EP2536672A1 - Plaque legere de ciment - Google Patents

Plaque legere de ciment

Info

Publication number
EP2536672A1
EP2536672A1 EP11712923A EP11712923A EP2536672A1 EP 2536672 A1 EP2536672 A1 EP 2536672A1 EP 11712923 A EP11712923 A EP 11712923A EP 11712923 A EP11712923 A EP 11712923A EP 2536672 A1 EP2536672 A1 EP 2536672A1
Authority
EP
European Patent Office
Prior art keywords
cement
water
plate
plate according
calcium salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11712923A
Other languages
German (de)
English (en)
Inventor
Olivier Refouvelet
Nicolas Pouteau
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lafarge SA
Original Assignee
Lafarge SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR1051157A external-priority patent/FR2956397B1/fr
Priority claimed from FR1056079A external-priority patent/FR2963002B1/fr
Application filed by Lafarge SA filed Critical Lafarge SA
Publication of EP2536672A1 publication Critical patent/EP2536672A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00612Uses not provided for elsewhere in C04B2111/00 as one or more layers of a layered structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249986Void-containing component contains also a solid fiber or solid particle

Definitions

  • the present invention relates to a lightweight sheet of foamed cement.
  • Cement plates known to date have, because of their mineral nature, improved mechanical performance compared to plasterboard. These cement plates can be produced by various processes and especially by discontinuous processes (for example molding, pressing, filtering, etc.). The density of these plates is generally greater than 1. Because of their density, these plates are difficult to cut which has consequences for the user. Indeed the user will not be able to cut these plates manually and will have to use mechanical cutting means (for example jigsaws, disks etc.) which reduces the productivity in the building site and also generates significant amounts of dust, that can affect the health of users. Moreover, because of their density, screwing cement sheets is more difficult for the installer than a standard plasterboard and slower. Indeed, the drilling time is lengthened and the tightening quality of the screw on metal frame or wood frame is often poor.
  • the problem to be solved by the invention is to provide a new cement plate that can be manufactured by a continuous process, for example on a plate production line.
  • the inventors have demonstrated that it is possible to lighten a cement slurry to make cemented foam sheets by a continuous process.
  • the present invention provides a cement slab having a density of 200 to 1000 kg / m 3 characterized in that it is made from a grouted cement grout.
  • the invention also proposes a method for manufacturing a plate according to the invention.
  • the subject of the invention is the use of a plate according to the invention, characterized in that the plate is used either as an element under tiling, or as a cladding element for the envelopes of buildings, or as a sub-element. roofing or as a dry building element.
  • the invention offers at least one of the advantages described below.
  • the cement board according to the invention has a density of less than 1, while maintaining a mechanical strength necessary for the handling of the plates and the contribution of the functional performance of the works of which it forms part, under water stress and / or moisture.
  • the invention offers another advantage that the cement board according to the invention has a high dimensional stability even when water variations occur, including temperature and / or humidity variations. Indeed the size of the cement plate according to the invention does not vary or little and the dimensional stability results obtained are comparable to those of known plasterboard.
  • Another advantage of the present invention is that these plates according to the invention allow manual cutting as for a known plasterboard (with for example a saw, a cutter, etc.) in opposition to a mechanical cut.
  • this cutting emits less dust compared to known cement slabs.
  • the cement plate according to the invention makes it possible to make a plate suitable for dry construction.
  • the cement board according to the invention has the advantage that it is universal that is to say that it can be used both as an element under tiles (bathroom, worktop, kitchen, shower, floor, etc.) only as a cladding element of the building envelopes, as a sub-roof element (ceilings under roof, roofing support plate etc.), as dry building element (ceiling, partition, counter-partition etc.) ) or as any type of plate.
  • cement slabs according to the invention makes it possible to use a continuous forming process, followed by drying, for example in the open air.
  • the environmental footprint of the cement slab according to the invention is reduced compared with known cement slabs.
  • hydraulic binder is meant according to the present invention any compound having the property of hydrating in the presence of water and whose hydration makes it possible to obtain a solid having mechanical characteristics.
  • the hydraulic binder according to the invention may in particular be a cement.
  • the hydraulic binder according to the invention is a Portland cement according to the EN 197-1 standard.
  • hydraulic composition a mixture of at least one hydraulic binder, with water, optionally aggregates, optionally adjuvants according to EN 934-2.
  • the expression “hydraulic composition” according to the invention indistinctly refers to a composition in the fresh or hardened state.
  • the hydraulic composition according to the invention may be a cement slurry or a mortar.
  • the hydraulic composition according to the invention is a cement slurry.
  • setting is meant according to the present invention the transition to the solid state of the hydraulic binder by hydration reaction.
  • the setting is usually followed by the hardening period.
  • dry construction a construction method for the realization of structures using industrialized components assembled on site.
  • the invention relates to a cement slab having a density of 200 to 1000 kg / m 3 characterized in that it is made from a foamed cement grout comprising at least
  • a foaming agent from 0.45 to 5%, of a foaming agent,% by weight relative to the body of water; a calcium salt soluble in water;
  • the cements which are suitable for the cement slurry making it possible to produce the slab according to the invention are Portland cement, the cements described in accordance with the standard EN 197-1, calcium aluminate cements, magnesium cements or sulphoaluminum cements and mixtures thereof.
  • Cements based on calcium aluminates for example aluminous cements or Cements Fondus ® , are also suitable according to the invention as well as cements conforming to standard NF EN 14647.
  • the preferred magnesium cement includes magnesium carbonates, magnesium oxides or magnesium silicates, for example as described in US Patent No. 4,838,941.
  • the preferred cement that is suitable according to the invention is Portland cement, alone or in a mixture with other cements mentioned above, for example sulphoaluminous cements.
  • the Portland cement that is particularly suitable according to the invention is that described according to the standard EN 197-1.
  • the ratio cement (expressed in crude clinker) / mineral particles of the foamed cement grout used to make the plate according to the invention is preferably from 30/70 to 50/50, more preferably 35/65 to 50/50, even more preferably about 35/65.
  • the water / cement ratio (expressed as raw clinker) of the foamed cement slurry used to make the plate according to the invention is preferably from 0.3 to 0.9, more preferably from 0.4 to 0.7, and even more preferentially about 0.45.
  • This water / cement ratio may vary for example because of the water demand of the mineral particles used.
  • This ratio water / cement is defined as the ratio by mass of the amount of water (E) on the mass of cement (C) (expressed in crude clinker).
  • the cement slurry for producing the plate according to the invention comprises a water-reducing agent, a plasticizer or a superplasticizer.
  • a water reducing agent can reduce by about 10 to 15% by mass the amount of mixing water for a given workability time.
  • a water-reducing agent mention may be made of lignosulphonates, hydroxycarboxylic acids, carbohydrates, and other specific organic compounds, for example glycerol, polyvinyl alcohol, alumino-methyl siliconate, and the like. sodium, sulfanilic acid and casein (see Concrete Admixtures Handbook, Properties Science and Technology, VS Ramachandran, Noye Publications, 1984).
  • Superplasticizers belong to the new generation of water reducing agents and can reduce the amount of mixing water by about 30% by weight for a given workability time.
  • a superplasticizer mention may be made of PCP-type superplasticizers without antifoam agent.
  • PCP or "polycarboxylate polyoxide” is understood, inter alia, according to the present invention a copolymer of acrylic acids or methacrylic acids, and their poly (ethylene oxide) esters (POE).
  • the cement slurry for producing the plate according to the invention comprises from 0.01 to 0.2%, more preferably from 0.02 to 0.08% of a water-reducing agent, from plasticizer or superplasticizer% by mass relative to the mass of cement.
  • the amount is expressed as active ingredient in the solution.
  • the cement slurry for producing the cement slab according to the invention does not comprise an antifoaming agent, or any agent having the property of destabilizing an air emulsion in a liquid.
  • Some commercial superplasticizers may contain antifoaming agents and therefore these superplasticizers may not be suitable for cement grout for making the plate according to the invention.
  • the cement slurry for producing the cement slab according to the invention comprises an anionic foaming agent.
  • the cement slurry for producing the plate according to the invention comprises a foaming agent.
  • this foaming agent is chosen from an alkylsulfonate, alkylethersulfonate, a hydroxyalkylethersulfonate, an alphaolefinesulfonate, an alkylbenzenesulphonate, an alkylsulphate, an alkylethersulphate, a hydroxyalkylethersulphate, an alphaolefin sulphate and an alkylbenzenesulphate, or their mixtures.
  • the cement slurry making it possible to produce the cement slab according to the invention comprises an alkyl sulphate or an alkyl ether sulphate of linear or branched carbon chains of formula (I)
  • n is from 8 to 14 and m is from 0 to 15, M being an alkaline cation.
  • M preferably represents a sodium or potassium ion, preferably a sodium ion;
  • m is preferably from 0 to 10, for example from 0 to 9.
  • the cement slurry making it possible to produce the cement slab according to the invention comprises a linear or branched alkyl ether sulfate of formula C n H 2n + 1 - (OCH 2 CH 2 ) m -OSO 3 M in which n is included in 8 to 12, preferably 10 to 12, for example 9 to 1 1, and m is 1 to 6.
  • the radical C n H 2n + 1 is preferably linear.
  • the cement slurry making it possible to produce the cement slab according to the invention comprises a mixture of alkyl ether sulfate and alkyl sulfate.
  • Each alkyl ether sulfate and alkyl sulphate may themselves be a mixture of the compounds of formula (I).
  • the cement slurry for producing the cement slab according to the invention comprises a calcium salt soluble in water.
  • This calcium salt may be chosen from calcium chloride, calcium nitrite, calcium nitrate, calcium formate and calcium acetate, or mixtures thereof.
  • the preferred water-soluble calcium salts are calcium chloride, calcium nitrite or calcium nitrate.
