0,40 MPa en tant que chape, sous-enduit mural, plafonds, matériau de remplissage de blocs de maçonnerie isolant ou matériau de remplissage de vides interstitiels et de cavités murales. Les exemples ci-après illustrent l'invention sans en limiter la portée.
Plusieurs compositions pour mortier sont préparées en mélangeant les différents constituants dans un mélangeur à poudre classique et sont données de façon détaillée dans le tableau 1 ci-après. Lors des préparations de la pâte, ces formulations sont mélangées avec de l'eau de gâchage. Le taux de gâchage est donné en pourcentage : un taux de gâchage de 170% indique que 170 kg d'eau sont ajoutés à 100 kg de poudre sèche. Lorsque les formulations sont gâchées au laboratoire, le malaxage a lieu dans un malaxeur planétaire de type Rilem à une vitesse de 60 tours/ min pendant une durée de 90 secondes.
Dans les exemples ci-après, la mesure de la masse volumique apparente de la pâte est effectuée à l'aide d'un récipient cylindrique d'un volume de V de un litre, préalablement taré et d'une masse M0. Ce récipient est rempli de pâte en deux fois et tassé par chocs (3 chocs à mi-hauteur et 3 chocs récipient plein), puis arasé et pesé. La masse mesurée est notée Mi . La masse volumique de la pâte en kg/ m3 est égale à la différence entre Mi et M0 rapportée au volume V exprimé en m3. Les compositions C1 à C8 sont des compositions conformes à l'invention, alors que les compositions C9 à base de ciment Portland et C10 à base de chaux aérienne sont données à titre de comparaison et sont non conformes à l'invention.
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
Perlite Silcell 42 BC d'un 65 65 65 65 65 65 65 70 65 65 diamètre moyen de 45 m
et de masse volumique
apparente d'environ 130
kg/m3
Ciment sulfoalumineux ALI 28.8
PRE® (Italcementi)
Ciment sulfoalumineux ALI 28.8 28.86 28.16 33.8 23.66
CEM® (Italcementi)
Ciment alumineux ISTRA 40 28.8 21.36
(Calucem)
Ciment Portland 2.8 29.3 CEM I 52.5 (Calcia)
Chaux aérienne (Boran) 29.3
Plâtre Molda 3 Normal 4
(Placo)
Résine type copolymère 5 5 5 5 5 5 0 5 5 5 d'acétate de vinyle, de
versatate de vinyle et
d'ester maléique (Hexion)
Methylhydroxyéthylcellulose 0.6 0.6 0.6 0.6 0.5 0.7 0.6 0.6 0.6 0.6 de grade 100 000 mPa.s
(Shinetsu)
Laurylsulafte de sodium 0.6 0.6 0.6 0.6 0.5 1 0.6 0.6 0.6 0.6 (Unger)
Agent accélérateur de 0.14 0.14 0.14 0.14
prise : carbonate de lithium
Agent accélérateur de 0.4
prise : Na2C03
Agent retardateur de prise : 0.1
Acide citrique
total 100 100 100 100 100 100 100 100 100 100
Tableau 1
5 Exemple 1
La composition C9 est malaxée avec de l'eau avec un taux de gâchage de 170% dans un malaxeur décrit ci-dessus pendant une durée de 90 secondes.
La masse volumique apparente du mortier obtenu mesurée au temps t=0 (soit tO) est de 420 kg/m3. La même mesure effectuée après un temps de 30 min (soit t30) vaut 600 kg/m3, démontrant une très nette instabilité de l'air entraîné dans cette formulation de mortier puisque la différence entre les masses volumiques mesurées à tO et à t30 est largement supérieure à 100 kg/m3.
De la même manière que précédemment, la composition C10 à base de chaux aérienne est malaxée avec de l'eau à un taux de gâchage identique (170%). Les valeurs de masse volumique apparente mesurées respectivement à tO et à t30 valent 450 kg/m3 et 750 kg/m3, démontrant là encore une très forte instabilité de l'air entraîné.
A titre de comparaison, le même test a été réalisé avec une composition de mortier selon l'invention identique aux compositions C9 et C10, à ceci près que le ciment Portland ou la chaux ont été remplacés par un ciment sulfo-alumineux ALI PRE®. La masse volumique apparente mesurée à t=0 vaut 405 kg/m3 et vaut 450 kg/m3 après un temps de 30 min. Avec ce type particulier de liant, l'air entraîné présente une bonne stabilité.
Exemple 2