  • the calcium salt soluble in water may be in the form of a solid, for example a powder, or a liquid, for example an aqueous solution.
  • water-soluble calcium salt a calcium salt having a solubility in water at 20 ° C of greater than 2 g / 100 ml.
  • Such salts have an anion which is compatible with the cement slurries at the concentrations used according to the invention.
  • the calcium salt soluble in water can be in hydrated or anhydrous form: when a hydrate is used the amount is expressed in anhydrous material.
  • the ratio of foaming agent to water-soluble calcium salt is calculated on the basis of anhydrous calcium chloride as the calcium salt.
  • the mass of calcium salt used to calculate the ratio is the mass expressed in terms of equivalent of the mass of anhydrous calcium chloride.
  • the ratio of foaming agent to calcium salt soluble in water is preferably from 0.4 to 0.8, for example from 0.45 to 0.75, more preferably from 0.45 to 0.65, very preferably from 0.45 to 0.6, still more preferably 0.45 to 0.55.
  • the cement grout for producing the cement slab according to the invention comprises mineral particles.
  • the preferred inorganic particles according to the invention are calcium carbonate, silica fumes, slags, fly ash, pozzolans, preferably pozzolans of natural origin, limestone or siliceous fillers, or mixtures thereof.
  • the size of the mineral particles is preferably from 1 to 100 ⁇ , for example from 1 to 80 ⁇ .
  • the D 10 of the mineral particles is preferably from 1 to 4 ⁇ .
  • the D 50 of the mineral particles is preferably from 4 to 20 ⁇ , more preferably from 6 to 15 ⁇ .
  • the D 90 of the mineral particles is preferably from 12 to 100 ⁇ .
  • the cement slab according to the invention has a density of 400 to 950 kg / m 3 , more preferably 500 to 850 kg / m 3 , even more preferably 650 to 800 kg / m 3 .
  • the cement slurry for producing the cement slab according to the invention further comprises a foam stabilizing agent, such as, for example, betaine, an amine oxide, or a fatty amide.
  • additives may also be used such as a retarder, such as citric acid.
  • the cement slurry for producing the cement slab does not comprise light aggregates as described in accordance with the EN 206-1 standard, for example perlite.
  • the cement slurry for producing the cement slab does not comprise light loads, for example polystyrene beads.
  • the cement slurry making it possible to produce the cement slab according to the invention further comprises calcium sulphate which is hydrated, hemihydrated or anhydrous.
  • the cement slurry making it possible to produce the cement slab according to the invention also comprises lime.
  • the cement board according to the invention further comprises at least one facing.
  • the cement plate according to the invention can bear on one of its faces, or better on each of its faces, a woven or non-woven facing, for example fiberglass, associated or not with a veil. These facings may or may not include fibers bound together by a binder.
  • the cement slab according to the invention further comprises at least one bonding layer between the facing and the body of the slab.
  • the invention also relates to a method for manufacturing a cement slab according to the invention, characterized in that it comprises at least
  • o mineral particles of size from 0.1 to 300 ⁇ ; the ratio foaming agent on water-soluble calcium salt being from 0.3 to
  • Another method for manufacturing at least one cement plate according to the invention may comprise the following steps: mixing a composition intended to form the body of the plate with water, depositing this mixture on a moving support, which is driven continuously by a tape running system, shape the plate with a roll, drying and cutting the resulting plate to the desired length, the composition for forming the body of the plate comprising the less
  • the ratio of foaming agent to calcium salt soluble in water being from 0.3 to 0.8.
  • Another method for producing at least one cement slab according to the invention may comprise the following steps:
  • step c) inject a gas into the grout obtained in step b) and mix;
  • all the air introduced either in the form of gas or in the form of foam is present in the cement slab according to the invention.
  • the gas introduced into the manufacturing process according to the invention may preferably be air.
  • the gas introduction step can be done in different ways, and in particular either by direct introduction of gas, or by introducing a dispersion of a gas phase into a liquid (foam).
  • the foam that can be introduced preferably comprises water, air and at least one foaming agent.
  • This foaming agent may be anionic or nonionic. It may be identical or different from that used to make the grouted cement grout.
  • the introduction of gas can be done by direct introduction of air.
  • the direct air injection method described in application WO 2005/080294 is particularly suitable.
  • the air is introduced under pressure, in particular the pressure is between 1 and 5 bar.
  • the introduction of gas can be done by introducing a dispersion of a gaseous phase into a liquid, in particular by introducing an air foam into water.
  • the air-in-water dispersion can be introduced directly into the cement slurry and then mixed in a static or dynamic mixer, in batch mode or in continuous mode.
  • the method of manufacturing a plate according to the invention further comprises an additional step of bringing at least one facing.
  • the method of manufacturing cement slabs according to the invention comprises the following steps:
  • step b) spreading the grout obtained in step b) on the first facing in a first bonding layer
  • step g) spreading the third grout obtained in step g) on the second facing in a second bonding layer
  • step e depositing the second facing obtained in step h) on the core layer of the preform obtained in step e);
  • the method of manufacturing cement slabs according to the invention comprises the following steps:
  • step b) spreading the paste obtained in step b) on the first facing in a first bonding layer; d) preparing a frothed cement slurry;
  • step e depositing the second facing obtained in step h) on the core layer of the preform obtained in step e);
  • the method of manufacturing cement slabs according to the invention comprises the following steps:
  • step b) spreading the paste obtained in step b) on the facing in a core layer
  • the method according to the invention has the advantage of being continuously achievable, thanks to the cement grout described above having a high initial workability, a limited setting time and rapid hardening allowing the immediate handling of the plates at the end. of the catch period.
  • the method according to the invention therefore allows the manufacture of a large number of plates in a limited time. The production costs of such plates are considerably reduced.
  • the first facing of step a) makes it possible to considerably increase the resistance to bending of the plates.
  • the invention also relates to the use of a plate according to the invention characterized in that the plate is used as an element under tiling, as a cladding element of the building envelopes, as a sub-roof element or as a dry building element.
  • the cement sheets according to the invention are also resistant to bad weather and salt spray. They are thus particularly suitable for use in the building sector, for forming or covering walls, floors or roofs, inside or outside buildings, and in particular in very humid atmospheres or areas frequently washed at home.
  • water jet such as industrial kitchens, food labs, showers or bathrooms, ponds, swimming pools, farm buildings or industrial butchers.
  • Such plates can also be used to form or cover walls, floors or roofs exposed to salt spray.
  • FIG. 1 represents a diagram of a variant of the process for manufacturing a composition making it possible to produce the body of the cement slab according to the invention with direct air introduction.
  • FIG. 2 represents a graph of the mechanical strengths of a cement slab according to the invention compared to a known plasterboard.
  • the method of manufacturing a plate according to the invention comprises the preparation of a slurry (1) comprising cement, mineral particles, adjuvants, water, an accelerator (the calcium salt) and a foaming agent.
  • the process comprises continuous foaming (2) with direct introduction of air into the Mondomix dynamic mixer.
  • Millifoam H it is a foaming agent of the anionic type (alkyl ether sodium sulphate) supplied by Hunstman;
  • Calcium Chloride CaCl 2 Pure Anhydrous from Verre Labo Mula
  • Portland cement is CEM I 52.5 R cement from the Lafarge cement plant in Port La extent (batch number LHY-3830 or LHY-3867);
  • the mineral particles are calcium carbonate supplied by the company OMYA under the name Betocarb HP Entrains whose D 50 is 7.8 ⁇ , the D 10 is 1, 7 ⁇ , the D 90 is 93 ⁇ and with a maximum particle size of 200 ⁇ (Lot Number ADD-0239);
  • plasticizer is a mixture comprising a polycarboxylate polyoxide (PCP) supplied by the company Chryso under the name Chrysolab EPB 530-017; It is based on the Premia 180 but does not include antifoam agent;
  • PCP polycarboxylate polyoxide
  • the bowl of the mixer was scraped and Millifoam was poured on the surface of the grout.
  • the kneading was restarted to incorporate the Millifoam with the grout (speed varying from 17 to 25 turns / minute for about 2 minutes).
  • the cement grouts were obtained and were ready to be foamed. Table 1 below shows the chemical compositions of the various cement slurries that have been produced according to the invention.
  • the amount of Millifoam is the amount of commercial product containing 27% active ingredient.
  • the ratio foaming agent / CaCl 2 of Table 1 is active / CaCl 2 .
  • the realization of the grouted cement grout was made continuously.
  • the cement slurry, obtained previously, was poured into a buffer tank kept under stirring using a Rayneri Turbotest mixer (MEXP-101, Rayneri VMI, model Turbotest 33/300, series No. 71815) comprising a pale deflocculator (the speed of the pale can vary from 1000 rpm to 400 revolutions / minute depending on the volume of grout).
  • the grout was pumped using a Moineau volumetric pump (Seepex TM MEXP-413 eccentric screw pump, model BN-025-12, series no. 243327) at a flow rate of about 1 liter / minute.
  • the grout was introduced into a whipper (Mondomix TM MALX-160, Minimondo A05, Series No. P14018-371 15) to which was added compressed air (generated by a Brooks air regulator, series No. T55329 / 028) at a rate of 2.75 Liters / minute.
  • the flow rate was adapted to the desired foam density at the end of the whipper, generally from 1 to 4 liters / minute.
  • the rotational speed of the whipper was 400 rpm, however the rotational speed was adapted to the desired foam density at the end of the whipper and could vary from 250 to 1500 rpm. minute.
  • a helical static mixer (Isojet TM) was present at the exit of the whipper. Foam was thus obtained, it was a foamed cement according to the invention.
  • a mold was prepared by vertical mounting of 2 plates of size 40 X 60 cm on which two facings were positioned and spaced 13 mm.
  • the facing used was a non-woven fiberglass facing.
  • the foamed cement according to the invention obtained previously was introduced into the mold.
  • the plates thus obtained were demolded after 3 hours. These plates were placed for 24 hours in an atmosphere at 100% hygrometry and at 20 ° C. At the end of this treatment, they were dried and stored in an oven at 45 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Laminated Bodies (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Paints Or Removers (AREA)

Abstract

La présente invention se rapporte à une plaque légère de ciment moussé.

Description

PLAQUE LEGERE DE CIMENT
La présente invention se rapporte à une plaque légère de ciment moussé.
Les plaques ciments connues à ce jour présentent, de part leur nature minérale, des performances mécaniques améliorées comparativement aux plaques de plâtre. Ces plaques ciments peuvent être produites par différents procédés et notamment par des procédés discontinus (par exemple moulage, pressage, filtrage etc.). La densité de ces plaques est généralement supérieure à 1. Du fait de leur densité, ces plaques sont difficiles à couper ce qui a des conséquences pour l'utilisateur. En effet l'utilisateur ne pourra pas découper ces plaques manuellement et devra utiliser des moyens de découpes mécaniques (par exemple des scies sauteuse, disqueuse etc.) ce qui réduit la productivité en chantier et par ailleurs génère des quantités de poussières non négligeable, ce qui peut affecter la santé des utilisateurs. De plus du fait de leur densité, le vissage des plaques ciment est plus difficile pour l'installateur qu'une plaque standard de plâtre et moins rapide. En effet le temps de perçage est allongé et la qualité de serrage du vissage sur ossature métallique ou ossature bois est souvent médiocre.
Il est également connu des plaques ciment dites allégées de part l'incorporation de charges légères. Ces charges légères sont généralement issues de roches naturelles ou de roches artificielles ou sont des charges issues des produits pétroliers, par exemple les billes de polystyrènes. L'inconvénient de l'utilisation de roches naturelles est la pénurie de ressources en gisements convenables. L'inconvénient de l'utilisation de roches artificielles est leur bilan négatif en énergie primaire appelée encore énergie grise ce qui augmente les coûts de fabrication des plaques. L'inconvénient de l'utilisation des charges issues des produits pétroliers est leur impact sur l'environnement ajouté à l'aspect économique suite aux variations du cours du pétrole.
L'état de la technique décrit également des plaques de plâtre. Cependant ces plaques ne conservent pas intégralement leurs performances intrinsèques en présence d'humidité et/ou d'eau. En effet, il est possible de limiter la perte de performances intrinsèques de la plaque de plâtre traditionnelle mais pas de les préserver complètement. La plaque de plâtre traditionnelle ne présente donc pas toujours la durabilité souhaitée dans ces conditions.
En conséquence, il est devenu nécessaire de trouver une nouvelle plaque qui pâlie les inconvénients des plaques connues.
Aussi le problème que se propose de résoudre l'invention est de fournir une nouvelle plaque de ciment pouvant être fabriquée par un procédé continu, par exemple sur une ligne de production de plaques. De manière inattendue, les inventeurs ont mis en évidence qu'il est possible d'alléger un coulis de ciment pour réaliser des plaques de ciment moussé par un procédé continu.
Dans ce but la présente invention propose une plaque de ciment présentant une densité de 200 à 1000 kg/m3 caractérisée en ce qu'elle est réalisée à partir d'un coulis de ciment moussé.
L'invention propose également un procédé de fabrication d'une plaque selon l'invention.
Enfin l'invention a pour objet l'utilisation d'une plaque selon l'invention caractérisée en ce que la plaque est utilisée soit comme un élément sous carrelage, soit comme un élément de bardage des enveloppes des bâtiments, soit comme un élément de sous toiture ou soit comme un élément de construction sèche.
L'invention offre au moins un des avantages décrits ci-après.
Avantageusement, la plaque de ciment selon l'invention présente une densité inférieure à 1 , tout en conservant une résistance mécanique nécessaire à la manipulation des plaques et à la contribution des performances fonctionnelles des ouvrages dont elle fait partie, sous contrainte d'eau et/ou d'humidité.
L'invention offre comme autre avantage que la plaque de ciment selon l'invention présente une grande stabilité dimensionnelle même lorsque des variations hydriques se produisent, notamment des variations de températures et/ou d'humidité. En effet la taille de la plaque de ciment selon l'invention ne varie pas ou peu et les résultats de stabilité dimensionnelle obtenus sont comparables à ceux des plaques de plâtre connues.
Un autre avantage de la présente invention est que ces plaques selon l'invention permettent une découpe manuelle comme pour une plaque de plâtre connue (avec par exemple une scie, un cutter etc) en opposition à une découpe mécanique. Avantageusement, cette découpe émet moins de poussières comparativement à des plaques de ciment connues.
Avantageusement la plaque de ciment selon l'invention permet de faire une plaque adaptée pour la construction sèche.
De plus, la plaque de ciment selon l'invention présente comme avantage qu'elle est universelle c'est-à-dire qu'elle peut être utilisée aussi bien comme un élément sous carrelage (salle de bain, plan de travail, cuisine, douche, sol, etc.) que comme un élément de bardage des enveloppes des bâtiments, comme un élément de sous toiture (plafonds sous toiture, plaque support de couverture etc), comme élément de construction sèche (plafond, cloison, contre-cloison etc) ou comme tout type de plaque.
Enfin, la fabrication de plaques de ciment selon l'invention permet d'utiliser un procédé de formage en continu, suivi d'un séchage, par exemple à l'air libre. Avantageusement, l'empreinte environnementale de la plaque de ciment selon l'invention est réduite par rapport aux plaques ciment connues.
D'autres avantages et caractéristiques de l'invention apparaîtront clairement à la lecture de la description et des exemples donnés à titre purement illustratif et non limitatif qui vont suivre.
Par l'expression « liant hydraulique », on entend selon la présente invention tout composé ayant la propriété de s'hydrater en présence d'eau et dont l'hydratation permet d'obtenir un solide ayant des caractéristiques mécaniques. Le liant hydraulique selon l'invention peut en particulier être un ciment. De préférence, le liant hydraulique selon l'invention est un ciment Portland conformément à la norme EN 197-1 .
Par l'expression « composition hydraulique », on entend selon la présente invention un mélange d'au moins un liant hydraulique, avec de l'eau, éventuellement des granulats, éventuellement des adjuvants conformément à la norme EN 934-2. L'expression « composition hydraulique », selon l'invention désigne indistinctement une composition à l'état frais ou durci. La composition hydraulique selon l'invention peut être un coulis de ciment ou un mortier. Préférentiellement, la composition hydraulique selon l'invention est un coulis de ciment.
Par le terme « prise », on entend selon la présente invention le passage à l'état solide du liant hydraulique par réaction d'hydratation. La prise est généralement suivie par la période de durcissement.
Par l'expression « construction sèche», on entend selon la présente invention une méthode de construction pour la réalisation d'ouvrages à l'aide de composants industrialisés assemblés sur chantier.
Tout d'abord l'invention se rapporte à une plaque de ciment présentant une densité de 200 à 1000 kg/m3 caractérisée en ce qu'elle est réalisée à partir d'un coulis de ciment moussé comprenant au moins
du ciment ;
- de l'eau ;
- de 0,01 à 5 % d'un agent réducteur d'eau, d'un plastifiant ou d'un superplasitfiant, % en masse par rapport à la masse de ciment ;
de 0,45 à 5 %, d'un agent moussant, % en masse par rapport à la masse d'eau; un sel de calcium soluble dans l'eau ;
des particules minérales de taille de 0,1 à 300 μηη ;
le ratio agent moussant sur sel de calcium soluble dans l'eau étant de 0,3 à 0,8. Les ciments convenant pour le coulis de ciment permettant de réaliser la plaque selon l'invention sont le ciment Portland, les ciments décrits conformément à la norme EN 197-1 , les ciments du type aluminate de calcium, les ciments magnésiens ou les ciments sulfoalumineux et leurs mélanges.
Les ciments à base d'aluminates de calcium comme par exemple les ciments alumineux ou les Ciments Fondus®, conviennent également selon l'invention ainsi que les ciments conformes à la norme NF EN 14647.