La composition C1 est comparée avec une composition identique sans agent entraîneur d'air, comprenant 29,4% en poids de ciment sulfo-alumineux ALI PRE®. La masse volumique apparente de cette pâte sans entraîneur d'air est proche de 700 kg/m3 avec une stabilité satisfaisante à 30 min. L'ajout de 0,6 % d'entraineur d'air (composition C1 ) permet de diminuer la masse volumique apparente de la pâte jusqu'à 350 kg/m3. Exemple 3
Des pâtes sont préparées avec les compositions C1 à C7 par malaxage pendant 90 secondes avant d'être placées dans des moules. Les taux de gâchage utilisés sont indiqués dans le tableau 2 ci-après qui résume également les valeurs de masse volumique apparente mesurées à t=0 (sur la pâte fraîche) et sur le mortier durci après 28 jours.
Tableau 2
Les données ci-dessus montrent que les compositions selon la présente invention permettent d'obtenir des mortiers allégés dont la densité reste faible après durcissement, attestant d'une bonne stabilité de la pâte dans le temps.
Les résistances en compression à 28 jours des mortiers C2, C5 et C6 ont été mesurées et valent respectivement 0,46 MPa, 0 ,67MPa et 0,61 MPa.
Exemple 4
Une composition proche de la composition C2 donc à base de ciment sulfoalumineux ALICEM® est préparée en mélangeant :
-43 % en poids de perlite Silcell 42/ 18 (perlite hydrophobée d'un diamètre moyen d'environ 45 μητι et de masse volumique apparente d'environ 130 kg/m3)
-22 % en poids de perlite Silcell 42 BC (perlite non hydrophobée d'un diamètre moyen d'environ 45 μητι et de masse volumique apparente d'environ 130 kg/m3)
-28.66% en poids de ciment sulfoalumineux ALICEM®
-5% en poids de résine type copolymère d'acétate de vinyle, de versatate de vinyle et d'ester maléique (Hexion)
-0.6 % en poids de méthylhydroxyéthylcellulose de grade 100 000 mPa.s (Shinetsu)
-0.6% en poids de laurylsulfate de sodium -0.14 % en poids de carbonate de lithium
Cette composition est gâchée (taux de gâchage de 160%) dans le malaxeur décrit ci-avant. On fait varier la durée de malaxage de façon à faire varier la quantité d'air entraîné. Des mesures de masse volumique apparente de la pâte à tO, ainsi que sur le mortier durci à 28 jours sont consignées dans le tableau 3 ci-dessous. La résistance en compression à 28 jours est également indiquée en MPa.
Tableau 3
Ainsi on constate que plus le malaxage est prolongé, plus la quantité d'air entraîné est augmentée, tout en conservant une bonne stabilité de l'air entraîné dans le temps, même pour des durées de malaxage plus longues.
Exemple 5
La composition de l'exemple 4 est gâchée (taux de gâchage de 155%) et malaxée pendant 5 min avant d'être projetée sur un mur de parpaings avec une machine de type Putzmeister SP1 1 . Ce malaxage procure une pâte dont la masse volumique apparente est de 350 kg/m3 en cuve, de 356 kg/m3 en sortie de lance de projection et de 170 kg/m3 après durcissement au bout de 28 jours. La résistance en compression mesurée sur un échantillon de 4*4*4 cm après 28 jours est de 0.52 MPa et la conductivité thermique est de 52 mW/m. K.
Exemple 6
La composition C8 est gâchée (taux de gâchage de 147%) et malaxée pendant 5 min avant d'être projetée sur un mur de parpaings avec une machine de type Putzmeister SP1 1 . Ce malaxage procure une pâte dont la masse volumique apparente est de 380 kg/m3 en cuve, de 320 kg/m3 en sortie de lance de projection et de 155 kg/m3 après durcissement au bout de 28 jours. La résistance en compression mesurée sur un échantillon de 4*4*4 cm après 28 jours est de 0.42 MPa et la conductivité thermique est de 49 mW/m. K. Exemple 7
La composition de l'exemple 4 est projetée avec une machine à gâchage continu de type Mtec M330. Le débit d'eau est de 250 l/h. La masse volumique apparente de la pâte mesurée en sortie de lance est de 380 kg/m3, ce qui est tout à fait comparable avec les valeurs obtenues avec des machines à gâchage discontinu.