Le ciment magnésien préféré comprend des carbonates de magnésium, des oxides de magnésium ou des silicates de magnésium, par exemple comme décrit dans le brevet US n°4,838,941 .
Le ciment préféré convenant selon l'invention est le ciment Portland, seul ou en mélange avec d'autres ciments cités ci-dessus, comme par exemple les ciments sulfoalumineux. Le ciment Portland convenant tout particulièrement selon l'invention est celui décrit conformément à la norme EN 197-1 .
Le ratio ciment (exprimé en clinker brut ) / particules minérales du coulis de ciment moussé utilisé pour réaliser la plaque selon l'invention est de préférence de 30/70 à 50/50, plus préférentiellement 35/65 à 50/50, encore plus préférentiellement environ 35/65.
Le ratio eau / ciment (exprimé en clinker brut ) du coulis de ciment moussé utilisé pour réaliser la plaque selon l'invention est de préférence de 0,3 à 0,9, plus préférentiellement de 0,4 à 0,7, encore plus préférentiellement environ 0,45. Ce ratio eau / ciment peut varier par exemple à cause de la demande en eau des particules minérales utilisées. Ce ratio eau / ciment est défini comme étant le ratio en masse de la quantité d'eau (E) sur la masse de ciment (C) (exprimé en clinker brut ).
De préférence, le coulis de ciment permettant de réaliser la plaque selon l'invention comprend un agent réducteur d'eau, un plastifiant ou un superplastifiant. Un agent réducteur d'eau permet de réduire d'environ 10 à 15 % en masse la quantité d'eau de gâchage pour un temps d'ouvrabilité donné. A titre d'exemple d'agent réducteur d'eau, on peut citer les lignosulphonates, les acides hydroxycarboxyliques, les carbohydrates, et autres composés organiques spécifiques, comme par exemple le glycerol, l'alcool polyvinylique, l'alumino-methyl siliconate de sodium, l'acide sulfanilique et la caséine (voir Concrète Admixtures Handbook, Properties Science and Technology, V.S. Ramachandran, Noyés Publications, 1984).
Les superplastifiants appartiennent à la nouvelle génération des agents réducteurs d'eau et permettent de réduire d'environ 30 % en masse la quantité d'eau de gâchage pour un temps d'ouvrabilité donné. A titre d'exemple de superplastifiant, on peut citer les superplastifiants du type PCP sans agent anti-mousse. On entend entre autre par le terme « PCP » ou « polycarboxylate polyoxyde » selon la présente invention un copolymère des acides acryliques ou acides méthacryliques, et de leurs esters de poly(oxyde d'éthylène) (POE).
De préférence, le coulis de ciment permettant de réaliser la plaque selon l'invention comprend de 0,01 à 0,2 %, plus préférentiellement de 0,02 à 0,08 % d'un agent réducteur d'eau, d'un plastifiant ou d'un superplastifiant % en masse par rapport à la masse de ciment.
Lorsque l'agent réducteur d'eau, le plastifiant ou le superplastifiant est utilisé en solution, la quantité est exprimée en matière active dans la solution.
Selon une variante de l'invention, le coulis de ciment permettant de réaliser la plaque de ciment selon l'invention ne comprend pas d'agent anti-mousse, ou tout agent ayant la propriété de déstabiliser une émulsion air dans un liquide. Certains superplastifiants commerciaux peuvent contenir des agents anti-mousse et par conséquent ces superplastifiants ne peuvent pas convenir pour le coulis de ciment permettant de réaliser la plaque selon l'invention.
De préférence, le coulis de ciment permettant de réaliser la plaque de ciment selon l'invention comprend un agent moussant anionique.
De préférence, le coulis de ciment permettant de réaliser la plaque selon l'invention comprend un agent moussant. De préférence cet agent moussant est choisi parmi un alkylsulfonate, alkyléthersulfonate, un hydroxyalkyléthersulfonate, un alphaoléfinesulfonate, un alkylbenzènesulfonate, un alkylsulfate, un alkyléthersulfate, un hydroxyalkylethersulfate, un alphaoléfinesulfate et un alkylbenzènesulfate, ou leurs mélanges.
De préférence, le coulis de ciment permettant de réaliser la plaque de ciment selon l'invention comprend un alkylsulfate ou un alkyléthersulfate de chaînes carbonées linéaires ou ramifiés de formule (I)
CnH2n+1-(OCH2CH2)m-OS03M (I)
dans lequel n est compris de 8 à 14 et m est compris de 0 à 15, M étant un cation alcalin. M représente de préférence un ion sodium ou potassium, de préférence un ion sodium ; m est compris de préférence de 0 à 10, par exemple de 0 à 9.
De préférence, le coulis de ciment permettant de réaliser la plaque de ciment selon l'invention comprend un alkyléthersulfate linéaire ou ramifié de formule CnH2n+1- (OCH2CH2)m-OS03M dans lequel n est compris de 8 à 12, de préférence de 10 à 12, par exemple de 9 à 1 1 , et m est compris de 1 à 6.
Le radical CnH2n+1 est de préférence linéaire.
Selon une variante de l'invention, le coulis de ciment permettant de réaliser la plaque de ciment selon l'invention comprend un mélange d'alkyléthersulfate et d'alkylsulfate. Chaque alkyléthersulfate et alkylsulfate peuvent eux mêmes être un mélange des composés de la formule (I).
De préférence, le coulis de ciment permettant de réaliser la plaque de ciment selon l'invention comprend un sel de calcium soluble dans l'eau. Ce sel de calcium peut être choisi parmi le chlorure de calcium, le nitrite de calcium, le nitrate de calcium, le formiate de calcium et l'acétate de calcium, ou leurs mélanges. Les sels de calcium soluble dans l'eau préférés sont le chlorure de calcium, le nitrite de calcium ou le nitrate de calcium.
Le sel de calcium soluble dans l'eau peut se présenter sous forme de solide, par exemple une poudre, ou de liquide, par exemple une solution aqueuse.
Par T'expression « sel de calcium soluble dans l'eau », on entend selon la présente invention un sel de calcium ayant une solubilité dans l'eau à 20°C supérieure à 2 g/100 mL. Généralement de tels sels présentent un anion qui est compatible avec les coulis de ciment aux concentrations utilisées selon l'invention.
Le sel de calcium soluble dans l'eau peut se présenter sous forme hydraté ou anhydre : quand un hydrate est utilisé la quantité est exprimée en matière anhydre.
Le ratio agent moussant sur sel de calcium soluble dans l'eau est calculé sur la base du chlorure de calcium anhydre comme sel de calcium. Lorsque un sel de calcium différent est utilisé la masse de sel de calcium utilisé pour calculer le ratio est la masse exprimée en terme d'équivalent de la masse de chlorure de calcium anhydre.
Le ratio agent moussant sur sel de calcium soluble dans l'eau est de préférence de 0,4 à 0,8, par exemple de 0,45 à 0,75, plus préférentiellement de 0,45 à 0,65, très préférentiellement de 0,45 à 0,6, encore plus préférentiellement de 0,45 à 0,55.
Le coulis de ciment permettant de réaliser la plaque de ciment selon l'invention comprend des particules minérales. Les particules minérales préférées selon l'invention sont le carbonate de calcium, les fumées de silice, les laitiers, les cendres volantes, les pouzzolanes, de préférence les pouzzolanes d'origine naturelle, les fillers calcaires ou siliceux, ou leurs mélanges.
La taille des particules minérales est de préférence de 1 à 100 μηι, par exemple de 1 à 80 μηι. Le D10 des particules minérales est de préférence de 1 à 4 μηι. Le D50 des particules minérales est de préférence de 4 à 20 μηη, plus préférentiellement de 6 à 15 μηι. Le D90 des particules minérales est de préférence de 12 à 100 μηι.
De préférence, la plaque de ciment selon l'invention présente une densité de 400 à 950 kg/m3, plus préférentiellement de 500 à 850 kg/m3, encore plus préférentiellement de 650 à 800 kg/m3. De préférence, le coulis de ciment permettant de réaliser la plaque de ciment selon l'invention comprend en outre un agent stabilisateur de mousse, comme par exemple une bétaïne, un oxyde d'amine, ou un amide gras.
D'autres additifs peuvent aussi être utilisés comme par exemple un retardateur, tel que l'acide citrique.
Selon une autre variante de l'invention, le coulis de ciment permettant de réaliser la plaque de ciment ne comprend pas de granulats légers comme décrit conformément à la norme EN 206-1 , par exemple la perlite.
Selon une autre variante de l'invention, le coulis de ciment permettant de réaliser la plaque de ciment ne comprend pas de charges légères, par exemple des billes de polystyrène.
Selon une variante, le coulis de ciment permettant de réaliser la plaque de ciment selon l'invention comprend en outre du sulfate de calcium hydraté, semihydraté ou anhydre.
Selon une variante, le coulis de ciment permettant de réaliser la plaque de ciment selon l'invention comprend en outre de la chaux.
De préférence, la plaque de ciment selon l'invention comprend en outre au moins un parement. Avantageusement, la plaque de ciment selon l'invention peut porter sur une de ses faces, ou mieux sur chacune de ses faces, un parement tissé ou non tissé, par exemple en fibres de verre, associé ou non à un voile. Ces parements peuvent comprendre ou non des fibres liées entres-elles par un liant.
De préférence, la plaque de ciment selon l'invention comprend en outre au moins une couche de liaison entre le parement et le corps de la plaque. Procédé
L'invention se rapporte également à un procédé de fabrication d'une plaque de ciment selon l'invention caractérisé en ce qu'il comprend au moins
- une étape de mise en contact entre au moins
o du ciment ;
o de l'eau ;
o de 0,01 à 5 % d'un agent réducteur d'eau, d'un plastifiant ou d'un superplasitfiant, % en masse par rapport à la masse de ciment ;
o de 0,45 à 5 %, d'un agent moussant, % en masse par rapport à la masse d'eau;
o un sel de calcium soluble dans l'eau ;
o des particules minérales de taille de 0,1 à 300 μηη ; le ratio agent moussant sur sel de calcium soluble dans l'eau étant de 0,3 à
0,8 ;
- une étape d'introduction de gaz ou de mousse ;
- une étape de mise en forme de la plaque.
Un autre procédé permettant de fabriquer au moins une plaque de ciment selon l'invention peut comprendre les étapes suivantes : mélanger une composition destinée à former le corps de la plaque avec de l'eau, déposer ce mélange sur un support défilant, lequel est entraîné en continu par un sytsème de défilement d'une bande, donner sa forme à la plaque à l'aide d'un rouleau, sécher et découper la plaque obtenue à la longueur souhaitée, la composition destinée à former le corps de la plaque comprenant au moins
o du ciment ;
o de l'eau ;
o de 0,01 à 5 % d'un agent réducteur d'eau, d'un plastifiant ou d'un superplasitfiant, % en masse par rapport à la masse de ciment ;
o de 0,45 à 5 %, d'un agent moussant, % en masse par rapport à la masse d'eau;
o un sel de calcium soluble dans l'eau ;
o des particules minérales de taille de 0,1 à 300 μηη ;
o un gaz ou une mousse
le ratio agent moussant sur sel de calcium soluble dans l'eau étant de 0,3 à 0,8.
Un autre procédé permettant de fabriquer au moins une plaque de ciment selon l'invention peut comprendre les étapes suivantes :
a) mélanger une composition destinée à former le corps de la plaque avec de l'eau;
b) ajouter un agent moussant ;
c) injecter un gaz dans le coulis obtenu à l'étape b) et mélanger;
d) donner une forme au coulis moussé
e) sécher et découper la préforme obtenue.
De préférence, toute l'air introduite soit sous forme de gaz soit sous forme de mousse est présente dans la plaque de ciment selon l'invention.
Le gaz introduit dans le procédé de fabrication selon l'invention peut être de préférence de l'air.
L'étape d'introduction de gaz peut se faire selon différentes manières, et en particulier soit par introduction directe de gaz, soit par introduction d'une dispersion d'une phase gazeuse dans un liquide (mousse). La mousse qui peut être introduite comprend de préférence de l'eau, de l'air et au moins un agent moussant. Cet agent moussant peut être anionique ou non ionique. Il peut être identique ou différent de celui utilisé pour réaliser le coulis de ciment moussé.
Selon une première variante du procédé selon l'invention, l'introduction de gaz peut se faire par introduction directe d'air. En particulier le procédé d'injection directe d'air décrit dans la demande WO 2005/080294 convient tout particulièrement.
Selon cette première variante, l'air est introduit sous pression, en particulier la pression est comprise entre 1 et 5 bars.
Selon une deuxième variante du procédé selon l'invention, l'introduction de gaz peut se faire par introduction d'une dispersion d'une phase gazeuse dans un liquide, en particulier par introduction d'une mousse air dans eau. La dispersion air dans eau peut être introduite directement dans le coulis de ciment puis mélangé dans un mélangeur statique ou dynamique, en mode batch ou en mode continu.
Selon une variante le procédé de fabrication d'une plaque selon l'invention comprend en outre une étape supplémentaire d'amener au moins un parement.
Selon une autre variante le procédé de fabrication de plaques de ciment selon l'invention comprend les étapes suivantes :
a) amener par des moyens mécaniques au moins un premier parement ;
b) préparer un premièr coulis de ciment moussé ;
c) étaler le coulis obtenu à l'étape b) sur le premier parement en une première couche de liaison ;
d) préparer un deuxième coulis de ciment moussé;
e) étaler le deuxième coulis obtenu à l'étape d) sur la couche de liaison obtenue à l'étape c) en une couche de coeur;
f) amener par des moyens mécaniques un deuxième parement ;
g) préparer un troisième coulis de ciment moussé;
h) étaler le troisième coulis obtenu à l'étape g) sur le deuxième parement en une deuxième couche de liaison ;
i) déposer le deuxième parement obtenu à l'étape h) sur la couche de cœur de la préforme obtenue à l'étape e) ;
j) appliquer une pression sur la préforme.
Selon une autre variante le procédé de fabrication de plaques de ciment selon l'invention comprend les étapes suivantes :
a) amener au moins un premier parement ;
b) préparer une première pâte de plâtre ;
c) étaler la pâte obtenue à l'étape b) sur le premier parement en une première couche de liaison ; d) préparer un coulis de ciment moussé;
e) étaler le coulis obtenu à l'étape d) sur la couche de liaison obtenue à l'étape c) en une couche de coeur;
f) amener un deuxième parement ;
g) préparer une deuxième pâte de plâtre;
h) étaler la deuxième pâte obtenue à l'étape g) sur le deuxième parement en une deuxième couche de liaison ;
i) déposer le deuxième parement obtenu à l'étape h) sur la couche de cœur de la préforme obtenue à l'étape e) ;
j) appliquer une pression sur la préforme.
Selon une autre variante le procédé de fabrication de plaques de ciment selon l'invention comprend les étapes suivantes :
a) amener au moins un premier parement ;
b) préparer une pâte de ciment moussé ;
c) étaler la pâte obtenue à l'étape b) sur le parement en une couche de coeur;
d) amener un deuxième parement ;
e) appliquer une pression sur la préforme.
Le procédé selon l'invention présente comme avantage d'être réalisable en continu, grâce au coulis de ciment décrit ci-dessus possédant une ouvrabilité initiale élevée, un temps de prise limité et un durcissement rapide autorisant la manipulation immédiate des plaques à l'issue de la période de prise. Le procédé selon l'invention permet par conséquent la fabrication d'un grand nombre de plaques en un temps limité. Les coûts de production de telles plaques sont considérablement réduits.
Avantageusement le premier parement de l'étape a) permet d'augmenter considérablement la résistance à la flexion des plaques.
L'invention se rapporte également à l'utilisation d'une plaque selon l'invention caractérisée en ce que la plaque est utilisée comme un élément sous carrelage, comme un élément de bardage des enveloppes des bâtiments, comme un élément de sous toiture ou comme un élément de construction sèche.
Les plaques ciment selon l'invention sont également résistantes aux intempéries et au brouillard salin. Elles sont ainsi particulièrement adaptées pour être utilisées dans le secteur du bâtiment, pour former ou recouvrir des parois, planchers ou toitures, à l'intérieur ou à l'extérieur des bâtiments, et notamment dans des atmosphères très humides ou des zones fréquemment lavées au jet d'eau telles que les cuisines industrielles, les laboratoires agro-alimentaires, les douches ou salles de bains, les bassins, les piscines, les bâtiments agricoles ou boucheries industrielles. De telles plaques peuvent également être utilisées pour former ou recouvrir des parois, planchers ou toitures exposés à un brouillard salin.