Claims

REVENDICATIONS
Composition pour mortier isolant thermiquement caractérisée en ce qu'elle est exempte de granulats siliceux, calcaires et/ou silico- calcaires d'une granulométrie supérieure à 100 m et en ce qu'elle comprend un mélange d'au moins :
- 40% de charges allégeantes minérales dont la masse volumique apparente est inférieure à 200 kg/m3,
- un liant minéral choisi parmi les ciments sulfo-alumineux, les ciments alumineux et/ou les liants binaires ou ternaires comprenant au moins un ciment alumineux ou sulfoalumineux,
- un agent entraîneur d'air de type tensioactif choisi parmi les acides gras organiques, les composés sulfatés, les composés sulfonatés et/ou les résines naturelles du bois et
- un agent viscosant choisi parmi les alcools polyvinyliques, les éthers d'amidon, les éthers de cellulose, les éthers de guar ou les argiles. Composition selon la revendication précédente caractérisée en ce qu'elle comprend moins de 5 % en poids de fillers siliceux, calcaires et/ou silico-calcaires de granulométrie inférieure à 100 μιτι, ou plus préférentiellement est exempte de fillers siliceux, calcaires et/ ou silico-calcaires de granulométrie inférieure à 100 m.
Composition selon l'une des revendications précédentes caractérisée en ce que les charges allégeantes minérales sont sphériques et ont un diamètre moyen inférieur ou égal à 80 m.
Composition selon l'une des revendications précédentes caractérisée en ce que les charges allégeantes sont choisies parmi la perlite, la vermiculite, les billes de verre expansé, les microsphères creuses de verre, les cénosphères, les silicates expansés, et/ou les aérogels.
Composition selon l'une des revendications précédentes caractérisée en ce qu'elle comprend au moins 50% en poids de charges allégeantes minérales, préférentiellement au moins 60% en poids.
6. Composition selon l'une des revendications précédentes caractérisée en ce que le liant binaire ou ternaire comprend moins de 30% en poids de ciment Portland et/ou de chaux par rapport au poids total de liant.
7. Composition selon l'une des revendications précédentes caractérisée en ce qu'elle comprend au moins 0,3% en poids d'agent entraîneur d'air.
8. Composition selon l'une des revendications précédentes caractérisée en ce l'agent entraîneur d'air est choisi parmi les alkylsulfates, les alkylsulfonates, les alkylarylsulfates, seuls ou en mélange.
9. Composition selon la revendication précédente caractérisée en ce que l'agent entraîneur d'air est du laurylsulfate de sodium.
10. Composition selon l'une des revendications précédentes caractérisée en ce qu'elle comprend en outre un additif polymérique qui est un copolymère de type vinylique, de type acrylique et/ou dérivé d'acide carboxylique et plus préférentiellement un copolymère d'acétate de vinyle, de versatate de vinyle et d'acide et/ou ester méthacrylique , d'ester maléique, d'oléfine et/ou de chlorure de vinyle.
1 1 . Composition selon l'une des revendications précédentes caractérisée en ce que la quantité d'agent viscosant est comprise entre 0,01 % et 2% en poids.
12. Composition selon l'une des revendications précédentes caractérisée en ce qu'elle comprend en outre des agents rhéologiques tels que les plastifiants ou les superplastifiants, des agents rétenteurs d'eau, des agents épaississants, des agents de protection biocides et/ ou fongicides, des agents dispersants, des pigments, des accélérateurs et/ou retardateurs de prise, des agents hydrofuges, des fibres, de préférence dans une quantité comprise entre 0,01 % et 2% en poids.
13. Procédé de préparation d'un matériau de construction à partir de la composition pour mortier selon l'une des revendications 1 à 12 caractérisé en ce qu'il comprend les étapes de :
-mélange de ladite composition avec l'eau de gâchage dans le mélangeur d'un dispositif de projection pour obtenir une pâte,
-pompage de la pâte ainsi obtenue jusqu'à la lance du dispositif de projection, puis -projection sur le support.
14. Procédé selon la revendication précédente caractérisé en ce que la durée de malaxage dans le mélangeur du dispositif de projection est comprise entre 15 secondes et 10 minutes.
15. Matériau de construction allégé susceptible d'être obtenu par le procédé selon l'une des revendications 13 ou 14 ou par gâchage avec de l'eau de la composition selon l'une des revendications 1 à 12 et possédant une conductivité thermique inférieure ou égale à 55 mW/m. K. et une résistance en compression à 28 jours d'au moins 0,40 MPa.
16. Utilisation du matériau selon la revendication précédente en tant que chape, sous-enduit mural, plafond, matériau de remplissage de blocs de maçonnerie isolant, matériau de remplissage de vides interstitiels ou de cavités murales.
EP17719658.1A 2016-04-13 2017-04-04 Composition de mortier fortement allege et isolant thermique Pending EP3442929A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1653255A FR3050203B1 (fr) 2016-04-13 2016-04-13 Composition de mortier fortement allege et isolant thermique
PCT/FR2017/050781 WO2017178729A1 (fr) 2016-04-13 2017-04-04 Composition de mortier fortement allege et isolant thermique

Publications (1)

Publication Number Publication Date
EP3442929A1 true EP3442929A1 (fr) 2019-02-20

Family

ID=56373020

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17719658.1A Pending EP3442929A1 (fr) 2016-04-13 2017-04-04 Composition de mortier fortement allege et isolant thermique

Country Status (5)

Country Link
EP (1) EP3442929A1 (fr)
AR (1) AR108126A1 (fr)
BR (1) BR112018068834A2 (fr)
FR (1) FR3050203B1 (fr)
WO (1) WO2017178729A1 (fr)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108249868B (zh) * 2018-04-24 2020-12-08 湖州长湖水泥有限公司 建筑用保温砂浆
FR3096365B1 (fr) * 2019-05-24 2021-09-03 Saint Gobain Weber Composition sèche de mortier, notamment de mortier-colle pour colle à carrelage
DE202019103866U1 (de) * 2019-07-12 2020-09-09 Franken Maxit Mauermörtel Gmbh & Co Trockenputzmischung für eine spritzbare Dämmung
CN111825391B (zh) * 2020-07-07 2022-04-15 中建商品混凝土有限公司 一种装配式建筑用轻质高强自保温混凝土
CN112441808A (zh) * 2020-11-17 2021-03-05 国佳新材湖北环保凝胶产业园有限公司 一种气凝胶砌块及其制备方法
CN113735495A (zh) * 2021-08-20 2021-12-03 上海隆振建筑工程股份有限公司 一种彩色高强度保温砂浆
CN113735543A (zh) * 2021-08-26 2021-12-03 苏州弗克技术股份有限公司 一种轻质抹灰石膏砂浆及其制备方法
CN114195450B (zh) * 2021-12-08 2022-07-26 亚士创能科技(上海)股份有限公司 防水找平砂浆及其制备方法和应用
CN114804718A (zh) * 2022-04-25 2022-07-29 苏州北清力生纳米新材料科技有限公司 一种纳米气凝胶建筑材料及制备方法
CN115849847A (zh) * 2022-11-18 2023-03-28 贵州开磷集团股份有限公司 一种抗裂型磷石膏基轻质材料
CN116003083B (zh) * 2022-12-06 2024-03-08 山西冶金岩土工程勘察有限公司 一种采空区填充治理用的复合悬砂剂及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10314879A1 (de) * 2003-04-01 2004-10-14 Heinrich, Jörg Leichtbeton und Verfahren zu seiner Herstellung
FR2955102B1 (fr) * 2010-01-11 2012-08-10 Parexlanko Enduit isolant a base de xerogel de silice.
FR2955103B1 (fr) * 2010-01-13 2012-09-28 Parexlanko Adjuvant moussant pour la preparation de mousses minerales d'enduits, de mortiers et betons, mousses ainsi obtenues et produits durcis issu de ces mousses
CN102093020B (zh) * 2010-12-03 2012-07-25 吉林省志惠防腐保温工程有限公司 聚氨酯专用轻质防火防水保温浆料
FR2989083B1 (fr) * 2012-04-06 2014-04-25 Lafarge Sa Mousse minerale isolante