Brève description des figures : Les figures suivantes illustrent l'invention sans en limiter la portée. La figure 1 représente un schéma d'une variante du procédé de fabrication d'une composition permettant de réaliser le corps de la plaque de ciment selon l'invention avec introduction directe d'air. La figure 2 représente un graphique des résistances mécaniques d'une plaque de ciment selon l'invention comparé à une plaque de plâtre connue.
En faisant référence dans un premier temps à la figure 1 , le procédé de fabrication d'une plaque selon l'invention comprend la préparation d'un coulis (1 ) comprenant du ciment, des particules minérales, des adjuvants, de l'eau, un accélérateur (le sel de calcium) et un agent moussant. Le procédé comprend le moussage en continu (2) avec introduction directe d'air dans le malaxeur dynamique Mondomix.
Les exemples suivants illustrent l'invention sans en limiter la portée. EXEMPLES
Matériaux :
Millifoam H : il s'agit d'un agent moussant du type anionique (alkyle éther sulfate de sodium) fourni par la société Hunstman ;
Chlorure de calcium : CaCI2 pur anhydre de chez Verre Labo Mula;
Le ciment Portland est un ciment CEM I 52,5 R issu de la cimenterie Lafarge de Port La Nouvelle (Numéro du lot LHY-3830 ou LHY-3867) ;
Les particules minérales sont du carbonate de calcium fourni par la société OMYA sous le nom Betocarb HP Entrains dont le D50 est de 7,8 μηι, le D10 est de 1 ,7 μηι, le D90 est de 93 μηη et avec une taille maximum des particules de 200 μηη (Numéro de lot ADD- 0239) ;
Le fluidifiant (plastifiant) est un mélange comprenant un polycarboxylate polyoxyde (PCP) fourni par la société Chryso sous le nom Chrysolab EPB 530-017 ; Il est basé sur le Premia 180 mais ne comprend pas d'agent anti-mousse ;
Les cendres volantes proviennent d'Amérique du Nord (Lafarge, Willcounty, Illinois) : taille des particules D50 = 6,8 μηη ; Superpozz provient d'Afrique du Sud : taille des particules D50 = 3,4 μηι ;
Les pouzzolanes proviennent de Grèce (Yali).
Eau : eau du robinet. Dans la description et les exemples, la taille des particules et leur distribution
(entre 0,02 et 2 mm) a été mesurée en utilisant un granulomètre laser Malvern MS2000. Les mesures ont été effectuées dans l'éthanol. La source de lumière était un laser He- Ne rouge (632 mm) et une diode bleue (466 mm). Le modèle optique était celui de Mie et la matrice de calcul était du type polydisperse. L'appareil a été vérifié avant chaque session de travail au moyen d'échantillons standards (Silbeco France (formellement connu comme Sifraco) C10 silice) dont la distribution de taille des particules était connue. Les mesures ont été réalisées avec les paramètres suivants : vitesse de pompe : 2300 rpm et vitesse de mélange 800 rpm. L'échantillon a été introduit dans le but d'obtenir un obscurcissement entre 10 et 20 %. La mesure a été effectuée après stabilisation de l'obscurcissement. Des ultrasons à 80% ont d'abord été appliqués pendant 1 minute pour assurer la dé-agglomération de l'échantillon. Après 30 secondes (pour laisser les bulles d'air se clarifier), une mesure a été réalisée pendant 15 secondes (15000 analyses d'images). Sans vider la cellule, la mesure a été répétée au moins deux fois pour vérifier la stabilité du résultat et l'élimination des bulles potentielles. Toutes les valeurs données dans la description et les plages de valeurs correspondaient à la valeur moyenne obtenue avec ultrason.
Réalisation de plaques de ciment selon l'invention: Le ciment, les particules minérales et le sel de calcium ont été pesés ensemble sur la balance. Puis l'eau de gâchage et le fluidifiant (Chrysolab) ont été pesés séparément. De même le Millifoam a été pesé séparément. Toutes les poudres pesées ont été disposées dans la cuve du malaxeur (malaxeur Rayneri™ MALX-104, Rayneri VMI, model PH602, sériai n°121025) et ont été mises sous agitation à l'aide de la pâle rotative à mouvement planétaire du malaxeur (17 tours / minute pendant 1 à 2 minutes). L'eau de gâchage comprenant le fluidifiant a été ajoutée aux poudres se trouvant dans la cuve du malaxeur (33 tours / minute pendant 1 à 2 minutes selon le volume). Un coulis de ciment a été alors obtenu et laissé sous agitation pendant 2 minutes supplémentaires dans le malaxeur. Le malaxeur a été arrêté. La cuve du malaxeur a été raclée puis le Millifoam a été versé sur la surface du coulis de ciment. Le malaxage a été relancé pour incorporer le Millifoam au coulis (vitesse variant de 17 à 25 tours / minute pendant environ 2 minutes). Les coulis de ciment ont été obtenus et étaient prêts à être moussés. Le tableau 1 ci-dessous présente les compositions chimiques des différents coulis de ciment qui ont été réalisés selon l'invention.
Tableau 1 :
Les quantités du tableau 1 sont donnés en % en masse par rapport à la masse totale de la formulation
(1 ) la quantité de Millifoam est la quantité de produit commercial contenant 27% de matière active. Le ratio agent moussant / CaCI2 du tableau 1 est en matière active / CaCI2.
La réalisation du coulis de ciment moussé a été faite en continu. Le coulis de ciment, obtenu précédemment, a été versé dans une cuve tampon maintenue sous agitation à l'aide d'un malaxeur Rayneri Turbotest (MEXP-101 , Rayneri VMI , model Turbotest 33/300, série n°71815) comprenant une pâle défloculeuse (la vitesse de la pâle pouvant varier de 1000 tours / minute à 400 tours / minute en fonction du volume de coulis). Le coulis a été pompé grâce à une pompe volumétrique de type Moineau (pompe à vis excentrée Seepex™ MEXP-413, model BN-025-12, série n°243327) à un débit d'environ 1 Litre / minute. Le coulis a été introduit dans un foisonneur (Mondomix™ MALX-160, Minimondo A05, série n°P14018-371 15) auquel a été ajouté de l'air comprimé (générée par un régulateur d'air Brooks, série n°T55329/028) à un débit de 2,75 Litres / minute. Le débit a été adapté à la densité de mousse souhaitée à la sortie du foisonneur, en général de 1 à 4 Litres / minute. La vitesse de rotation du foisonneur était de 400 tours / minute, cependant la vitesse de rotation a été adaptée à la densité de mousse souhaitée à la sortie du foisonneur et pouvait varier de 250 à 1500 tours / minute. Un mixeur statique hélicoïdal (Isojet™) était présent à la sortie du foisonneur. Une mousse a été ainsi obtenue, il s'agissait d'un ciment moussé selon l'invention.
Réalisation des plaques
Un moule a été préparé par montage vertical de 2 plaques de taille 40 X 60 cm sur lesquels deux parements ont été positionnés et espacé de 13 mm. Le parement utilisé était un parement non tissé en fibres de verre. Le ciment moussé selon l'invention obtenu précédemment fut introduit dans le moule. Les plaques ainsi obtenues ont été démoulées après 3 heures. Ces plaques ont été placées pendant 24 heures dans une atmosphère à 100 % d'hygrométrie et à 20°C. A l'isssu de ce traitement, elles ont été séchées et conservées dans une étuve à 45°C.
Résistances mécaniques en compression
Deux plaques de ciment ont été réalisées (N°1 et N°2) à partir de la formulation de coulis de ciment n°1. Ces plaques ont été découpées en échantillon de 5 X 5 cm et d'épaisseur 13 mm. La densité a été mesurée pour chaque morceau de plaque.
La résistance mécanique a été testée. Chaque échantillon de plaque a été soumis à une contrainte mécanique en compression jusqu'à rupture de l'échantillon à l'aide d'une presse Zwick™ (PRES-0018-1997/03). Ainsi la valeur de la force maximale exercée sur la surface de l'échantillon a été mesurée. Une résistance en compression en a été déduite. Les mesures ont été effectuées dans un environnement stabilisé en température (23°C) et 50% d'humidité relative. Les résultats qui ont été obtenus sont présentés au tableau 2 et à la Figure 2.
Tableau 2 :
Densité Résistance
mécanique en MPa
Exemple comparatif : plaque de plâtre (BA13 standard) 0,8 4,5
0,9 6,5
Plaque de ciment (haut de la plaque N°1 ) valeur moyenne pour 0,86 10,8
6 échantillons
Plaque de ciment (bas de la plaque N°1 ) valeur moyenne pour 0,77 6,8
6 échantillons
Plaque de ciment (milieu de la plaque N°2) valeur moyenne 0,73 4,6 pour 7 échantillons

Claims

REVENDICATIONS
Plaque de ciment présentant une densité de 200 à 1000 kg/m3 caractérisée en ce qu'elle est réalisée à partir d'un coulis de ciment moussé comprenant au moins du ciment ;
- de l'eau ;
- de 0,01 à 5 % d'un agent réducteur d'eau, d'un plastifiant ou d'un superplasitfiant, % en masse par rapport à la masse de ciment ;
de 0,45 à 5 %, d'un agent moussant, % en masse par rapport à la masse d'eau; un sel de calcium soluble dans l'eau ;
des particules minérales de taille de 0,1 à 300 μηη ;
le ratio agent moussant sur sel de calcium soluble dans l'eau étant de 0,3 à 0,8.
Plaque selon la revendication 1 caractérisée en ce qu'elle comprend un alkylsulfate ou un alkyléthersulfate de chaînes carbonées linéaires ou ramifiés de formule (I)
CnH2n+1-(OCH2CH2)m-OS03M (I) dans lequel n est compris de 8 à 14 et m est compris de 0 à 15, M étant un cation alcalin.
Plaque selon la revendication 1 ou 2 caractérisée en ce qu'elle comprend un alkyléthersulfate linéaire ou ramifié de formule CnH2n+i-(OCH2CH2)m-OS03M dans lequel n est compris de 8 à 12 et m est compris de 1 à 6.
Plaque selon l'une des revendications 1 à 3 caractérisée en ce qu'elle comprend un mélange d'alkyléthersulfate et d'alkylsulfate.
Plaque selon l'une quelconque des revendications 1 à 4 caractérisée en ce que le sel de calcium soluble dans l'eau est choisi parmi le chlorure de calcium, le nitrite de calcium et le nitrate de calcium.
Plaque selon l'une quelconque des revendications 1 à 5 comprenant en outre au moins un parement.
Plaque selon la revendication 6 comprenant en outre au moins une couche de liaison entre le parement et le corps de la plaque.
8. Procédé de fabrication d'une plaque selon l'une des revendications 1 à 7 caractérisé en ce qu'il comprend au moins
une étape de mise en contact entre au moins
o du ciment ;
o de l'eau ;
o de 0,01 à 5 % d'un agent réducteur d'eau, d'un plastifiant ou d'un superplasitfiant, % en masse par rapport à la masse de ciment ;
o de 0,45 à 5 %, d'un agent moussant, % en masse par rapport à la masse d'eau;
o un sel de calcium soluble dans l'eau ;
o des particules minérales de taille de 0,1 à 300 μηη ;
le ratio agent moussant sur sel de calcium soluble dans l'eau étant de 0,3 à 0,8 ; une étape d'introduction de gaz ou de mousse ;
une étape de mise en forme de la plaque.
9. Procédé de fabrication selon la revendication 8 comprenant en outre une étape supplémentaire d'amener au moins un parement.
10. Utilisation d'une plaque selon l'une quelconque des revendications 1 à 7 caractérisée en ce que la plaque est utilisée comme un élément sous carrelage, comme un élément de bardage des enveloppes des bâtiments, comme un élément de sous toiture ou comme un élément de construction sèche.
EP11712923A 2010-02-18 2011-02-16 Plaque legere de ciment Withdrawn EP2536672A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1051157A FR2956397B1 (fr) 2010-02-18 2010-02-18 Element constructif en beton leger isolant
FR1056079A FR2963002B1 (fr) 2010-07-23 2010-07-23 Plaque legere de ciment
PCT/FR2011/050330 WO2011101595A1 (fr) 2010-02-18 2011-02-16 Plaque legere de ciment

Publications (1)

Publication Number Publication Date
EP2536672A1 true EP2536672A1 (fr) 2012-12-26

Family

ID=43927836

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11712923A Withdrawn EP2536672A1 (fr) 2010-02-18 2011-02-16 Plaque legere de ciment

Country Status (9)

Country Link
US (1) US20120315464A1 (fr)
EP (1) EP2536672A1 (fr)
CN (1) CN102762516A (fr)
BR (1) BR112012019182A2 (fr)
CA (1) CA2790286A1 (fr)
IN (1) IN2012DN06297A (fr)
MA (1) MA34050B1 (fr)
RU (1) RU2012139821A (fr)
WO (1) WO2011101595A1 (fr)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3007118A1 (fr) * 2013-06-18 2014-12-19 Lafarge Sa Procede de sechage d'un objet mis en forme
US10189180B2 (en) 2014-01-15 2019-01-29 United States Gypsum Company Foam injection system with variable port inserts for slurry mixing and dispensing apparatus
US10662112B2 (en) 2015-10-01 2020-05-26 United States Gypsum Company Method and system for on-line blending of foaming agent with foam modifier for addition to cementitious slurries
WO2017067951A1 (fr) 2015-10-20 2017-04-27 Hilti Aktiengesellschaft Utilisation d'un système de mortier 2k contenant du sulfate de calcium, à base de ciment alumineux, dans des applications d'ancrage afin d'augmenter les valeurs de charge et de réduire le retrait
AU2016342204B2 (en) 2015-10-20 2020-11-19 Hilti Aktiengesellschaft Two-component mortar system based on aluminous cement and use thereof
EP3365302B1 (fr) 2015-10-20 2019-07-17 Hilti Aktiengesellschaft Système de fixation chimique et son utilisation
BR122022020364B1 (pt) * 2015-11-10 2024-03-05 Yara International Asa Uso de nitrato de cálcio para modificar a permeabilidade de uma composição cimentícia endurecida
PT3472120T (pt) * 2016-06-17 2022-02-01 United States Gypsum Co Processo de mistura em linha de um agente espumante e um modificador de espuma para adicionar a pastas cimentícias
US10040725B2 (en) 2016-07-19 2018-08-07 United States Gypsum Company Lightweight foamed cement, cement board, and methods for making same
US11267765B2 (en) 2017-04-07 2022-03-08 Hilti Aktiengesellschaft Use of amorphous calcium carbonate in a fire-resistant inorganic mortar system based on aluminous cement to increase load values at elevated temperatures
CA3106877A1 (fr) 2020-01-24 2021-07-24 Permabase Building Products, Llc Panneau de ciment avec additif resistant a l'eau
CN114940613A (zh) * 2022-06-05 2022-08-26 吉林市市政建设集团有限公司 一种利用粉煤灰加工水泥板的生产工艺

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3989534A (en) * 1973-03-19 1976-11-02 Mark Plunguian Foamed cementitious compositions and method of producing same
US4731389A (en) * 1982-09-03 1988-03-15 Air Krete, Inc. Foam insulation and process for producing the same
US5207830A (en) * 1990-03-21 1993-05-04 Venture Innovations, Inc. Lightweight particulate cementitious materials and process for producing same
US5250578A (en) * 1991-07-05 1993-10-05 Cornwell Charles E Foamed cementitious composition and method of making
WO1993010972A1 (fr) * 1991-11-26 1993-06-10 Massachusetts Institute Of Technology Composites legers
AUPP970099A0 (en) * 1999-04-09 1999-05-06 James Hardie International Finance B.V. Concrete formulation
US6454004B2 (en) * 1999-07-15 2002-09-24 Halliburton Energy Services, Inc. Cementing casing strings in deep water offshore wells
US6613424B1 (en) * 1999-10-01 2003-09-02 Awi Licensing Company Composite structure with foamed cementitious layer
US20060292358A1 (en) * 2005-06-01 2006-12-28 National Gypsum Properties, Llc Water resistant low density cementitious panel
US20070062143A1 (en) * 2005-09-21 2007-03-22 Noushad Rafie L Construction products and method of making same
US8070878B2 (en) * 2007-07-05 2011-12-06 United States Gypsum Company Lightweight cementitious compositions and building products and methods for making same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2011101595A1 *

Also Published As

Publication number Publication date
CN102762516A (zh) 2012-10-31
MA34050B1 (fr) 2013-03-05
IN2012DN06297A (fr) 2015-09-25
CA2790286A1 (fr) 2011-08-25
RU2012139821A (ru) 2014-03-27
WO2011101595A1 (fr) 2011-08-25
US20120315464A1 (en) 2012-12-13
BR112012019182A2 (pt) 2018-03-27

Similar Documents

Publication Publication Date Title
EP2536672A1 (fr) Plaque legere de ciment
EP2822911B1 (fr) Composition seche a base de liant mineral et destinee a la preparation d'une formulation humide durcissable pour le batiment
EP2523922B9 (fr) Enduit isolant a base de xerogel de silice
EP1392616B1 (fr) Plaque a base de liant cimentaire
FR2989083A1 (fr) Mousse minerale isolante
CN102515827A (zh) 一种利用复合型蛋白发泡剂制备轻质泡沫混凝土的方法
FR2963002A1 (fr) Plaque legere de ciment
CA2971658A1 (fr) Procede de fabrication en continu d'une mousse minerale a faible densite
FR3000060A1 (fr) Composition de beton ou mortier allege comprenant une mousse aqueuse
WO2020043751A1 (fr) Procede de preparation d'une mousse minerale legere, mousse minerale obtenue et utilisations
FR2956397A1 (fr) Element constructif en beton leger isolant
EP3377458B1 (fr) Mousse minerale ultra-légère et son procede de fabrication
EP1583724A2 (fr) Un procede pour augmenter l hydrofugation de compositions de liants hydrauliques mineraux ainsi que les compositions susceptibles d etre obtenues par ce procede et leurs utilisations
EP3475242B1 (fr) Procédé de fabrication de matériaux de construction sous forme de plaques
EP3152181B1 (fr) Procede de fabrication d'une mousse minerale ultra-legere
CH638766A5 (fr) Composition aqueuse pour mortier resistant a la perte d'eau au cours du durcissement.
EP3325424A1 (fr) Procede de preparation d'un béton ou mortier allegé contenant de la glycerine
FR2955790A1 (fr) Procede de projection d'un materiau mousse et revetement obtenu a partir d'un tel procede
FR2963000A1 (fr) Element constructif en beton leger isolant
FR2920765A1 (fr) Procede de declenchement et/ou d'acceleration de prise d'un materiau pateux non refractaire a prise hydraulique
EP3392224A1 (fr) Utilisation d'un agent entraineur d air pour diminuer le temps de sechage d'une chape a base de sulfate de calcium
FR2486928A1 (fr) Perfectionnement a un procede de fabrication de platre cellulaire

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120918

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20130906

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20170505