Also Published As

Publication number Publication date
WO2017178729A1 (fr) 2017-10-19
FR3050203A1 (fr) 2017-10-20
FR3050203B1 (fr) 2021-07-23
BR112018068834A2 (pt) 2019-01-22
AR108126A1 (es) 2018-07-18

Similar Documents

Publication Publication Date Title
EP3442929A1 (fr) Composition de mortier fortement allege et isolant thermique
EP2785664B1 (fr) Béton ou mortier léger structurel, son procédé de fabrication et son utilisation en tant que béton auto-placant
EP2981512A1 (fr) Composition de mortier isolant
WO2011086133A1 (fr) Adjuvant moussant pour la preparation de mousses minerales d'enduits, de mortiers et betons, mousses ainsi obtenues et produits durcis issus de ces mousses
WO2011086333A2 (fr) Materiau pour isolation thermique et son procede de fabrication
WO2013131583A1 (fr) Composition seche a base de liant mineral et destinee a la preparation d'une formulation humide durcissable pour le batiment
WO2013131584A1 (fr) Utilisation d'au moins un polymere superabsorbant -psa- (b), dans une composition seche a base de liant mineral et destinee a la preparation d'une formulation humide durcissable pour le batiment
FR2942473A1 (fr) Mortier isolant pulverulent, mortier isolant en couche
EP2536672A1 (fr) Plaque legere de ciment
EP2935144A1 (fr) Composition de béton ou mortier allégé comprenant une mousse aqueuse
FR2973024A1 (fr) Composition cimentaire seche pour la preparation d'une formulation humide d'enduit, de mortier ou de beton sans efflorescence
FR2957073A1 (fr) Beton ultraleger et son utilisation
WO2020043751A1 (fr) Procede de preparation d'une mousse minerale legere, mousse minerale obtenue et utilisations
FR2938532A1 (fr) Utilisation d'au moins un ether de cellulose pour reduire le retrait et/ou la fissuration plastique dans le beton
FR2963002A1 (fr) Plaque legere de ciment
EP2714612A1 (fr) Accelerateur de prise de ciment
FR2956397A1 (fr) Element constructif en beton leger isolant
EP3325424A1 (fr) Procede de preparation d'un béton ou mortier allegé contenant de la glycerine
BE1022191B1 (fr) Matrice cimentaire pour coulis, mortier ou beton leger, compositions cimentaires incluant une telle matrice et leurs utilisations pour des mortiers ou betons legers structurels
EP2531462B1 (fr) Procede de projection d'un materiau mousse et revetement obtenu a partir d'un tel procede
EP2401238B1 (fr) Composition utile pour la preparation d'un beton sans ajout d'eau
FR3065455B1 (fr) Utilisation d’un agent entraineur d’air pour diminuer le temps de sechage d’une chape a base de sulfate de calcium

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20181113

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SAINT-GOBAIN WEBER

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210517

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS